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0. Let x,, -+, x, be real distinct numbers. As a function of x,, ---, xp
the integral k

(0.1) s, -y )= | T (vimx ) ednpesn e Ady
15i<js N

for 2<p=N, over a suitable cycle satisfies an integrable analytic differential
system (called Gauss-Manin connection in analytic geometry or holonomic system
from micro-local point of view). In this note we want to give an explicit formula
of it. In the sequel we denote by @ the product TTizicjsn(x;—x;)%i5.

Roughly speaking, our method is as follows. The structure of the integraj]
(0.1) is of fibre type. This enables us to give a recurrent relation for integration
over each variable x,4,, -+, xy in the reverse order. Namely we first integrate
over xy. Then we get the function of x,, ---, xy-, satisfying a certain
Gauss-Manin connection of classical Jordan-Pochhammer type. Next we do it
over xy-; and get a differential equation of similar nature and so on. Finally
F(x,, -+, xp) satisfies a Gauss-Manin connection which can be computed in
inductive way.

We assume from now on that x,<x,<--<x, and that the point
(Xp+1, -5 xy) lies in R¥-?, We denote by 4 the closure of any of relatively
compact components of the open set: xp.,#x; 1</=<p and x4, X p+, fOr p#v
in R¥-?, If 2, ; are all positive, the integral over each domain 4 has a definite
meaning. If some of 2; ; are negative we have to replace 4 by its regularized
cycle 4r¢® (which is called “renormalized ” by physicists and which is essentially
the same as “finite part of divergent integrals” in the sense of J. Hadamard),

such thatS is an analytic continuation of the original SA considered as

qreg
function of the variables 4=(4;,;)ic; (For the way of construction, see or
pp. 314-318). The regularized cycle 47 defines a twisted homological
(N—p)-cycle in the affine algebraic variety X=C¥-?—\ J(x;=x;) where 1<{<N,
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p+H1=7=N and i<j, with coefficients in the dual S¥ of the local system S;
defined by the monodromy group of the function @ :47fc Hy_,(X, S§). The
integral defines the canonical pairing between the twisted homology and twisted
de Rham cohomology :

(0.2) Hy_ (X, SH)XHY-7(X, ¥,) —> C
4, ) — | 0

where ¢ denotes a rational differential form on C¥-? with poles only on

\UJ xi=x; U (x;=x,). The covariant differentiation V, is defined by
%Jﬁ}lssg'SN P+1sj<ksN

Vop=dp+wA¢ for the logarithmic form w=dlog ®.
We assume the following condition :

(C.1) i) Take an arbitrary » such that p+1=<r<N and fix it. For any hAZr—1,

the sum E§=12h,,j+215j<k53,2p+,,j,pﬂk is different from 1, 2, 3, --- where p-+y,,
-+, p+v, denotes an arbitrary sequence such that r=p+y, <---<p+v,=N.
ii) Under the same circumstance as above, the sum, — 2R 2 5=14n, pay;
—2hsi<ksshpiry, phrg is different from 1, 2, 3, ---.

Then

PROPOSITION 1. The twisted de Rham cohomology H¥-?(X, V,) is spanned
by the logarithmic forms

{p+1y s iny = dlog(p+1, ipr) N Adlog(N, iy)
for ipu=<p, -, inSN—1, where we denote by (i, j) the difference x;—x;.

The number of the above forms is equal to p(p+1)--- (WN—1). There are
among these forms, (N—p)p(p+1)--- (N—2) fundamental relations which will
be given in §2. In other words, H¥-?(X, V,) is isomorphic to the quotient of
the tensor product C?Q® --- XC¥/~, by identifying each u-th component
dlog(p+v, ips) Of <ips1, -+, x> with an element of CP*-1,

THEOREM 1. In addition to (C.1) we assume the following condition :
(C.2) For each j=p+1, there exists at least one non-zero 2;, .

