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On minimal immersions of R’ into P"(C)
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Let P*(C) be an n-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature 4p and M™ be a
compact (real) n-dimensional totally real, minimal submanifold of P*(C). It is
known by Chen and Ogiue and Ludden, Okumura and Yano that if the
square length of the second fundamental form of the submanifold is smaller
than or equal to n(n-+1)p/2n—1, then M" is totally geodesic or n=2 and M?*
is a flat Clifford torus in P?*(C). This gives the characterization of the flat
torus in the set of totally real minimal immersions of M? into P2*(C).

The purpose of this paper is to generalize their theorem to the case of
minimal immersions of real two dimensional surfaces into P*(C) of any dimen-
sion n. The total realness of the immersion is not assumed previously. The
first theorem of this paper proves that if the square length of the second
fundamental form of a compact minimal surface M? in P*(C) is smaller than
or equal to 2p, then M* is superminimal or M* is flat and totally real in P"(C).

Superminimal surfaces in P*(C) have been studied extensively by Chern and
Wolfson [2] and Wolfson [9]. Therefore we shall determine all isometric
totally real, minimal immersions of the Euclidean 2-plane R? into P*(C). Main
results of this paper insist that they constitute an (n—2)-parameter family and
each of them must be an orbit of an abelian Lie subgroup of U(n+41). These
results are proved by applying the work by Chern and Wolfson [2].
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1. Preliminaries.

We introduce some results of Chern and Wolfson’s theory used for the
proof of equations of Gauss and Codazzi of minimal immersions of a real surface
into a Kaehlerian manifold.

*) Work done under support by FINEP, Brazil, 1983.
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Let Y be a Kaehlerian manifold of complex dimension n of constant holo-
morphic sectional curvature 4p such that the metric is represented by ds*=
2 wa,, where {w,} is a local field of unitary coframes on Y and «, 8, 7, -
run through 1 to n. We denote by w.s; the unitary connection forms with
respect to the w,. They satisfy structure equations:

(1.1) Adw,=> WagA\Wp, WapTWsa=0,
(1.2) dwas=3 War Aw;g+L2as,
(1.3) Qus=—pWa AW s+00as 2 W, NT,) .

Let M be an oriented real two dimensional Riemannian manifold and x:
M—Y be an isometric minimal immersion. By using isothermal parameters, the
Riemannian metric of M is written by dsj,=¢¢, where ¢ is a complex valued
one form and it is defined up to a complex factor of norm one.

It is proved in that if x is neither holomorphic nor anti-holomorphic,
then, except at isolated points, there exist a smooth real valued function « and
fields of unitary coframes such that

(1.4 wI:cos—g—-gS, wzzsin%-g&', wy= - =w,=0 along M,
and they satisfy

(1.5) —;:[da—{~sina»(wn—i— Was)]=0ag .

(1.6) wn=C4,

COS%'U/MZGZQZS s
(1.7)

l sin%'w“:cm? (A=3),

for some complex valued smooth functions a, ¢, a; and c;.
x is called superminimal if ¢=0. We put

(1.8) o=lal*+|c|*+2Z]a;[*+Z]cal?
and get

PROPOSITION 1. Let B be the second fundamental form of x. Then the
Gauss equation of x 1s

(L.9) |Bl*=40=4(2~ Ssina)p— K},

where K is the Gaussian curvature of M.
PrROOF. We set
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J COS%‘ wl“‘}_sin"g" w2:¢=61+202 ,

(1.10) ) sinﬁ-wl—cos—a—-wg:ﬁﬁiﬁ“
[ 2 2
Wr=031-11105; (Az3).

Then {04}, 1=A, B, --- £2n, is a Darboux coframe of the underlying Riemann-
ian structure of Y (cf. [2]). Let 8,5 be the Riemannian connection forms for
04. We can put 0,;=X h;;;0; (A=3) along x(M), where h,y; 1=, /<2, is
the second fundamental tensor and we know

(1.11) | B|*=3 h%;;=2 2 (h3u+his),

because of h;;;-+hi.,=0. The structure equations of M are
d¢:'—‘2012/\¢ y

(1.12)

dﬁlzz—%K ¢/\(5 .

The exterior differentiation of the first formula in (1.10) gives, by means of

and (1.10),

d(01+502):(c052%-wn—sinz%wzz)/\ﬂl

—l—z’(cosz%- wn—sinzg- wzz)/\ 0,

1 .
—{wlz+§(da—sm a-(wn+wzz))}/\03

+i{w12“‘ %(da"‘Sin a-(wy+ wzz))} NG,

+E{cos%-w12+sin%—-w2;}/\02;_1

+3 i{cos%—-w”—sing—-wn}/\ﬁﬂ .

