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§0. Introduction.

Our purpose in this paper is to solve the following initial value problem by
a stochastic method, using an extension of a Girsanov type formula as in [4].

0.1, 1) %—Vr(t, x) = (A+B)W(, x), t>0, x€R",
(0.1, i) W, x) = f(x),

where
o 1 d a 2q
A== 5 (5-)"
¢ is a natural number, and p is a complex number such that Re p>0, and

0\«
B - Iaémba()‘:)(_a;) ’
f(x) and b,(x) are complex valued functions in a certain class F°(R¢) (see §1),
and |a|=X&,a;, and (0/0x)*=TI1&.(0/0x,)%* for multi index a=(aj, -+, aq).
For b,(x), |a|=2q, we assume a sufficient condition, under which (0.1) is
strongly parabolic.
As in [4], we consider A-process, which is a “Markov process” related to

0.2) Mg 0= aut,x), 150, xRS,

i.e., the density of the “transition probability ” of the process is the funda-
mental solution of [0.2). In general, this transition probability is not positive
even for real p. Therefore, if a completely additive measure related to
A-process should be realized on a path space, then the measure would not be
of bounded variation, shown as in [1, 2, 4]. Thus, A-process is not a Markov
process in the usual sense.

In [4], we defined “stochastic integrals” of A-process, and each stochastic
integral corresponds to a differential operator of order up to 2¢—1. Here we
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will define “singular stochastic integrals”, to which differential operators of
orders up to 2¢ correspond. If the singular stochastic integrals are once estab-
lished, then a Girsanov type formula, obtained in [4], will enable us to solve
(0.1). Justification of this procedure is the theme of this article.

At first, we consider e-process, that is, a “ Markov process” related to the
following parabolic equation of order higher than [0.2):

ou L & 0 N
0.3) S, x)=[(—1)p skgl(a—xk) +A]u(t, X), >0, xeRY,

where ¢ is a positive number and p is a natural number such that p>gq. In
§2, we define stochastic integrals of e-process by the same manner as in [4].

Next, in §3, we let ¢ tend to zero for then, with a suitable choice
of integrands, the stochastic integrals of e-process converge to the singular
stochastic integrals of A-process. Here the differential operators of orders up
to 2qg correspond to these singular stochastic integrals, and the sense of the
convergence is a little wider than “the weak sense”, in [1, 3, 4].

The content of §4 is a construction of “ Girsanov density ” for the singular
stochastic integrals and some of its properties. For instance, our Girsanov type
formula solves “martingale problem” for (A+ B). Even in the case A=A, i.e. the
Brownian motion, this is new in comparison with the usual Girsanov formula.

In §5, we specify a stochastic solution of (0.1) by the Girsanov type formula
and prove the uniqueness and regularity of the stochastic solution.

§1. Preliminaries.

Let M*(R?), k=0, be the space of complex valued measures g on R¢ with
}I‘uH,CES(l—l—15])‘1yl(d§)<oo. F5(R?) is the space of all Fourier transforms f(x)
:Sexp{z’<$, xytps(d§) of py in HM(R?), where <&, x) is the inner product in R¢,

and we define ||fll.=lp,l,. H(R?) is a commutative Banach algebra with
norm | ||, under convolution. We define H°(R)=(\izo M (R?%) and IF=(R?)
=20 F*(RY). F=(R?) contains the Schwartz class S, constants, sinx,, cOSx,,
etc.

We define some “stochastic terms” about A-process and e-process as in [4].
The path space C is the set of all continuous functions w(-)=(w,(+), -+, we(+)):
[0, c0)— R4 We say that a function f(w) on C is a tame function, if f(w) is
a Borel function of a finite number of observations, that is

Jw) = g(w(ty), -, wity))

for a Borel function g on R<%*¥., Moreover, if g is in F*(R*YN) (resp.,
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Polynomial), then we say that f(w) is an * (resp., a polynomial) tame function.
The Fourier transform of the fundamental solution p¢(¢, x) of is

exp{— 3 (e&t*+pE101},

and p°(¢, x) is in the Schwartz class S in x for each positive t. The expectation
E:[f(w)] of a tame function f(w)=g(w(t,), -, wlty)), 04, -+ <ty, is defined
by the following, if the integral on the right hand side exists:

(1.1) Eilf(w)] = S...de(l) dy‘N)(];I Deltn—tn-y, y(n)__y(n—l)>>

Xg<y(1>: T y(N));

where #,=0 and y®=x. e-process has Markov property, that is: for f in
FUARYYM), g in FURYY'), and 0=s5,< -+ Ssy=t, < - Sty,

(1.2) ESlf(w(sy), -, wisy))gwty), -, wix))]
=EL[f(w(sy), -+, wsy)Ejs 8wt —sy), -, wty —sy))1].
We say that a sequence of tame functions {f,} converges in the e-weak
sense, if lim,.E5[ fng] exists for each * tame function g and each =x.

J=UJs, -+, Ja) is a multi index of a stochastic integral (in abbreviation, S. I.
multt index) if J,, k=1, ---, d, are natural numbers such that

(1.3, l) 2?2]1&21, kzl; '")d:
(1.3, i) JI= 2T 2 2pd=D+1,

For A-process, we use the similar terms as above ; the expectation E [ f(w)],

Markov property, the weak sense convergence, etc. (cf. [4].
As a relation of the both processes: for an &° or a polynomial tame

function f(w), lim._ Es[f(w)]=E,[f(w)].

