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\S 1. Introduction.

The purpose of this paper is to formulate a class of time inhomogeneous
diffusion processes and to investigate the asymptotic properties of such processes.
Let $\{\xi(t), P_{s,x}\}$ be a time inhomogeneous diffusion process on a manifold $M$

generated by a smooth differential operator

$L_{t}= \frac{1}{2}a^{ij}(t, x)\frac{\partial^{2}}{\partial x^{i}\partial x^{j}}+b^{i}(t, x)\frac{\partial}{\partial x^{i}}$

and let $\{\lambda(t), P_{x}\}$ be a homogeneous diffusion process on $M$ generated by a
smooth differential operator

$L= \frac{1}{2}a^{ij}(x)\frac{\partial^{2}}{\partial x^{i}\partial x^{j}}+b^{i}(x)\frac{\partial}{\partial x^{i}}$ .

(Throughout this paper we use the usual summation convention.) Here, $P_{s.x}$ is
the probability law governing sample paths $\xi(t),$ $t\geqq s$ , starting at $x$ at time $s$ and
$P_{x}$ is that of $\lambda(t),$ $t\geqq 0$, starting at $x$ at time $0$ . If $L_{t}\phiarrow L\phi$ uniformly on any
compact set on $M$ as $iarrow\infty$ for every smooth function $\phi$ on $M$, we shall call
$\{\xi(t), P_{s.x}\}$ asymptotically homogeneous with the limiting homogeneous process
$\{\lambda(t), P_{x}\}$ .

Such a situation was studied by Bhattacharya and Ramasubramanian [2].
They showed that if $\{\lambda(t), P_{x}\}$ is positively recurrent with the invariant prob-
ability measure $m$ , then, under additional assumptions on the process, the law
of the shifted process $trightarrow\xi_{s}^{+}(t)=\xi(t+s)$ under $P_{0.x}$ converges to that of $t$ g\rightarrow \lambda (t)

under $P_{m}= \int_{M}P_{x}m(dx)$ as $sarrow\infty$ for every $x\in M$. Conversely, if this convergence

holds then $\{\xi(t), P_{s.x}\}$ must be asymptotically homogeneous. Thus we may expect
that if an inhomogeneous diffusion $\{\xi(t), P_{s.x}\}$ is asymptotically homogeneous
with the limiting homogeneous diffusion process $\{\lambda(t), P_{x}\}$ , the asymptotic prop-
erties of the process $\xi(t)$ can be stated in terms of the process $\lambda(t)$ . In this
paper, we discuss the asymptotics of the occupation distribution (the empirical
distribution) for an asymptotically homogeneous diffusion process.

In \S 2, we obtain some preliminary general results on inhomogeneous diffusion
processes. If a general inhomogeneous diffusion operator $L_{t}$ is smooth, $L_{t}$-diffusion
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process $\{x(t), P_{s.x}\}$ exists uniquely. This can be shown, locally in each coordi-
nate chart, by the method of stochastic differential equations and hence, by a
standard argument of piecing out, the global solution of $L_{t}$-martingale problem
exists uniquely. Here, we further assume that the differential operator $L_{t}$ is
nondegenerate. Then, we can give a more intrinsic construction of an $L_{t}$-diffusion
process by generalizing the method of stochastic moving frame of Eells and
Elworthy (cf. Ikeda and Watanabe [5]) to the time dependent case. This time
dependent stochastic moving frame provides us with a time inhomogeneous
diffusion process $r(t)$ on the principal frame bundle $GL(M)$ of $M$, and an $L_{t^{-}}$

diffusion process $x(t)$ is obtained by the projection of $r(t)$ onto $M$. Also we
obtain the Cameron-Martin-Girsanov theorem for $x(t)$ by making use of the
stochastic moving frame $r(t)$ .

Assume, for simplicity, that the manifold $M$ is compact. In \S 3, we discuss
the strong law of large numbers for the asymptotically homogeneous diffusion
process $\xi(t),$ $i.e.$ , almost sure convergence of the occupation distribution (the

empirical distribution) of $\xi(t)$ and the characterization of this limit in terms of
the limiting homogeneous diffusion process $\lambda(t)$ . The results obtained there
apply to many degenerate diffusions. By restricting to nondegenerate diffusions,
however, the strong law of large numbers will be refined in two directions.
In \S 4, we discuss the functional central limit theorem and in \S 5, we discuss
theorems of large deviations. The variance of the limiting Wiener process
is determined by the limiting process $\lambda(t)$ and the rate of the large deviation is
measured by the I-functions of $\lambda(t)$ . In these two sections the method of the
time dependent stochastic moving frame discussed in \S 2 will play an important
role.

\S 2. Inhomogeneous diffusion processes on a manifold.

The unique existence of a diffusion process generated by a time inhomogene-
ous diffusion operator $L_{t}$ is well known. The existence and uniqueness of local
solutions in each coordinate chart can be shown by using stochastic differential
equations (SDE’s) and these can be united to form the unique solution of $L_{t^{-}}$

martingale problem. When the differential operator $L_{t}$ is nondegenerate, we
can give the following intrinsic construction of the $L_{t}$-diffusion. In this case, the
inverse matrix of its diffusion matrix defines a time dependent Riemannian
metric $g_{t}(x)$ on $M$ and so, without loss of generality, we may assume that
$L_{t}=\Delta_{t}/2+b_{t}$ where $\Delta_{t}$ is the Laplace-Beltrami operator induced by $g_{t}(x)$ , and
$b_{t}(x)$ is a time dependent smooth vector field.