We can get also similar formulas for d(6,+:60,) and d(8,;-,+:6,,) repre-
sented as linear combinations of 8, on Y. Since these are valid on Y, by the
uniqueness of the connection forms 45 on Y, we get

. a ., &
012:Z(C052?‘ wn—San?' w22> s

. 1 -
013+10=—w,,— »2—(da——sm a- (Wi +ws,)) ,

113 Britibu=i{wi— o (da—sina-(wutwa)}
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a

2

a

01,20-111705 0, -1=C0S )

Wy tSIN—5 W, ,

01,21+i02,21:i(005%'w11~—sin%-wz,z) ,
which prove the first formula of by (1.5), the complex conjugate of [1.5),
and (1.7). The latter part of has been proved in [2]. In fact, it

follows from the exterior differentiation of the first formula of (1.13). We shall

remark that can also be proved by a result in [9]. Q.E.D.

REMARK 1. The normal bundle of x has a splitting by (1.10). Under this
decomposition, |a|*+|c|? and hence X |a;|2+>|c|? are scalar invariants.
We hope to get Codazzi equations of x:

PROPOSITION 2. Let x: M—Y be an isometric minimal immersion of M into
a Kaehlerian manifold of constant holomerphic sectional curvature. Then we have

(1. 14) da:Z'aﬁlg—aCOS a'(w11+w22)+—§—‘0 sin Za-gzg
—tan%-El a; I25+cot—62“—-2|01 *6+a,.0,

(115) dc:‘i6012+6(wll_w22)+0,16,

(1.16) daz:iazelz—{'smz%'ax(wn"i—wzz)—"azwu

a

'—'C()t2 56}.5’*‘2 ayw1y+al,1¢ »

(1.17) dc;z—z'czﬂlfrcosz—%-cz(w11+w22)~c;wzg

o

+tan2 ca; ¢+ pri,u‘}“cz,lsg ,
for some locally defined functions a ., ¢1, @21 and c; 1

Proor. Only a proof of (1.14) shall be given in this paper because other
formulas can be shown in the same way.

By taking the exterior differentiation of and using structure equations
of M and Y, we get

{da——z’aﬁm—l—a cosa-(w11+u'22)~%p sin2a-¢

+tan - Ba; ]t F—cot o Sleal - FFAg=0,

which implies (1.14).
We remark that is used in the proof of [1.16), but in the case of

its complex conjugate is used. Q.E.D.
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For a holomorphic (resp. anti-holomorphic) curve, we have sin(a/2)=0, (resp.
cos(a/2)=0).

On the other hand, x is totally real if and only if cosa=0. This is equiv-
alent to the usual definition of the totally real immersion by virtue of [3].

2. Minimal immersions with |B|*<2p.

We wish to study minimal immersions x : M?—Y with |B|*<2p. By [2,
p. 69], |c|?is a scalar invariant of x. If x is superminimal, then ¢ is identically
zero on M2, [9]. The following result proves generalization of and [7].

THEOREM 3. Let M? be a complete connected two dimensional Riemannian
manifold and x : M*—Y be an isometric minimal immersion such that |B[*=2p.
Then either x is superminimal, or M?* is flat and x is totally real.

PROOF. p is non-negative and p=0 if and only if B=0. Now we assume
p>0. By [1.9), we have 2p—|B|*=2(K—3cos’a-p), which implies, by the
assumption,

2.1 K=3cos’a:p=0.

By Theorem 2 in [2], P=cos(a/2)-sin(a/2)-¢-¢* is a holomorphic 3-form on M?*.
It follows from the standard method (for instance, see S.T. Yau [9]) that we
have

(2.2) %Alog(lsina'cl):?yK,

at points of sina-c+#0, where A is the Laplacian of the metric of M2

Assume that ¢+#0 and x is not holomorphic, nor anti-holomorphic, which is
equivalent to sina-c#0. By [2.I) and [2.2) log(|sina|-|c|) is a subharmonic
function on M? and |sina|-|c| is bounded above, because of |sina|?-|c|2=|c|?
<|B|?<2p. By the theorem of Blanc, Fiala and Huber [4], [sinal-|c| is a
positive constant. Hence we get K=0 and cosa=0, so that x is totally real

and |B|*=2p.
If x is holomorphic (or anti-holomorphic) with |B|*<2p, then x is totally
geodesic by Lawson [6] and in particular ¢ is identically zero. Q.E.D.

COROLLARY 4. Let x: M?—P*(C) be an isometric minimal immersion with
| BI®<2p of a compact Riemannian manifold M? into P*(C). Then (1) M? is
homeomorphic to a two dimensional sphere and x is superminimal, or (2) M? is a
flat torus and x is totally real.