§ 2. Stochastic integrals of c-process.

We fix a positive number T throughout this article. For a large natural
number M, let 6=T/M, sp,=mT/M (m=0,1, .--, M), and let

awk(sm) = wk(sm+1)_wk(sm>, k_'—_l, e d .
For S.I. multi index J, we define

1) Gutsa)’ = (3)° 1T Guatsa™,



212 K. NisHIOKA

where we use the convention for J,=2p
2.2) (Owi(sm)’t = (—=1)?""e(2p)! 4.
We denote the characteristic function of an interval [0, t] by X, s

2.1. THEOREM. Let a(x) and a,(x) (n=1, ---, N) be functions in F=(R?),
and let J and J(n) (n=1, ---, N) be S.I. multi indices. Then, the following
sequences of tame functions converge e-weakly for each positive &, as M—oo:

S alsmalwlsm)@ulsn),

0

m1-1 my-1-1

M N
2.3) S % S Taae)( 2 aalsn, )0w(se,)’ ™).
my=N my=0 n=1

-1 mg=N -2

2.2. DEFINITION. We call the e-weak limits above stochastic integrals of
e-process, and we use the symbolical notations:

e-j:a<w<s>><dw<s>>J,

o-| (s | Mduwts 7@ - [N N duwls
X a(w(sy))as(w(sy) -+ an(w(sy)).

PrROOF OF THEOREM 2.1. We shall prove the weak convergence of (2.3) for
an0)={explie ™, x)balde ™), n=1, o, N,

Step 1. Let @=(D,, @,) be an ordered partition of the set {I, ---, d} into
two parts, where @, or @, may be empty.

For S.I. multi index J and an ordered partition @, a constant C(J, @) is
defined by

M@LXH 2)! ), if Ju=2g for kO,

24) C(J,9)= <k€¢1 @Cp—=J) I \reo, (2q9—]J)!

0, otherwise.

Step 2. Assume that g(w):g(w(u)):gexp{i@, w(up(dl), u=t, and set
H(n):(Hl<n)y T, Hd(n)) With

2.5) Him) =Lt S &0, k=1, -, d, n=1, -, N+L,

where £°=0. By a similar argument as in [4],
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(2.6) gggoEi[(Z.S)g(w(u)>]

= {ereta0 i) - funtazom| ds -+ dsis

>8> >5 y >0

XeXp{iCCHED + - +E, 0} TT{S CUm), @)s?11p1%%
%[ T TT expl(—e(Hn)*? — pUH () (5as— 5} |
x| T exp{(—eHu N+ 107 —p(HyN+ D sa} |, 0=,

where | /4| denotes the number of elements in 4 for a finite set 4, and X
denotes the sum over all @’s.

Step 3. By (2.6) and a similar argument as in [4], we have:

(1) NimgEe[2.3)g(w(u))}|.<oco for each &,

(ii) if a sequence {g™(x)} in F=(R%) converges to a function g(x) in F=(R?)
with respect to | || sense for each «, then, for each &,

Jim |1E°.[23)g (w(w)]— lim E%.[2.3)g(w()]l. = 0.

Step 4. To prove the e-weak convergence of for a general g* tame
function g(w), it is sufficient to look at the case g(w)=g(w(u,), wu,)), ui=u,.

If u;=u,=t, then the proof is essentially a repetition of Step 2, by [1.2).

If u,=t=wu,, or if t=u,=u,, then Markov property and (i), (ii) in
Step 3 complete the proof as in [4]. O

As in [4], stochastic integrals of e-process correspond to differential operators
in R,

2.3. COROLLARY. Let f be an F* tame function, that is f=g(x®, -, x®)
with ge F°(RYVE), x P =w(uy), -, xP=w(ug) O=u,Su,;< - Sur<T). Then,

lim
et T—1

Eg| {e-] atuwts)dus)} £

> CJ, @)(_l)l)l@ll+ql¢2!+de\(I)lgpl(pzl
) ) .
XEi[a(w(t»({kgl(ri, a_j?)_) P Jk}{kg2(ri, 5%) g Jk}'g>:|

for up 1 St<ug,

2 ¢, @) (—1)P 1 Priraidairdg P %2 Bl a(w(t)g] for ugs=t,

where A([J, ®)=1 if J.,=2p for k€@, and if [J,=2q for k=@, and AJ, ®)=0

otherwise.
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PrOOF. Let g, (dC®, ---, d{®) be the measure in JH°(R**F) corresponding
to g, and apply to the tame function

@1 L B[Sy duw(sm))?
7 o Ea| 3 e s(sm)atu(sa)Ousa) S |,

under the assumption ugp - <t<uz. As M—oco, we obtain a little modification
of (2.6):

lim (2.7)

Moo

= T}-Z‘ S.ug(d‘:(l); Tt dC(R))SﬂaME)S:dS exp{i<C P+ - +L® x>}
x[% C(J, )% p!02i(— 1)7idui+aitsi+a
X(kgl(iCéR')—F +z’C£R))“"Jk><kgz(gg,gR'>+ _}_Z'CéR)>2q—Jk)]
x| T expfe] d0( 2 Gk s(O)+60.00)
— 0] d0( B 60+, (0)) '}

In the case t=ug, the similar equality as the above is obtained. Thus, as t
tends to t, Corollary 2.3 follows. O

2.4. COROLLARY. For functions f and g in F=(R%),

@8) B {e-]] sy @ - | auts ) V(11 antwis )} w)gtut+u)]
= Bs| {e-{ dwtsoy @ - " dus v
X(IT antw(sa))}f (w®) B[ 8] |
+Es| ) Baco | {e-{ s - [ duts o

X (11 antiwtsa)} glwu)] |
+ 3 Be| Fwn{e-] (duwtsi o [ i) O TE antuts)}

_ X Egco| {e-{ (s @ - (" ausoy o
x(I1 antutsn)}gwwy]],
where 25 }=0 for N=1.