Then the rank of HY-?(X, N,) is equal to (p—1)p --- (N—2) which will be denoted
by p. A basis of H¥Y-?(X, V,) can be chosen as

dlog(p+1, ips) A+ Adlog(N, iy) for v—1=7,>1.
Remark that the condition (C.2) is implied by the stronger one:

(C.2) Under the same circumstance as (C.1), the sum Z§=12h,pﬂ}.
+Z1si<kssApiyj, pes, 1S different from 0.
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We denote by ¢ the integral S@go for an arbitrary (N—p)-form ¢. As a

basis of the twisted homology Hy-,(X, S¥), can be chosen the regularized cycles
4ee of each relative one 4, the closures of relatively compact connected domains
of the real part of X. It is easily seen that the number of 4*€ is equal to
(p—1)p -+ (N—2). (See (1.16), or and its references.) Then we have the
following :

~~
THEOREM 2. The integrals {ips, -+, iny over each regularized cycle, as
functions of x,, -+, xp, satisfy the following Gauss-Manin connection:

(0.3) d<ipssy -, ind
N-p

. . . Tps Ip+ .
= 2 2 d log(2p+v1,léz+vl)2p+ys,i'p_(_vs<zp+1, Y {p yl}, ttty { ys}, Tty ZN>

-/
s=1 0y < <y Zp.,.yl

S 255d 1080, )<ipess s ind,

1sj<ksD

where the symbol <{z,}, T { }», > is defined inductively by the difference

G i L}, o> 8 o L),

The sequence p-+v;<p+v.<--<p+vs and the indices ips,,, -, ips, are deter-
mined as follows: First take an arbitrary pair (a, B) such that a+B=<p. Let
p-tv, be the smallest number such that ip.,, is equal to a or B. Then we put
a=ipy, and P=ipy,,. Next let p+v,>p-+v, be the smallest number such that
ip,E(a, B, p+vi)—{ips,}. Then we take as i%y,, the unique index from the set
{a, B, p+vit—{iptvy Tpsv,t and so on. Namely we take out p-+v,, p+v,, - and
Uptvy Lpivy - DY the following procedure :

{a, 13: p+vy, oo, p+yt—1}—_{ip+v1y T Z.p+yt_1} > ip+yt

0.4)
{a; ‘8: P+V1y ) p’%—vt—l}_"{iphaly Tty ip+vt} > i;H-vt-

We finish this process if there does not exist an ipy,, v>vs such that
Lo €@, B, D+v1, 5 PHVYs). Tpsup =, Lpy, (O MoTe Precisely ipiy, 5 Tpiug Iptvy)
are all different from each other. The sequence p+v,, ---, p+v, makes a (p+v,)-
segment in a cluster attached to the sequence (ip4+y, -+, iy). (The definition of
“cluster ” will be given in §2.)

The indices Zp44;, *** 5 Tptuys Ip+vp 5 Lp+v, are also determined by the follow-
ing rule: For arbitrary p=y, p=1 and y<p+p different from i,,,,, first we
choose i%,, as y. Then define successively p+v, ips.,, 54y, in decreasing order
for t=s, s—1, --- as follows:



194 K. AoMmoTo

0.4) max (7 p+v,, Z.;7+vt> =Dty

min (ip-wt’ Z';J+vt) - i;)+vt_1-
Finally we arrive at the pair ({p4.,, 7p+,,) such that i, 154,59,

REMARK. We see that F(x,, -+, x,) of coincides with <1, ’-?, 1> if
A1, p+1> > A, v are replaced by Ay p+1+1, -+, 4, v+1 respectively. Hence F
together with the other <i,.;, -+, 7y satisfy the Gauss-Manin connection (0.3).

We now restrict ourselves to the symmetric case of the integral [0.I)
Namely we assume the following condition:

(C.3) ;=0 for s, j=<p, A, ;=47 for i=p, j=p-+1
and i, ;=24 for i, j=p+1.

Then @ is invariant under the action of the symmetric group of (N—p)-
degree I'=&y_,, provided the branch of @ at each point of X is suitably chosen:
d*0=0,

Integrands @¢ and domains of integration 4 and therefore the cohomology
HY-7(X,V,) and the homology Hy-,(X, S¥) also admit of the action of I'. If
a domain of integration G is invariant in homological sense, then is
invariant under the action of /. We have then

0.5) [, 0, iy = [ B0, o, iwd
1 . :
= g1 B0 e

where 6*{ip4y, --+, x> denotes the transformed (N—p)-form <iscp+ny, ***» Loy
by ¢. This fact makes the structure of the Gauss-Manin system of much
simpler.

