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1. Introduction.

One of the purposes of this paper is to study the conjugacy of involutions
(elements of order 2) in the automorphism group $Aut(F)$ of an algebraically
closed field $F$ of characteristic $0$ . How many conjugacy classes of involutions
are there in $Aut(F)$ ? This problem has its origin in the following question
communicated to the author by Prof. H. Yabuki.

“Let $\sigma$ be an involutory automorphism of a field E. Let $x_{1},$ $\cdots$ , $x_{n}$ be
elements of $E$ such that $x_{1}\sigma(x_{1})+\cdots+x_{n}\sigma(x_{n})=0$ . Then can one say $x_{1}=\cdots=x_{n}$

$=0$ ?

The answer is not always “yes” unless $E$ is an algebraically closed field
of characteristic $0$ . However in the case $E$ is an algebraically closed field of
characteristic $0$, the answer is always “yes”. This, being immediate from
Artin-Schreier theory (see Proposition 2.6), led the author to study involutory
automorphisms of an algebraically closed field. Since the characteristic of an
algebraically closed field admitting an involutory automorphism is forced to be
$0$, we may restrict our attention to $F$. Let $\tau$ be an involutory automorphism of
$F$. Then the fixed subfield of $\tau$ has codimension 2 and is real closed by virtue
of Artin-Schreier theory (see [4] Satz 4). Indeed, this is a one-to-one corre-
spondence between the involutions in $Aut(F)$ and the subfields of $F$ with
codimension 2. Furthermore, two involutions are conjugate if and only if
corresponding fixed subfields are isomorphic. Thus to study the conjugacy of
involutions is equivalent to study the isomorphism problem of real closed fields.
For this purpose we shall introduce two invariants of an ordered field $K$ and
show several properties concerning those invariants.

In the following, $ord(\Delta)$ denotes the order type of a totally ordered set $\Delta$ .
Then our main results are as follows.

In Section 3, we introduce the term “order-basis” of $K$ over its subfield $L$

which is analogous to “transcendency basis”, and we prove in Theorem A
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that ord(X) is independent of the choice of an order-basis $X$ of $K$ over $L$ .
Then applying Theorem $A$, we estimate the cardinality of the conjugacy classes
of involutions in $Aut(F)$ (see Theorem B).

In Section 4, we introduce the notion “ unifinitely closed subfield” and then
define an equivalence relation $\approx$ in $I_{K}(L)$ , which is the set of all unifinitely
closed subfields of $K$ containing a fixed subfield $L$ . Then $I_{K}(L)^{*}=I_{K}(L)/\approx$

admits a total ordering (see Theorem C).

In Section 5, we show the existence of “ a unifinite closure “ (see Definition
5.1) of an arbitrary subfield in a real closed field (see Theorem D). Finally,
assuming $K$ to be real closed, we prove in Theorem $E$ that $ord(I_{K}(L)^{*})=ord(\tilde{X})$

with the set $\tilde{X}$ of all segments (see Section 2) of an order-basis $X$.
Throughout this paper, an isomorphism between ordered fields implies order

preserving.
The main tool in this paper is Artin-Schreier theory which is originated by

E. Artin and $0$ . Schreier [1], [2], [3], [4]. There are good textbooks containing
the tbeory [5], [7], [8], [9]. Therefore we use the basic results of the theory
without reference.

The author would like to express his thanks to Prof. H. Yanagihara, Prof.
Y. Itagaki and Prof. H. Yabuki for their useful suggestions. He also wishes to
thank Prof. M. Nagata who read the original manuscript and made valuable
advices which helped the author in refining this article.

2. Preliminaries.

In this section we first recall some results on totally ordered sets and then
refer to a lexicographic order on a rational function field in several variables
over an ordered field. Then we answer the question mentioned in Introduction
and finally we prove an interesting fact concerning the generation of an
aIgebraically closed field of characteristic $0$ .

Let $\Delta$ be a totally ordered set. A subset $S$ of $\Delta$ is called a segment if it
satisfies the condition “ whenever $x\leqq y$ where $x\in\Delta$ and $y\in S$ , it follows $x\in S$ .
In the succeeding, let $\tilde{\Delta}$ denote the set of all segments of $\Delta$ . We note that $\tilde{\Delta}$

is a totally ordered set by the inclusion relation and has the initial element $\emptyset$

and the final element $\Delta$ . For an element $x\in\Delta$, we set $S(x)=\{y\in\Delta|y<x\}$ and
$T(x)=\{y\in\Delta|y\leqq x\}$ . Then $S(x)$ and $T(x)$ are elements of $\tilde{\Delta}$ and $S(x)$ is a
predecessor of $T(x)$ . Conversely, let $T$ be an element of $\tilde{\Delta}$ with a predecessor
$S$ . Then there exists an element $x$ of $\Delta$ with $x\in T-S$ and an easy argument
shows that $T=T(x)$ and $S=S(x)$ . Thus we have the following.

PROPOSITION 2.1. Let $\Delta$ and $\tilde{\Delta}$ be as above. Then an element $T$ of $\tilde{\Delta}$ has a
predecessor if and only if $T=T(x)$ for some $x\in\Delta$ .



Ordered fields 363

PROPOSITION 2.2. Let $P(\tilde{\Delta})$ be the set of elements of $\tilde{\Delta}$ which have predeces-
sors. Then we have $ord(\Delta)=ord(P(\tilde{\Delta}))$ .

PROPOSITION 2.3. Let $\Delta_{1}$ and $\Delta_{2}$ be totally ordered sets. Then the following
two conditions are equivalent.

1) $ord(\Delta_{1})=ord(\Delta_{2})$ .
2) $ord(\tilde{\Delta}_{1})=ord(\tilde{\Delta}_{2})$ .
Next we shall define a lexicographic order on $K[U]$ , a polynomial ring in

a totally ordered set $U$ with coefficients in an ordered field $K$. Let $f$ be an
element of $K[U]$ . Then there exist elements $u_{1},$ $u_{2},$

$\cdots$ , $u_{n}$ of $U$ such that $f$

is a polynomial in $u_{1},$
$\cdots$ , $u_{n}$ and $u_{1}<u_{2}<\ldots<u_{n}$ . Regarding $f$ as a polynomial

in $u_{n}$ with coefficients in $K[u_{1}, \cdots , u_{n-1}]$ , we define inductively that $f$ is posi-
tive if the coefficient of the term of the highest degree is a positive element of
$K[u_{1}, \cdots , u_{n-1}]$ . In this way, $K[U]$ admits an ordering, which we call a
lexicographic order. Since an order defined on a ring has a unique extension
to its field of quotients, $K(U)$ becomes an ordered field.

In the remainder, we consider exclusively a lexicographic order on $K(U)$

and we say that $K(U)$ is a lexicograPhically ordered field (with respect to $U$ )

for convenience’ sake.
It should be noted here that $K(U)$ is not archimedean in the case $U$ is not

empty, because $u>x$ holds for any $u\in U$ and $x\in K$.
The following statement is an easy consequence of the above.

PROPOSITION 2.4. Let $K_{1}$ and $K_{2}$ be ordered fields and let $U$ and $V$ be totally
ordered sets with $ord(U)=ord(V)$ . SuPpose there exists a homomorphism $\psi$ from
$K_{1}$ to $K_{2}$ . Then there exists such a homomorpfusm from $K_{1}(U)$ to $K_{2}(V)$ that is
an extenszon of $\psi$ . Consequently, if $K_{1}$ is isomorphjc to $K_{2}$ , then $K_{1}(U)$ is iso-
morphic to $K_{2}(V)$ .

PROPOSITION 2.5. Let $K(U)$ be a lexicograplucally ordered field. Suppose $U$

is not emPty. Then for each non zero element $x$ of $K(U)$ , there exists an element
$u$ of $U$ such that $u^{n}<|x|<u^{m}$ for suitable integers $n$ and $m$ .