ProOF. By [2.1), K is non-negative. The Gauss-Bonnet’s Theorem implies
that the genus of M? is zero or one. When M? is of genus zero, x is super-
minimal by [9]. If M? is homeomorphic to a torus, then K must be identically
zero and x is totally real. Q.E.D.
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REMARK 2. In if we assume |B|*<2p, then x is superminimal
and K>0.

In his Ph. D. Thesis [9], Wolfson studied extensively the case (1) in Corol-
lary 4. Therefore in the rest of this paper we shall classify all minimal immer-
sions in the case (2) of this Corollary.

3. Totally real minimal immersions of R’ into Y.

Let R? be the 2-dimensional Euclidean plane with standard coordinates (u, v)
and the flat metric be given by ds’=du®+dv®. In this section we shall study an
isometric totally real minimal immersion x:R*—Y. The standard Euclidean
metric of R? implies

3.1) o=du—+idv and 6..=0.
By the definition of the total realness of x, we have

(3.2) a

If

x

2 ’

which implies | B|?)=2p by [1.9). Hence p is non-negative. By adding and
its complex conjugate, we have da=a¢+ag. Considering [3.2), we get

3.3) a=0.

By the first formula of (1.13), and [3.2), we have w;;=w,;. On the
other hand, we know w;+w,,=0 by in this case, which implies

(3.4) wu=w22:0.

By [1.15), [3.1) and [3.4), we get dc=c ;4. In the proof of [Theorem 3, we
obtained |c|2=constant=0 because of [3.2). From these two facts, ¢ must be a
complex constant.

From and [3.2), we get

3.5) wamVZa:d, wiu=v2cid 1=3).
By virtue of (1.14), [3.1), [3.2), [3.3] and [3.4), we get

(3.6) 2lax*=3]c;l? a,,=0.

By [1.8), [1.9] and [3.3), we have

(3.7) % lasl= (50— Icl*)=constant 0.

Let e, be the dual frames of w,. Then e;, 4=3, are defined up to the
transformation
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e, —> > ane,, (a;y) : unitary matrix
under which w,; transform as
Wi —> 2 AW
Hence >} a;¢; is also independent of the choice of e;.
LEMMA 5. For any fixed standard coordinates of R? we have
(3.8 > a;l=(complex) constant.

PrOOF. Formulas [1.16) and [1.17] have simple expressions in this case:

3.9 d(Zl:—C-Cx{;*}“Z a,,w;;;+02,1¢;
(3.10) dei=ca 0+ cuWip+ca,19 .

By making use of [3.6), and [3.10), we get d(Z a;i;)A¢=0, which

shows that >} a;¢; is holomorphic. Since we have

T il = Ela = (g1l
it must be constant by the Liouville’s theorem. Q.E.D.
We define a, ; and ¢, ; by
(3.5) wlf:m, Wor=Cs, 19 (A=3).
Then we have
X3 %100 2*=Sles s |*= 5 p—l]220,
(3.8)’ > a,, ;¢ ;=constant,
(3.9) d@s 1= —CCs 19+ @5, 4 Waut 05,219,
(3.10) des, 1 =cas 16— 2 €0, yWuat o, 219 -
We set

Ri=(2as, 1197,
which is a non-negative constant.

LEMMA 6. If k,=0, then x(R?) is contained in some real 4-dimensional totally
geodesic submanifold of Y.

ProOF. By [3.5) and 3.6}, we have
[ Wis=Wi= -+ =w;,=0,

(3.11) | W= wy= - =wsy=0,  along x(RY)

and |c|*=p/2. By (1.10), we have
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(3.12) Wy= - =w,=0 along x(R?%.

Equations (3.11) and show that there exists a real 4-dimensional totally
geodesic C*-submanifold in the underlying Riemannian manifold of ¥ containing

x(R?). Q.E.D.
In the case of k,>0, we shall prove the following two lemmas. We set
(3.13) =2 @10\ 2 €2, 2021,

which is independent of the choice of ¢; and constant on R? by [3.6)' and (3.8)".

LEMMA 7. Assume that k,>0 and n,=0. Then x(R? is fully contained in
a real 6-dimensional totally geodesic submanifold of Y.

PROOF. Since normal vectors X @, ;¢; and X ¢y, ;e; are linearly dependent
and have the same length, we can set 3 ¢, ;e,=exp(f) X d, ,¢,;, where @ is a
real constant by (3.8). Put

1 _
e¥=——3d,2:0,,
1

and {e¥}, 3<a=<n, denotes a new unitary frame along x(R?. Then we have

wk=Fké, wHh=0, 1=4,
(3.14) { 13 19 12
wh=ekid, wh=0, 21=4

For the proof of these formulas, we compute,
wl=<(Dey, ef)=(Z W1ala, ¢f>
=(3 @5, 000, ¢f>  (by [B5))
=(hief, ehg=kg (A=3),
or =0 (A=4),

where D denotes the covariant differentiation of ¥ and <, ) is the hermitian

inner product of Y defined by <U, V>=3 w.(U)w,(V) for any tangent vectors
Uand V of Y.