PROOF. combined with Step 3 in the proof of Theorem 2.1 imply
Corollary. The proof is essentially the same as that in [4]. O
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§3. Singular stochastic integrals.

From now on, we consider only the multi indices a=(a,, ---, a¢) such that
la]=2q, and define S.I. multi index J(a)=(J(a), ---, Jala)) by

3.1 Jela) =2p—ay, k=1, -, d.

Here we consider a new order partition ¥={,, ¥,) of {1, .-, d} such that
¥, may be empty, but ¥, is not empty.
For each @ and ¥, [(a, ¥) is the set of multi indices a’ satisfying

) { a, for eV,
oy =

3.2
(8.2 ap+2(p—q), for k<¥,.

Hence I'(a, ¥) consists of at most one element. For a measure v, in H(R%)
(la| =2¢), we define a new measure p$s by

(3.3) 188 = Cla, B, eva, 1Bl =lal,
where
0, if |fl=lal and if B+a,
(e*C(J(a), d))~}(—1)P+De, if f=a,
B4) Cla, B, e) = 1 3 3 (), d)TCUR), T
T pelB ¥ '
><(_1>p(d+1qfll)+qlw'2lalWllplqrglc<a’ ﬁr, 5>’ if I,Bl <1a\,

and C(J(a), d) is given by (2.4) with @,={1, ---, d} and @,=¢@. Note that;
(3.4) is well defined, since

1871 = 1B1+20p— ¥ = |BI+1.

Let b,(x) and a{s(x), |81 =|al|, be the Fourier transforms of the measures
v, and p{s respectively :

3.5, 1) balx) = Sexp{z@, )} va(d8),
(3.5, ii) aPs(x) = Sexp{z‘@, X0} ps(dE).

3.1. LEMMA. (i) For positive numbers v and t,

e ri2q
y _ U < (ot
Eggl]yl exp{—(Re p)y*it} < (zq ¢ (Re p)f) )

(ii) For a multi index a=(ay, -+, aq),

d
= 2 |yel'h
k=1

d
1T yi*
k=1
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PROOF. Direct computations prove Lemma 3.1. O
Now we let ¢ tend to zero for the stochastic integrals of e-process.

3.2. THEOREM. For measures v,’s in M(R?¢) and an F° tame function
gw), the following converge in || |, sense as e—0:

El{e-{ eswionausy @} e,

13151l
(3.6) b » Ei\:{ﬁ-gt(dw(sl»‘”ﬁm) SSN—l(dw(SN))J(ﬁ(NJ)
13 g1a1)) 18N 1510 (N 0 0

Xagh, ﬂ(l)(w(sl)) a8, ﬁ(N)<w(3N))}g(w)] ’

where J(B)'s and aly’s are given in (3.1), (3.3), (3.4), and (3.5), respectively.
B

3.3. DEFINITION. (i) The limits in Theorem 3.2 are denoted by

E[{s-{ betuws)du) < }gw)],

Ex[{S'S:(d'LU(Sl))I(a(l)) S:N_l<dW(SN))I(“(N):
Kbgw(w(sy)) -+ bauv)(w(sN))}g(w)}

respectively, where I{a)=(a), -+, I4(a)) is defined by
Ik(“)zzq_ak, kzl) T d.

(i) Symbolically we call S-S:ba(w(s))(dw(s))““’ and the other integral in the

bracket { } singular stochastic integrals of A-process, which are linear functionals
over the space of 4° tame functions combined with E.[-].

PrROOF OF THEOREM 3.2. We may assume that g(w)=g(w(u))=
Sexp{i({, w(u)>} pg(df), u=t, because Markov property for the stochastic inte-
grals of e-process (Corollary 2.4) and (3.10) and (3.11) later reduce the problem
to this case.

