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\S 1. Williamson Hadamard matrices.

1. Let $\mathfrak{U}$ be a rational division algebra with an antiautomorphism $\tau;\xiarrow\overline{\xi}$

of period two, such that the norm $\xi\xi$ is a positive definite quadratic form in the
coefficients of $\xi$ with respect to a basis of $\mathfrak{U}$ over $Q$ . Let $\mathfrak{Q}$ be a maximal order
in $\mathfrak{U}$ invariant under $\tau$ . An element $\epsilon$ of $\mathfrak{Q}$ is called a unit if its norm $\epsilon\overline{\epsilon}$ equals
1. The set $U$ of all units is finite, and is a subgroup of the multiplicative
group $\mathfrak{U}^{*}$ of $\mathfrak{U}$ .

A square matrix $H$ of order $n$ with entries in $U$ is called an Hadamard matrix
in $\mathfrak{A}$ if

$HH^{*}=nI$ , $H^{*}={}^{t}\overline{H}$ ,
for the unit matrix $I$ .

If $\mathfrak{U}=Q$ the rational number field then $U=\{1, -1\}$ and $H$ is a usual Hada-
mard matrix. If $\mathfrak{A}=Q(i)$ the Gaussian imaginary quadratic field, then $U=$

$\{\pm 1, \pm i\}$ and $H$ is called a complex Hadamard matrix. The character table of
an abelian group $G$ of order $n$ provides an Hadamard matrix in the cyclotomic
field $Q(\zeta_{m}),$ $\zeta_{m}=e^{2\pi i/m}$ , for the exponent $m$ of $G$ .

In the present paper we deal with rational quaternion field, although some
part of the theory is carried over to a generalized quaternion field where the
center is the maximal real subfield of a cyclotomic field of order $2^{s}$ . Thus let
$\mathfrak{U}=Q+Qi+Qj+Qk$ with the quaternion units 1, $i,$ $j,$ $k$ such that

$i^{2}=j^{2}=k^{2}=-1$ ,

$ij=-ji=k$ , $jk=-kj=i$ , $ki=-ik=j$ .
We take the Hurwitz quaternion ring as $\mathfrak{Q}$ . The ring $\mathfrak{Q}$ consists of quaternions
$\xi=a+bi+cj+dk$ with

$a,$ $b,$ $c,$
$d \in\frac{1}{2}Z$ , $a\equiv b\equiv c\equiv d$ $(mod 1)$ .

The antiautomorphism $\tau$ assigns the quaternion conjugate $\overline{\xi}=a-bi-cj-dk$ to $\xi$ ,

and $\xi\overline{\xi}=a^{2}+b^{2}+c^{2}+d^{2}$ . The unit group $U$ consists of 24 elements and contains
the quaternion group $U_{0}=\{\pm 1, \pm i, \pm j, \pm k\}$ as a normal subgroup. It also
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contains
$w=(1+i+j+k)/2$ , $w^{2}=(-1+i+j+k)/2$ ,

and $U$ is a semidirect product of $U_{0}$ by $\{w^{2}\},$ $(w^{2})^{3}=1$ . The 16 units in $U-U_{0}$

are precisely the units $(\pm 1\pm i\pm j\pm k)/2$, and the number of minus signs is even
or odd according as $\epsilon$ is in $wU_{0}$ or in $w^{2}U_{0}$ , or according as $\epsilon\equiv w(mod \mathfrak{L})$ or
$\epsilon\equiv w^{2}(mod \mathfrak{L})$ for the different $\mathfrak{L}=(1-i)$ of the maximal order $\mathfrak{Q}$ .

2. A square matrix $M$ of order $n$ is called a circulant matrix if its rows
are obtained from the first row by applying cyclic shifts successively. Namely
if $(a_{0}, a_{1}, \cdots , a_{n- 1})$ is the first row then

$M=a_{0}I+a_{1}T+\cdots+a_{n-1}T^{n-1}=f(T)$

for the basic circulant matrix

$T=()$ ,

and $f(x)\in \mathfrak{Q}[x]$ . If a usual Hadamard matrix is circulant then its order is
necessarily a square, and except for $n=1$ and $n=4$ no such matrix is known.
Ryser conjectures that there is no other. If a complex Hadamard matrix is
circulant then its order is a sum of two squares, and if a quaternion Hadamard
matrix is circulant its order is a sum of four squares. Since any Positive
integer is $a\cdot sum$ of four squares it is plausible that there exists a circulant
quaternion Hadamard matrix of any order $n$ .

We treat a special class of circulant quaternion Hadamard matrices $H$ where
the entries are in $U-U_{0}$ , $i.e$. of the form $(\pm 1\pm i\pm j\pm k)/2$ . The matrix $2H$

gives rise to a usual Hadamard matrix of order $4n$ by replacing the quaternion
units 1, $i,$ $j,$ $k$ by their regular representation matrices

$(\begin{array}{llll}1 0 0 00 1 0 00 0 1 00 0 0 1\end{array})$ , $(\begin{array}{lll}0 1 0 0-1 0 0 00 0 0-10 0 1 0\end{array})$ , $(\begin{array}{lll}0 0 1 000 0 1-1 0 0 00-1 0 0\end{array})$ , $(\begin{array}{llll}0 0 0 10 0-1 00 01 0-1 00 0\end{array})$ .