Let us introduce a frame $r=(x, e)$ at $x\in M$ where $e=\{e_{1}, \cdots , e_{d}\}$ is a basis of
the tangent space $T_{x}M$ at $x$ . We denote by $GL(M)$ the frame bundle consisting
of all frames on $M$ with the usual structure of manifold and by $O_{t}(M)$ , for
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$t\geqq 0$ , we denote a submanifold of $GL(M)$ defined by $O_{t}(M)=\{r=(x, e)\in GL(M)$ ;
$e$ is an orthonormal basis of $T_{x}M$ with respect to the inner product $\langle$ , $\rangle_{t}$ induced
by $g_{t}(x)$ }. In the local coordinate $(x^{i}, e_{j}^{i})$ of $GL(M),$ $r=(x, e)\in O_{t}(M)$ if and only
if $g_{p,q}(t, x)e_{i}^{p}e_{j}^{q}=\delta_{ij}$ where $\{g_{ij}(t, x)\}$ is the components of $g_{t}(x)$ . The time
dependent Christoffel symbols $\{\Gamma_{j.k}^{i}(t, x)\}$ are defined by

$\Gamma_{j,k}^{i}(t, x)=\frac{1}{2}g^{ih}(t, x)\cross\{\frac{\partial g_{hk}}{\partial_{X^{j}}}(t, x)+\frac{\partial g_{hj}}{\partial_{X^{k}}}(t, x)-\frac{\partial g_{jk}}{\partial_{X^{h}}}(t, x)\}$

where $\{g^{ij}(t, x)\}$ is the inverse matrix of $\{g_{ij}(t, x)\}$ .
We define smooth time dependent vector fields on $GL(M)$ , in each coordinate

chart, by

$L_{\alpha}(t, r)=e_{d}^{i} \frac{\partial}{\partial_{X^{i}}}\Gamma_{k,l}^{i}(t, x)e_{j}^{k}e_{d^{\frac{\partial}{\partial e_{j}^{i}}}}^{l}$ , $\alpha=1,2,$
$\cdots,$

$d$ ,

$\overline{b}(t, r)=b^{i}(t, x)\frac{\partial}{\partial x^{i}}-\Gamma_{k,l}^{i}(t, x)e_{j}^{k}b^{l}(t, x)\frac{\partial}{\partial e_{j}^{i}}$ ,

$K(t, r)=- \frac{1}{2}g^{ik}(t, x)\frac{\partial g_{kl}}{\partial t}(i, x)e_{j^{\frac{\partial}{\partial e_{j}^{i}}}}^{l}$ .

The fact that these define vector fields on $GL(M)$ is easy to verify. Consider
the following SDE on $GL(M)$

(2.1) $dr(t)=L_{\alpha}(t, r(t))\circ dw^{\alpha}(t)+\overline{b}(t, r(t))dt+K(t, r(t))dt$ ,

where $w(t)=(w^{\alpha}(t))$ is a d-dimensional Wiener process and $\circ$ denotes the Stratno-
vich stochastic differential (cf. Ikeda and Watanabe [5]). In local coordinates,
(2.1) is equivalent to

(2.2) $\{\begin{array}{l}dx^{i}(t)=e_{\alpha}^{i}(t)odw^{\alpha}(t)+b^{i}(t, x(t))dt,de_{j}^{i}(t)=-\Gamma_{k,l}^{i}(t, x(t))e_{j}^{k}(t)odx^{l}(t)-\frac{1}{2}g^{ik}(t, x(t))\frac{\partial g_{kl}}{\partial t}(t, x(t))e_{j}^{l}(t)dt.\end{array}$

Although the following two theorems hold under the condition that diffusion
processes do not explode in the general manifold $M$, we shall assume, for sim-
plicity, $M$ to be compact.

THEOREM 1. Let $r(t)=(x(t), e(t))$ be the solution of SDE (2.1) on $GL(M)$

with initial condition $r(s)=(x, e)\in O_{s}(M)$ at time $s$ . Then, $r(t)$ lies on $O_{t}(M)$ for
all $t\geqq s$ and its pr0jecti0n $x(t)$ onto $M$ defines an inhomogeneous diffusion pr0cess
whose generator is $L_{t}=\Delta_{t}/2+b_{t}$ .

PROOF. By using (2.2) and $g_{p,q}(t, x)=g_{q,p}(t, x)$ , we have from stochastic
differential rules that
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$d(g_{p.q}(t, x(t))e?(t)e\S(t))$

$= \frac{\partial g_{p.q}}{\partial t}(t, x(t))e?(t)e\S(t)dt+\frac{\partial g_{p,q}}{\partial x^{k}}(t, x(t))e?(t)e\S(t)\circ dx^{k}(t)$

$+g_{p.q}(t, x(t))e\S(t)\circ de\beta(t)+g_{p.q}(t, x(t))e?(t)\circ de_{j}^{q}(t)$

$= \frac{\partial g_{p.q}}{\partial t}(t, x(t))e?(t)e\S(t)dt+\frac{\partial g_{p.q}}{\partial x^{k}}(t, x(t))e?(t)e\S(t)\circ dx^{k}(t)$

$-g_{p.q}(t, x(t))\Gamma f_{l}(t, x(t))(e\S(t)e_{i}^{k}(t)+e\S(t)e_{j}^{k}(t))\circ dx^{l}(t)$

$- \frac{1}{2}g_{p,q}(t, x(t))g^{pk}(t, x(t))\frac{\partial g_{kl}}{\partial t}(t, x(t))e_{i}^{l}(t)e3(t)dt$

$- \frac{1}{2}g_{p,q}(fx(t))g^{qk}(t, x(t))\frac{\partial g_{kl}}{\partial t}(t, x(t))e_{j}^{l}(t)e?(t)dt$

$= \frac{\partial g_{p,q}}{\partial x^{k}}(t, x(t))e?(t)e\S(t)\circ dx^{k}(t)$

$-(g_{p.q}\Gamma^{p_{kl}}.+g_{p.k}\Gamma_{q.l}^{p})(t, x(t))e3(t)e_{j}^{k}(t)odx^{l}(t)$

$= \frac{\partial g_{p.q}}{\partial x^{k}}(t, x(t))e?(t)e\S(t)\circ dx^{k}(t)-\frac{\partial g_{q.k}}{\partial x^{t}}(t, x(t))e3(t)e_{j}^{k}(t)\circ dx{}^{t}(t)$

$=0$ .
Here, we used the following relation

$(g_{p.q} \Gamma^{p_{kl}}.+g_{p.k}\Gamma_{q.l}^{p})(t, x)=\frac{\partial g_{q.k}}{\partial x^{l}}(t, x)$ .

Hence, tangent vectors defined by $e_{i}(t)=e_{i}^{k}(t)\partial/\partial x^{k},$ $i=1,2,$ $\cdots$ , $d$ , on $M$ at $x(t)$

satisfy
$\langle e_{i}(t), e_{j}(t)\rangle_{t}=\langle e_{i}(s), e_{j}(s)\rangle_{s}=\delta_{if}$ , $t\geqq s$ .