Step 1. First we prove the convergence of (3.6), when a{’s and b, are in

g<(R%) and g(w) is an F* tame function. Let H,(n) be given by (2.5). From
(2.6), we observe

{B.6)) =2 -

e ‘B(N)St>sl>--~>sN>0

Xgﬂff()l),ﬁm(dﬁm) S[«‘;E()ngm)(df(m) exp{i<C-+EW 4 - +EW ) &)}

ds; ~+ dsy|po(d0)
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X[IH% CUB™), B)ei?ti02i(—1)p 0114010144
0 (2 ACELE | (0 ACH i) )
XeXP@ <~8<Hk<n>>“’~p(Hk<n>>2q><sn_1—sn>}]
X[ TL expl(—s(HyN-+ 17— p(HA(N+1) s}

ds, -+ dsNS;zg(dC)Svam(d&(”) Svauv)(dE‘N’)
Xexp{idC+EP+ - +EW, %)}
x[IL T GHu) "4 expl (—e(H )2 — p(HA () S01—50) |

Sz>sl>-~->s‘v>0

x[TLexpl(—e(HyN+DP 7= pHy N+ 100} |, 8o =1,
where the second equality follows from [3.3) and (3.4). Hence
ds, ++ dsy | 14(d0)
% [pe0r(dg®) - fvean (@g ) explicC+60+ -+, 1))
XTI T GHA ()4 exp {— p(Ha(m) (52120}

X[ T expl—p(H N+ D)5y} |

= Ka®, -, a'™),

3.7) 1513} {B.6)} = S

]
E>51> - >8 N >0

Step 2. We shall prove that holds for v, and g, in H(R¢).ZFirst,
we seek a bound of |[K(a®®, ---, a‘¥)|, under the assumption

(3.8) la™| = 2q, if n=1, -, L,

< 2q, if n=L+1, ---, N.
Set 0(t)EH;ngE‘Slpgl(dé)(l—exp{—-<Rep>Ekéiqt}), then
3.9 e =1, 1}_1:1(’)1 6t) =0.

If N>L in then Lemma 3.1, combined with imply
[K(a®, -, a®™)],
< St>sl>_._>w>0dsl dsNSdl ygfgd e - gd |y |
L . . |
x| IL (3 (Ham)) exp{—Re p) S (Hi(w)#es,1—s)}]

n=1 \ k

X[ i1 IT {29(Re o) e(sn-1~sn>}—aén>/2q]

n=L+1
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= llptelollvawllo - lvaan flo(Re p)‘L
N m )
x[nﬁ tl—la(n)[/2q((Rep) e)—la(‘ﬂ)[/2qB(1+ > (1_ ‘szq l), 1— |a2q [)],

=L4+1 r=n+1

where B(-,-) is the Beta function and TI)_w.:{}=1. Thus, for constants
c;=c1(q) and c,=cy(q, p),

(3.10) [K(a®, -, a™), = Cx”ﬂg”o[lVa(U“o e lyaan |l
X (Re p)~*(c, max(t, t”zq))N‘L([NZ_;L] !>—1.

If L=N in then Lemma 3.1 and an analogous computation as before
derive

3.11) 1K(@®, -, a®)lo = llgallolvawllo - llvamllo(Re p)=6(2).

Since the orders of a‘®, such that |a™ |=2q, do not effect the bound in 3.10),
is valid for v, and g, in HM°(R%) by [(3.10) and [3.11). O

The singular stochastic integrals correspond to differential operators in R%:

3.4. COROLLARY. Let f be an F= tame function, that is f=g(x®, .-, x®)
with g€ F°(R¥®), xP=w(uy), -, 2B =wlug) 0=u<u, < - Sup<T). Then,

tim 1 B[ {s-{ batu(ndu)r ) 1]
E w3 555))8)]  for up-rst<ue,
E.[X@b,(w(h)g] for usst,

where Ua)=1 if |a|=0 and %a)=0 otherwise.

ProoOF. A little modification of implies Corollary 3.4 as in the case
of Corollary 2.3. O

We note some properties of the singular stochastic integrals.

3.5. COROLLARY. (i) Let {bTnstrere,.. (n=1, -, N) and {g},=1,s... be
sequences in F'(R%), which converge to b,y (n=1, --, N) and g in | |, sense,
respectively. Then

1?2”5[{S'§:<dw<sl>>!<«m> S:‘V_l(dw(sN))”“(N)’(l;I bam)(w(sn)))}g(w(u))]
—E.[{S-S:(dw(sl))““(”) SEN_l(dLU(SN))I(a(N))

X (TL b w5 ) e (wwp] | = 0.
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(ii) If |a|=#0, then the singular stochastic integrals are martingales in the
following sense: for g(x®, ---, x™) in FYRYY) and 0=, < - <ty=u,

E[{s-] bwondu) bgtuit, -, win)]
= B {s-{. "btuwsidus) g, -, wit).

(iii) The singular stochastic integrals are Markovian, that is: for functions f
and g of FU(RY),

312 B[ sy - s e
X (IT bacm (w(sa)) Ff (wNglwte-+u) |
= B s (s« - [ ¥ duts e
< (TT bucm (520} (WO B wcol 8(w)]
FE B {5 s e o (7 (s s
% (TL bacm (s, )} gCawu) ||
+ B ey s pre
o (7wt < O TT buenu(sa)}
><(nIl=I1 ba<n>(w(sn)))}g(w(u>)ﬂ ;

where 21 1 =0 for N=1.