PROPOSITION 2. The invariant part [HY?(X, V)10 is spanned by the sym-
metrized logarithmic forms

1 ) . |
(N—__p")_!a?ra*ﬁpﬂ, ey iy for @l ipn =P
Let v;, 1<j<p be the number of arguments 7, such that 7,=;. Then a
symmetrized logarithmic form corresponds one-to-one to the sequence vy, -+, vp
such that Z2_,v,=N—p. If we denote it by <1%, 22, ---, p*»), the integral
~~

{11, -, p*p> is equal to <1, -+, 1, 2, -, 2, -, p, -, p>. The fundamental
v1 vo vp

relations among these are then simplified as follows:
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D A
(0'6) 2 ( y]+,2’><1v T yJ+l ) Pup> =0.
j=1

Hence we have

COROLLARY. If (A/2)(N—p)+2A[#0, then [HY-?(X, V,)1" is spanned by
(p—1)p - (N—2)/(N—p)! linearly independent forms <{2*2, .-, p*»> for vo+ -+ +v,p
=|y|=N—p.

THEOREM 3. The integrals <2, f:/, p*»), as functions of x,, -+, Xp, have
the fundamental relations (0.6) and satisfy the Gauss-Manin system

OT) d<1 =, poy = % dlogh, [Zv uj(<11 )
1si<jsp
._._~<1”1’ e, ivi—lj‘.\’.., ]'Vj‘H, . p“p>__..._.<1”1 e, ”i+1’7’ j”j"l’ T pvp>>
) yl+1,—:/’ jvj#l, Tty p”p>)

L, e )

4+ Ahp,(<17, 2”2 e, pPRY—(1M, e

+2§yi<<1v1, 2v2’ ] pvp> <1v1 T i

More generally we denote by <1”1N

s Tt pyp> for U291+ +vp_§.N—p: the
integral
dxpsi N+ Ndx
0. i p.+1 N
08 |0 T o+ D I (ptwiti, 2)
1sjsvy 1sjsvg

II (p+vit - Fvpiti, ) °
1§]§up
Then we have the recurrence formula:

PROPOSITION 3. For v,=1

0.9 0= [1+z;+ +2;+~§—(N~p~ 1v1)+z<|»1—1)]<1vr1, 2, oo, PP

2 (L v
+ 30, D(A5+ 5 v )ans, -

/\./. i v
» JIL e, DYRD

Successive applications of this proposition give us
THEOREM 4. For v;=0, |v|Z<N—),
0.10) <2”2 -

P (DYt T L 2 4 2y et 2N p—t— 1)}
. = =t

2
|y
(2, 1)z , e
N-p-lvi=pg+-+pp p2 p ( ) (17 ) p

<11 11 [z;+—1—z<»,.+t)] uaver, L, paton).
j=2 t=0 2

In particular
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— N-p D , t _
(0.11) Sa@dxpﬂ/\'“/\dxzv(“l)‘v p-i 1 {1+ P HAA(N—p— )}
(N—p)! 2 Pit

N-p=pat-tpp P2l -+ Pp! 7=2 i=0

[z;-+-§—z<u,~+t>]

A~

><(2, 1)02 (p’ 1)Pp<202’ e, pPp>_

By using this formula, we can derive explicitly the maximally overdeter-
mined linear difference system with respect to the variables 2, ---, 4}, for [0.1).
Proofs of Theorems 2~4 will be given in §3.

REMARK. When p=2, the integral (0.11) is expressed by

(0.12) [, I w00t T (ri—,)idua A Adiy.
G j=3 3si<js N

This is a constant multiple of (x,—=x,)¥ for M=A+A+1)(N—-2)+
(N—2)(N—3)4/2. This constant is given by the celebrated formula due to A.
Selberg (see [A6] and [S].)

When A=2, the integral (0.11) is intimately related to orthogonal polynomials
with the density TTZ., (x—x;)*dx. Professor M. Jimbo at R.I.M.S. has informed
me that it satisfies a 2nd order non-linear differential equation of Painlevé (see
[J] and [O]). It seems to be interesting to ask if it still satisfies a finite-order
non-linear differential equation of similar type for general 4. It also seems to
be interesting to study (0.1) further in case where 1;; have special values,
especially rational numbers, in view of recent results by A. Tsuchiya and Y.
Kanie about Fock representation of the Virasoro algebra (see [T]).