This implies that $r(t)=(x(t), e(t))\in O_{t}(M)$ for $t\geqq s$ .
To prove that $x(t)$ is an inhomogeneous diffusion process on $M$ with gener-

ator $L_{t}$ , we first remark that the law of $x(t),$ $t\geqq s$ with $r(s)=(x, e)$ , is uniquely
determined by $x$ and is independent of the choice of orthonormal frame $e$ .
This can be shown by the same argument as in [5] p. 269. Hence, $x(t)$ is an
inhomogeneous diffusion process on $M$. To see that its generator is $L_{t}$ it is
sufficient to show that, for any smooth function $f$ on $M$,

$df(x(t))=e_{a}^{i}(t) \frac{\partial f}{\partial x^{i}}(x(t))\cdot dw^{\alpha}(t)+L_{t}f(x(t))dt$ ,

where denotes the Ito stochastic differential. Ito’s formula says that

$df(x(t))= \frac{\partial f}{\partial x^{i}}(x(t))\circ dx^{i}(t)$

$= \frac{\partial f}{\partial_{X^{i}}}(x(t))e_{a}^{i}(t)\circ dw^{\alpha}(t)+\frac{\partial f}{\partial x^{i}}(x(t))b^{i}(fx(t))dt$
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$= \frac{\partial f}{\partial x^{i}}(x(t))e_{\alpha}^{i}(t)\cdot dw^{a}(t)+\frac{1}{2}d(\frac{\partial f}{\partial x^{i}}(x(t))e_{a}^{i}(t))\cdot dw^{a}(t)$

$+ \frac{\partial f}{\partial x^{i}}(x(t))b^{i}(t, x(t))dt$

By stochastic differential rules, for example $dw^{a}(t)\cdot dw^{\beta}(t)=\delta_{\alpha\beta}dt$ and $dw^{\alpha}(t)\cdot dt$

$=0$, we see from (2.2) that $dx^{j}(t)\cdot dw^{a}(t)=e_{\alpha}^{i}(t)dt$ . Using this,

$d( \frac{\partial f}{\partial x^{i}}(x(t))e_{\alpha}^{i}(t))\cdot dw^{\alpha}(t)$

$= \frac{\partial^{2}f}{\partial x^{j}\partial x^{i}}(x(t))e_{a}^{i}(t)\circ dx^{j}(t)\cdot dw^{\alpha}(t)+\frac{\partial f}{\partial x^{t}}(x(t))\circ de_{a}^{i}(t)\cdot dw^{\alpha}(t)$

$= \sum_{\alpha=1}^{d}\frac{\partial^{2}f}{\partial x^{j}\partial x^{i}}(x(t))e_{a}^{i}(t)e_{a}^{j}(t)dt$

$+ \frac{\partial f}{\partial x^{i}}(x(t))\{-\Gamma_{kt}^{i}(t, x(t))e_{a}^{k}(t)\circ dx^{l}(t)$

$- \frac{1}{2}g^{ik}(t, x(t))\frac{\partial g_{kl}}{\partial t}(t, x(t))e_{\alpha}^{l}(t)dt\}\cdot dw^{a}(t)$

$= \sum_{a=1}^{d}\frac{\partial^{2}f}{\partial x^{j}\partial x^{i}}(x(t))e_{a}^{i}(t)e_{a}^{j}(t)dt-\sum_{\alpha=1}^{a}\frac{\partial f}{\partial x^{i}}(x(t))\Gamma_{k,l}^{i}(t, x(t))e_{\alpha}^{k}(t)e_{a}^{l}(t)dt$

$= \sum_{\alpha\Leftarrow 1}^{d}e_{\alpha}^{k}(t)e_{a}^{l}(t)\{\frac{\partial^{2}f}{\partial x^{k}\partial x^{l}}(x(t))-\Gamma_{k,l}^{i}(t, x(t))\frac{\partial f}{\partial x^{i}}(x(t))\}dt$ .

It is easy to see from $r(t)\in O_{t}(M)$ or $g_{k.l}(t, x(t))e_{\alpha}^{k}(t)e_{\beta}^{l}(t)=\delta_{a\beta}$ that $\sum_{a=1}^{d}e_{\alpha}^{k}(t)e_{\alpha}^{l}(t)$

$=g^{kl}(t, x(t))$ . Hence,

$d( \frac{\partial f}{\partial x^{i}}(x(t))e_{\alpha}^{i}(t))\cdot dw^{\alpha}(t)$

$=g^{kl}(t, x(t)) \{\frac{\partial^{2}f}{\partial x^{k}\partial x^{l}}(x(t))-\Gamma_{k.l}^{i}(t, x(t))\frac{\partial f}{\partial x^{i}}(x(t))\}dt$

$=\Delta_{t}f(x(t))dt$ .
This completes the proof.

Now we shall present the Cameron-Martin-Girsanov formula for inhomo-
geneous diffusion processes on a manifold. Our reason for doing so at this point
is that it will play an important role in our study of large deviations in \S 5.

THEOREM 2. Let $P_{s.x}$ and $\tilde{P}_{s.x}$ be pr0bability laws starting at $\chi$ at time $s$

of inhomogeneous diffusion pr0cesses on $M$ generated by $L_{t}=\Delta_{t}/2+b_{t}$ and $\tilde{L}_{t}$

$=\Delta_{t}/2+b_{t}+c_{t}$ respectively, where $c_{t}$ is another time dependent smooth vector field.
Then, $P_{s.x}$ and $\tilde{P}_{s,x}$ are mutually absolutely continuous with the following density
on $\mathcal{F}_{s}^{t}=\sigma(x(t);s\leqq\tau\leqq t)$
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$\frac{d\tilde{P}_{s,x}}{dP_{s,x}}|_{\mathcal{F}_{S}^{t}}=\exp\int\{S\langle c(\tau tx(\tau)), e_{\alpha}(\tau)\rangle_{\tau}\cdot dw^{\alpha}(\tau)$

$- \frac{1}{2}\int_{s}^{t}\Vert c(\tau, x(\tau))\Vert_{\tau}^{2}d_{T}\}$

where $r(t)=(x(t), e(t))$ , constructed in Theorem 1, is the inhomogeneous diffuston
pr0cess on the prjncipal frame bundle $GL(M)$ generated by $A(t, r)=$

$(1/2)\Sigma_{\alpha=1}^{d}L_{a}(t, r)^{2}+\overline{b}(t, r)+K(t, r)$ , and $\Vert\Vert_{\tau}$ denotes a Riemannian norm induced
by $g_{\tau}(x)$ .