Other formulas are also proved by the similar way. Taking the exterior
differentiation of [3.14), we have w¥=0 (1=4), along x(R%*. We drop the
asterisks. By considering the differential system {w,= - =w,=0, w;;=0, w;;=0,
i=1, 2, 2=4} on the underlying Riemannian manifold of Y, there exists a real
6-dimensional totally geodesic C~-submanifold of Y containing x(R?. Q.E.D.

In case of £,>0 and n,>0, we can put

1 -
{ e§‘=—k—2 @y, 202,
1

ef=A,/|A,l, As=2 ¢g,20,— 2 €4, 205, e¥def,

(3.15)
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and {e¥, ef, ¢¥ a=5} denotes a new unitary frame along x(R?. For the fixed
coordinates of R? e¥ and e¥ are globally defined vector fields along x(R?.

LEMMA 8. In case of k>0 and n,>0, we have

wn=0, w12:C1§ , lUlSZklﬁg , W= - =wi,=0,
(3.16) J Wee=0, w23:k162,3¢ , Way=Fk;C,, 4¢ ’ Was™ *++ =Wy, =0,
. 1 w33:—5152,3¢+m , w34262,4(_c1¢+62§$) )
w44:m¢“czcz, 397; ,

where by and c,4 are rveal positive constants and all other coefficients in (3.16) are
complex constants and satisfy

(3.17) k%':iz)‘—‘lcllz>0; ICZ,3|2+02.42:1) %_Ic21220'

ProOF. The proof for formulas of w;;, 4=3, is similar to that of
7. Since we have n;=k3c, , for the new frame, ¢, , is a positive number and
an invariant of x. By using [3.9) for the {e}}, we get wk=—cics s+ C1Cs, 49,
because of wi+wk=0. From dw}=0 and dw}=0, we get (w+cics,P)AF=0
and (¢, swi+cs, wi) A$=0, from which we can put w=—cics, p-+¢2s,4p, and
WH=CsCs 50— CaCs5B. It is left to prove the constancy of ¢,: By the definition
of ¥, e¢f and (3.9), we know

wiNg=<De¥, e¥>N¢

1 - . 2 a’ ,aC 4 — —_
= kllAzl{E Ay, 8,102, 83— — Z% 2_;2 612,5612,,5’1}925/\55,

From the exterior differentiation of X a, sd, 5, we get, by [3.6) and (3.9,

(3.18) 20 @, 805, 8,1=C1 25 Gy, §C2, g==complex constant.

The exterior differentiation of [3.9) gives
daz, Z,l/\¢:2 az,y,1w1p/\¢+{'£2)'ag' ]_C-g, A 2 02'1“62:/‘}¢/\6 3

from which we can compute

- 1 -
A(S @, 505,5.0AG={— S| a5, 5.1+ 0ki— | Z 0,505,519 AS
By coupling it with [3.18), we get
: 1
(3.19) Zlag,@_llzz—z—pkf— | 25 as, gcs, gl *=constant.

Similar calculation proves d(X a,, g 12, 8) A$=0. Therefore 3 a; 5,.¢, 5 is
a globally defined holomorphic function on R? for the fixed ¢. By [3.6) and [3.19),
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it is bounded above on R? hence it must be a constant function, which implies
the constancy of c,.

By dwl=dw}=0, 21=5 we have wiAg=0 and (¢, sw+cs i) Ap=0.
Since we know ¢, ,#0, we can put

¥, =Cs 4 ,
(3.20) { W3a,=C2,4 3,12¢

wf@:{:& 12¢——C2,3a3, 12¢ ’

where 4,, -+ run through 5 to n. The exterior differentiation of w¥ gives

S whAT,=—(5—lal*) et g AF
and hence, by [3.20), we have

(3.21) Slas.1,1*= (5 —le:l?) 0.

We drop the asterisks again. Q.E.D.
By using dw,,=0, we know

1 -
2w Ao, =160l (5 0= 0l)AG
Coupling this formula with the latter formula of [3.20), we have

(3.22) Sles sl =X as 1l*= £~ el
Put

ko= 3 2 ”2,
(3.23) { {2l as, 1,1%

n2: | E d3, 22822/\2 63, Xzeizl}
which are independent of the choice of frame e¢; and e,,.