Finally a few questions are posed about the integral (0.1):

(Q1) To evaluate the Wronskian of (0.1). Namely let the basis {¢;, -, ¢}
of H¥-?(X, V,) be as in Theorem 1 and {y;, ---, 7.} be a basis of Hy_,(X, S¥),
for example, as in (1.16). Then the Wronskian of (0.1) is simply defined by the
determinant of ((S @go,-» . It is obvious that this value coincides with the

Tk 1sj, ksp
Wronskian of the differential system (0.3) apart from a /-factor depending only
on 4;; (1=/<j=<N).

(Q2) Under the condition (C.3) we have only considered the fixed part of
the [I-action. The question is generally to decompose (0.3) into irreducible
parts as I-modules.
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1. Recurrent system of ordinary differential equations of Fuchsian type.

DEFINITION. Let {{4;, ==+, iy} be a sequence of (N—p) arguments such that
1,=v—1. We shall call such a sequence and the corresponding form <7y, ==+, iy
defined in Proposition 1 “admissible ” in the sequel. We say that for a, 8 such
that p+1=a<f, “B precedes a” and write a<f if there exists a sequence
pH+u<--<p+v, such that a=p+v, f=p+v, and ip,,,=p+y, , for 2=5t<s,
and 2=<s<N—p. Further for an arbitrary a such that p+1=<a<N, we denote
by K, and call “a-cluster ” (similar terminology like the one used in statistical
mechanics) the set of all Be{p+1, -+, N} preceding a or equal to a: K,=
{B;a=pB}. We denote by |K,| the number of elements in K,. If /,<p, then
we call the a-cluster K, “ maximal”.

The following lemma is an immediate consequence of Definition.

LEMMA 1.1.  For each admissible sequence {ip+y, -++, in}, the set of arguments
{p+1, ---, N} is divided into several maximal clusters. This correspondence 1is
bijective.

Each cluster K defines a directed tree. For arbitrary a, =K such that
a<f there exists the unique maximal sequence p+v,, -+, p+y, satisfying the
following two properties: 1) a=p+v,, S=p+v, and 2) p-+y, precedes p+v,-,
for 1<¢t<s. In such a case this sequence is called “segment in K”: In par-
ticular if there exists no element preceding j, this segment is called “a-segment”.

LEMMA 1.2. For (N—p—1) fixed arguments ipiy, =+, trog, bres, ==+, Iy fOV
1,=v—1 and p+1=r=<N, we have the cohomological identity

=1
(1'1) _2121‘,]'<lp+1y s lr-1y Iy trey ZN>
j=
Nor 7 )
, . . . yi+p v+ p .
+ E Z Zp+vs,ip+y <Zp+17 vty lpe1y Iy 0, {-; }y Tty {-/s }) Y ZN>N0
s=1 7-ply < <vg ] Tyi+p lyg+p i

where vy, -+, v, vun over all the sequences satisfying the following properties:
For an arbitrary number j=i;<r—1, we choose inductively p+v,, -, p+y,
Uptvp = 5 Ipaw, I SUCh @ way that

ipiv, € {7, 7}

piy € {7 7 —{ipa,}
(1.2) e

Z‘p+yl; = {]; v, P+V1, T P+Vz—1}”‘{ip+y1, T Z‘p+yt_1}

i;""’t = {]) v, .'b’f‘Vh ) P+Pc—1}“{ip+u1» Tt ip+vt}

or t<s, until there is no more iy, V>V Such that i,., 17,7, p+vy, -+, p+vst.
v y
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PrOOF. By Stokes formula

(1.3) 0~ V,[(=1)P-'dlog(p+1,ips) A= Adlog(r—1, ;1)
Ndlog(r+1, ire) A--- Adlog(N, ix) ]

N
= 231 2r,s<2p+1’ oy lre1y Sy lpgty N
27

=2+ 2.

s<r $>Tr
Each form in the second member of the right hand side is not admissible, but
can be written as a linear representation of admissible ones. In fact if we
multiply by 1/(r, s) for »<s the admissible fraction

1
(r+1,7040) -+ (s, 75)

namely for r-+1=4,4y, -+, S=15,

then by partial fraction

1
(7, $)Yr+1,7r41) -+ (5, 45)

(1.4)

1 { 1 _ 1 }
) VL) o (8,40 (rtLdr) e (s—Lda)(s, 1))

Both sequences {744, -,7} and {i,;q, -+, 7,1, 7} are admissible. Being (7, s)
replaced by (r,7,) and by induction hypothesis in s, each member can be written
as a linear combination of admissible fractions. We repeat this until the
sequence S—i,— --- arrives at an argument smaller than or equal to r. This
procedure is nothing else than the one explained in (1.2). is thus
proved.