PrOOF. We easily obtain (i) from and [3.I1I), and (ii) from [3.7).
We prove (iii). By [3.10) and [3.11), the expectation of the singular stochastic

integral Ex[{s-gou---}g(w(u))] is in g%R?) for each u, and the right hand side

of (3.12) is well defined. Note that: (a) (3.6), the stochastic integral of
g-process, converges to the singular integrals of A-process in || ||, sense for
each t as ¢—0, (b) [B.6)[,=clgll,, and (¢c) [|K(a™®, -+, a™)|,=cllglls, Where ¢
is a constant independent of ¢. By (a), (b), and (c),

2, {(2.8) with J(n)=J(B™) and ar=ayln; zcn>}

BCL BCND

converges to (3.12) in || ||, sense for each ¢, as e—0. Hence the proof is com-
plete. O
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3.6. REMARK. (i) Let b(x) be a function in F=(R¢. When |a|=2¢—1,
I(a) satisfies (1.3) with p=g, and the stochastic integral S:b(w(s))(dw(s))““’ for
A-process exists as in [4] and coincides with the singular integral
s—SZb(w(s))(dw(s))““’ except for a constant factor. However, when |a|=2g,
I{a) does not satisfy (1.3) with p=g¢, and there is no stochastic integral which
corresponds to S-S:b(w(s))(dw(s))’ ) while the latter exists.

For instance, in the Brownian motion case, It6’s stochastic integrals cor-
respond to S—S:b(‘w(s))(dw(s))““) when |a|=1. But, for |a|=2, there is neither
Itd’s integral nor such quantity which corresponds to s-S;b(w(s))(dw(s))’ (e,

(i) When |a|=0, the singular stochastic integral s—SZb(w(s))(dw(s))“"’
should be written as S:b(w(s))a’s. This is implied by [2.2), and Definitions
2.2, 3.3 (cf. Remark 3.3, (i) in [4]).

3.7. REMARK. For the weak existence of singular stochastic integral, we
need not assume that |a|=<2¢. For instance, if we replace the assumption by
la| <2p—1, then the singular stochastic integrals, which correspond to differ-
ential operators up to order 2p—1, are defined similarly. But, in this case, the
integrands b, and tame function g should be taken in F=(R?%) and F* tame
functions.

§4. A Girsanov type formula for singular stochastic integrals.
As is well known, in the Brownian motion case, the Girsanov density

d

t 1t
.1 2 = exp{ B (| asBsNaBuo)— 5| (are)ds)}
satisfies the stochastic differential equation
2t =1+ 2 | es(BO)Z(5)dBA(s).

Therefore Z(t) is given by

e d d t SN-1
w2 zo=1+3 5 - 3 (dBis) - [V B ()
Xap(B(s) - i y(Blsy)).

In this section, we shall define the “ Girsanov density ” of the singular stochastic
integrals as an analogy of [4.2). Set
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b= B vele (= 3 bl

b¥* = Z ””a”o (E lnlgq_lﬂba“o)-

la1s2g-1

4.1. LEMMA. For a large number C and a constant c,=cs(q, p),

HE[{ DERCEED S-S:(dw(sl))l(a(l))

talDg2q 1a(N)|g2q

o | s )by ws) -+ baon s glw] |,

b* I\
= ”ﬂgﬂo(m—]—f) C*exp{c,(Co**)2aT2}

Proor. From [3.10) and [(3.11),
S S Ka®, - a(N))HO

Prs s By )

= Ba(Mee(gg ;) o ([ 5] !)'1<c2§1ax<z, e

b* \¥
Hleel(gg5) 00

Note [3.9) and that

(S50 = (2) Temexniciyi

for a large number C. Now, Lemma 4.1 clearly follows from and (4.3).

4.3)

4.2. THEOREM. For functions b,(x) in F°(R?), suppose

4.4 b*= % lIballo <Rep

(see Remark 5.4). Then, for any F° tame function g,

o

t e
@5  Elewl+E T o 3 E{s{@usyren

=1 1o jgoq la(N)|g2q
{7 s ) N g (w(51) -+ bacn (wls )} g(w) |
converges in || ||, sense.
4.3. DEFINITION. We denote
{4.5)} = E,[Z(, wig(w)],

and call Z(¢t, w) Girsanov density, symbolically.

4.4, ReEMARK. In [4], the Girsanov density was defined by an analogy of
the expansion of (4.1). But, now we cannot take that way, because the
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t n
quantities as (S-S blw(s))(dw(s))* “") , n=2, do not exist even in the weak sense,
o

when |a|=2q. Therefore, we define Z(¢, w) by an analogy of (see Corol-
lary 4.7).

PROOF OF THEOREM 4.2. Let g(w)=g(w(w)), u=t, and let C be a sufficiently
large number. Then by Lemma 4.1 and [4.2),

(4.6) 14501 = 3 lealo( e+ =) CHexpleCOT))
’ ) 0:1v=o‘ugoRe‘o C ¢
_ _ b* . 1yt 2 FRTH2
= lel(1— g, — ) CrexpledChT)4).
For a general 4° tame function g, a similar calculation as is obtained in
an analogous way, and Theorem 4.2 follows. O

Z(t, w) has the Markov property.
4.5. LEMMA. For functions f and g in F(R?),

E[Z¢t, w) f(wt)E we,[Z(u, w)g(w(u))]]
= E [Z({t+u, w)f(wk)g(w(t+u))].

PROOF. By and Corollary 3.5 (ii), we can take the summation
> r=o2aw -+ Dany of the both sides of (3.12). Then, by Theorem 4.2, we can
write down the terms in a suitable order to obtain the lemma. O

We shall decide the differential operator corresponding to Z(t, w). Let

g% be the set of all functions g(t, x), (¢, x)=[0, T1x R%, which satisfy the
following.