PROOF.
$N_{s}(t)= \sum_{\alpha=1}^{d}\int_{s}^{t}\langle c(\tau, x(\tau)), e_{\alpha}(\tau)\rangle_{\tau}\cdot dw^{a}(\tau)$

is a continuous square integrable $P_{s.x}$-martingale and its quadratic variational
process is, from the fact that $r(t)=(x(t), e(t))\in O_{t}(M)$ for $t\geqq s$ ,

$\langle N_{s}\rangle(t)=\int_{s}^{t}\sum_{\alpha=1}^{d}\langle c(\tau, x(\tau)), e_{\alpha}(\tau)\rangle_{\tau}^{2}du=\int_{s}^{t}\Vert c(\tau, x(\tau))\Vert_{\tau}^{2}d\tau$ .

Set $M_{s}(t)=\exp\{N_{s}(t)-(1/2)\langle N_{s}\rangle(t)\}$ . By the general theory of exponential
martingales [5] p. 140, we easily see that $M_{s}(t)$ is $P_{s.x}$-martingale. Let $\hat{P}$ be a
probability measure defined by $\hat{P}(F)=\int_{F}M_{s}(t)dP_{s.x}$ for $F\in \mathcal{F}_{s}^{t}$ . We shall show
that $F=\tilde{P}_{s.x}$ .

Transform the d-dimensional Wiener process $w(t)=(w^{\alpha}(t))$ with respect to
$P_{s,x}$ into

$\tilde{w}^{\alpha}(t)=w^{\alpha}(t)-\langle w^{\alpha}, N_{s}\rangle(t)=w^{\alpha}(t)-\int_{s}^{t}\langle c(\tau, x(\tau)), e_{\alpha}(\tau)\rangle_{\tau}d\tau$ .
Since $\tilde{w}^{\alpha}(t),$ $\alpha=1,2,$ $\cdots$ , $d$ , are $\hat{P}$-martingales and their quadratic variational pro-
cesses satisfy $\langle\tilde{w}^{a},\tilde{w}^{\beta}\rangle(t)=\langle w^{\alpha}, w^{\beta}\rangle(t)=\delta_{\alpha\beta}(t-s),\tilde{w}(t)=(\tilde{w}^{a}(t))$ is a d-dimensional
Wiener process with respect to $\hat{P}$ . From (2.1),

$dr(t)= \sum_{\alpha=1}^{d}L_{\alpha}(t, r(t))\circ\{dw^{\alpha}(t)-\langle c(t, x(t)), e_{\alpha}(t)\rangle_{t}dt\}$

$+ \sum_{\alpha=1}^{a}L_{\alpha}(tr(t))\langle c(t, x(t)), e_{\alpha}(t)\rangle_{t}dt$

$+\overline{b}(t, r(t))dt+K(t, r(t))dt$ .
Let $\overline{c}(t, r)$ be a time dependent smooth vector field on $GL(M)$ defined by

$\overline{c}(t, r)=c^{i}(t, x)\frac{\partial}{\partial x^{i}}\Gamma_{k.l}^{i}(t, x)e_{j}^{k}c^{l}(t, x)\frac{\partial}{\partial e_{f}^{i}}$

in local coordinates. Since $r(t)=(x(t), e(t))\in O_{t}(M)$ , it is easy to see that

$\sum_{\alpha=1}^{d}L_{\alpha}(tr(t))\langle c(f, x(t)), e_{\alpha}(t)\rangle_{t}=\overline{c}(t, r(t))$ .
Then,

$dr(t)=L_{\alpha}(t, r(t))\circ d\tilde{w}^{\alpha}(t)+\overline{b}(t, r(t))dt+\overline{c}(t, r(t))dt+K(t, r(t))dt$ .
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The path $r(t)$ is, therefore, an inhomogeneous diffusion process on $GL(M)$

generated by

$\tilde{A}(t, r)=\frac{1}{2}\sum_{\alpha=1}^{d}L_{\alpha}(t_{J}r)^{2}+\overline{b}(t, r)+\overline{c}(t, r)+K(t, r)$

with respect to $\hat{P}$ and hence its projection $x(t)$ onto $M$ is an inhomogeneous
diffusion process generated by $\tilde{L}_{t}$ with respect to $\hat{P}$ .

\S 3. Strong law of large numbers.

Let $M$ be a smooth manifold which we assume, for simplicity, to be compact,
although our results hold in more general cases under necessary modifications.
Let

$L_{t}= \frac{1}{2}$ a $(t, x) \frac{\partial^{2}}{\partial x^{i}\partial x^{j}}+b^{i}(t, x)\frac{\partial}{\partial x^{t}}$

and
$L= \frac{1}{2}$ a $(x) \frac{\partial^{2}}{\partial x^{i}\partial x^{j}}+b^{i}(x)\frac{\partial}{\partial x^{i}}$

be diffusion operators $(a^{ij}(t, x)$ and $a^{ij}(x)$ may degenerate) with smooth coeffi-
cients. Consider a time inhomogeneous diffusion process $\{\xi(t), P_{s.x}\}$ generated
by $L_{t}$ and a homogeneous diffusion process $\{\lambda(t), P_{x}\}$ generated by $L$ .

DEFINITION. We say that $\{\xi(t), P_{s.x}\}$ is asymptotically homogeneous with the
limiting homogeneous diffusion process $\{\lambda(t), P_{x}\}$ if, for every smooth function
$\phi$ on $M,$ $L_{t}\phi(x)arrow L\phi(x)$ uniformly in $x\in M$ as $tarrow\infty$ .

Let $l_{s,t}$ be, for each sample path $\xi(\tau)$ , its occupation distribution defined by

$\frac{1}{t-s}\int_{s}^{t}\delta_{\xi(\tau)}d\tau$ where $\delta_{x}$ is the unit mass at $x\in M$. Thus $l_{s.t}$ is a process taking

values in $\mathcal{M}(M)=the$ totality of probability measures on $M$. We endow $\mathcal{M}(M)$

with the topology of the weak convergence. $m\in \mathcal{M}(M)$ is called an invariant
probability measure of the homogeneous diffusion process $\{\lambda(t), P_{x}\}$ if

$\int_{M}E_{x}(f(\lambda(t)))m(dx)=\int_{M}f(x)m(dx)$

for every continuous function $f$ on $M$ where $E_{x}$ is the expectation with respect
to $P_{x}$ .