PROOF. For a non zero polynomial $f$ in $u_{1},$ $u_{2},$
$\cdots$ , $u_{r}$, where $u_{i}\in U$ and

$u_{1}<u_{2}<--$ $<u_{r}$ , it is easy to get $u_{\tau}^{s}<|f|<u_{r}^{t}$ for suitable integers $s$ and $t$ .
Thus the conclusion is immediate.

Now we answer the question mentioned in Introduction. If the character-
istic of $E$ is $p>0$, then considering the case $x_{1}=$ $=x_{p}=1$ , we conclude that
the answer is “no”. Even in the case that the characteristic of $E$ is $0$ , we
have a counterexample (set $E=Q(\sqrt{2})$ and $x_{1}=x_{2}=1,$ $x_{3}=\sqrt{}^{-}2$ , where $Q$ is a
prime subfield of $E$ ). However we can prove the following.
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PROPOSITION 2.6. Let $a$ be an involutory automorphism of an algebraically
closed field $E$ of chat’actenstic $0$ . Supp0se $x_{1},$ $x_{2},$

$\cdots$ , $x_{n}\in E$ satisfy $x_{1}a(x_{1})+$

$x_{2}\sigma(x_{2})+\cdots+x_{n}a(x_{n})=0$ . Then we have $x_{1}=x_{2}=$ $=x_{n}=0$ .

PROOF. Let $K$ be the fixed subfield of $a$ . Then by Artin-Schreier theory,
$K$ is real closed and $E=K(\sqrt{-1})$ . Let $x_{i}=a_{i}+b_{i}\sqrt{-1}$ , where $a_{i}$ and $b_{i}$ are
elements of $K$. From the assumption, it follows that $a_{1}^{2}+b_{1}^{2}+\cdots+a_{n}^{2}+b_{n}^{2}=0$ .
But then, since $K$ is formally real, this occurs only in the case $a_{1}=b_{1}=\ldots=$

$a_{n}=b_{n}=0$, which implies $x_{1}=x_{2}=\ldots=x_{n}=0$ . Thus Proposition 2.6 is proved.

Finally, let $F$ be an algebraically closed field of characteristic $0$ . Then by
virtue of Artin-Schreier theory, there exists a subfield $K$ such that $F$ is quad-
ratic over $K$. Let $N_{K}$ denote the norm mapping in $F$ over $K$ and set
$S_{K}=\{x\in F|N_{K}(x)=1\}$ .

LEMMA 2.7. Let $\psi$ be an automorphism of $F$ which fixes each element of $S_{K}$ .
Then $\psi$ is the identity.

PROOF. Let $x$ be a positive element of $K$ with $x<1$ . Then, since $K$ is
real closed and $1-x^{2}>0$, there exists an element $y$ of $K$ with $y^{2}=1-x^{2}$ .
Setting $z_{1}=x+y\sqrt{-1}$ , and $z_{2}=x-y\sqrt{-1}$ , we obtain $N_{K}(z_{1})=N_{K}(z_{2})=1$ . Hence
by the assumption, we get $z_{1}=\psi(z_{1})$ and $z_{2}=\psi(z_{2})$ . Therefore $x=(z_{1}+z_{2})/2$ is
fixed by $\psi$ . If $w$ is a positive element of $K$ with $w>1$ , then $1/w<1$ , hence it
follows $\psi(1/w)=1/w$ . Thus we have $\psi(w)=w$ . Therefore each positive element
of $K$ is fixed by $\psi$ . Thus $\psi$ fixes each element of $K$. Considering $\sqrt{-1}\in S_{K}$

and $F=K(\sqrt{-1})$ , we conclude that $\psi$ is the identity.

In the sequel, $Q$ denotes a prime subfield of a field of characteristic $0$ .

PROPOSITION 2.8. $F=Q(S_{K})$ .

PROOF. Put $E=Q(S_{K})$ . Assume $F\neq E$ . Then $F$ admits a nontrivial E-
automorphism, which contradicts Lemma 2.7. Thus $F=E$ , which proves the
assertion.

Applying Proposition 2.8 in the case $F$ is the algebraic closure of $Q$ and $K$

is the field of real algebraic numbers, we see the following.

COROLLARY 2.9. An algebraic number is a Q-linear combination of algebraic
numbers with absolute value 1.

3. Order-bases.

In this section $K$ denotes an ordered field and $L$ denotes its subfield.
According to Artin-Schreier [2], we define several basic terminologies concern-
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ing $K$.

DEFINITION 3.1. Let $x$ be an element of $K$.
If $|x|>y$ holds for all $y\in L$ , then $x$ is said to be infinitely large with

respect to $L$ .
If $|y|>|x|>0$ holds for every non zero element $y$ of $L$ , then $x$ is said to

be infinitely small with respect to $L$ .
If $x$ is neither infinitely large nor infinitely small with respect to $L$ , then

$x$ is said to be finite with respect to $L$ .
If each element of $K$ is finite with respect to $L$, then $K$ is called archi-

medean over $L$ .

We note that $K$ is arcbimedean over $Q$ if and only if $K$ is an archimedean
ordered field in the usual sense.

The following proposition is an easy consequence of the above definition.
Hence the proof will be omitted.

PROPOSITION 3.2. The following assertions hold.
1) For a non zero element $x$ of $K,$ $x$ is infimtely large wifh respect to $L$ if

and only if $1/x$ is infimtely small with respect to $L$ .
2) If $x-y$ is infimtely large with respect to $L$ for $x\in K$ and $y\in L$ , then $x$

is infinitely large unth respect to $L$ .
3) If an element $x$ of $K$ is infinitely small with respect to $L$ , then $x+y<z$

holds whenever $y$ and $z$ are elements of $L$ with $y<z$ .
4) If $x$ and $y$ are elements of $K$ which are infinitely small with respect to

$L$ , then $|x|+|y|$ is also infimtely small with respect to $L$ .
5) If $K$ is not archimedean over $L$ , then there exists such an element of $K$

that is infinitely large with respect to $L$ .
6) $K$ is archimedean over $K$ itself.
7) Let $M$ be an intermediate subfield between $K$ and L. If $K$ is archimedean

over $L$ , then $K$ is archimedean over $M$.
8) If $K$ is archimedean over $L$ and $L$ is archimedean over its subfield $N$,

then $K$ is archimedean over $N$.

In the following, an intermediate subPeld $M$ between $K$ and $L$ is said to be
maximal archimedean over $L$ if it is archimedean over $L$ and no other inter-
mediate subfield containing $M$ is archimedean over $L$ . By Proposition 3.2,8)

and Zorn’s lemma, the following is immediate.

PROPOSITION 3.3. There exists a subfeld of $K$ which is maximal archimedean
over $L$ .

DEFINITION 3.4. A subset $X$ of positive elements of $K$ is said to be order-
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independent over $L$ provided that each element $x$ of $X$ is inhnitely large with
respect to $L(S(X))$ , where $S(X)=\{y\in X|y<x\}$ . If $X$ is order-independent over
$L$ and no other subset of $K$ containing $X$ is order-independent over $L$ , then $X$

is called an order-basis of $K$ over $L$ .

By Zorn’s lemma, the following is easy to prove.

PROPOSITION 3.5. Let $X$ be order-independent over L. Then there exists an
order-basis of $K$ over $L$ that contains $X$.

LEMMA 3.6. If $K$ is algebraic over $L$ , then $K$ is archimedean over $L$ .