The resulting matrix is

$(\begin{array}{llll}X Y Z W-Y X -W Z-Z W X -Y-W -Z Y X\end{array})$ ,

for circulant matrices $X,$ $Y,$ $Z,$ $W$ in $\{1, -1\}$ of order $n$ , satisfying
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$XX^{*}+YY^{*}+ZZ^{*}+WW^{*}=4nI$ .
Assume that $H$ is symmetric then so are the matrices $X,$ $Y,$ $Z,$ $W$ . When we
write $X=f_{1}(T),$ $Y=f_{2}(T),$ $Z=f_{3}(T),$ $W=f_{4}(T)$ for polynomials $f_{l}(x)$ of degree
$n-1$ , then these polynomials having coefficients $\pm 1$ , are symmetric in the sense
that $f_{l}(x)=f_{l}(x^{-1})$ , and satisfy the equation

(1) $f_{1}(x)^{2}+f_{2}(x)^{2}+f_{3}(x)^{2}+f_{4}(x)^{2}=4n$ ,

for a variable $x$ bound by the condition $x^{n}=1$ . The above equation (1) is called
a Williamson equation of order $n$ .

3. In view of a construction problem the case $n$ odd is particularly impor-
tant. In this paper we treat Hadamard matrices of order $4n$ , corresponding to
symmetric circulant quatemion Hadamard matrices of odd order $n$ . In this case,
as is well known (cf. $e.g$. $[9]$ ), the Williamson equation (1) can be put into a
simpler form equivalent to it:

(2) $(1+2 \sum_{m\in A}e_{m}u_{m})^{2}+(1+2\sum_{m\in B}e_{m}u_{m})^{2}+(1+2\sum_{m\in C}e_{m}u_{m})^{2}+(1+2\sum_{m\in D}e_{m}u_{m})^{2}=4n$ ,

where the $e_{m}$ are 1 or $-1$ and

$u_{m}=x^{m}+x^{-m}$ $(m=1,2, \cdots (n-1)/2)$ ,

and where $A,$ $B,$ $C,$ $D$ is a partition of the half-system

$\mathcal{H}=\{1,2, \cdots (n-1)/2\}$

of $Z(n)-\{0\},$ $Z(n)=Z/nZ$.
This is proved as follows. Assume $H=w^{2}P+wQ$ where $P$ and $Q$ have

entries in $U_{0}\cup\{0\}$ . If we replace nonzero entries by 1, we obtain $(0,1)$-matrices
$P_{0},$ $Q_{0}$ such that $P_{0}+Q_{0}=J$, where $J$ has all its entries equal to 1. By noticing
that $\mathfrak{L}$ is a two-sided ideal of $\mathfrak{Q}$ and divides 2, we see that

$H\equiv w^{2}P_{0}+wQ_{0}\equiv w^{2}P_{0}+w(P_{0}+J)\equiv P_{0}+wJ$ $(mod \mathfrak{L})$ ,

$HH^{*}\equiv(P_{0}+wJ)(P_{0}^{*}+w^{2}J)$

$\equiv P_{0}P_{0}^{*}+J^{2}+wJP_{0}^{*}+w^{2}P_{0}J\equiv P_{0}P_{0}^{*}+nJ+aJ$ $(mod \mathfrak{L})$ ,

for the number $a$ of nonzero elements in the first row of $P$. We can assume
$a$ to be odd since otherwise we use $\overline{H}$ in place of $H$. Thus $I\equiv nI\equiv P_{0}P_{0}^{*}(mod 2)$ .
If moreover $H$ is symmetric then $P_{0}^{2}\equiv I$ , and this means that $P_{0}\equiv I(mod 2)$ . In
fact, if $P_{0}= \sum_{m\in S}T^{m}$ for a subset $S$ of $Z(n)$ , then $P_{0}^{2} \equiv\sum_{m\in S}T^{2m}\equiv\sum_{m\in 2S}T^{m}$ (mod2),

so that $2S=\{0\}$ , or $S=\{0\}$ since $n$ is odd. Hence $P=\epsilon I$ for some $\epsilon$ in $U_{0}$ , and
$-w\overline{\epsilon}wH=wI-\eta Q,$ $\eta=w\overline{\epsilon}w^{2}=-w\overline{\epsilon}w^{-1}\in U_{0}$ . We can write $-2w\overline{\epsilon}wH$ as
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$I+2 \sum_{m\in A}e_{m}(T^{m}+T^{-m})+(I+2\sum_{m\in B}e_{m}(T^{m}+T^{-m}))i$

$+(I+2 \sum_{m\in C}e_{m}(T^{m}+T^{-m}))_{J}+(I+2\sum_{m\in D}e_{m}(T^{m}+T^{-m}))k$ ,

with $e_{m}=\pm 1$ and $A,$ $B,$ $C,$ $D$ is a partition of $H$. This leads to (2) immediately.
The equation (2) is called a reduced Williamson equation of order $n$ . The

reduced Williamson equations were worked out for $n\leqq 27$ by Williamson, Baumert,
Sawade and others. See also Agayan-Sarukhanyan [1].

A first infinite family of Williamson matrices was found by Turyn [8]. He
transformed Paley type 2 matrix of order $2(q+1),$ $q$ a $prime- power\equiv 1(mod 4)$ ,

into the Williamson matrix form. Whiteman [10] obtained the Williamson
equation of the form (1) directly without resorting to Paley matrices, by using
a quadratic extension of a finite field. In this paper we treat the reduced
Williamson equations, directly and in detail. It will be shown that an essential
point is in the norm relation of Gauss sums in a finite field. It also enables us
to write down $e_{m}$ and the subsets $A,$ $B,$ $C,$ $D$ in an explicit form, relying on a
maximal-length linear-feedback shift-register sequence in a finite field. It turns
out that two of the subsets are empty. The norm relation of the relative
Gauss sums for a more general extensions will lead to a class of Hadamard
matrices of ’generalized quaternion type’, as is discussed in a paper [11] by one
of the authors, where the center of the quaternion algebra is extended to the
maximal real subfield of a cyclotomic field $Q(\zeta_{2}s)$ . Also the family of reduced
Williamson equations with two empty subsets, in general, will be treated in the
sequel.

\S 2. Relative Gauss sums in a finite field.