THEOREM 3. Let $\{\xi(t), P_{s.x}\}$ be an inhomogeneous diffusion pr0cess which is
asympt0tically homogeneous with the limiting homogeneous diffusion pr0cess
$\{\lambda(t), P_{x}\}$ . Let $l_{s.t}$ be the occupatj0n distribution of the pr0cess $\xi(t)$ . Then, with
$P_{s.x}$-pr0babiljty one for every $s\geqq 0$ and $\chi\in M$,

$limitpointtarrow\{l_{s,t}\}\subset$ {$invartant$ pr0bability measures of $\lambda(t)$ }.

COROLLARY. If $\lambda(t)$ is ergodic in the sense that it p0ssesses the unique invariant
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measure $m$ , then, with $P_{s.x}$-probability one for every $s\geqq 0$ and $\chi\in M$,

$\lim_{tarrow\infty}l_{s.x}=m$

or equivalently

$\lim_{tr}\frac{1}{t-s}\int_{s}^{t}f(\xi(\tau))d\tau=\int_{M}f(x)m(dx)$

for every continuous function $f$ on $M$ with $P_{s.x}$-probability one and this limit also

coincides with $\lim_{tarrow\infty}\frac{1}{t}\int_{0}^{t}f(\lambda(\tau))d\tau$ with $P_{x}$-probability one.

PROOF. Let $p(s, \chi t, dy)$ and $p(t, x, dy)$ be the transition probability
functions of $\xi(t)$ and $\lambda(t)$ . The associated transition operators are defined by

$T_{s.t}f(x)= \int_{M}p(s, x, t, dy)f(y)$ and $T_{t}f(x)= \int_{M}p(t, \chi dy)f(y)$ respectively. We

shall prove, for simplicity, in the case where $s=0$ . It is sufficient to show that

if $\mu$ is a typical limit point of $l_{s.t}$ as $tarrow\infty$ then $\int_{M}T_{u}f(x)\mu(dx)=\int_{M}f(x)\mu(dx)$ for

every given $u>0$ and given continuous function $f$ on $M$, because the usual
argument should save some trouble about the exceptional set with $P_{0.x}$-probability
one. Since we have

$\lim_{tr}\frac{1}{t}\int_{0}^{t}f(\xi(\tau))d\tau=\varliminf_{t}\int_{M}f(x)l_{0.t}(dx)=\int_{M}f(x)\mu(dx)$

and
$\lim_{tarrow\infty}\frac{1}{t}\int_{0}^{t}T_{u}f(\xi(\tau))d\tau=\varliminf_{t}\int_{M}T_{u}f(x)l_{0.t}(dx)=\int_{M}T_{u}f(x)\mu(dx)$ ,

we shall show that, with $P_{0.x}$-probability one,

$\frac{1}{t}\int_{0}^{t}\{T_{u}f(\xi(\tau))-f(\xi(\tau))\}d\tauarrow 0$ as $tarrow\infty$ .

Divide this into the following three parts:

$\frac{1}{t}\int_{0}^{t}\{T_{u}f(\xi(\tau))-T_{r,\tau+u}f(\xi(\tau))\}d\tau+\frac{1}{t}\int_{0}^{t}\{T_{\tau.\tau+u}f(\xi(\tau))-f(\xi(\tau+u))\}d\tau$

$+ \frac{1}{t}\int_{0}^{t}\{f(\xi(\tau+u))-f(\xi(\tau))\}d\tau$ .

Notice that $T_{\tau,\tau+u}f(x)arrow T_{u}f(x)$ uniformly in $x\in M$ as $\tauarrow\infty$ (see Strook and
Varadhan [7] p. 272). Hence, the first part is negligible. We can easily see
that the absolute value of the third part is dominated by $(2u/t) \cdot\sup_{x\in M}|f(x)|$ .

To prove that the second part tends to $0$ , set

$M_{t}= \int_{1^{\frac{1}{\tau}}}^{t}\{T_{\tau.\tau+u}f(\xi(\tau))-f(\xi(\tau+u))\}d\tau$

and show that it converges with $P_{0,x}$-probability one as $tarrow\infty$ . Then Kronecker’s
lemma can be applied to complete the proof. We denote by $E($ $)$ and $E(|\mathcal{F}_{t})$

the expectation and the conditional expectation with respect to $P_{0.x}$ and
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$\mathcal{F}_{t}=\sigma(\xi(\tau);0\leqq\tau\leqq t)$ . We have by the Markov property that, for $t_{2}>t_{1}\geqq 1$ ,

$E(M_{t_{2}}-M_{t_{1}}| \mathcal{F}_{t_{1}})=\int_{t_{1}}^{t_{2}}\frac{1}{\tau}E(E(T_{\tau.\tau+u}f(\xi(\tau))-f(\xi(\tau+u))|\mathcal{F}_{r})|\mathcal{F}_{t_{1}})d\tau=0$ ,

$E(M_{t}^{2})=E(( \int_{1^{\frac{1}{\tau}}}^{t}\{T_{\tau.\tau+u}f(\xi(\tau))-f(\xi(\tau+u))\}d_{T})^{2})$

$=2 \int_{1}^{t}ds\int_{s}^{t}d\tau\frac{1}{s\tau}E(\{T_{\tau.\tau+u}f(\xi(\tau))-f(\xi(\tau+u))\}$

$\cross\{T_{s.s+u}f(\xi(s))-f(\xi(s+u))\})$

$=2 \int_{1}^{t}ds\int_{s}^{s+u}d\tau\frac{1}{s\tau}E(\{T_{\tau.\tau+u}f(\xi(\tau))-f(\xi(\tau+u))\}$

$\cross\{T_{s,s+u}f(\xi(s))-f(\xi(s+u))\})$

$+2 \int_{1}^{t}ds\int_{s+u}^{t}d\tau\frac{1}{s\tau}E(\{T_{\tau.\tau+u}f(\xi(\tau))-f(\xi(\tau+u))\}$

$\cross\{T_{s.s+u}f(\xi(s))-f(\xi(s+u))\})$

$\leqq_{x\in}8su_{R}|f(x)|\int_{1}^{t}ds\frac{u}{s^{2}}<\infty$ .