PROOF. Suppose false. Then there exists an element $x$ of $K$ that is
infinitely large with respect to $L$ by Proposition 3.2, 5). $Letf$ be the minimal
polynomial of $x$ over $L$ , and let $n$ be the degree of $f$ . Then $1=1-f(x)/x^{n}$

must be infinitely small with respect to $L$ because $f$ is monic, a contradiction.
Hence the lemma is proved.

PROPOSITION 3.7. If a subset $X$ of $K$ is order-independent over $L$ , then $X$

is algebraically independent over $L$ .

PROOF. By Definition 3.4 and Lemma 3.6, each element $x$ of $X$ is trans-
cendental over $L(S(x))$ . Thus the conclusion is obvious.

Let $\{x\}$ be order-independent over $L$ , where $x\in K$. Then by Proposition
3.7, $L[x]$ is identified with a polynomial ring in $x$ with coefficients in $L$ . Since
$x$ is positive and infinitely large with respect to $L$ , we conclude that for each
polynomial $f\in L[x],$ $f$ is positive if and only if the leading coefficient of $f$ is
positive. Thus the restriction of the order of $K$ to $L[x]$ coincides with a
lexicographic order on $L[x]$ . Hence a subfield $L(x)$ of $K$ can be identified with
a lexicographically ordered field $L(x)$ with respect to $x$ . Inductively for a finite
subset $X$ which is order-independent over $L,$ $L(X)$ is identified with a lexico-
graphically ordered field with respect to $X$. Thus, for any subset which is
order-independent over $L$ , we have the same conclusion.

We summarize the above as the following.

PROPOSITION 3.8. Let $X$ be a subset of $K$ which is order-independent over $L$ .
If a totally ordered set $U$ has the same order type as $X$, then $L(X)$ is isomorphic
to a lemcograPhically ordered field $L(U)$ with respect to $U$.

COROLLARY 3.9. Let $X\subseteqq K$ be order-independent over L. SuppOse $K$ is alge-
braic over $L(X)$ . Then $X$ is an order-basis of $K$ over $L$ .

COROLLARY 3.10. Let $X$ be an order-basts of $K$ over L. Then $K$ is archi-
medean over $L(X)$ .
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The converse of Corollary 3.10 is false. For example, let $K=Q(u_{1}, u_{2})$ be
a lexicographically ordered field with respect to $\{u_{1}, u_{2}\}$ , where $u_{1}<u_{2}$ . Then
it follows from Proposition 2.5 that each element of $K$ is finite with respect to
$Q(u_{2})$ . Therefore $K$ is archimedean over $Q(u_{2})$ . However $\{u_{2}\}$ is not an order-
basis of $K$ over $Q$ .

It should be noted here that $K$ is archimedean over $Q$ if and only if the
empty set $\emptyset$ is an order-basis of $K$ over $Q$ .

LEMMA 3.11. Let $X$ be an order-basis of $K$ over L. If $X\neq\emptyset$ , then for any
non zero element $y$ of $K$, there exist an element $x$ of $X$ and suitable integers
$n,$ $m$ such that $x^{n}<|y|<x^{m}$ .

PROOF. By Corollary 3.10, $K$ is archimedean over $L(X)$ . It follows that
there exist elements $z$ and $w$ of $L(X)$ such that $0<z<|y|<w$ . But then by
virtue of Proposition 2.5 and Proposition 3.8, there exist elements $x_{1}$ and $x_{2}$ of
$X$ such that $x_{1}^{r}<z<|y|<w<x_{2}^{s}$ , where $r$ and $s$ are suitable integers. Put
$x= \max\{x_{1}, x_{2}\}$ . Then we can find integers $n$ and $m$ such that $x^{n}<x_{1}^{r}$ and
$x_{2}<x^{m}$ , which implies Lemma 3.11.

LEMMA 3.12. Let $X$ be an order-basis of $K$ over L. Let $y$ be a $po\alpha tive$

element of $K$ which is infimtely large with respect to L. Then there exzsts a
umque element $x$ of $X$ such that $x<y^{m}<x^{n}$ for suitable post tive integers $n$

and $m$ .

PROOF. Set $S=\{z\in X|z<y\}$ . First assume that $y$ is infinitely large with
respect to $L(S)$ . Then it follows that $S\cup\{y\}$ is order-independent over $L$ . On
the other hand, since $X\cup\{y\}$ cannot be order-independent over $L,$ $X-S$ must
contain the minimal element $x$ . Furthermore $x$ is not infinitely large with
respect to $L(S\cup\{y\})$ . Hence we conclude that $x<y^{n}<x^{n}$ for a suitable positive
integer $n$ by Lemma 3.11.

Next assume that $y$ is not infinitely large with respect to $L(S)$ . Then there
exists some element $z$ of $S$ such that $y<z^{r}$ for a suitable positive integer $r$ by
Lemma 3.11. Hence we have $z<y<z^{r}$. Thus the existence part of the asser-
tion is verified.

To show the uniqueness of $x$ , suppose $x_{1}$ and $x_{2}$ of $X$ satisfy $x_{1}<y^{m}<x_{1}^{n}$

and $x_{2}<y^{r}<x_{2}^{s}$ . Then it follows $x_{1}^{r}<x_{2}^{sm}$ and $x_{2}^{m}<x_{1}^{nr}$, which implies $x_{1}=x_{2}$ .
This completes the proof of Lemma 3.12.

THEOREM A. Let $X$ and $Y$ be order-bases of $K$ over L. Then ord(X) $=ord(Y)$ .

PROOF. If $X=\emptyset$ , then by Corollary 3.10, $K$ is archimedean over $L$ . It
follows that $Y$ is also empty. Similarly $Y=\emptyset$ implies $X=\emptyset$ . Therefore in the
following, we may assume that neither $X$ nor $Y$ is empty. By Lemma 3.12,
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for each element of $Y$ we can assign an element of $X$. Denote this mapping
from $Y$ to $X$ by $\tau$. Similarly we can define a mapping $\rho$ from $X$ to $Y$ . Let
$y_{1}$ and $y_{2}$ be elements of $Y$ with $y_{1}<y_{2}$ . Then by the definition of $\tau$ and
Lemma 3.12, we have $\tau(y_{1})<y_{1}^{m}<\tau(y_{1})^{n}$ and $\tau(y_{2})<y_{2}^{r}<\tau(y_{2})^{s}$ for suitable positive
integers $m,$ $n,$ $r,$ $s$ . This implies $\tau(y_{1})<\tau(y_{2})$ . Therefore $\tau$ preserves the order.

Next considering $y_{1}^{m}<\tau(y_{1})^{n}<y_{1}^{mn}$ , we get $\rho\tau(y_{1})=y_{1}$ . Hence $\rho\tau$ is the
identity of $Y$ . Similarly $\tau\rho$ is the identity of $X$. Thus we conclude that $\tau$ is
an order isomorphism from $Y$ onto $X$. This proves Theorem A.

REMARK 3.13. Let $K_{1}$ and $K_{2}$ be ordered fields, and let $X_{1}$ (resp. $X_{2}$ ) be an
order-basis of $K_{1}$ (resp. $K_{2}$ ) over its prime subfield $Q$ . If $K_{1}$ is isomorphic to
$K_{2}$ , then by Theorem A we have $ord(X_{1})=ord(X_{2})$ . We should remark that the
converse of this fact is not true even for real closed fields. For example, let
$E_{i}$ be a real closure of $Q(u_{i}),$ $i=1,2$ , where $u_{1}$ and $u_{2}$ are real numbers which
are algebraically independent over $Q$ . Then $E_{i}’ s$ are archimedean over $Q$ .
Hence $\emptyset$ is an order-basis of $E_{i}$ over $Q,$ $i=1,2$ . However, $E_{1}$ and $E_{2}$ are not
isomorphic (see for example, [6], 546).

Now we are ready to prove Theorem $B$ which is a generalization of Satz
11 in [2].