4.7, 1) g, x)eg*R?) for each t=[0, T], and

lim|g(s, -)=&(t, -)llsg = 0.

(4.7, ii) For each f, there is a function g.(t, x)= 9°(R¢%) such that
g(s, -)—g(t, -)
s—t
lsi_l:[}”gt(ty )—g(s, e =0.

=0,

0

lsiglugt(t, D=

4.6. THEOREM. For a function g{t, x) in G-,

lim

lim —— Ex[ Z(x, w)g(u, w(u)—2(, w)g(t, w(t)]

= E:c[Z(t, w)((%-}-/H—B)g)(t, w(t))].
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PRrROOF. Set

E.[Z(u, w)g(u, w(u)—Z(, w)glt, w))]
= E.[Z(u, w)(g(u, w(u)—g, w(u)))]
+E[(Z(u, w)—Z({, w)gt, wu))]
+E[Z(t, w)gt, w(u)—g{, wi))]
= K,+K,+K;.
Step 1. From Lemma 4.5,

wy  |E. [Z(t w)gilt, wt) ]H
= |E.LZ(, w)g.(, w(f))Ewm[l Z(u—t, w)]l,
+HIE.LZ(, w)E iy [Z(u—t, w)(gt, w(0)—g., w(u—1))11l,
+|B[ 26, wEuw| 20—t w)(aut, wu—1)
8w, wu—1)—g(t, w(u—t)) ﬂ g

u—t

Since holds, [4.3) and (4.7) imply that the right hand side of vanishes
as u—t.

Step 2. From Lemma 4.5 and [4.6),

E‘E'[Z(t’ wi(B-&)t, ul—(ft] 0

_ ”E.[Z(t, w)Ewm[(B. 2, w0y~ L=t “’);zg“’ w(u=1) ]] o

< E.[(B-g)(t, w(0))— (Z(u—t, w)-u—i)tg(t, w(u—t))] 0

< E.[<B-g><t, “’<°>>—Tl_?{§ s batwisn ) ) g, wu—)]|,
x(l;[ ba(m(w(sn)))}g(t, w(u—z‘))]"0

= K,+K;,

where

¢ = (1- ——1—)-1C2‘16xp{c (C**T)a)
Rep C ’ )

A little modification of Corollary 3.4 implies that lim,_.,K,=0.
On the other hand, by Lemma 4.1 and for N=2,
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Kbow (w(s1)) + baanr(w(s )} g, ww—1)]|
= = (7 ds(d 11 [dvao!

x| TL () (@) s

exp{—(Re p) 3 (Ha(2)(s,— 3}

b* 1Ny *% )20
X(ReptT) CHexleCowTr,

where p,,., is the measure in H*(R?), which corresponds to g(, x). Thus
by limu_,thzo.
Step 3. By Lemma 4.5 and

K,
B[ 26, wxa-gxe, wer——=7]|
, g, w(u—1t)—g(t, w(0))
= o B.[4-g)t, wO)- o .
Clearly the last term vanishes as u—t. O
From [4.6), the series
(4.9) Efewl+ 3 ¥ o 5 Efs| @)
Nzl ja(l))g2q la(ND | <2q 0

XS:(dw(sl))Ica<1>) S:N—l(dw(sN)),(a(m,
X b(w($)baw (w(s1)) -+ ba (zv)(w(sN))g(w):l

converges for a particular = tame function g(w)=g(w(u)), u=t, and, moreover,
a slight adjustment of the argument in the proof of Theorem 4.2 guarantees that
(4.9) also converges for each 9= tame function g(w). We symbolically write

[(4.9) as

Eu[s-{ )25, widuts) wgw)].

4.7. COROLLARY. In the weak sense, Z(t, w) solves the linear stochastic
integral equation:

Zt,w =1+ % S-S:ba(w(s))Z(s, W) w(s)I@

PrROOF. A similar calculation as in the proof of Theorem 4.6 implies: for
a particular g tame function g(w)=g(w(u)), u=t,
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@10)  DELZ6, wew] = B 26, w3, baw(sndgtw)].

On the other hand, Corollary 3.4 and yield

1) DE]( 3 5w (s, widuto))gtuw)]

= the right hand side of (4.10).

Here, by and Lemma 4.5, itself also holds for each g* tame function
g, and the proof of the corollary is complete. O

4.8. LEMMA. Let {b{"},or,s,.. and {8} o1,0,.. be sequences in F(R?) such
that (4.4) holds for each r and

lim|[b,—b3’lle =0,  lim|g—g[o = 0.

Let Z(t, w), r=1, 2, -, be the Girsanov densities in Definition 4.3 with b,=b",
respectively. Then,

Im[E.[Z(, w)g(w®)]—E.LZ7F, w)gT(wt)]llo = 0.