It is easy to see from these facts that $\tilde{M}_{t}=E(M_{t}|\mathcal{F}_{t})$ is $L^{2}$-bounded $(\mathcal{F}_{t})-$

martingale and hence we can apply the martingale convergence theorem to show
that $\tilde{M}_{t}$ converges with $P_{0.x}$-probability one. The convergence of $M_{t}$ with $P_{0.x^{-}}$

probability one as $iarrow\infty$ is, therefore, obtained from the fact that

$| \tilde{M}_{t}-M_{t}|=|\int_{t-u}^{t}\frac{1}{\tau}\{f(\xi(\tau+u))-E(f(\xi(\tau+u))|\mathcal{F}_{t})\}d\tau|\leqq_{t-ux\in M}^{2u}\neg up|f(x)|$ .

\S 4. Central limit theorem.

Consider an asymptotically homogeneous nondegenerate diffusion process $\xi(t)$

with the limiting process $\lambda(t)$ on a manifold $M$ which we assume to be compact,
connected and without boundary although the following result can be carried
over to the case of diffusion processes with reflection on a compact manifold
with boundary. In this case, without loss of generality, we may assume that
$\xi(t)$ and $\lambda(t)$ are generated by $L_{t}=\Delta_{t}/2+b_{t}$ and $L=\Delta/2+b$ where $\Delta_{l}$ and $\Delta$ are
Laplace-Beltrami operators induced by a time dependent Riemannian metric $g_{t}(x)$

and a time independent Riemannian metric $g(x),$ $b_{t}$ and $b$ are a time dependent
smooth vector field and a time independent smooth vector field on $M$ respective-
ly. The condition that $L_{t}\phi(x)arrow L\phi(x)$ uniformly in $x\in M$ for any smooth
function $\phi$ on $M$ as $tarrow\infty$ is assumed.

We will denote by $\langle$ , $\rangle_{t}$ and $\langle, \rangle$ the inner products of vector fields
( $\Vert v\Vert_{t}=\sqrt{\langle v,v\rangle_{t}}$ and $\Vert v\Vert=\sqrt{\langle v,v\rangle}$ ), by $\nabla_{t}$ and $\nabla$ the Riemannian gradients, with
respect to the Riemannian metrics $g_{t}(x)$ and $g(x)$ respectively. If we assume
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the convergence rate of $L_{l}\phi$ , we can formulate a refinement of Theorem 3
in \S 3.

THEOREM 4. Supp0se that there is some $r<-1/2$ such that $\sup_{x\in M}|L_{t}\phi(x)-L\phi(x)|$

$=O(t^{r})$ for every smooth function $\phi$ on M. Then, for any continuously differenti-
able function $f$ on $M$, the family of stochastic pr0cesses $\{\frac{1}{\sqrt{\lambda}}\int_{0}^{\lambda t}(f(\xi(s))-m(f))ds$ ;

$t\geqq 0\}$ converges in distribution as $\lambdaarrow\infty$ to a Wiener pr0cess $W_{v(f)}$ with zero drift
and varimce parameter $v(f)= \int_{M}\Vert\nabla_{\chi}\Vert^{2}dm$ , where $m$ is the unique invariant measure

of $\lambda(i)$ on $M,$ $i.e.,$ $L^{*}m=0,$ $m(f)= \int_{M}fdm$ and $\chi$ is a solution of the equation
$Lx=-\{f-m(f)\}$ .

PROOF. By Fredholm alternative theorem, we can solve the following
equation on $M$ :

(4.1) $Lx=-\{f-m(f)\}$ .

Applying Ito’s formula to $\chi(x)$ ,

(4.2) $\chi(\xi(t))-\chi(\xi(0))-\int_{0}^{t}L_{s}\chi(\xi(s))ds=\int_{0}^{t}\langle\nabla_{s}x(\xi(s)), e_{\alpha}(s)\rangle_{s}\cdot dw^{\alpha}(s)$

where $r(s)=(\xi(s), e(s))$ is an ihomogeneous diffusion process on the principal
frame bundle $GL(M)$ over $M$, constructed in Theorem 1, satisfying $r(s)\in O_{s}(M)$

$=\{r=(x, e)\in GL(M);\langle e_{i}, e_{j}\rangle_{s}=\delta_{ij}\}$ for each $s\geqq 0$ . Set

$M(t)= \int_{0}^{t}\langle\nabla_{s}\chi(\xi(s)), e_{\alpha}(s)\rangle_{s}\cdot dw^{\alpha}(s)$ .
From (4.1) and (4.2),

$\frac{1}{\sqrt{\lambda}}\{\int_{0}^{\lambda t}(f(\xi(s))-m(f))ds\}=\frac{M(\lambda t)}{\sqrt{\lambda}}+\frac{\chi(\xi(0))-\chi(\xi(\lambda t))}{\sqrt{\lambda}}$

$+ \frac{1}{\sqrt{\lambda}}\int_{0}^{\lambda t}(L_{s}\chi-L\chi)(\xi(s))ds$ .
For any $T>0$ ,

$\sup_{0\xi t\leqq T}|\frac{\chi(\xi(0))-\chi(\xi(\lambda t))}{\sqrt{\lambda}}|arrow 0$ $a.s$ . as $\lambdaarrow\infty$

and also, by hypothesis,

$\sup_{0\xi t\leqq T}|\frac{1}{\sqrt{\lambda}}\int_{1}^{\lambda t}(L_{s}\chi-L\chi)(\xi(s))ds|\leqq\sup_{0\leqq t\leqq T}|\frac{1}{\sqrt{\lambda}}\int_{1}^{\lambda t}cs^{r}ds|arrow 0$ as $\lambdaarrow\infty$ .

For the family of the martingales $M_{\lambda}(t)=M(\lambda t)/\sqrt{\lambda}$, we have from Corollary
of Theorem 3 in \S 3 that

$\langle M_{\lambda}\rangle(t)=\frac{1}{\lambda}\int_{0}^{\lambda t}\sum_{\alpha=1}^{d}\langle\nabla_{s}\chi(\xi(s)), e_{\alpha}(s)\rangle_{s}^{2}ds$
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$= \frac{1}{\lambda}\int_{0}^{\lambda t}\Vert\nabla_{s}\chi\Vert_{s}^{2}(\xi(s))ds$ $arrow$ $t \int_{M}\Vert\nabla\chi\Vert^{2}dm$ .

We can now complete the proof by applying the theorem in Liptser and
Shiryayev [6].

\S 5. Large deviations.