THEOREM B. Let $F$ be an algebraically closed field of characteristic $0$ and
let $\alpha,$

$\beta,$
$\gamma$ and $2^{\beta}$ be as follows,

$\alpha=the$ cardinality of the conjugacy classes of involutions in $Aut(F)$ ,
$\beta=the$ transcendency degree of $F$ over $Q$,
$\gamma=the$ car&nality immediately after $\beta$ ,
$2^{\beta}=the$ cardinality of the p0wer set of a set with cardinality $\beta$ .

Then we have the following.
1) If $\beta=0$ , then $\alpha=1$ .
2) If $\beta$ is fimte and $\beta\neq 0$, then $\alpha$ is continuum.
3) If $\beta$ is infimte, then $\gamma\leqq\alpha\leqq 2^{\beta}$ .
PROOF. If $\beta=0$ , then Artin had shown $\alpha=1$ (see Satz in [1], 323).

If $\beta$ is finite and $\beta\neq 0$ , then since $F$ is countable, it follows that $\alpha$ cannot
exceed the cardinality of continuum ( $=the$ cardinality of the power set of $F$ ).
On the other hand, let $x_{1},$ $\cdots$ , $x_{\beta}$ be a transcendency basis of $F$ over $Q$ and
let $Y$ be a transcendency basis of $R$ ( $=the$ field of real numbers) over $Q$ . Then
for elements $y_{1},$ $\cdots$ , $y_{\beta}$ of $Y$ , we have a purely algebraic isomorphism from
$Q(y_{1}, \cdots , y_{\beta})$ onto $Q(x_{1}, \cdots , x_{\beta})$ . Hence $Q(x_{1}, \cdots , x_{\beta})$ admits an ordering $induced_{-}^{-\cdot\uparrow}$

by this isomorphism. Let $K_{1}$ be a real closure of $Q(x_{1}, \cdots , x_{\beta})$ in $F$ and let $K_{2}$

be a real closure of $Q(y_{1}, \cdots , y_{\beta})$ in $R$ . We note that $F$ is a quadratic exten-
sion of $K_{1}$ . By Theorem 8 in Chap. VI of [8], $K_{1}$ is isomorphic to $K_{2}$ . Since



Ordered fields 369

distinct choices of $\beta$ elements as a subset from $Y$ yield non isomorphic real
closed fields, we conclude that $\alpha$ is at least the cardinality of continuum. This
proves 2).

Finally assume $\beta$ is infinite. In this case cardinality of $F$ coincides with
$\beta$ . It follows that $\alpha\leqq 2^{\beta}$ . To show another inequality let $X$ be a transcend-
ency basis of $F$ over $Q$ . If $X$ is totally ordered by some means, then we obtain
a lexicographically ordered field $Q(X)$ . But then there exists a real closure $K$

of $Q(X)$ in $F$ (note that $F$ is quadratic over $K$). By Corollary 3.9, $X$ is an
order-basis of $K$ over $Q$ . Hence it follows from Theorem A that distinct type
of orderings of $X$ yield non isomorphic real closures of $Q(X)$ in $F$. Therefore
we get $\gamma\leqq\alpha$ , because there exist at least $\gamma$ types of well orderings of $X$. This
implies 3). Thus the proof of the theorem is completed.

4. Unifinitely closed subfields.

In this section $K$ also denotes an ordered field.

DEFINITION 4.1. Let $L$ be a subfield of $K$ and let $x$ be an element of $K$.
If $x-y$ is finite with respect to $L$ for all $y\in L$ , then $x$ is said to be

umfimte with respect to $L$ .
If $L$ contains every element of $K$ that is unifinite with respect to $L$ , then

$L$ is said to be umfimtely closed in $K$.

The following is an easy consequence of the above definition.

PROPOSITION 4.2. 1) If an element $x$ of $K$ is unifinite with respect to $L$ ,

then $x$ is fimte with respect to $L$ .
2) If $K$ is archimedean over $L$ , then each element of $K$ is umfimte wiih

respect to $L$ .
REMARK 4.3. 1) The converse statement of Proposition 4.2, 1) is false.

To see this, let $Q(u)$ be a lexicographically ordered field with respect to $u$ .
Then $2+1/u$ is finite with respect to $Q$ , but it is not unifinite with respect
to $Q$ .

2) Let $K=Q(\sqrt{2})$ . Then $K$ admits a usual ordering induced by the order
of $R$ . Set $K(u)$ be a lexicographically ordered field with respect to $u$ . Put
$x=\sqrt{2}+1/u$ . Then $x$ is unifinite with respect to $Q$ but $x^{2}$ is not unifinite
with respect to $Q$ , because $x^{2}-2$ is infinitely small with respect to $Q$ . This
implies that the assumption that $x$ is unifinite with respect to a subfield $L$ of
$K$ is not sufficient for $L(x)$ to be archimedean over $L$ .

3) Let $L$ be a subfield of $K$ and let $M$ be an intermediate subfield between
$K$ and $L$ which is archimedean over $L$ . Suppose $M$ is unifinitely closed in $K$.
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Then by Proposition 3.2, 7) and Proposition 4.2, 2), it is easy to show that $M$

is maximal archimedean over $L$ . Conversely, let $N$ be an intermediate subfield
between $K$ and $L$ which is maximal archimedean over $L$ . Then under the
assumption that $K$ is real closed, we can show that $N$ is unifinitely closed in
$K$ (see Section 5). However, the conclusion is not true without real closedness
of $K$ (see Remark 4.9).

LEMMA 4.4. Let $x$ be an element of $K$ and let $y_{1}$ and $y_{2}$ be elements of a
subfield $L$ of K. Suppose $x-y_{i}$ is $0$ or infinitely small with respect to $L,$ $i=1,2$ .
Then $y_{1}=y_{2}$ .

PROOF. Consider the inequality,

$|y_{1}-y_{2}|\leqq|y_{1}-x|+|x-y_{2}|$ .

Since the right hand side is $0$ or infinitely small with respect to $L$ by Prop-
osition 3.2, 4), it follows that $y_{1}-y_{2}$ is $0$ or infinitely small with respect to $L$ ,
whereas $y_{1}-y_{2}$ is contained in $L$ . This occurs only in the case $y_{1}=y_{2}$ . This
proves the lemma.

LEMMA 4.5. Let $L$ and $M$ be subfields of $K$ and let $\psi$ be a mappjng from $L$

to M. Supp0se $x-\psi(x)$ is $0$ or infimtely small with respect to M. Then $\psi$ is an
isomorphism from $L$ into $M$.

PROOF. Let $x$ and $y$ be elements of $L$ . Then,

$|xy-\psi(x)\psi(y)|\leqq|x(y-\psi(y))|+|\psi(y)(x-\psi(x))|$ .
We note here that $x$ is not infinitely large with respect to $M$, because,

$|x|\leqq|x-\psi(x)|+|\psi(x)|\leqq 2|\psi(x)|$ .

Therefore the right hand side of the first inequality is $0$ or infinitely small with
respect to $M$. Hence $xy-\psi(x)\psi(y)$ is $0$ or infinitely small with respect to $M$.
But then by Lemma 4.4, we get $\psi(xy)=\psi(x)\psi(y)$ . Similarly we obtain $\psi(x+y)$

$=\psi(x)+\psi(y)$ .
Next assume $x\leqq y$ . If $\psi(x)>\psi(y)$ , then by Proposition 3.2, 3), we have,

$\psi(x)>\psi(y)+(y-\psi(y))+(\psi(x)-x)$ .
Then it follows,

$y-x=y-\psi(y)+\psi(y)-\psi(x)+\psi(x)-x<0$ ,

a contradiction. Hence we get $\psi(x)\leqq\psi(y)$ . This implies that $\psi$ is an isomor-
phism from $L$ into $M$.