LEMMA 9. n, is a constant.
Proor. It is sufficient to prove that

(3.24) 2 @s, 1,05, 2, 1S a constant.

The method of a proof of this formula is similar to that of Lemmad: At first
we shall obtain the third order Codazzi equations:

(das, 1,— 20 Qs, gy W 2y, (C2C3, 2,)P) ANP=0;

(3.25) {
(dcs, 22+E Cs, [lgwpzlg—(CZa& 12)¢)/\¢:0 s

which follow from the exterior differentiation of [3.20).

By virtue of [3.22) and [3.25), we get d(X as, 1,5, 2,) A$=0, which proves
that the function X a;, ;,¢5 2, is holomorphic. Moreover it is bounded above by
3.22). By the Liouville’s theorem, it must be constant. Q.E.D.

k, is a non-negative constant.
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LEMMA 10. If k>0 and ky,=0, then there exists a real 8 dimensional
totally geodesic C*-submanifold of Y containing x(R*) fully.
Proor. By (3.16), we have w;;,=0. By (3.20) and [3.22), we have w;;,=

wqz,=0 along x(R?). By (1.10), we have ws;=--- =w,=0. It follows from these
facts that there exists a real 8 dimensional totally geodesic C*-submanifold of
Y containing x(R?). Q.E.D.

n, iS a non-negative constant.

LEMMA 11. In the case of Fkik;>0, n,>0 and n,=0, there exists a real 10
dimensional totally geodesic submanifold of Y containing x(R?) fully.

PrOOF. By and [Lemma 9, normal vectors X ds 1,2, and X ¢y 2,62,
are linearly dependent and have the same length. Hence we can set X c; 1,02,

=exp(i0) 2 as, 1,22, where 6 is a real constant by (3.24). Let
1 o .
ef=——2310; 21,2,,
2

and {e;, e,; e¥; e¥, a=6} be a new unitary frame.
With respect to this frame, we have

w§‘5=c2,4k25, wk=0, 1=6,
2243, 4,Ca -
wf5=—————————2~¢———c2’3k2¢ , wf&:O, A=6.

ko
By assumptions, X @s, 4,Cs, 4, is non-zero. From dw¥,;=0, §=3, 4, 2=6, we have
wEAwrk=wiAw*=0, which implies w¥=0, 1=6. Since we obtained the sys-
tem w¥z=0, 1=<a=<5, f=6, there exists a real 10 dimensional totally geodesic

submanifold of Y containing x(R?. Q.E.D.
In case of k,k,>0 and n,n,>0, we can put
1 -
e?”—‘—k—z A3, 2562,
(3.26) 2
es=As/| Asl, As=20 Cs, 2,82, <20 €3, 1,82, e¥ved,

and {es, e.; e¥, e¥; ek, a=7} is the new unitary frame along x(R?).
With respect to this frame, a direct computation shows, where we dropped
the asterisks again,

wss:kzcz,ﬁ; ’ W= *+* =W3,=0;
Was=ks(Cs 50— Cs,58) , Cs5=2 Qs 2,05 2,/ k3,
(3.27) Wie=koCaef,  Wa= - Fwa=0, 5= |As]/k:>0,

Wss Ap=—2s, 502¢/\5 ,
Wee="Cs,6(— C2P+Csf) ,

cs=1{R} 2 Qs 24,1C3, 22—‘(2 a3, 2,Cs, 22) 2 A3, 2,05, 12,1}/[A3|2k§ »
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where a,, ;,,: is defined by
(3.28) das.zz_z a3,y2w12y2+5203,12¢:as, 22.1¢ .

LEMMA 12. ¢ is a constant.
Proor. For the proof, it is sufficient to get the following facts:

(3.29) 2 ds, 2,03, 25,1=C2 23 Qs 2,Cs,2, 1S constant,
(3.30) 2 @s 2,163, 2, 1S constant.

follows from the exterior differentiation of X as;,d, 2,=constant. For
a proof of (3.30), we prepare

(3.31) das,, 22,1/\¢=E as,pg,lwlzyz/\¢+(%as,22"—53.12 > a3,12€3,12)¢/\9§ ,

which follows from [3.28). By this formula, [3.25) and [3.29), we shall compute
0=d(X a,, 1Qs, 2y, VAP

={ =Dl 2 I+ 5 A~ 2 052,001, 9

3 @s,2,,1C3,2, is independent of the choice of e;, By making use of (3.31),
(3.25), [3.29) and [3.21), we get d(X as, 1,165 2,)AN$p=0. We have proved that
the function X as, 1,1¢s 2, is holomorphic and bounded above on R?, hence it
must be constant. Q.E.D.