4. We denote by $\zeta_{m}$ the primitive $m^{th}$ root of unity $e^{2\pi i/m}$ and by $Q_{m}$ the
cyclotomic field $Q(\zeta_{m})$ . The Galois group of $Q_{m}/Q$ consists of automorphisms

$\sigma_{c}$ ; $\zeta_{m}arrow\zeta_{m}^{c}$ ,

where $c$ is taken from the multiplicative group $Z(m)^{*}$ of $Z(m)=Z/mZ$ .
Let $F=GF(q)$ be a finite field of $q$ elements where $q=P^{t}$ is a power of an

odd prime $p$ . We denote the absolute trace in $F$ by $S_{F}$.
For a (multiplicative) character $\chi$ of $F$ we extend this to $F$ by letting $\chi(0)$

$=0$ . We define the Gauss sum $\tau(\chi)=\tau_{F}(\chi)$ by

$\tau(\chi)=-\sum_{\alpha\in F}^{\chi}(\alpha)\zeta_{p}^{s_{F^{\alpha}}}$ .

For two characters $\chi,$ $\chi’$ of $F$ we define the Jacobi sum $\pi(\chi\chi’)=\pi_{F}(\chi\chi’)$ by

$\pi(\chi\chi’)=-\sum_{a\in F}\chi(\alpha)\chi’(1-\alpha)$ .
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The Gauss sums and the Jacobi sums satisfy a number of basic relations, for
instance (cf. [5])

$\sum_{a\in F}\chi(\alpha)\zeta_{p}^{s_{F}(\beta a)}=\overline{x}(\beta)\tau(\chi)$ for $\beta\in F^{*}$ ,

$\tau(x^{p})=\tau(\chi)$ ,

(3) $\tau(\chi)\overline{\tau(\chi)}=q$ for a nonprincipal character $\chi$

(4) $\frac{\tau(\chi)\tau(\chi’)}{\tau(\chi\chi’)}=\pi(\chi\chi’)$ if $\chi\chi’$ is nonprincipal.

The finite Peld $F$ can be identified with the residue class field $\mathfrak{o}/\mathfrak{p}$ for the
integer ring $0$ of $Q_{q-1}$ and a prime ideal divisor $\mathfrak{p}$ of $p$ in $\mathfrak{o}$ . A nonzero class
$a+\mathfrak{p}$ in $\mathfrak{o}/\mathfrak{p}$ contains just one power $\zeta_{q-1}^{x}$ of $\zeta_{q-1}$ , and the operation $\omega$ to single
it out,

$\omega(\alpha+\mathfrak{p})=\zeta_{q- 1}^{x}$ ,

is a character of $F=0/\mathfrak{p}$ , which is called the Teichmiiller character of $F$. This
is a generator of the group of characters of $F$.

Let $m$ be a divisor of $q-1$ . We say that a character $\chi$ has the order $m$ if
$x^{m}=1$ , the principal character. Such a character is a power of the primitive
$m^{th}$ power residue character $\chi_{m}$ defined by

$x_{m}=\omega^{(q-1)/m}$ .

If $\chi$ has the order $m$ , then the $m^{th}$ power $\tau(\chi)^{m}$ of Gauss sum $\tau(\chi)$ belongs to
$Q_{m}$ and its prime ideal decomposition is given by Stickelberger’s theorem. Namely
let $p$ be the prime ideal in $Q_{m}$ divisible by $\mathfrak{p}$ , and $x=x_{m^{k}}-$ , then

$\tau(\chi)^{m}\sim p^{(mt/f)\theta}$ , or symbolically $\tau(\chi)\sim p^{(t/f)\theta}$ ,

$\theta=\sum_{c\in Z(m)*}\langle\frac{kc}{m}\rangle\sigma_{c}^{-1}$ ,

where $\sim$ means that two ideals on both sides are the same, and where $\langle x\rangle$

denotes the fractional part of $x$ , and $f$ is the smallest positive integer satisfying
$p^{f}\equiv 1(mod m),$ $i.e$ . $p^{t/f}$ is the relative norm of $\mathfrak{p}$ in $Q_{q-1}/Q_{m}$ .

5. Next let $K$ be an extension of degree $r$ of $F$ so that $K=GF(q^{r})$ and
denote relative trace and norm in $K/F$ by $S_{K/F}$ and $N_{K/F}$ respectively. The
character of $F$ induced by a character $\chi$ of $K$ is denoted by $\chi_{F}$. Notice that $\omega_{F}$

is the Teichm\"uller character of $F$ if $\omega$ is the Teichm\"uller character of $K$. In
this connection there is an important result due to Davenport and Hasse [2]:

If $\chi_{F}$ is nonprincipal then

$\tau_{K}(\chi_{F}\circ N_{K/F})=(\tau_{F}(\chi_{F}))^{r}$.

Now we need the notion of a relative Gauss sum. For a character $\chi$ of $K$
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we define the relative Gauss sum $\theta_{K/F}(\chi)$ as the ratio of Gauss sums
$\theta_{K/F}(\chi)=\tau_{K}(\chi)/\tau_{F}(\chi_{F})$ .

This belongs to $Q_{m}$ if $\chi$ has the order $m$ . Notice that this has the norm $q^{r-1}$

if $\chi_{F}$ is nonprincipal.

THEOREM 1. If $\chi$ is a character of Kinducing in $F$ a $nonprin\alpha pal$ character,

then
$\theta_{K/F}(\chi)=$ $\sum$

a $mod F$

where the sum is extended over a system of representatives of the quotient group
$K^{*}/p*$. Also we have

$\theta_{K/F}(\chi)=\sum_{s_{K/F}\beta=1}\chi(\beta)$ .