By Lemma 4.4, the following is immediate.
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LEMMA 4.6. A mapping which satisfies the con&tion of Lemma 4.5 is deter-
mined uniquely for given subfields $L$ and $M$ of $K$, if it exists.

DEFINITION 4.7. The isomorphism from $L$ into $M$ which satisfies the con-
dition of Lemma 4.5 will be called the pseudo-identjty from $L$ into $M$.

PROPOSITION 4.8. Let $L$ and $M$ be umfimtely closed subfields of K. Then
one of the followzng holds.

1) There exists the pseudo-identity from $L$ into $M$.
2) There exists the pseudo-identity from $M$ into $L$ .

PROOF. Suppose false. If, for each element $x$ of $L$ , there exists an
element $y$ of $M$ such that $x-y$ is $0$ or infinitely small with respect to $M$, then
by Lemma 4.5, there exists a pseudo-identity from $L$ into $M$, a contradiction.
Hence we conclude that there exists an element $z$ of $L$ such that $z-y$ is
neither $0$ nor infinitely small with respect to $M$ for any element $y$ of $M$. It
follows that $z$ is not contained in $M$. Since $M$ is unifinitely closed, $z$ is not
unifinite with respect to $M$. But then $z-y$ must be infinitely large with
respect to $M$ for some $y\in M$ by Definition 4.1. Therefore $z$ is infinitely large
with respect to $M$ by Proposition 3.2, 2). Exchanging the role of $L$ and $M$ in
the above argument, we can find an element $w$ of $M$ which is infinitely large
with respect to $L$ . However this yields $|w|>|z|$ , which contradicts the choice
of $z$ . This proves Proposition 4.8.

REMARK 4.9. Proposition 4.8 suggests the importance of the notion of
“unifiniteness”. For example we show that unifinitely closed subPelds in Prop-
osition 4.8 cannot be replaced by such subfields that satisfy the following
condition $(*)$ .

$(*)$ Whenever $L(x)$ is archimedean over $L$ for $x\in K$, it follows $x\in L$ .

We should note here that a subfield $L$ of $K$ satisfies $(*)$ if and only if $L$ is
maximal archimedean over $L$ . We first show that a unifinitely closed subfield
$L$ satisfies $(*)$ . Suppose $L(x)$ is archimedean over $L$ for $x\in K$. Then by Prop-
osition 4.2, $x$ is unifinite with respect to $L$ . Hence we have $x\in L$ . Thus $L$

satisfies $(*)$ . Therefore it is reasonable to ask whether Proposition 4.8 can be
extended to subPelds which satisfy $(*)$ . In the following we shall show that
the answer is “no”. For this purpose, let $w$ be a real transcendental number
and put $E=Q(w)$ . Then by the usual ordering, $E$ is an ordered field. Let
$K=E(u)$ be a lexicographically ordered field with respect to $u$ . Set $L_{n}=$

$Q(w^{n}+1/u)$ , where $n$ is a positive integer. Then the following hold (note that
4) and 6) answer the above question negatively, furthermore 2), 4) and 5) imply
that $L_{p}$ is maximal archimedean over $Q$ but is not unifinitely closed in $K$ for a
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prime $p$ ).

1) If a subfield $M$ of $K$ is archimedean over $Q$ , then there exists the pseudo-
identity from $M$ into $E$ .

2) $L_{n}$ is archimedean over $Q$ .
3) Let $M$ be an intermediate subfield between $K$ and $L_{n}$ , where $n\geqq 2$ . If $M$

contains $w+\epsilon$ , where $\epsilon$ is $0$ or infimtely small with respect to $Q$ , then $M$ is not
archimedean over $Q$ .

4) If $p$ is a prime, then $L_{p}$ satisfies $(*)$ .
5) If $n\geqq 2$ , then $L_{n}$ is not umfinitely closed in $K$.
6) If $p$ and $q$ are distinct prjmes, then there does not exist the pseudo-jdentjty

from $L_{p}$ into $L_{q}$ , and vzce versa.

PROOF. 1) Since an element $x$ of $K$ is expressed as a quotient of poly-
nomials in $u$ with coefficients in $E$ , we may set,

$x=(au^{r}+ )/(u^{s}+ )$ ,

where $a\in E$ and $r,$ $s$ are non negative integers. If $x$ is finite with respect to
$Q$ , then it is easy to show that $r=s$ and $x-a$ is $0$ or infinitely small with
respect to $E$ . Thus for each element $x$ of $M$, we can find an element $a$ of $E$

such that $x-a$ is $0$ or infinitely small with respect to $E$ . Then by Lemma 4.4
and Lemma 4.5, we conclude that there exists the pseudo-identity from $M$ into $E$ .

2) Suppose false. Then by Proposition 3.2, 1) and 5), there exists such an
element $z$ of $L_{n}$ that is infinitely small with respect to $Q$ . On the other hand,
since $z$ can be expressed as $z=h(w^{n}+1/u)$ , where $h$ is a rational function with
coefficients in $Q$ . It follows,

$h(w^{n})-z=h(w^{n})-h(w^{n}+1/u)$

is infinitely small with respect to $Q$ (since $w$ and $u$ are algebraically independ-
ent over $Q,$ $h(w^{n})-z$ cannot be $0$). Thus we see that $h(w^{n})$ is also infinitely
small with respect to $Q$ , contradictory to our choice of $w$ . Therefore 2) is
verified.

3) Put $z=w+\epsilon$ . We may assume $\epsilon\neq 0$ . Since $\epsilon$ is an element of $K$, there
exist relatively prime polynomials $f$ and $g$ in $w,$ $u$ with coefficients in $Q$ such
that $\epsilon=f/g$ . On the other hand, it is easy to see that $w^{n}+1/u-z^{n}$ is $0$ or
infinitely small with respect to $Q$ . Suppose $M$ is archimedean over $Q$ , then
$w^{n}+1/u-z^{n}$ must be $0$ . Hence we obtain,

$w^{n}+1/u=(w+\epsilon)^{n}=w^{n}+nw^{n-1}\epsilon+\cdots+\epsilon^{n}$ ,

which yields,
$g^{n}=u(nw^{n-1}fg^{n-1}+ +f^{n})$ .
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This implies that $f$ divides $g$ . It follows that $f$ is constant. However, in
this case, $g^{2}$ cannot divides the right hand side (since $\epsilon$ is infinitely small with
respect to $Q,$ $g$ cannot be constant, which implies that $g$ is a scalar multiple
of $u$ ), a contradiction. Thus $M$ is not archimedean over $Q$ .

4) Suppose $L_{p}$ does not satisfy $(*)$ . Then there exists an element $x$ of
$K-L_{p}$ such that $L_{p}(x)$ is archimedean over $L_{p}$ . By 2), $L_{p}$ is archimedean
over $Q$ , hence it follows from Proposition 3.2, 8) that $L_{p}(x)$ is also archimedean
over $Q$ . But then by 1), there exists the pseudo-identity $\psi$ from $L_{p}(x)$ into $E$ .
Now it is easy to show that the image of $L_{p}$ under $\psi$ is $Q(w^{p})$ . On the other
hand, since the extension degree of $E$ over $Q(w^{p})$ is a prime $p$ , we conclude
that $\psi$ is surjective. Therefore there exists an element $z$ of $L_{p}(x)$ such that
$\psi(z)=w$ . Thus we can set $z=w+\epsilon$ , where $\epsilon$ is $0$ or infinitely small with
respect to $E$ (hence with respect to $Q$). But by virtue of 3), we conclude that
$L_{p}(x)$ is not archimedean over $Q$ , a contradiction. So we obtain 4).