Consider the same situation as in \S 3, and assume that an inhomogeneous diffu-
sion process $\{\xi(t), P_{s.x}\}$ generated by $L_{t}$ is asymptotically homogeneous with the
limiting homogeneous diffusion process $\{\lambda(t), P_{x}\}$ generated by $L$ . For each

$s<t$ , let $l_{s,t}$ be the occupation distribution of $\xi(t);l_{s,t}=\frac{1}{t-s}\int_{s}^{t}\delta_{\xi(\tau)}d\tau$ . Let $Q_{s,x}^{t}$

be the probability measure on $\mathcal{M}(M)$ induced by $l_{s,t}$ from $P_{s,x}$ . We obtain
asymptotic estimates of $Q_{s.x}^{t}(B)$ for $B\subset \mathcal{M}(M)$ from two directions. For this
we introduce I-function of $\lambda(t)$ as in [4].

$I( \mu)=-u\in c\infty(M)\inf_{u>0}\int\frac{Lu}{u}d\mu$ , $\mu\in \mathcal{M}(M)$ .

First, we shall state the upper estimate.

THEOREM 5. For any closed set $C\subset \mathcal{M}(M)$ ,

$\varlimsup_{larrow\infty}\frac{1}{t}$ log $Q_{s,x}^{l}(C) \leqq-\inf_{\mu\in C}I(\mu)$ .

The proof of this theorem, which is omitted, is analogous to that in Donsker
and Varadhan [3] by using Feynman-Kac formula.

To obtain the lower estimate, we need to assume that both $\xi(t)$ and $\lambda(t)$

are nondegenerate. Consider the same situation as in \S 4 that $L_{t}$ and $L$ are
expressed in the intrinsic forms $L_{t}=\Delta_{t}/2+b_{t}$ and $L=\Delta/2+b$ respectively. We
can show that the I-function of $\lambda(t)$ is computed in explicit form for this case.

LEMMA. For $\mu\in \mathcal{M}(M)$ which is absolutely continuous with respect to the
Riemannian volume $dx$ induced by $g(x)$ and whose densrty $P$ is a strictly positive
smooth function,

$I( \mu)=-\frac{1}{2}\int_{M}\Vert\nabla\psi\Vert^{2}d\mu$

where $\psi$ is the unique solution up to a constant term of the equation
$\Delta\psi+(1/p)\langle\nabla p, \nabla\psi\rangle=L^{*}P/p$ and $L^{*}$ is the formal adjoint to $L$ with respect to
$dx$ .

PROOF. Since $\mu$ is the unique invariant probability measure of the diffusion
operator $A=\Delta+(1/p)\langle\nabla P, \nabla\cdot\rangle(i.e. A^{*}P=0)$ , and the integral by $\mu$ of $L^{*}P/P$ is
$0$, there is a solution $\psi$ unique up to a constant term by the Fredholm alter-
native theorem
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Set $h=\log u$ for any strictly positive smooth function $u$ on $M$. Then, we
have

$\int_{M}\frac{Lu}{u}pd_{X}=\int_{M}Lhpdx+\frac{1}{2}\int_{M}\Vert\nabla h\Vert^{2}pdx$

$= \int_{M}hL^{*}pdx+\frac{1}{2}\int_{M}\Vert\nabla h\Vert^{2}pdx$ .

We can substitute $p\Delta\psi+\langle\nabla P, \nabla\psi\rangle$ for $L^{*}p$ from the equation of $\psi$ . Elementary
calculations making use of integration by parts yield the following:

$\int_{M}\frac{Lu}{u}pdx=-\frac{1}{2}\int_{M}\Vert\nabla\psi\Vert^{2}pdx+\frac{1}{2}\int_{M}\Vert\nabla h-\nabla\psi\Vert^{2}pdx$ .
The inPmum is, therefore, attained at $h=\psi$ or $u=e^{\psi}$ .

$ln$ order to show the lower estimate of large deviation we essentially have
to consider the absolutely continuous transformation of the given diffusion
measure, to get some ergodic diffusion measure and to apply the ergodic theorem.
Donsker and Varadhan in [4] used the method of the discrete approximation by
Markov chain and dealt with diffusion processes on a general state space because
there is no concrete representation of the absolutely continuous transformation
density in this case. On the other hand, the lower large deviation estimate of
one dimensional Brownian motion was established by using the Cameron-Martin-
Girsanov formula in [3].

Then, we shall show the lower large deviation estimate of asymptotically
homogeneous diffusion processes on a compact manifold by means of Theorem 2
(the Cameron-Martin-Girsanov formula for inhomogeneous diffusion processes on
a manifold) and Theorem 3 (the strong law of large number for asymptotically
homogeneous diffusion processes).

THEOREM 6. SuPpose that $g_{t}(x)arrow g(x)$ in $C^{3}(M)$ and $b_{t}(x)arrow b(x)$ in $C^{2}(M)$

as $tarrow\infty$ , that is, converge uniformly in $x\in M$ up to the third derivatives and the
second derivatives respectjvely. Then, for any open set $G\subset \mathcal{M}(M)$ ,

$\varliminf_{tarrow\infty}\frac{1}{t}$ log $Q_{s,x}^{t}(G) \geqq-\inf_{\mu\in G}I(\mu)$ .

PROOF. It suffices to show that $\varliminf_{tarrow\infty}(1/t)\log Q_{s,x}^{t}(G)\geqq-I(\mu)$ for every $\mu\in G$

which has the properties stated in Lemma.
Using the function $\psi$ in Lemma or the solution $\psi$ to the equation $A\psi=f$

where $A=\Delta+(1/p)\langle\nabla p, \nabla\cdot\rangle$ and $f=L^{*}p/P$ , we shall consider the following
transformation of drift: $\tilde{L}=L+\langle\nabla\psi, \nabla\cdot\rangle$ . Then $\mu$ is an invariant probability
measure of the diffusion operator $\tilde{L}$, since $\tilde{L}^{*}p=L^{*}p-\langle\nabla\psi, \nabla p\rangle-\Delta\psi\cdot p=0$ .
This is the reason why the above drift is selected. The measure $\mu$ is also
absolutely continuous with respect to the Riemannian volume $d_{t}x$ induced by
$g_{t}(x)$ with the density $p_{t}(x)$ . Consider, in the same manner as above, the
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following transformation of drift: $\tilde{L}_{t}=L_{t}+\langle\nabla_{t}\psi_{t}, \nabla_{t}\cdot\rangle_{t}$ , using the solution $\psi_{t}$

to the equation $A_{t}\psi_{t}=f_{t}$ where $A_{t}=\Delta_{t}+(1/p_{t})\langle\nabla_{t}p_{t}, \nabla_{t}\cdot\rangle_{l},$ $f_{t}=L_{t}^{*}p_{t}/p_{t}$ and $L_{t}^{*}$

is the formal adjoint to $L_{t}$ with respect to $d_{t}x$ .
First, we shall show that an inhomogeneous diffusion process generated by