PROOF. An element of $K^{*}$ is uniquely written as $a\alpha$ where $a\in F^{*}$ and $a$

runs over a system of representatives of $K^{*}/F^{*}$ so that

$\tau_{K}(\chi)=-$ $\Sigma$ $(\Sigma\chi(a\alpha)\zeta_{p}^{S_{F}(as_{K/F^{\alpha)}}})$

$\alpha mod F*a\in F*$

$=-$ $\sum_{\alpha mod F*}$$\chi(a)\sum_{a\in F*}\chi(a)\zeta_{p}^{s_{F^{(a}}s_{K/F^{a)}}}$

$=\tau_{F}(\chi_{F})$ $\sum$

a $mod F*$

Similarly, an element $\alpha$ of $K^{*}$ is written uniquely as $a=a\beta$ where $a\in F^{*}$ and
$S_{K/F}\beta=1$ as long as $S_{K/F}\alpha\neq 0$. In fact $a=S_{K/F}a,$ $\beta=aa^{-1}$ will suffice. Thus

$\tau_{K}(\chi)=-\Sigma$ $\Sigma$ $\chi(a)\chi(\beta)\zeta_{p}^{S_{F}a}$

$a\in F*S_{K/F}\beta=1$

$= \tau_{F}(\chi_{F})\sum_{s_{K/F^{\beta=1}}}\chi(\beta)$
,

by noticing that the partial sum $S=\Sigma’\chi(\alpha)$ extended over $a$ with $S_{K’ F}\alpha=0$ is
equal to $0$ . In fact $S= \sum’\chi(ca)=x(c)S$ for $c\in F^{*}$ and we can take a $c$ such that
$\chi(c)\neq 1$ by assumption.

6. The special case where $r=2,$ $q\equiv 1$ (mod4) and $\chi$ has the order $2(q+1)$

will be used for a construction of Williamson matrices.

THEOREM 2. Assume $q\equiv 1(mod 4)$ and let $q+1=2n$ . Let $K$ be a quadratic
extension of $F=GF(q)$ and suPpose that a character $\chi$ of $K$ has the order $4n$ and
induces in $F$ a nonprincipal character. Then $\theta_{K/F}(\chi)$ is a square root of the
Jacobi sum $\pi_{K}(\chi x^{q})$ .

If moreover $x=x_{4n}^{-k}$ for the primitive $4n^{t\hslash}$ power residue character of $K$, then
$\theta_{K/F}(\chi)$ has the Prime ideal $decompo\alpha tion$
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$\theta_{K/F}(\chi)\sim-n\mathfrak{B}_{c}6_{4\dot{n}\rangle>1/2}^{n(C.4n)\Rightarrow 1}\Pi \mathfrak{p}^{\sigma_{c}^{-1}}$
,

where $\mathfrak{p}$ is the prjme ideal of $Q_{4n}$ divisible by the prime ideal $\mathfrak{P}$ of $Q_{q^{2-1}}$ , for
which the restdue class field is identified with $K$.

PROOF. First we see from the Davenport-Hasse relation that

$\pi_{K}(\chi\chi^{q})=\tau_{K}(\chi)\tau_{K}(\chi^{q})/\tau_{K}(\chi^{q+1})$

$=\tau_{K}(\chi)^{2}/\tau_{K}(\chi_{F}\circ N_{K/F})$

$=\tau_{K}(\chi)^{2}/\tau_{F}(\chi_{F})^{2}$

$=\theta_{K/F}(\chi)^{2}$ .

Next we see that $k$ is odd so that $\chi$ induces in $F$ the quadratic residue character
$\psi$ by assumption, so by Stickelberger’s theorem

$\theta_{K/F}(\chi)\sim \mathfrak{p}^{\theta}$ , $2 \theta=\sum_{c\in Z(4n)^{*}}(\langle\frac{kc}{4n}\rangle+\langle\frac{kcq}{4n}\rangle-\frac{1}{2})\sigma_{c}^{-1}$ .

Here

$\langle\frac{kc}{4n}\rangle+\langle\frac{kcq}{4n}\rangle-\frac{1}{2}=\langle\frac{kc}{4n}\rangle+\langle\frac{1}{2}-\frac{kc}{4n}\rangle-\frac{1}{2}$ ,

and $\langle x\rangle+\langle 1/2-x\rangle-1/2=0$ or 1 according as $\langle x\rangle\leqq 1/2$ or $>1/2$ . If we write
$M$ for the subset of $Z(4n)^{*}$ consisting of $c$ represented by $-n<c<n$ , then
$Z(4n)^{*}=M\cup qM$, and the inequalities $\langle kc/4n\rangle>1/2$ and $\langle kcq/4n\rangle>1/2$ are equiv-
alent, so that

$\theta=\sum_{c\in M.\langle kC’ 4n\rangle>1/2}\sigma_{\overline{c}}^{1}$ .

REMARK. Theorem 2 shows that if $x=x_{4}^{-1},$ $k=n$ , then since $\langle c/4\rangle>1/2$ if
and only if $c\equiv 3(mod 4)$ ,

$\theta_{K/F}(\chi)\sim( \prod_{c\cdot 3(mod 4)} \mathfrak{p}^{\sigma_{c}})^{1/2}$

$\sim(\hslash)^{\iota}$ if $P\equiv 1(mod 4)$ ,

$\sim(p^{t/2})$ if $p\equiv 3(mod 4)$ ,

where in the former case $\pi=a+bi$ is the prime in $Q(i)$ divisible by $\mathfrak{P}$ , or $p=$

$a^{2}+b^{2},$ $a\equiv 1(mod 4)$ .
7. We can transform the relative Gauss sum in Theorem 2 by means of