Proor. Corollary 3.5 (i), combined with [(4.6), imply Lemma 4.8. O
For an &° tame function f(w)=f(w(ty), ---, wlty)), L=< -+ <ty, set
Elf(w)]= EJ[Z(ty, w)f(w)], xR

Here, for a function g(s, x) and an F°(R¢?) tame function f(w), we define

(4.12) E.[(('sts, wisnds)rw)| = {/Bulats, wisnslas,

if the integral on the right hand side exists. (In the particular case Z(¢, w)=1,
automatically holds, because Remark 3.6 (ii) and derive that

Ea| (| bawtsnds) rtwun] = Eu]s-{ w)dusy @ raw)
= | Bulow)fwlds,  t=u,

where multi index 0=(0, ---, 0).)
The system of the expectations {Ex[o] ; x€ R4} solves “martingale prob-
lem?” for (A+B):

4.9. THEOREM. Let f(w)=f(w(ty), -+, wlty), wt), t,< - Zty<t, be an

arbitrary F° tame function. Then, for any function g in F* and u=t,
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(4.13) E.|{gtu, wiw)— S(gt +A+B)g(s, w(s)ds}fw)]
= Ef{g, wen—{'(Z-+4+B)sts, wisns}rw).

PrROOF. Note that: in Lemma 4.5, f(w()) can be replaced by f(w) in this
theorem, by repeating the same argument as in the proof of Lemma 4.5. Then,
from and this extension of Lemma 4.5,

the left hand side of
= B z¢, w)f(w)Ewm[Z(u—t, w)g(u, w(u—1)

——SuZ(s —t, w)( +A+B)g(s w(s—t>)d3ﬂ

—E[{[{ 20, w)(gr+ A+ B)sts, wispds) )]

Since g is in 9%2¢, Theorem 4.6 implies

u 0
Ey[Z(u—t, w)a, w(u—t))——SLZ(s—t, w)(~5-+A+B)gls, w(s—t))ds]
= g, »)
for any yeR% Now the proof is complete. O

§5. A stochastic solution.
Let 9%° be the set of all functions u(t, x), (¢, x)[0, T]xXR?, such that:

(5.1, 1) ut, x) € g°(RY) for each t=[0, T,
(5.1, ii) Ii_rg”u(t, J—u(s, =0 for each t<[0, T].

5.1. DEFINITION. A stochastic solution W(t, x) of (0.1) is defined by
(5.2) W, x)=E[Z@¢, w)f(w)],
where Z(¢, w) is the Girsanov density in Definition 4.3.

Let p,(d{) and v,(d§)’s be the measures in H(R?%) corresponding to f(x)
and b,(x)’s, respectively. Then, by and Definition 4.3, W(t, x) can be
written as

63) W, 0= |p@Dexp{ict, v>—p X}
+2(3 = [d0fpao@e®) - framids)

e (V)
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ds; -+ dsy exp{i<C+EP+ - +6, 1)}

<
t>51> >8>0

XTI T GHAm) 4 exp {— p(Hi(m) (51— 50} |

X [IkI exp{—p(Hk(NH))”sN}]),

where H,(n) are given in [(2.5).

5.2. DEFINITION. A function W(¢, x) of g%° is a wide sense solution of
(0.1), if there is a sequence of sets {W™X(t, x), f™(x)} p=1,0,.. in FL2X FU(R?)
which satisfies the following.

(i) For each n, W™ is a classical solution of (0.1) with f=f®,

(i) limp.e|f—f[,=0, and

lim sup ]HW‘”)(L =W, )l = 0.

n-oo te[0, T

5.3. THEOREM. If (4.4) holds for b, in F°(R?), then the stochastic solution
W(t, x) on (5.2) is well-defined for f in FUR?) and is a wide sense solution of
(0.1). Moreover a wide sense solution of (0.1) zs unique.

5.4. REMARK. is a sufficient condition, under which (A+ B) is strongly
elliptic.

PROOF OF THEOREM 5.3. Step 1. Theorem 4.2 claims that (5.3) converges
and that Wz, x) satisfies (5.1, 1). [3.9) and imply

ltl{}(}HW(tr ’)_f(')“() = 0:

and they also imply (5.1, ii), by Lemma 4.5 and [4.6).
Step 2. From (5.3),

G4 W O={din 04121 exo{—Rep) 3 30t}

Y DX Sd},uflgdlyaml -~-gd|ua<m|

Nzl o) G

ch>sl>-v->sN>0dSN e dsy
X[ T1 T1 1 Ha(m)] “67exp{—(Re p)Hy(m)(sp-s—s)} |
XL LD+ o + £ s
%I expl—(Re p)Gu+6+ -+,
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65 [0 = (diu 10112 exp{—Re o) 3 o)

+3 3 2 (dii{diveol = fdvee)

NZ1 4D a V)

dsy -+ dsy-i[ 11 I | Hy(n)| 4

St>sl>!--->sN_1>0
X (|1 sl 01(2 1861%)| IT T exp{—(Re p)(Ha(m)(sn-1—50)} |
x| I exp{—(Re p)(HA(N-+1)s v}

| T T exp(—(Re p)(Hy(n-+1)(s-1= 5.} |

n=1

x| TT exp{— (Re o) HL(N-+1)55-,}]).

Now, if f is in 9%(R%), then we see that |W(, -)|., and |0W(, -)/0t]), are
finite for each ¢>0, by applying the similar arguments as in the proof of
Theorem 4.2 to (5.4) and (5.5). In fact, for a sufficiently large number C and
a constant c,

W@, HMeq = 1f leg 227 ULf o411 120)

b* 1 -1 2 ’ skk\2
XO_W_E) Cexp{c(CTb* )4},

“aa—vf“’ O, = 1ol lat-(1011 Tt 2107 1)
x(1- %p —&) CrexpleCTyy ).