COROLLARY. If Api1,1 -+ Ay, 170, then the differential form {ipsy, =+, in> for
some 1,=1 can be described as a linear combination of the ones for i,>1. This
number is just equal to (p—1)p --- (N—2), so that we can choose as a basis of
HY-2(X,N,) the forms {ip4y, =+ ,iny for 1,>1.

It has been stated in and that for an admissible sequence

’\/ .

I={ips1, -+, iy} the integral <{ip4,, :--,7y) satisfies the logarithmic Gauss-Manin
connection

J

1.5) iy = 5 dlog(e;—x») U (' )]

1=

p J admissible

where each constant matrix U{R=U{P) represents a linear endomorphism in
C?® - QCY¥-1. The proof is straightforward by induction in N—p by using
the generalized Pochhammer differential equation given in [AI] So we omit
it. The formula is also a degenerate case of the one (A, 5) proved in [A4].



Gauss-Manin connection 199

Furthermore we put U{%’ to be 4; ;. The matrices Uj?) are determined by
recursive formulae in the following manner. We fix p and similarly define
U, for p<r=N. Then

LEMMA 1.3. Each U{", is described as the matrix (Ui, m))ist, msr Where u;
represents a linear endomorphism in C™Q --- QCY¥-'. Each matrix u;m s
equal to

= UG if L gk
upy = USP+ULE
Ujp = —UjA
uk,j — _U’(r+l)1

— 1 +1)
Up,r = U USSR

Upm =20 otherwise.

(1.6)

It is important to remark that this formula corresponds to the infinitesimal
version of the pure braid transformation around the locus x;=x;. UJ satisfy
the well-known relation of Lie bracket defining holonomy Lie algebra which is
also called “classical Yang-Baxeter relation”

[U0+UR, U =0
(U8, Uil =0

(1.7)

for 4 different indices 7, j, k, [<p (see [AIL] or [K1]).
We sketch the way of proof of Lemma 1.3 m which has been developed in
[A1]. The following is elementary.

LEMMA 1.4. Let Uy, ---,U, be matrices in gl,(C). Let the Fuchsian differ-
ential equation of order n

dy
dx

U,

(1.8) T—a)

=2
on P' with regular singularities x=a,, -+, @p, o© be given. We denote by Y and
o the fundamental solutions of matrices and Y dY respectively. We put
Uy=—2X",U;. Assume the following :

(C.4) Each U;, 1=0,1,---, n, has no eigenvalues 1,2,3, ---.

Then the cohomology H(C—{a,, -, an}, V) is spanned by C"-valued logarithmic
forms dlog(x—a;) Qe,, 1=p=n, where {e,} denotes a basis of C*. The funda-
mental relation is given by
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(1.9) g}ldlog(x-—aj)(geﬂ U, ~0.

Hence we have the isomorphism

(1-10) HI(C—{GI’ Tty am}) vw) = Cnm/(Ul’ ) U'm.)'Cn-

PrOOF. See and [A5].

COROLLARY. If
(C.5) A KerU, = (0)

then
rank H{(C—{a, ---, a},V,) = (n—1)m.

Let p be the monodromic representation of z,(C—{a, -, an},b) with a
base point b given by Y. Any twisted cycle y for the integral SYgo is
' v
represented by a linear combination of m loops L, ---, L, with the base point
b encircling a; respectively: y=>7T,v,&QL; for v;€C", such that

(1.11) évJ-@(p(Lj)—l) = 0.

If all the eigenvalues of U;, j=1,2,---,m are greater than —1, y can also be
chosen in the form X 7'j®a;a;+;: using the segments a;a;,, connecting a; and
@41, such that

(112) V; = (U}—l—vg)(l_P(Lj))_l-

A similar approach has been used in for the uniformization problem
associated to Pochhammer integrals.
We now consider the sequence of integrals {F,} for p<r<N:

. AxXyiq - dxy
(1.13) FT - S@ (7’+1, Z‘T+l) te (Ny ZN)

and Fy=@®. The F, satisfies as a function of x, the ordinary differential
equation of Fuchsian type of order r --- (N—1):

dy _ st U
(1.14) =5

Xp—Xj '

These are related to one another by the recurrence formulae :
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dxr+1

(1.15) F,= SFFETZ—)

for some i,,,<r. If all 2, ,>0, then successive applications of over
each variable xy, -+, x,+; enable us to construct the cycles 4(j,4y, -+, jn):

Xirgr-t = Xrn S Xirsr

(1.16)

for jra=r,-, jn=N—L

LEMMA 1.5. If F,y, satisfies the differential equation of (1.14), p being replaced
by r+1, then F, satisfies the same one, p being replaced by r.