Theorem 1. Now let $x=x_{4n}^{k},$ $k$ odd. Then since

$\frac{1}{4n}=\frac{\epsilon}{4}+\frac{1}{n}\frac{1-\epsilon n}{4}$ for $\epsilon=(-1)^{(n-1)/2}\equiv n(mod 4)$

we have $x_{4n}=x_{4}^{\text{\’{e}}}x_{n}^{(1-\epsilon n)/4}$ . Let $\alpha$ be the element of $K$ which is identified with the
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element $\zeta_{q^{2-1}}+\mathfrak{P}$ of the residue class field in $Q_{q^{2-1}}$ . Then $\alpha^{2n}$ is the lowest
power of $a$ belonging to $F$, and $\omega(a)=\zeta_{q^{2-1}},$ $\chi_{d}(\alpha)=\zeta_{d}$ for any divisor $d$ of $q^{2}-1$ .
Thus it follows from Theorem 1 that

$\theta_{K/F}(\chi)=\sum_{l=0}^{2n-1}\psi(S_{K/F}\alpha^{l})\chi(\alpha^{l})$

$= \sum_{l=0}^{2n- 1}\psi(S_{K/F}\alpha^{l})\chi_{4}^{k\epsilon}(\alpha^{l})x_{n}^{k(1-\epsilon n)/4}(\alpha^{l})$

If we put $m=(1-\epsilon n)l/4$ then $m$ is determined $(mod n)$ and $1\equiv 4m$ or $\equiv 4m-n$

$(mod 2n)$ , according as $l$ is even or odd. Hence the above sum equals

$n- 1 \sum(\psi(S_{K/F}\alpha^{4m})\zeta_{n}^{km}+\psi(S_{K/F}\alpha^{4m-n})i^{-k}\zeta_{n}^{km})$

$m=0$

$= \psi(2)+^{n-1}\sum_{m\Rightarrow 1}(\psi(S_{K/F}\alpha^{4m})-i^{k}\psi(S_{K/F}\alpha^{4m- n}))\zeta_{n}^{km}$ .

It is easy to check that

$\psi(S_{K/F}\alpha^{m+2n})=-\psi(S_{x/F}\alpha^{m})$ , $\psi(S_{K/F}\alpha^{-m})=(-1)^{m}\psi(S_{K/F}\alpha^{m})$ .
Let us write

(5) $e_{m}=\psi(2S_{K/F}\alpha^{4m})$ , $d_{m}=\psi(2S_{K/F}\alpha^{4m-n})$ ,

and define the polynomial

(6) $f(x)=1+ \sum_{m=1}^{n-1}(e_{m}-id_{m})x^{m}$ .

Then $f(x)\equiv f(x^{n-1})(mod x^{n}-1)$ , and it was shown above that

$\theta_{K/F}(\chi)=\psi(2)f(\zeta_{n}^{k})$ ,

if $k\equiv 1(mod 4)$ . Hence the norm relation of relative Gauss sums
$\theta_{K/F}(\chi)\overline{\theta_{K/F}(\chi)}=q$

implies that $f(x)\overline{f}(x^{-1})-q$ vanishes at an arbitrary $n^{th}$ root of unity $\zeta_{n}^{k},$ $so_{\wedge}^{v}that$

$f(x);(x)\equiv q$ $(mod x^{n}-1)$ .

\S 3. Williamson equation arising from relative Gauss sums.

8. We can now state our main theorem.

THEOREM 3. Let $n$ be odd and assume $q=2n-1$ is a power of prime. Let
$K$ be a quadratic extenston of the finite field $F=GF(q),$ $\psi$ the quadratic residue
character of $F$, and $\alpha$ an element of $K$ such that $\alpha F^{*}$ generates the quotient group
$K^{*}/F^{*}$ . Define $z_{m}$ $(m=1,2, \cdots , n-1)$ by
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$z_{m}=(\psi(2S_{K/F}\alpha^{4m})-i\psi(2S_{K/F}\alpha^{4m-n}))/(1-i)$ .
Then $H=wI+\Sigma_{m=1}^{n-1}z_{m}T^{m}$ is a symmetric circulant quaternion Hadamard matrix
of order $n$ .

PROOF. If $\alpha$ is a primitive element, then we apply argument of the pre-
ceding section to dePne a polynomial $f(x)$ by (5), (6) to obtain $f(x)\overline{f}(x)\equiv q$

$(mod x^{n}-1)$ , or $f(T)\overline{f}(T)=qI$ . Hence

$H= \frac{1+i}{2}(]I+f(T))$ ,

$HH^{*}=(]I+f(T))(-]I+\overline{f}(T))/2$

$=(I+f(T)\overline{f}(T)+j\overline{f}(T)-f(T)j)/2$

$=(I+qI)/2=nI$ ,

by noticing that $j$ acts dihedrally on $Q(i)$ , $i.e.,$ $jz=\overline{z}j$ for $z\in Q(i)$ . It was
shown in the above that $H$ is symmetric, and it is evident that $H$ has entries
in $U$ and is circulant. In general if $\alpha F^{*}$ generates $K*/F*$, then $a=c\alpha_{0}$ for
$c\in F*and$ a primitive element $\alpha_{0}$ of $K$, so that in this case we have only to
replace $f(x)$ by $f(x)$ if necessary.

THEOREM 4. The reduced Williamson equation corresp0nding to $H$ in Theorem
3 has the form

$(1+2 \sum_{m\in A}e_{m}u_{m})^{2}+(1+2\sum_{m\in B}e_{m}u_{m})^{2}+1^{2}+1^{2}=4n$ ,

where
$e_{m}=\psi(2S_{K/F}\alpha^{4m})$ , $d_{m}=\psi(2S_{K/F}\alpha^{4m-n})$ ,

and $A,$ $B$ are subsets of $\mathcal{H}=\{1,2, \cdots , (n-1)/2\}$ consisting of $m$ such that $d_{m}e_{m}$

$=1$ or $-1$ respectively.
This theorem enables us to write down the Williamson equation in an ex-

plicit form.