Thus we easily observe that W is in g2,

Step 3. Assuming that f is in F*¢(R¢?), we shall prove that W(, x) is an
gt 2_class solution of (0.1) and the solution is unique within 2.

Under the assumption, W(¢, x) is in 9%, as in Step 2, then Lemma 4.5
and Theorem 4.6 hold for W({, x). Now our statement in this step is verified,
by repeating the proof of Theorem 7.9 in [4].

Step 4. For f in F°(R?), it is easy to take a sequence {f™} in F=(R¢?)
such that lim,|f™—f|,=0. For each n, set W™, x)=E.[Z{, w)f ™ (w())].
From Step 3, W™ is an g% %*-class (and a classical) solution of (0.1) with f=f™,

By a little modification of Lemma 4.8, lim,supc,. r;|W™(, -)—W(t, -)|,=0,
and W in is a wide sense solution.

Step 5. We shall prove the uniqueness. Let W'(t, x) be a wide sense
solution of (0.1). Then there is a sequence of sets {W/'™, f/™} as in Definition
5.2. Since a solution of (0.1) is unique in %, as proved in Step 3, W’
must be represented by with f=f'"_. Thus we have
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W@, =W ™, o= IE.LZE, w)f(wE)]—E.LZE, w)f ™ w®)]l,.
By a slight extension of Lemma 4.8, sup,|W—W’|,=0. O
We observe regularity of the stochastic solution:

5.5. COROLLARY. Assume that (4.4) holds for b,, |a|=2q, in F(R?). If
fis in F*(R?), then W(t, x) is a classical solution of (0.1).

ProOF. The corollary is clear by the proof of Theorem 5.3. O

Let ¥ be a number such that 0=y<1, and set

g7 1Ny
Q, 6) = —em—f—(—a—) .

By a simple computation, we easily see: ming.s<:QF, 0)=QF, 0:)=0Q«()=1,
where 0<6s<+e /(e +1) is the non-negative solution of

s 1 T oy
10*—(1—f— g (1=6) =0.

5.6. LEMMA. For 0=y<],

(5.6) ggggzdseﬁ exp{—(Re p)y(r—s)} = (—i—)

r o1
Rep

Q«(7).

Proor. For 0=6,=1,

the left hand side of (5.6)
= (—1—>T{S:°d0+gzod0}[(%)T(yr) exp{—(Re p) yf(l—ﬁ)}]

T
=L,+L,.

Apply Lemma 3.1 to L, and carry out the integration in L,, to obtain

1\r 1 037
< (=
L= ( ) Repe(l—y) 1—06,’

T
L= (1) rep ()"

A

Therefore,

1\

the left hand side of (5.6) < (=) 1

Re p

Q(T’ 60) .

Since mingzg,5:Q(7, 80)=0Q«(y), Lemma 5.6 has been proved. O

5.7. COROLLARY. Assume that b,(x), |a|=2q, and f(x) are in F°(R?), and
let v be a number such that 0=y <1.
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(i) If
G.7) Z, 1800Qs1) < Rep,

then |W(t, <)||agy <00 for any t>0.
(i) If (5.7) holds for 1>y=1/2, then W(t, x) is a classical solution of (0.1).

PROOF. Step 1. First we shall prove (i). In (5.4), we seek the bound of

68 1Kl = [d1s1 [dlvee ! = dlvecn Sml%mxdsl o dsy

XTI L) 1™ exp{—(Re p)UHAN) (51— 5)} |

XU+ GHE7D 4 60 21| I exp(—(Re p)(HAN-+1)s4} ],
under the assumption From Lemmas 3.1 and 5.6,

1 L
1K ey = ol = e ool 55 ) €'+ ¢ (@ulr)?

LN - 1 ( 1y
X(emaxit, ) oy (7).

where ¢, ¢/, ¢” are constants. Now (i) is derived from (5.4) by a similar

argument as before.
Step 2. We shall prove (ii). By (i), there is the measure gy (;,., in M7 (R9),
which corresponds to W(s, x). From Lemma 4.5,

Wit+s, x) = ELZ(t, w)W(s, w(t))] = {(5.3) for #f:ﬂW(s,-)} .

Here, under [3.8), the bound of |K(W(s, -))||,, is obtained from Lemmas 3.1 and
5.6: for constants ¢, ¢/, ¢”,

(5.9) 1K (s, -Dlao = 21 ﬂms,-)lgdlvaml o {dlvaan)
- dsy (3 18] D) (S 18 1)

St>sl> >sN>0
x| 1 T1 1 Ha(m)1 4 exp{—(Re o) Hy(m)(s0-1— 52}
X (14| Q&P oo g2y
X[ T exp{—(Re )Cu-+88 "+ - +65 15y} |

= Ipwes sl i-sgrlvawllo -+ [vaanllolc max {8, #1722} ) -1
1 N2+ L+ 1 1y
x(——Rep) ¢/ (Qu(p)* >[(N__L_1)/2q]!(7),

where |gwes, -y lia@ -2, <00 by Step 1, since |a‘®|=2¢ and y=1/2. A similar
estimation as is proved without and (5.4) implies that |W(i+s, -)|l2g<co.
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By an analogous argument as just said, we see that [[0W(t+s, +)/0t],< o

for any ¢, s>0, then the proof of Corollary 5.7 is complete. O

(1]
£2]
[3]

(4]
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