5) By virtue of 2) and 3), it suffices to show that $w$ is unifinite with
respect to $L_{n}$ for $n\geqq 2$ . Suppose false. Then for some element $x$ of $L_{n},$ $w-x$

is either infinitely large or infinitely small with respect to $L_{n}$ , hence with
respect to $Q$ . Since $w$ is a real number, we can conclude that $w-x$ is infinitely
small with respect to $Q$ . But then $w-x$ is also infinitely small with respect to
$E$ , because $E$ is archimedean over $Q$ . By 1), there exists the pseudo-identity
$\psi$ from $L_{n}$ into $E$ . We obtain $\psi(x)=w$ from Lemma 4.4. But this contradicts
the fact $\psi(L_{n})=Q(w^{n})$ , since $Q(w^{n})$ does not contain $w$ in the case $n\geqq 2$ . Thus
5) is proved.

6) Suppose there exists the pseudo-identity $\psi$ from $L_{p}$ into $L_{q}$ . Then both

$\psi(w^{p}+1/u)-(w^{p}+1/u)$ and $w^{p}+1/u-w^{p}$

are $0$ or infinitely small with respect to $Q$ . Therefore we can put $\psi(w^{p}+1/u)$

$=w^{p}+\epsilon$ , where $\epsilon$ is $0$ or infinitely small with respect to $Q$ . Taking integers
$r,$ $s$ to satisfy $rp+sq=1$ , we assert that

$(w^{p}+\epsilon)^{r}(w^{q}+1/u)^{s}-w$

is $0$ or infinitely small with respect to $Q$ , because both $p$ and $q$ are greater
than 2. But then by 3), we conclude that $L_{q}$ is not archimedean over $Q$ , which
contradicts 2). Hence 6) is proved,

DEFINITION 4.10. Let $L$ and $M$ be subfields of $K$. If there exists the
bijective pseudo-identity from $L$ onto $M$, then we say $L$ is pseudo-jdentical with
$M$ and denote it by $L\approx M$.

LEMMA 4.11. Let $L$ and $M$ be subfields of $K$ and let $\psi$ be the pseudo-identity
from $L$ into M. Then for each element $x$ of $L$ , the following hold.
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1) $\psi(x)-x$ is $0$ or infinitely small $rm$ th respect to $L$ .
2) $|\psi(x)|<|x|+|y|$ for any non zero element $y$ of $L$ .
PROOF. 1) If $|x|<|\psi(x)-x|$ , then $x\neq 0$ and we get

$|\psi(x)|\leqq|x|+|\psi(x)-x|\leqq 2|\psi(x)-x|$ ,

which contradicts our assumption, because $2|\psi(x)-x|$ is infinitely small with
respect to $M$ by Proposition 3.2, 4). Therefore we conclude $|x|\geqq|\psi(x)-x|$ .
Hence we have

$|\psi(x)|\leqq|x|+|\psi(x)-x|\leqq 2|x|$ .
Now assume that 1) is false. Then there exists an element $z$ of $L$ such that

$|\psi(x)-x|>|z|>0$ .
On the other hand, since $|\psi(z)|\leqq 2|z|$ holds, it follows that

$|\psi(x)-x|>|z|\geqq|\psi(z)|/2>0$ ,

a contradiction. This proves 1).

2) For any non zero element $y$ of $L$ , we get $|\psi(x)-x|<|y|$ by 1). Hence
it follows

$|\psi(x)|\leqq|x|+|\psi(x)-x|<|x|+|y|$ ,

which proves 2.

PROPOSITION 4.12. The relation $\approx is$ an equivalence relation in the set of all
subfields of $K$.

PROOF. Let $L,$ $M$ and $N$ be subfields of $K$. Since the identity mapping of
$L$ is the pseudo-identity from $L$ onto itself, we get $L\approx L$ .

Next assume $L\approx M$ and let $\psi$ be the pseudo-identity from $L$ onto $M$. We
show that the inverse mapping $\psi^{-1}$ of $\psi$ is the pseudo-identity from $M$ onto $L$ .
To see this, it suffices to show that $y-\psi^{-1}(y)$ is $0$ or infinitely small with
respect to $L$ for any element $y$ of $M$. However, since $y=\psi(x)$ for some
element $x$ of $L$ , it is already proved in Lemma 4.11, 1). Hence we obtain
$M\approx L$ .

Finally assume $L\approx M$ and $M\approx N$. Let $\psi$ and $\theta$ be the respective pseudo-
identities. Then for each element $x$ of $L$ , we have

$|x-\theta\psi(x)|\leqq|x-\psi(x)|+|\psi(x)-\theta(\psi(x))|$ .
Thus to prove $L\approx N$, it is sufficient to show that $x-\psi(x)$ is $0$ or infinitely small
with respect to $N$. Suppose to the contrary that

$|x-\psi(x)|\geqq|y|>0$
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for some element $y$ of $N$. Then we obtain

$2|x-\psi(x)|\geqq|y|+|y|\geqq|y|+|\theta^{-1}(y)-y|\geqq|\theta^{-1}(y)|$ ,

which is a contradiction. Hence we conclude $L\approx N$ and the proof is completed.

LEMMA 4.13. Let $L$ and $M$ be subfields of K. Supp0se $L\approx M$. Then the
following conditions on an element $x$ of $K$ are equivalen $f$.

1) $x$ is infimtely small (resp. large) with respecl to $L$ .
2) $x$ is infinitely small (resp. large) with respect to $M$.
PROOF. Let $\psi$ be the pseudo-identity from $L$ onto $M$. First assume $x$ is

infinitely small with respect to $L$ . For any non zero element $y$ of $M$, there
exists a non zero element $z$ of $L$ such that $\psi(z)=y/2$ . Then

$|x|<|z|\leqq|z-\psi(z)|+|\psi(z)|\leqq 2|\psi(z)|=|y|$ .
Thus we conclude that $x$ is infinitely small with respect to $M$. Similarly 2)

implies 1). Furthermore, by virtue of Proposition 3.2, 1), we can replace the
term “ small “ by the term “ large “ in the above argument. Hence the lemma
is proved.

PROPOSITION 4.14. Let $L$ and $M$ be subfields of K. If $L$ is unifinitely
closed in $K$ and $L\approx M$, then $M$ is also unifinitely closed in $K$.

PROOF. Let $\psi$ be the pseudo-identity from $L$ onto $M$. Assume to the con-
trary that an element $x$ of $K-M$ is unifinite with respect to $M$. Then for
each element $y$ of $L$ , there exist $u$ and $v$ of $M$ such that

$0<u\leqq|x-\psi(y)|\leqq v$ ,

because $x$ is unifinite with respect to $M$ and $x-\psi(y)\neq 0$ . Now take elements
$w$ and $z$ of $L$ to satisfy $\psi(w)=u/2$ and $\psi(z)=2v$ . Then since $u/2-w$ is $0$ or
infinitely small with respect to $M$,

$u-w=u-u/2+u/2-w$

\’is positive by virtue of Proposition 3.2, 3). Hence we get $u\geqq w$ . Similarly we
have $z\geqq v$ . So it follows

$0<w\leqq|x-\psi(y)|\leqq z$ .
But then

$0<w/2\leqq|x-\psi(y)|-|\psi(y)-y|\leqq|x-y|$

$\leqq|x-\psi(y)|+|\psi(y)-y|\leqq 2z$ ,

because $\psi(y)-y$ is $0$ or infinitely small with respect to $L$ by Lemma 4.11, 1).

Therefore we can conclude that $x$ is unifinite with respect to $L$ , which yields
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$x\in L$ by the assumption. Considering $x-\psi(x)$ is $0$ or infinitely small with
respect to $M$ and $x$ is unifinite with respect to $M$, we conclude $x=\psi(x)$ . This
implies $x\in M$, a contradiction. Hence we prove Proposition 4.14.