9. For a practical computation we rely on linear-feedback shift-register
sequences in a finite field. Let $g$ be an element of $F$ such that both $g$ and
$1+4g$ are quadratic nonresidues of $F$. We construct the shift-register sequence
$\{x_{m}\}_{m=0.1,2}\ldots$ . based on the polynomial $x^{2}-x-g,$ $i.e$ . satisfying the recurrence
formula

$x_{m+2}=x_{m+1}+gx_{m}$ $(m=0,1, 2, )$

with the initial condition
$x_{0}=0$ , $x_{1}=1$ .

Here let us assume

(7) $x_{1},$ $x_{2},$
$\cdots$ , $x_{n}$ are all different from $0$ .
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The shift-register sequence $\{x_{m}\}$ is determined by knowing only its first $2n$

terms, through the periodicity relation

$x_{m+2n}=gx_{m}$ .
Now put

$d_{m}=\psi(x_{4m})$ , $e_{m}=\psi(x_{4m+n})$ , $v=\psi(x_{n})$ ,

and define the four subsets $A_{+},$ $A_{-},$ $B_{+},$ $B_{-}$ of $H$ by the rule:
(i) If $v=1$ , then let $m\in A_{+}orA_{-}$ according as $(e_{m}, d_{m})=(1,1)$ or $(-1, -1)$ , and

$m\in B_{+}$ or $B_{-}$ according as $(e_{m}, d_{m})=(1, -1)$ or $(-1,1)$ .
(ii) If $v=-1$ , then let $m\in A_{+}$ or $A_{-}$ according as $(e_{m}, d_{m})=(-1, -1)$ or $(1, 1)$ ,

and $m\in B_{+}$ or $B_{-}$ according as $(e_{m}, d_{m})=(-1,1)$ or $(1, -1)$ .
Then we have the Williamson equation

$(1+2 \sum_{m\in A_{+}}u_{m}-2\sum_{m\in A_{-}}u_{m})^{2}+(1+2\sum_{m\in B_{+}}u_{m}-2\sum_{m\in B-}u_{m})^{2}+1^{2}+1^{2}=4n$ .
In fact, the condition (7) assures that a root $a$ of $x^{2}-x-g=0$ generates

$K*/F*$ , and it is easy to see that there is an element $c\in F*such$ that

$x_{m}=cS_{K/F}a^{-n+m}$ $(m=0, 1, )$ .
Thus $v=\psi(2c),$ $e_{m}=\psi(2c)\psi(2S_{K/F}\alpha^{4m}),$ $d_{m}=\psi(2c)\psi(S_{K/F}\alpha^{4m-n})$ , so that $ve_{m}$ and
$vd_{m}$ are the quantities appearing in Theorem 4.

10. Theorem 4 shows that $2q=4n-2$ is a sum of two integers
1+4 $\sum_{m\in A}e_{m}\cos(2\pi m/n’)$ and 1+4 $\sum_{m\in B}e_{m}\cos(2\pi m/n’)$ of the maximal real sub-
field $Q(\cos 2\pi/n’)$ of $Q_{n’}$ for any divisor $n’$ of $n$ . In particular for $n’=1,2q$ is
a sum of two odd integers:

$2q=(1+4(\# A_{+}-\# A_{-}))^{2}+(1+4(\# B_{+}-\# B_{-}))^{2}$ .

The following theorem gives an interpretation of the numbers $\# A_{+},$ $\# A_{-}$ ,
$\# B_{+},$ $\# B_{-}$ in terms of the cyclotomy. We need cyclotomic numbers of order 4.
Denote by $E_{4}$ the subgroup of $F*$ consisting of fourth powers, and by $g$ a
generator of $F*/E_{4}$ . For $0\leqq k,$ $l\leqq 3$ we denote the number of solutions in $p*of$

$x-y=1$ , $x\in g^{k}E_{4}$ , $y\in g^{l}E_{4}$

by $(k, l)_{4}$ , called cyclotomic numbers of order 4.

THEOREM 5. The numbers $\# A_{+},$ $\# A_{-},$ $\# B_{+},$ $\# B_{-}$ are the cyclotomic numbers
$(0,1)_{4},$ $(2,3)_{4},$ $(0,3)_{4},$ $(2,1)_{4}$ respectively for a suitable choice of $g$ .

PROOF. Let $\alpha$ be a primitive element of $K$. Then for $b$ and $c$ in $F$ not
both zero there corresponds an integer $m(mod q^{2}-1)$ by means of $b+ca^{n}=\alpha^{m}$ .
If in particular $b,$ $c$ satisfy the condition
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(8) $b^{2}-gc^{2}\in E_{4}$ ,

for $g=\alpha^{2n}=N_{K/F}\alpha$ , a primitive element of $F$, then we have

(9) $b+c\alpha^{n}=\alpha^{4m}$

for some $m\in Z(n^{2}-n)$ . We write this as a function $m=\mu(b, c)$ of the pair
$(b, c)$ . Now we classify the $(n-1)^{2}$ pairs $(b, c)$ satisfying (8) into $n-1$ equiva-
lence classes $D$ , each containing $n-1$ pairs, based on an equivalence relation

$(b, c)\sim(bg^{2}", cg^{2\nu})$ $(v=0,1, \cdots , n-1)$ .
Here the mapping $(b, c)arrow(\psi(b), \psi(c))$ can be regarded as a mapping $\Psi$ of the
set of the equivalence classes $D$ . So, let $e$ and $d$ vary independently over the
set $\{1, -1\}$ , and consider the complete inverse image $\Psi^{-1}(e, d)$ of $(e, d)$ . We
calculate $\#\Psi^{-1}(e, d)$ in two different ways.