~ From dw,=0, we get we=Ccs sCs@—Cs5Cs5. By dwsi=dw,;=0, =7, we
can put

(3.32) { Ws2,=Cs,501, 2,0 »

Wea,=Cy, 1395*63,504, 13¢ ,

where 4;, -+ run through 7 to n.

By and the last formula of [I.1), we get wss=—c¢5 520+ C5 5. From
dwss=dwe=0, we get

(3.3 Slewnl*=Slan,/t= 5 —lail?20.
Summarizing these computations, we have proved the following.

LEMMA 13. In the case of kik;>0 and nyn,>0, there exists a unitary coframe
such that

wl;[:O, w12=61§5, wlszklﬁg‘; Wi= :wln:())
w,ye=0, Was= kICZ, 8¢ ’ Way= k102,4¢ ’ Wos= *++ =Wg,=0 ’
Was™=—Cp,3C19+Cs, 3,10 , Way=Cz, o(— €10+ C28) , Wss= RaCo,4f »

Wae= +++ =W3,=0,
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(3.34) ) Wis=Co, 50— Ca,5029 Wais=Ro(Cs 50— Ca,38) , Wye=kaCs, 69,
W= =Wep=0,

w55:—-63,562¢—}-6315c2¢, u"56:(f‘3,6<——62¢+63€;)) w523203,604,23¢;

weezcs,sc3¢_cs,5(339§ s Weag="Cs, 21,0 Cs, 504, PR

where all coefficients in (3.34) are constants and satisfy

Fitlal'=ktlalb=4, ol rd =l e d=1;

Sl el =Sle | Flal=5, >0,

(3.35)

REMARK 3. By n,=kZc;,, cs ¢ is also an invariant of x.
Put

ka= {23 ay, 2,]%}""%,

Ns= |20 @y, 2,02, \ 20 €y, 2,824,

which are independent of the choice of ¢; and e;,, They are non-negative con-
stants. If k;=0, then there exists a real 12-dimensional totally geodesic C>-sub-
manifold of Y containing x(R? fully. If k; is positive and n;=0, then there
exists a real 14-dimensional totally geodesic C=-submanifold of Y containing
x(R?) fully. Their proofs are similar to those of Lemmas and 01

Continuing this way, we can define a global frame field {e,} such that if
kiky--- ;>0 and nyn, - n,>0, we have

1 1
w1=77¢, wZZ\-/’_Z*?; wy= - =w,=0,
w2L+1,2t+1:_tht+1.2t+l¢+ctct+l,zt+1¢ ’
w2t+1,2z+2:Ct+1,2z+2("(3z¢+0z+19§) ’

Wat+1, 2t+3— kt+1ct+1, 2t+2§—5- ’ Wat+1, =0, 4A=2t+4,

Wat+e, 2t+2:cz+1ct+1,25+1¢'—ct+lct+l,2t+1§; ’

(3.36) Wat+2, 2643~ kt+1(ct+2,2:+3¢"‘Cz+1,2t+1§5) ’

Wat+e, 2t+4:kt+1ct+2, 2t+4¢ ’ Wat+e, =0, A=2t+5, t=0, 1, -- , s—1,
Was+1, 28+1— —CsCs41, 2s+1¢+cscs+1,2s+1¢ ’

Wast1, 25427 Cs1, 2542(— Cs¢+cs+1§;) ’

Was+1, 254, Cs+1,25+28s+2, 28+1¢ ’ 25+3=4A1=n,

Was+2, 2542 Cs+1Cs+1, 2s+1¢—cs+lcs+1, 25419 »

Was+e, 2541 Cs+e, 13+1¢'—Cs+1. 25+1Q s+2, xs+1¢ ’
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where coefficients of the system (3.36) satisfy ¢,=0, ¢ =1, ¢;,,=0,

Bl =5, lewmunl*Femua’=1,
(3.37) Cosr2042>0, k>0, =12, -, s;
1 2 |as+2,23+1‘2:22 Ics+z,zs+1|2:_g“‘{cs+1[2~

§+1 S$+1
It follows from n,=k%c;+1 0.+ and the above formulas that invariants k2, and 7,
satisfy

(3.38) Ne

IIA
I\

0
2
k3 5

We can define

Rsii=1{ 2 | @sse, 1s+1l2} Ve,
As41

Ns+1= IZSEHam, 1”1913“/\2 Core, 25+1€ 2541 |

It can be proved that k,,, and n,., are non-negative constants. If k;,;=0,
then x(R? is contained in some real 4(s+1)-dimensional totally geodesic sub-
manifold of Y and if k,.;,>0 and n,.,=0, then x(R?) is contained in some real
2(2s+3)-dimensional totally geodesic submanifold of Y. Therefore, if the immer-
sion is full, that is, the image is not contained in a totally geodesic submanifold
of Y and n=2m, then we have k,--- bpn_1>0, n, - n,_,>0, £,=0 and hence
lenl®=p/2. We may assume c¢,=(p/2)"®* by applying a suitable orthogonal
transformation of the Euclidean coordinates of R? if necessary.