$\tilde{L}_{t}$ is asymptotically homogeneous with the limiting homogeneous diffusion process
generated by $\tilde{L}$. Regard $t$ as a parameter. Denote by $q_{t}(\tau, x, dy)$ the transition
probability of a homogeneous diffusion process whose generator is $A_{t}$ and denote
by $q(\tau, x, dy)$ that of a homogeneous diffusion process whose generator is $A$ .
It is well known that $\psi_{t}$ and $\psi$ are expressed in the following form:

$\psi_{t}(x)=-\int_{0}^{\infty}d\tau\int_{M}q_{t}(\tau, \chi dy)f_{t}(y)$ and

$\psi(x)=-\int_{0}^{\infty}d\tau\int_{M}q(\tau, x, dy)f(y)$ .
The coefficients of $A_{t}$ , by hypotheses, converge uniformly on $M$ to the corre-
sponding coefficients of $A$ as $tarrow\infty$ . Hence, from [7] p. 272,

$\lim_{trx}\sup_{\in M}|\int_{M}q_{t}(\tau, x, dy)f_{t}(y)-\int_{M}q(\tau, \chi dy)f(y)|=0$ .
Further, from [1] p. 373,

$su_{B}x\in|\int_{M}q_{t}(\tau, x, dy)f_{t}(y)|=\sup_{x\in M}|\int_{M}\{q_{t}(\tau, x, dy)-\mu(dy)\}f_{t}(y)|\leqq Ce^{-\rho\tau}$ ,

where the positive constants $C$ and $\rho$ are independent of $t$ . Then, the Lebesgue
dominated convergence theorem implies that $\psi_{t}(x)arrow\psi(x)$ uniformly in $\chi\in M$ as
$tarrow\infty$ . Moreover, $A_{t}(\psi_{t}-\psi)=f_{t}-f+(A-A_{t})\psi$ . The right hand side, by hypo-
theses, converges to $0$ in $C^{1}(M)$ as $tarrow\infty$ . We can, therefore, show from the
Schauder estimates for $A_{t}$ that $\psi_{l}(x)arrow\psi(x)$ in $C^{3}(M)$ as $tarrow\infty$ . This sufficiently
implies that, for every smooth function $\phi$ on $M,\tilde{L}_{t}\phi(x)arrow\tilde{L}\phi(x)$ uniformly in
$x\in M$ as $tarrow\infty$ .

Let $\tilde{P}_{s,x}$ be the probability law of the inhomogeneous diffusion process
generated by $\tilde{L}_{t}$ starting at $x$ at time $s$ . By Theorem 2 in \S 2,

$\frac{dP_{s.x}}{d\tilde{P}_{s,x}}|_{\mathcal{F}_{S}^{t}}=\exp\{-\int_{s}^{t}\langle\nabla_{\tau}\psi_{r}(x(\tau,)), e_{\alpha}(\tau)\rangle_{\tau}\cdot dw^{\alpha}(\tau)$

$- \frac{1}{2}\int_{s}^{t}\Vert\nabla_{\tau}\psi_{\tau}\Vert_{\tau}^{2}(x(\tau))d_{T}\}$

where $r(\tau)=(x(\tau), e_{\alpha}(\tau))$ is an inhomogeneous diffusion process on the principal
frame bundle $GL(M)$ over $M$ associated with the $\tilde{L}_{t}$-diffusion process on $M$.
Define $E_{t}=\{\omega;l_{s.t}(\omega)\in G\}$ . Then, from Jensen’s inequality,

$Q_{s.x}^{t}(G)=P_{s.x}(E_{t})= \int_{E_{t}}\frac{dP_{s,x}}{d\tilde{P}_{s.x}}|_{\mathcal{F}_{S}^{t}}d\tilde{P}_{s,x}$

$= \tilde{P}_{s,x}(E_{t})\frac{1}{\tilde{P}_{s.x}(E_{t})}\int_{E_{t}}\exp\{-\int_{s}^{t}\langle\nabla_{\tau}\psi_{\tau}(x(\tau)), e_{\alpha}(\tau)\rangle_{\tau}\cdot dw^{\alpha}(\tau)$
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$- \frac{1}{2}\int_{s}^{t}\Vert\nabla_{\tau}\psi_{\tau}\Vert_{\tau}^{2}(x(\tau))d_{T}\}d\hat{P}_{s,x}$

$\geqq\tilde{P}_{s,x}(E_{t})\exp(\frac{1}{\hat{P}_{s.x}(E_{t})}\int_{E_{t}}\{-\int_{s}^{t}\langle\nabla_{\tau}\psi_{\tau}(x(\tau)), e_{\alpha}(\tau)\rangle_{\tau}\cdot dw^{\alpha}(\tau)$

$- \frac{1}{2}\int_{s}^{t}\Vert\nabla_{\tau}\psi_{\tau}\Vert_{\tau}^{2}(x(\tau))d\tau\}dF_{s}x)$ .

By Theorem 3 in \S 3,

$\lim_{tarrow}\tilde{P}_{s,x}(E_{t})=1$ and $\lim_{tarrow\infty}\frac{1}{t}\int_{s}^{t}\Vert\nabla_{\tau}\psi_{\tau}\Vert_{\tau}^{2}(x(\tau))d\tau=\int_{M}\Vert\nabla\psi\Vert^{2}d\mu$ .

We can easily see that there is some constant $C$ such that

$| \int_{E_{t}}\{-\frac{1}{i}\int_{s}^{t}\langle\nabla_{\tau}\psi_{\tau}(x(\tau)), e_{\alpha}(\tau)\rangle_{\tau}\cdot dw^{\alpha}(\tau)\}d\tilde{P}_{s,x}|\leqq\frac{C}{\sqrt{}\overline{t}}$ .

From these facts, we obtain that

$\varliminf_{tarrow\infty}\frac{1}{t}$ log $Q_{s,x}^{t}(G) \geqq-\frac{1}{2}\int_{M}\Vert\nabla\psi\Vert^{2}d\mu$ .

The desired result now follows from Lemma.
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