PRrROOF. This is proved by partial fractions, using the rule of exchange of
derivation and integration

0 dx,q 0 drss
(1.17) S 0xs (P (H)—Cl, j>) T ox SF (H}—CL 7)

for k<r and j=r-+1.

Now immediately follows from in using
Lemmas [[.4 and .5

LEMMA 1.6. Let [€Z*t={0,1,2,---} be given. Take an h such that 1=h<p.
Suppose for arbitrary vy, - ,vs, 1<SSN—pP, such that 1=y, <<y, <N—p,

(1.18) > Ant
Jj=1

Apty; )
15/ 5kss p+v1.p+yk

hold. Then for an arbitrary v such that p+1=<r=N, none of the matrices of
order r(r=+1) - (N—1):

(].. 19) ng Ui(‘l.r.)p+v_i+ E Uz()r-z-v‘i, Ptvp

1sj<kss
have the eigenvalue I, for an arbitrary sequence p+1=y;<---<y;<r.

PrROOF. We prove this by induction in decreasing » from N. For r=N it
is trivial by assumption. Assume that it holds for »+1. Let w=%w,, -, w,)
eC' Q- QCV! for w;eC™'Q - QC¥-! be an eigenvector:
£ (r)
(1.20) ( 2 Ukt

(r) —
1sj<kssUp+”j’ pﬂk)w =lw.

Then comparing the g-th component of both sides for 1<g<p, we have
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(1.21) (zU;;myﬁ 3. Ug:yg?,pﬂk)wg:zwg for h#g,
and similarly

8
(1.22) ) {UFR,AUTE redwa— U w et + %m pivy prvWn = lWh,
J= sj<ks

(1.23)  (BULYL+ D UG g Wpra = lWpry  for puy, -, v,

j=1 15j<kss

S
28)  (ZULR AU 3 Ui gyt B UG )0,

j=1 15/<ks
Jer

(r+1) r+1)
—Upr+yf,r+1wn 2 Up+yk r+1Wpy; = pr+yf
J#f

for 1I=f=<s. By induction hypothesis, (I.2I) and (1.23) imply that w,=wp.,=0
for g#h and p+#v,; ---,v,. On the other hand, summing up (1.22) and (1.24)
we have

.25 ( UL+ 5 USH), poos ) (W2 Py Wyey,) = L+ ) W)

By induction hypothesis this means
(1.26) Wat 3 wper; = 0.

Substituting this w, into (1.24) we have

s$+1
127 < U(T+1) + U(T+1) )w — lu,
( ) jgl h,p+v] 1§j<§§s+1 p+v] Dy pryvf p+pf

if we put v, =r+1. Again by induction hypothesis we conclude that w,, =0,
whence w,=0. Lemma has thus been proved. In the same way as above one
can prove

LEMMA 1.7. Let l€Z* be arbitrarily given. Suppose for an arbitrary
sequence p-+1=y, <<y, EN—p

(1.28)

] Ms

s
; zh, p+yj_ E B lp-l-u]', Pty

1sj<kss

are all different from I. Then none of the matrices

(r .
Uh p'HJj

M
INME

(1.29) —

)
p-H/]', D+rp

>
Il

1 j=1 1<j<kss

[
Il
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for p+1=r=N have the eigenvalue |, where v, --- ,v; denotes an arbitrary sequence
such that p+1=y, <<y =7,

CoroOLLARY. If (C.1) (and (C.2)") holds, then for each j=p, p+1=r=N,
none of the matrices (1.19) and (1.29) have the eigenvalues 1,2,3,--- (0,1,2, -
respectively).

-

LEMMA 1.8.
[\ Ker U = (0).
Jj=

Proor. This follows from [Corollary| of Lemma 1.7l In fact there we have
only to put s=1 and y,=r.