When the immersion is full and n=2m-+1, we have kb, - kp>0, ning -
Nm-1>0, n,=0 and hence |Cn+1, 2m+1|*=1, Cm+1,2m+2=0. Then taking suitable
¢, We may assume Cpi1,am+1==1.

We summarize our results in the following theorem:

THEOREM 14. Let x: R*—Y be an isometric totally real minimal immersion
of the real Euclidean two plane into a complex n-dimensional Kaehlerian manifold
of constant holomorphic sectional curvature 4p. Then p=0. If p=0, then x 1is
totally geodesic.  When p is positive and the immersion x is full, we have n—2
nvariants: ky, o+, Bm-1; Ny, o0, Npmeg 10 case of n=2m (ky, +-+, km; N1, =+, Bm-1
in case of n=2m-+1) which are positive constants and satisfy the condition (3.38).

Moreover, the Frenet-Boruwka equations for such an x are given by (3.36).

4. The case when the ambient space is the complex projective space.

We shall apply the results of Section 3 to the case that ¥ is the complex
projective space P*(C) with the Fubini-Study metric.

Let’s introduce notations for geometry of P*(C). For W=(w,, -, w,), Z=
(2o, =+, 2o)EC™, the usual hermitian inner product is defined by (W, Z)=
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> WeZ4, where we use the index range 0=gq, b, ¢, --- =n. The n-dimensional
complex projective space P™(C) is the orbit space of C™*'— {0} under the action
of the group {Z—aZ: acsC—{0}}. =n:C"*'—{0}—P™(C) denotes the projection.
For a point p=P*(C), we take a vector Z<xY(p), which is called a homo-
geneous coordinate vector of p. Tangent space of P*(C) at p is identified with
Wwel™.(Z, W)=0}, (cf. [5, p. 273]).
P*(C) is diffeomorphic to the coset space of the unitary group U(n+1):
4.1) Un+1) —2—> Un+1)/U(n) —h—> Un+D)/ULyxUmn)=P*C).
We identify the unitary group U(n+1) with the space of all unitary frames
{Z.}, Z,=C™*—{0}, satisfying (Z,, Zy)=04,. Under this identification the

first projection in is defined by assigning to the frame {Z,} its first vector
Z,. h is the Hopf fibering.

Maurer-Cartan forms ., of the unitary group U(n+1) are defined by
(4.2) dZa:E 0:1be: 0ab+éba:0-

They satisfy the Maurer-Cartan equations: df#,,=> 8,.A8.,. The Fubini-Study
metric on P*(C) is given by

ds?=> 00,004 -
If we set

(43) wazeoa ) waﬁ:_<0ﬂa—5aﬂ000);

then these forms satisfy conditions and [1.2). It follows that they are the
connection forms of the Fubini-Study metric. Its curvature forms are

Qop=—0, N0sg—00p X 0s\Bs

which prove that the space has constant holomorphic sectional curvature 4, i.e.,
=1L

With these preparations on the geometry of P*(C), let x: R*—>P"(C) be a
totally real, isometric minimal immersion. We assume that the image is not
contained in a totally geodesic P"~{(C) of P*(C). We wish to define a unitary
frame field {Z,} over a neighborhood U S R* along x as C*-maps

Z,: USR? — C"**— {0}
such that:
1) n-Z,:U—-P™C) is the restriction of the immersion x ;
2) {Z, Z,, -+, Z,} is a unitary frame in C**! for each point x= R
Each Z, is defined up to the multiplication by a complex number of norm one:
Z,—Z¥=exp(itg)Z,., T, real. Such a frame will be called the Frenet-Borfwka
frame of the immersion x.
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Let x be any point of R* and choose Z:USR*—C""*— {0} to be a homo-
geneous coordinate vector for x and put

Zy=Z[(Z, Z)'".