First, each class $D$ contains a unique pair $(b, c)$ such that $m=\mu(b, c)$ lies in
the range $0\leqq m\leqq n-1$ , since $\mu(bg^{2\nu}, cg^{2\nu})\equiv m+n\nu(mod n^{2}-n)$ . Then the rela-
tion (9) implies that $2b=S_{K/F}a^{4m},$ $2c=S_{K/F}\alpha^{4m-n}$ , so that if $D\in\Psi^{-1}(e, d)$ we
have

$\psi(2S_{K/F}\alpha^{4m})=e$ , $\psi(2S_{K/F}\alpha^{4m-n})=d$ .
Therefore by Theorem 4,

$\#\Psi^{-1}(1,1)=2\# A_{+},$ $\#\Psi^{-1}(-1, -1)=2\# A_{-},$

$\#\Psi^{-1}(1, -1)=2\# B_{+},$ $\#\Psi^{-1}(-1,1)=2\# B_{-}$ .

Secondly each class $D$ contains a unique pair $(b, c)$ with $b^{2}-gc^{2}=1$ since
$(bg^{2v})^{2}-g(cg^{2\nu})^{2}=(b^{2}-gc^{2})g^{4\nu}$ . Hence the number of solutions of

$b^{2}-gc^{2}=1$ , $\psi(b)=e$ , $\psi(c)=d$

is equal to 4 times the number of solutions of

$x-y=1$ , $x\in g^{1-e}E_{4}$ , $y\in g^{2-d}E_{4}$ .
Out of the four solutions we see that $(b, c)\sim(-b, -c)\#(b, -c)\sim(-b, c)$ , thus
$\#\Psi^{-1}(e, d)=2(1-e, 2-d)_{4}$ for the cyclotomic numbers of order 4. The theorem
is proved by comparing two results on $\#\Psi^{-1}(e, d)$ .

An explicit form of these cyclotomic numbers is known (cf. [7]). In case
$p\equiv 1$ (mod4) and $p=a^{2}+b^{2}$ , $a\equiv 1$ (mod4), define $r$ and $s$ by $r+si=(a+b\iota)^{t}$ ,

and in case $p\equiv 3(mod 4)$ dePne $r=(-P)^{t/2},$ $s=0$ .
If $q\equiv 1(mod 8),$ $i$ . $e$ . $\psi(2)=1$ , then

$16(0,1)_{4}=q-3+2r+4s$ ,

$16(0,3)_{4}=q-3+2r-4s$ ,
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$16(2,1)_{4}=16(2,3)_{4}=q+1-2r$ .
If $q\equiv 5(mod 8),$ $i$ . $e$ . $\psi(2)=-1$ , then

$16(2,1)_{4}=q+1+2r+4s$ ,

$16(2,3)_{4}=q+1+2r-4s$ ,

$16(0,1)_{4}=16(0,3)_{4}=q-3-2r$ .

\S 4. Two-square Williamson equations.

11. In case $n$ odd and $2n-1$ is a power of prime Theorem 4 shows that
there is a Williamson equation

$(1+2 \sum_{m\in A}e_{m}x^{m})^{2}+(1+2\sum_{m\in B}e_{m}x^{m})^{2}=4n-2$ ,

for a variable $x$ bound by $x^{n}=1$ , where $e_{-m}=e_{m}$ and $A,$ $B$ is a partition of
$Z(n)-\{0\}$ . We call an equation of this form a two-square Williamson equation
of order $n$ .

The existence of a two-square Williamson equation of order $n$ is equivalent
to the existence of a pair of symmetric circulant matrices $P,$ $Q$ of order $n$ with
entries $\pm 1$ except on the main diagonal of $Q$ where we have $0$ , which satisfies

$P^{2}+Q^{2}=(2n-1)I$ .

In fact $R=P-Qi$ is a symmetric circulant complex matrix satisfying $RR^{*}$

$=(2n-1)I$ , so that if we assume that the main diagonal of $P$ consists of l’s,
the matrix

$H= \frac{1+i}{2}(jI+R)$

$=(]+k)I/2+(P+Q)/2+i(P-Q)/2$

$=wI+M$ ,

where $M$ has entries from $\{\pm 1, \pm i\}$ except on the main diagonal where we
have $0$ . This gives rise to a two-square Williamson equation by a procedure
used in the proof of Theorem 3.

12. It is sometimes convenient to treat the two-square Williamson equation
in the form

(10) $( \epsilon+2\sum_{m\in A}e_{m}x^{m})^{2}+(\epsilon+2\sum_{m\in B}e_{m}x^{m})^{2}=4n-2$ , $e_{-m}=e_{m}$ ,

where $A,$ $B$ is a partition of $Z(n)-\{0\}$ and

$\epsilon=(-1)^{(n-1)/2}$ .
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THEOREM 6. Supp0se that a modified two-square Williamson equation (10) is
valid for a partiti0n $A,$ $B$ , and denote by $A_{+},$ $A_{-}$ the subsets of A consisting of
$m$ with $e_{m}=1$ or $-1$ respectively, and by $B_{+},$ $B_{-}$ the similar subsets of B. Then

$A_{+}=A\cap 2A$ , $A_{-}=A\cap 2B$ , $B_{+}=B\cap 2B$ , $B_{-}=B\cap 2A$ .
Moreover if $s=\# A-\# B$ then $2n-1=r^{2}+s^{2}$ for an integer $r\equiv 1(mod 4)$ , and

$4\# A_{+^{=}7l}-1-\epsilon+r+2s$ ,

$4\# B_{+}=n-1-\epsilon+r-2s$ ,

$4\# A_{-}=4\# B_{-}=n-1+\epsilon-r$ .