As a result of Proposition 4.14, if a $\approx$ -equivalence class contains a uni-
finitely closed subfield, then it follows that all elements of this class are
unifinitely closed.

From now on, $I_{K}(L)$ denotes the set of all unifinitely closed subfields of $K$

containing a fixed subfield $L$ . Then the restriction of the relation $\approx$ to $I_{K}(L)$

is also an equivalence relation in $I_{K}(L)$ . We put $I_{K}(L)^{*}=I_{K}(L)/\approx$ and for
each element $M$ of $I_{K}(L),$ $M^{*}$ denotes an element of $I_{K}(L)^{*}$ which contains $M$.

In the rest of this section, $L$ is a fixed subfield of $K$.
LEMMA 4.15. Let $M$ and $N$ be elements of $I_{K}(L)$ . Supp0se $M$ is pseudo-

identical to a subfield $E$ of N. Then there exis $ts$ the pseudo-identity from $M$

into $N$.

PROOF. Let $\psi$ be the pseudo-identity from $M$ onto $E$ . Then by Lemma
4.11, 1), $x-\psi^{-1}(x)$ is $0$ or infinitely small with respect to $M$ for any $x\in E$ . If
there exists the pseudo-identity $\theta$ from $N$ into $M,$ $x-\theta(x)$ is $0$ or infinitely
small with respect to $M$. However, by Lemma 4.4, we get $\theta(x)=\psi^{-1}(x)$ . Thus
the image of $E$ under $\theta$ coincides with $M$. It follows that $N=E$ , because $\theta$ is
one-to-one. But then this implies that $\psi$ is the pseudo-identity from $M$ onto $N$,

which proves the lemma.

REMARK 4.16. It should be remarked here that in the above lemma, the
pseudo-identity from $M$ onto $E$ is not necessarily the pseudo-identity from $M$

into $N$. For example, let $E$ and $K$ be as in Remark 4.9. Then $L_{1}$ is pseudo-
identical with $E$ . But the pseudo-identity from $L_{1}$ into $K$ must send each
element of $L_{1}$ to itself by Lemma 4.4.

Now we shall define a total ordering on $I_{K}(L)^{*}$ . Let $M$ and $N$ be elements
of $I_{K}(L)$ . If there exists the pseudo-identity from $M$ into $N$, then we denote
it by $M^{*}\leqq N^{*}$ . First of all, we must show that the relation $\leqq$ is well defined.
Suppose $M_{1}$ and $N_{1}$ be elements of $M^{*}$ and $N^{*}$ respectively. Since $M_{1}\approx M$

and $N\approx N_{1}$ , it follows that $M_{1}$ is pseudo-identical with a subfield of $N_{1}$ . Hence
by Lemma 4.15, there exists the pseudo-identity from $M_{1}$ into $N_{1}$ . Thus $\leqq$ is
well defined.

THEOREM C. The relation $\leqq is$ a total ordenng on $I_{K}(L)^{*}$ .
PROOF. Let $M,$ $N$ and $E$ be elements of $I_{K}(L)$ . It is easy to show $M^{*}\leqq M^{*}$ .

Next assume $M^{*}\leqq N^{*}$ and $N^{*}\leqq M^{*}$ . Let $\psi$ (resp. $\theta$ ) be the pseudo-identity
from $M$ (resp. $N$) into $N$ (resp. $M$), and let $M_{1}$ be the image of the composite
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of $\psi$ and $\theta$ . Then $M_{1}$ is a subfield of $M$ which is pseudo-identical with $M$.
But then by Lemma 4.6, the pseudo-identity from $M_{1}$ onto $M$ must send each
element of $M_{1}$ to itself. Hence we obtain $M_{1}=M$. Thus $\theta$ is bijective, which
implies $N^{*}=M^{*}$ .

Finally assume $M^{*}\leqq N^{*}$ and $N^{*}\leqq E^{*}$ . Then $M$ is pseudo-identical with a
subfield of $E$ . Therefore by Lemma 4.15, we have $\Lambda f^{*}\leqq E^{*}$ . This together
with Proposition 4.8, completes the proof of Theorem C.

5. Unifinite closures.

By the preceding results, we can attach $ord(I_{K}(Q)^{*})$ and ord(X) to each
ordered field $K$, where $X$ is an order-basis of $K$ over $Q$ . We note that they
are invariant under isomorphisms. The purpose of this section is to show that
they are intimately connected with each other in the case $K$ is real closed.

DEFINITION 5.1. Let $L$ be a subfield of $K$. If an intermediate subfield $L$

between $K$ and $L$ satisfies,
1) $L$ is unifinitely closed in $K$,

2) $L$ is archimedean over $L$ ,

then $L$ is called a unifinite closure of $L$ in $K$.

PROPOSITION 5.2. Let $L$ and $M$ be subfields of K. Supp0se there exist
unifinite closures $L$ and $\hat{M}$ of $L$ and $M$ respectively and $L\approx M$. Then $L\approx\hat{M}$.

PROOF. By Proposition 4.8, we may assume that there exists the pseudo-
identity $\psi$ from $L$ into $\hat{M}$. So it suffices to show $\psi(L)=\hat{M}$. Let $\theta$ be the
pseudo-identity from $L$ onto $M$. Since $\hat{M}$ is archimedean over $M$, any element
which is infinitely small with respect to $M$ is infinitely small with respect to
$\hat{M}$. Hence $x-\theta(x)$ is $0$ or infinitely small with respect to $\hat{M}$ for $x\in L$ . It
follows from Lemma 4.4 that $\theta(x)=\psi(x)$ for each $x\in L$ . Thus $\psi(\hat{L})$ contains
$M$. Consequently, we conclude that $\hat{M}$ is archimedean over $\psi(L)$ . On the other
hand, by Proposition 4.14, $\psi(L)$ is unifinitely closed in $K$. Hence we have
$\psi(L)=\hat{M}$, which proves the assertion.

PROPOSITION 5.3. Let $M$ be a subring of $K$ which contains a subfield $L$ and
let $E$ be the field of fractions of $M$ in K. Supp0se each element of $M$ is finite
with respect to L. Then $E$ is archimedean over $L$ .

PROOF. Suppose false. Then by Proposition 3.2, 5), we can choose an
element $x/y$ of $E$ which is infinitely large with respect to $L$ , where $x$ and $y$

are elements of $M$ and $y\neq 0$ . By the assumption, $\chi$ and $y$ are finite with
respect to $L$ . So there exist elements $z$ and $w$ such that $|x|<|z|$ and
$0<|w|<|y|$ . It follows $|x/y|<|z/\iota u|$ , a contradiction. Thus $E$ is archimedean
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over $L$ .
PROPOSITION 5.4. Let $X$ be an order-basis of $K$ over its subfield L. Supp0se

there exists a unifimte closure $M$ of $L(S)$ in $K$ for a segment $S$ of X. Then $S$

is an order-basis of $M$ over $L$ .
PROOF. Suppose false. Then there exists a positive element $y$ of $M$ such

that $S\cup\{y\}$ is order-independent over $L$ . Since $M$ is archimedean over $L(S)$ ,

an element which is infinitely large with respect to $L(S)$ is also infinitely large
with respect to $M$. So each element of $X-S$ is infinitely large with respect to
$M$. Therefore it can be easily shown that $X\cup\{y\}$ is order-independent over $L$ ,
which is a contradiction. Thus the lemma is verified.

PROPOSITION 5.5. Let $L$ be a subfield of K. Supp0se $L$ is real closed and is
maximal archimedean over L. Then $L$ is unifinitely closed in $K$.