From the result given in Section 3, there is a unitary frame {e,} along x(R?®
such that they satisfy (3.36) and [3.37) Z,=C™*!' corresponds to e, by the
identification T, (P*(C)={WeC"*':(Z, W)=0}. Then {Z,, Z,, ---, Z,} is a
unitary frame field over US R? along x. We have, by (3.36), [4.2) and [4.3),

1 1 -
dZo:00020+\/'2’¢ZI+\/"2'¢ZZf
1 - _
lez"‘7‘§¢Z0+00021+51¢22+k1¢23,

1 - — _
dZ,=— 7’2T¢Zo_(51¢21+60022+ kICZ, 3¢Z3+ k102,4¢Z4 ’

dZy=— klﬂgzr‘ kic,, 3¢Zz+((9oo+c1cz,3¢““clcz, 3¢)Zs
+Cs, 4(52¢_Cl¢)24+7?—2—22, 4¢Zs ’

dZ,=— k152,4¢22+ Co, 4(cl¢_625)23+(000_2—22:2,—3¢+C262. 35)24
+k2(c3, 5925_6_'2, 3¢)Zs+ k263.65Z6 ’

(4.4) dZsp1=— kkck,zksgzzk-rf‘ kk(_ck-H,2k+1¢+ck,2k—1§§)22k
+(000+Ckck+1,2k+1¢—ckck+1,2k+1¢)zzk+1
+Cpaa, zk+2(’—ck¢+5k+1¢)22k+2+ krs1Craa, 2k+2¢sz+a ,

dek+2:—‘kkck+1,2k+2¢sz+Ck+x,2k+2(ck¢*‘ck+195)zzk+1
+(0oo_ck+1ck+1,2k+1¢+ck+xck+1,2k+15)22k+2
+kk+1(0k+2,2k+3¢_5k+1,2k+1¢)22k+3+ kk+1ck+2,2k+4<,522k+4,
k=1, -, m—1,
I:”“km—1cm,2m¢sz-2+cm,zm(cm—1¢'—fm5)zzm—1
1 . -
iz, +(000— :/tzf(cm,zm+1¢_cm,2m+1¢>)zn , (n=2m), or
I :"kmcm.szZZZm-l'i' km(—'cm+1,2m+1¢+cm,2m-—195>22m
+<000+(Cm¢_cm¢))zn ’ (n=2m+1).
A rotation Z,— Z¥=exp(i¢)Z,, ¢ real, induces the change
090 —> 0?0:2.d¢+000

on the Maurer-Cartan forms. Since #,, is closed and purely imaginary, by the
first formula of (3.36) and [4.3), we can assume %=0 by taking suitable func-
tion ¢ on U. Dropping the asterisks, we have

(4.5) d*'LZo, Zy, -, Zy1=[Adz+Bdz]'[Z,, Z,, -+, Z4],



Minimal immersions 681

where A and B are constant complex matrices which are algebraically deter-
mined by n—2 real numbers %, and n,, We wish to solve as follows:
Since [Z,, -+, Z,1€U(n+1), they satisfy A*A='4AA, B'B='BB and B-+*A=0.
Therefore there exists some unitary matrix 7 such that
2 —2
_ 0 : O _ 0 - O
‘TAT = b , 'TBT= oL ,
0", 0 _3

where A, are eigenvalues of A. Hence we have

Zo Zodz—"lgdz Zo

=| Z1 K O = Z1
d| T =, = ST 7
: 0 . :

Z, Andz—T,dz LZ.

This is easily solved and hence the general solution of the total differential
equation [(4.5) is given by, for a fixed (u,, vo)€U,

(4.6) "LZo(u, v), =+, Zolu, YI=TGT ‘LZ (s, vo), -, Zn(tt, vo)],
where we get
4.7 G={(exp(Raz—242)0ap) : z=u-+iv, (u, v)=R?}.

As we can assume ‘[Z.(u,, vy), -+, Za(Uy, v5)]=T, we obtained Z,(u, v)=
GZ(uo, vy). This solution Zy(u, v) has a unique extension over R?, hence we
proved

THEOREM 15. Let x: R*—P™(C) be a totally real, isometric minimal immer-
sion such that the image is not contained in a totally geodesic submanifold of
P™(C). Then x is homogeneous in the sense that x(R?® is an orbit of an abelian
Lie subgroup of U(n+1).

There exists an (n—2)-parameter family ¥, of isometric minimal and full
immersions of R? into P"(C).

REMARK 4. In case of n=2, the above theorem proves that there exists a
unique totally real flat minimal surfaces in P?(C), which has been proved earlier
by and later by [8], independently.

When n>2, %, includes at least n—2 different minimal immersions because,
for given n—2 positive numbers %, and ¢4y 04 Satisfying k3—p/2<0 and
Ci+1,2t+o—1=0, we can define complex numbers ¢, and c,i; 141 DY with
some ambiguity.

Main result of this paper is also stated as follows:
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Let x : M*—>P™(C) be an isometric minimal immersion of a complete simply
connected two dimensional Riemannian manifold into the complex projective space
of constant holomorphic sectional curvature 4. If |B|*=2 on M*? and x is not
superminimal, then M? is isometric to R* and x(R* )X, for some m=n.
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