PROOF. Writing $P= \sum_{m\in A}e_{m}T^{m}$ , $Q= \sum_{m\in B}e_{m}T^{m}$ and $P_{0}= \sum_{m\in A}T^{m}$ , $Q_{0}=$

$\sum_{m\in B}T^{m}$ , we see that the equation (10) written in a matric form

(11) $(\epsilon I+2P)^{2}+(\epsilon I+2Q)^{2}=(4n-2)I$

is equivalent to one of a slightly simpler form

$\epsilon P+\epsilon Q+P^{2}+Q^{2}=(n-1)I$ .
Let us consider this $(mod 4)$ . Since $P_{0}+Q_{0}+I=J$ has all its entries equal to 1,
and since $\epsilon\equiv-n+2(mod 4)$ , we have

$(n-1)I\equiv\epsilon P+\epsilon Q+P_{0}^{2}+Q_{0}^{2}$

$\equiv\epsilon P+\epsilon Q+P_{0}^{2}+(J-I-P_{0})^{2}$

$\equiv\epsilon P+\epsilon Q+2P_{0}+2P_{0}^{2}+I+(n-2)J$

$\equiv\epsilon(P-P_{0})+\epsilon(Q-Q_{0})+2P_{0}+2P_{0}^{2}+(n-1)I$ $(mod 4)$ ,

so that
$(P_{0}-P)/2+(Q_{0}-Q)/2+P_{0}+P_{0}^{2}\equiv 0$ (mod2).

Now
$(P_{0}-P)/2= \sum_{m\in A_{-}}T^{m}$ , $(Q_{0}-Q)/2= \sum_{m\in B\sim}T^{m}$ ,

and
$P^{2} \equiv\sum_{m\in A}T^{2m}\equiv\sum_{m\in 2A}T^{m}$ $(mod 2)$ .

Therefore comparing coefficients of $T^{m}$ , we see that if $m\in A$ then $m\in A_{+}$ if
and only if $m\in 2A$ , namely that $A_{+}=A\cap 2A,$ $A_{-}=A\cap 2B$ . Similarly $B_{+}=B\cap 2B$ ,
$B_{-}=B\cap 2A$ .

Next denote the numbers $\# A_{+},$ $\# A_{-},$ $\# B_{+}$ , #B-by $a_{+},$ $a_{-},$ $b_{+},$ $b_{-}$ respectively,

and let

(12) $r=\epsilon+a_{+}-a_{-}+b_{+}-b_{-}$ , $s=a_{+}-a_{-}-(b_{+}-b_{-})$ .

Then the equation (11) with $T$ replaced by its eigenvalue 1 shows that
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$(\epsilon+2(a_{+}-a_{-}))^{2}+(\epsilon+2(b_{+}-b_{-}))^{2}=4n-2$ ,

$(\epsilon+a_{+}-a_{-}+b_{+}-b_{-})^{2}-(a_{+}-a_{-}-(b_{+}-b_{-}))^{2}$

$=r^{2}+s^{2}=2n-1$ .
The relation (12) together with

$a_{+}+a_{-}+b_{+}+b_{-}=n-1$ , $a_{-}=b_{-}$

determines the values $a_{+},$ $a_{-},$ $b_{+},$ $b_{-}$ completely as stated in the theorem. The
equality $a_{-}=b_{-}$ is a consequence of $\# A=\#(2A),$ $i.e$ . $a_{+}+a_{-}=a_{+}+b_{-}$ , and $r\equiv 1$

$(mod 4)$ is checked as follows:
$r=\epsilon+a_{+}+b_{+}-2a_{-}\equiv\epsilon+a_{+}+b_{+}+2a_{-}$

$\equiv\epsilon+n-1\equiv 2n-1\equiv 1$ (mod4).

Theorem 6 shows that the existence of a two-square Williamson equation
implies that $2n-1$ is a sum of two squares: $2n-1=r^{2}+s^{2},$ $r\equiv 1(mod 4)$ . There
may be more than one decomposition of this kind, but still the partition $A,$ $B$

of $Z(n)-\{0\}$ involved should be such that $2\# A-(n-1)=s$ for one of the solu-
tions. Moreover, once the set $A$ is speciPed, then the distribution of $e_{m}=\pm 1$

within $A$ , and within $B$ is completely determined.
If we write the Williamson equation described in Theorem 4 in the form

(10), then the values $r$ and $s$ are determined by Remark to Theorem 2. Namely,
by using the polynomial $f(x)$ of 7 and the subsets $A,$ $B$ of $Z(n)-\{0\}$ corre-
sponding to those of 8, we have

$r+si=\epsilon+(a_{+}-a_{-}+b_{+}-b_{-})+(a_{+}-a_{-}-(b_{+}-b_{-}))i$

$= \epsilon+\sum_{m\in A}e_{m}+\sum_{m\in B}e_{m}+(\sum_{m\in A}e_{m}-\sum_{m\in B}e_{m})j$

$= \epsilon+\sum_{m\in A}e_{m}+\sum_{m\in B}e_{m}+(\sum_{m\in A}d_{m}+\sum_{m\in B}d_{m})i$

$\overline{\sim}\epsilon+\sum_{m=1}^{n-1}(e_{m}+id_{m})$

$=\epsilon\overline{f}(1)$

$=\epsilon\theta_{K/F}(\chi_{4})$ .

Here the role of $A_{+},$ $A_{-}$ and of $B_{+},$ $B_{-}$ should be interchanged if $\epsilon=-1$ . Now
Remark to Theorem 2 shows that the ideal $(r+si)=(\theta_{K/F}(\chi_{4}))$ , in $Q(i)$ , is equal
to $(\pi)^{t}$ or to $(-p)^{t/2}$ according as $p\equiv 1$ (mod4) or $p\equiv 3$ (mod4). Thus we have

$r+si=(a+bi)^{t}$ for $p\equiv 1(mod 4)$ ,

$r=(-p)^{t/2}$ , $s=0$ for $p\equiv 3(mod 4)$ .
This can be regarded as another derivation of an explicit formula for the



Williamson Hadamard matrices 717

cyclotomic numbers of order 4. No two-square Williamson equation is known
at present except for those obtained by means of Theorem 4, and Turyn con-
jectured that there is none other. And this has been checked for $n\leqq 37$ and
$n=61$ by Sawade.
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