PROOF. Suppose false. Then there exists such an element $z$ of $K-L$ that
is unifinite with respect to $L$ . If each element of $L[z]$ is finite with respect
to $L$ , then by Proposition 5.3, $L(z)$ is archimedean over $L$ , contradictory to our
assumption. So there exists an element $w$ of $L[z]$ which is not finite with
respect to $L$ . We note that $w=f(z)$ for some $f\in L[u]$ , where $L[u]$ is a
polynomial ring in $u$ with coefficients in $L$ . Since each term of $f(z)$ cannot be
infinitely large with respect to $L$ , we conclude $f(z)$ is infinitely small with
respect to $L$ . Set

$I=$ { $h\in L[u]|h(z)$ is $0$ or infinitely small with respect to $L$ }.

Then $I$ is a non zero ideal of $L[u]$ , because it contains $f$. Let $g$ be the monic
polynomial which generates $I$ . We note that $g(z)\neq 0$ , because $L$ is algebraically
closed in $K$. Furthermore, it is easy to see that $g$ is irreducible. Since $z$ is
unifinite with respect to $L$ and $L$ is real closed, it follows that the degree of
$g$ is 2. Let $x\pm y\sqrt{-1}$ be roots of $g$ in $L(\sqrt{-1})$ , where $x,$ $y\in L$ and $y\neq 0$ .
Then we have $g(u)=(u-x)^{2}+y^{2}$ , which implies

$g(z)=(z-x)^{2}+y^{2}\geqq y^{2}>0$ .
This contradicts the choice of $g$ . Thus we have proved Proposition 5.5.

In the sequel, $K$ is a real closed field.

THEOREM D. Let $L$ be a subfield of a real closed field $K$ and $M$ be an
extension of $L$ in $K$ which is maximal archimedean over L. Then $M$ is $unifinitel\gamma$

closed in $K$.
PROOF. By the assumption and Proposition 3.2, 8), there is no archimedean

extension of $M$ in $K$ except for $M$ itself. Hence by Lemma 3.6, $M$ is algebraically
closed in $K$. It follows that $M$ is real closed, because $K$ is real closed (see for
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example, Corollary of Theorem 6 in Chap. VI of [8]). Therefore by Proposition
5.5, the conclusion is obtained.

REMARK 5.6. In the case that $K$ is not real closed, there does not always
exist a unifinite closure of $L$ . For example, let $K$ and $L_{p}$ be as in Remark 4.9,
where $p$ is a prime. Then by 4) and 5) in Remark 4.9, we can conclude that
there is not a unifinite closure of $L_{p}$ in $K$.

To prove Theorem $E$ , we need the following lemma.

LEMMA 5.7. Let $X$ be an order-basis of $K$ over its subfield $L$ and let $E$ be
an extension of $L$ in K. Supp0se $E$ is umfinitely closed in K. Then there exists
a segment of $X$ such that $E$ is pseudo-identical with a unifinite closure of $L(S)$

in $K$.
PROOF. Set

$S=$ { $x\in X$ $x<y$ for some $y\in E$ }.

We note that $S$ is a segment of $X$ and each element of $X-S$ is infinitely large
with respect to $E$ . By Theorem $D$ , there exists a unifinite closure $M$ of $L(S)$

in $K$. We shall show that $E\approx M$. By Theorem $C$ , either $E^{*}\leqq M^{*}$ or $E^{*}\geqq M^{*}$

occurs, where $E^{*}$ and $M^{*}$ are as defined in Section 4.
First assume $E^{*}\leqq M^{*}$ . Let $\psi$ be the pseudo-identity from $E$ into $M$. Now

suppose $\psi(E)\neq M$. By Proposition 4.14, $\psi(E)$ is unifinitely closed in $K$. So $M$

is not archimedean over $\psi(E)$ . Hence there exists such an element $y$ of $M$

that is infinitely large with respect to $\psi(E)$ . Both $E$ and $M$ contain $L$ , we
have $\psi(L)=L$ by Lemma 4.4. This implies $M$ is not archimedean over $L$ .
Hence $S$ is not empty. By Proposition 5.4, $S$ is an order-basis of $M$ over $L$ .
So we obtain $|y|<x^{n}$ for some $x\in S$ and a suitable integer $n$ by virtue of
Lemma 3.11. However it asserts that $x$ is infinitely large with respect to $\psi(E)$ .
But then, Lemma 4.13 implies that $x$ is also infinitely large with respect to $E$ ,
which contradicts the choice of $x$ . Thus we obtain $E\approx M$ in this case.

Next assume $E^{*}\geqq M^{*}$ . Let $\theta$ be the pseudo-identity from $M$ into $E$ . Again
we suppose $\theta(M)\neq E$ . Since $\theta(M)$ is unifinitely closed in $K$, we conclude that
$E$ is not archimedean over $\theta(M)$ . Hence there exists a positive element $z$ of
$E$ which is infinitely large with respect to $\theta(M)$ . By Lemma 4.13, $z$ is infinitely
large with respect to $M$. This implies $S\cup\{z\}$ is order-independent over $L$ . On
the other hand, since each element of $X-S$ is infinitely large with respect to
$E,$ $X\cup\{z\}$ is order-independent over $L$ , a contradiction, which yields $M\approx E$ .
This completes the proof of the lemma.

THEOREM E. Let $L$ be a subfield of a real closed field $K$, and let $X$ be an
order-basts of $K$ over L. Then $ord(I_{K}(L)^{*})=ord(\tilde{X})$ , where $\tilde{X}$ is the set of all
segments of $X$.
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PROOF. Let $\sigma$ be a mapping from $\tilde{X}$ to $I_{K}(L)^{*}$ , which assigns each segment
$S$ of $X$ to a pseudo-identical class containing a unifinite closure of $L(S)$ . We
shall show that $\sigma$ is an order isomorphism. By Lemma 5.7, $a(\tilde{X})=I_{K}(L)^{x}$ . Let
$S_{1}$ and $S_{2}$ be elements of $\tilde{X}$ with $S_{1}\subsetneqq S_{2}$ . Then it remains to show that
$a(S_{1})\leqq\sigma(S_{2})$ . Let $M_{1}$ and $M_{2}$ be unifinite closures of $L(S_{1})$ and $L(S_{2})$ respec-
tively. Assume to the contrary that $M_{1}^{*}\geqq M_{2}^{*}$ and let $\psi$ be the pseudo-identity
from $M_{2}$ into $M_{1}$ . Since $M_{2}$ contains $L(S_{1})$ , the restriction of $\psi$ to $L(S_{1})$

coincides with the identity. But then each element of $\psi(S_{2}-S_{1})$ is infinitely
large with respect to $L(S_{1})$ , whereas $M_{1}$ is archimedean over $L(S_{1})$ , a contra-
diction. Hence we conclude $M_{1}^{*}\leqq M_{2}^{*}$ . Thus the proof is obtained.

REMARK 5.8. The assumption that $K$ is real closed in Theorem $E$ cannot
be removed. For example, let $N=Q(\sqrt{2})$ and let $E=N(u)$ be a lexicographically
ordered field with respect to $u$ . Put $K=Q(\sqrt{2}+1/u)$ be a subfield of $E$ . Then
$K$ is a purely transcendental extension of $Q$ . Since $\sqrt{2}+1/u$ is unifinite with
respect to $Q$ , $Q$ is not unifinitely closed in $K$. Suppose a subfield $M\neq Q$ is
unifinitely closed in $K$. Then by L\"uroth’s theorem, $K$ is algebraic over $M$.
Hence it follows from Lemma 3.6 that $M=K$. Thus we get $I_{K}(Q)=\{K\}$ . On
the other hand, it is not so difficult to show that an order-basis $X$ of $K$ over $Q$

consists of one element, which implies that $\tilde{X}$ consists of two elements.
Therefore the conclusion of Theorem $E$ cannot hold in this case.
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