We take and fix r for p+1<r<N. Lemmas [[.6-1.8 imply, in particular,
that U for 1=<7=r—1 and —375Z1U§, satisfy (C.4) and (C.5) respectively.
This fact therefore makes us possible to apply successively Lemma 1.4 for the
corresponding differential equations [1.8), starting from r=N to r=p-+1. This
will be done in the final section.

2. Symmetric case.

We specialize A=(4;,;) as in (C.3). In this section we assume that all the
domains of integration G are invariant under the action of I'. As an immediate
consequence of it, we have

LEMMA 2.1. If for some g<I’, the equality holds:
(2-1) <Z.0‘(p+1)’ ”"Z-G'(N)> = —<ip+1: "':iN>
then <z'p+1,f-\--/,z'N>:0.

~~
LEMMA 2.2. The integral {ipsy, == ,ix> for some iy, =p+1 is a linear com-
bination of the ones such that all i,,,=p.

This lemma follows from To prove we begin by
proving
LEMMA 2.3. Let a sequence p+v,<p+y,<---<p-+v; be the (p-+v,)-cluster of
the sequence {ip4y, =+ ,ix}
D+v
Dty
Kpivy ¢ P+ :
P+
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such that ips,,=p-+v, 1=t<s. Then

A~

LT~ 1 . . . .
(2.2) {pen sty = '?_F‘f(h)ﬂ; e lptug e lptugp T iny

where in the right hand side each iy, is veplaced by 1,4, for 1=t=s.

PROOF. During the proof of this lemma, not losing any generality, we
may suppose that v,=p-+t+1 and p+s=N. Then {ipyy, -+, 7x) is simply equal
to {ips1, p+1, -+, p+1> for iy, <p. We prove by induction in s. For s=0

we have nothing to prove. We assume that it holds true for s—1. Then by
partial fraction and argument of symmetry with respect to transposition p-+1
and p+2, we have

(2'3) <Z'p+1!p+17 "')p+1>
= <ip+1’ Z‘p+1y jb’+‘1, R p+1>~<ip+1’ p+1; p+2; Uty P‘|‘2> .
By induction hypothesis, the right hand side is equal to

@9 2 igwn T ipad—Cipan, L, D).

A —

By solving this equation for (i, p+1, -+, p+1> we have (2.3).
In the same way we can prove

LEMMA 2.4, Let a sequence p-+y,<p-+y,<---<p-+v, be the (p+v,)-cluster of
{ip+1: -, iy} such that ip+vt=p+vt-1; 1=t=s.

(2.5) I(p+,,0 Dbty <— Pty <— o <— Pty
Then

.o~ 1 . —~ )
(2-6) <Zp+1: Tt ZN> - m<l?+1’ Y Zp+v0; Tty Zp+v0y >

where in the right hand side all iy, are replaced by iy,
Successive applications of these two lemmas show

LEMMA 2.5. Let a sequence p+v,<--<p-+v, be a general (p--v,)-cluster
Kpivy Then

.~ 1 . ., T, .
<Zp+1)“')ZN>:TK__—]<Zp+ly“',zp+voy"':lp+v0;"'le>
p+vt

(2.7)

where in the right hand side each argument Ip+y, 10 Kpyy, 15 veplaced by ipy,,
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3. Proof of the theorems.
We begin by the

PROOF OF THEOREM 2. By applying the formulae (1.5) and (1;@/ for
r=p, p+1, --- we can compute the differential equations satisfied by {ips1, =+, 2n)

in successive manner. We denote by Uéf}-(]f“’ ’Z].N) for 1<7, j<r—1 the
T+1ly TTTH N

matrix elements of the endomorphism U{” on C"® --- QCV with respect to the
~~

basis {ip+1,:**,%a>. The total variation with respect to the variables x,, -+, x,

can then be expressed as:

. T~ -
(31) d<lp+1) ) ZN>
= . z’:L dlog(k h) U(pH)(]sz’ ’ Z]-N)'<ip+1: ].p+2, "ty ].N>
lk_,;f*ip-l'l P+2s y¢N
+ 2 d10g( pss, h) UFEY (]p+2, - JN)‘<l'p+1, T
h*1p+1 Zp+2’ Tty

. E 10 piy, h) USPEY, (Jp+2, e ]_N)‘<h, ooare s i
n*ip+1 Foam T N

where owing to (1.6), UR itself can be described by U{%;?. Hence the right
hand side of [3.1) is equal to:

A
3.2 3 dlogl, DU g, ipray
k, h#ipty 'L;_;.g
/\/
+ X dlog(pa, ip+1) U(p+2)p+l<lp+1, Tpgs ***)
158,45
Up+1#ip41 —
+ 2 leg(l.p+27 l.;;+2> U‘P+2’p+2<zp+1, Tpre,
151"1,_‘_2517
h+a*ipte —~
+ B dioglye i U ({0 {7
158,15 N g Ips2
tp+1%ipt1

where in the last term p-+1=maxX(ip+s, tp+2) and 41 =mMin(lp4s, 2p+2). In the same
manner Uj%? is expressed in terms of U{%® and so on. Finally the formula
(0.3) is obtained.

Proof of is immediate, by means of and the
equality So we omit it.
We now come to

PrOOF OF THEOREM 3. We apply the formula (0.3) for <z‘,,+1,f-7, iNny=
{1, ..., p*»>. Then since 4; ,=0 for j, k<p, the second member of the right
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hand side of (0.3) vanishes. On the other hand, (0.4) shows that
{k, h} 27 p4s,, ipen, and {k, h, p+v,} 2ips,,. Since ipy,,<p, and ip,,, is different
from 7,4, 7p+, must be equal to },,,. Hence the set {7,.,,754.,} coincides
with {k, h}, so that if s=2 then the complement {k, &, p-+vi, -+, pF+vs} —{ipss,

**,%pty,} has no element j such that j=<p. This means that (0.3) is simplified
as follows:

"
Nop ) . . Lpt, .
(3-3) E 2 dlog(2p+y1; Zp+u1)'lp+v17 (3 <2p+1v ) {~/ }7 T ZN>
vi=1 4 Py Zp+y
pt+yvy 1

. i .
[ [
+ ; U ; ST o 5 S SRR i it 1 SRR
lsv?(vgs;—p, dlog(lpﬂ/l’ Zp+y2>2p+v1,i‘p+yl<zp+1! ’ { }y ’ { }7 ’ ZI\/’>

. iy
0 2 Ip+yy I p+vgy
pHvy Tptys

where in the second part 7j;,,=p-+v, and 7,i,,=ips,. On the other hand,
shows

. o —— .
. ? 7
p+vy pty .
(3-4> <Zp+1""){~; }:'”;{-/ 2}:“')ZN>
Zp+y1 Zp+y2
o~ T —

— <Zp+1, Tt Zp+y1> Tty lp+u2: "'>_<Zp+l» Tt Zp+p2: Tty Zp-(—uzy >

I~

o ———
—pin s Tpauy o5 DAV, >+ Lpry, o0, Uptvy **y DFvy, o)

. . T~ .
= <lp+1) Tty lp+y1; s Tptug >

-~
_7<Zp+1) ) Zp+y1, Tty lp+v1) "'>_7<Zp+1r Tty Zp+y2, ) Zp+v2v >~
(0.7) is thus obtained.

PROOF OF PROPOSITION 3. Assume v,=1. Let {i,,-+,7y> be equal to
A%, - p¥p) with 7,4,=1. For all 7,=<p, p+1=v<N and p+2=r=N, by Stokes
formula and partial fractions and the equalities and [2.2), we have

o (L AP, g A AL, ix)
(3-9) 0~ e T

L2 A . )
= 1 B At 5= p=DHAN=7 LD [, >
»
+ ‘Z:Z(]’ 1)2;<], i‘n Tty Z.N>
A X . .. .
+—2— 2 (lsr 1)<Zs; Iy s =1 lsy 2541y *70 Z.N>

which implies the proposition in terms of v, -:-, vy, such that |y|=N—r+2.

follows immediately from
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Errata in [A5].

Each term in (2.8), (5.10), (5.16) and (5.26) should be read as follows
respectively :

P0:(io, 1)) —> s p(cli, D)

where the summation should also be taken over i7,.

x’l‘l “es x;i'n

L TTE T B

x’fl x;z’n

A,—1,2—1 A—1,2,—1
Ao—1,2—1 —  2—1,1—1°

+ > (p+1
Ué,ppﬂl—i"l_,Ble+1 Uo,pp-i—% .

+1 > (p+1)
Ug?p-f—?l_l_ﬁllvp*_l UT,Z)ZJ+1 .

respectively.
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