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Introduction. Let (X, $H$ ) be a couple of a $P^{2}$-bundle over $P^{1}$ and a very
ample divisor on it. We say that (X, $H$ ) is a 3-dimensional rational scroll if
the H-degree of a fibre is one (Definition (1.2)). In this paper we investigate
moduli of some families of stable vector bundles of rank 2 on a 3-dimensional
rational scroll.

In \S 1, we prove a main tool of this paper (Theorem (1.5)). In \S 2 and \S 3,
particular families are treated. One family forms a projective space (Theorem

(2.2)) and another family forms a complement of a dual 3-dimensional rational
scroll (Theorem (3.19)).

\S 1. Preliminary.

(1.1) Let $k$ be an algebraically closed field of arbitrary characteristic and
$X$ be a $P^{2}$-bundle over $P^{1}$ defined over $k$ . There are integers $a\leqq b\leqq 0$ such
that for the vector bundle $\mathcal{V}=O_{p1}(a)\oplus O_{P1}(b)\oplus O_{P^{1}}$ on $P^{1},$ $X$ is isomorphic to $P(\mathcal{V})$ .

Let $\pi$ be the projection of $X$ to $P^{1}$ . Let $D$ be a divisor on $X$ such that
$\pi_{*}O_{X}(D)\simeq \mathcal{V}$ and $F$ be a fibre of $\pi$ . For an integer $q\geqq 1-a$ , the divisor
$H=D+qF$ is very ample and the intersection number $(F\cdot H^{2})=1$ .

DEFINITION (1.2). The couple (X, $H$ ) is called a 3-dimensional rational scroll.

DEFINITION (1.3). Let $\mathcal{E}$ be a vector bundle of rank 2 on a 3-dimensional
rational scroll (X, $H$ ). $\mathcal{E}$ is stable if for any invertible subsheaf $\mathcal{L}$ of $\mathcal{E}$ , the
inequality

$(C_{1}(\mathcal{L})\cdot H^{2})<(C_{1}(\mathcal{E})\cdot H^{2})/2$

holds.

(1.4) Fix a 3-dimensional rational scroll (X, $H$ ) as above and define the
integer $P=(D\cdot H^{2})=2q+a+b$ . Note that $p\geqq 2$ because $P=(q+a)+(q+b)$ and
$q\geqq 1-a$ . For integers $\alpha,$ $x$ and $y$ , let $M(\alpha;x, y)$ be the set of all stable vector
bundles of rank 2 on (X, $H$ ) with fixed Chern classes $C_{1}=-\alpha D+(\alpha p+1)F$ and
$C_{2}=xD^{2}+yD\cdot F$. In this section we prove the following theorem which is a
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main tool of this paper.

THEOREM (1.5). If $\alpha>0$ and $x\leqq 0$ then for any $\mathcal{E}$ in $M(\alpha;x, y)$ , there exzst
integers $l\geqq 0$ and $m$ such that $\mathcal{E}(-lD-mF)$ has a nonzero section whose scheme of
zeros has codimenston $\geqq 2$ and the following inequalities hold

$y\geqq l(\alpha P+1)-(\alpha+2l)m-b\{l(l+\alpha)+x\}$

(1.5.1) $\geqq l(\alpha P+1)-(\alpha+2l)m$

$\geqq 2l(l+\alpha)P+l$ .

REMARK (1.6). Let $\mathcal{E}$ be a stable vector bundle of rank 2 on $X$. Then
$\mathcal{E}\otimes X$ is in $M(\alpha;x, y)$ for some triple $(\alpha;x, y)(\alpha>0, x\leqq 0)$ and a line bundle
$\mathcal{L}$ if and only if $(C_{1}(\mathcal{E})\cdot H^{2})$ is odd and $(\Delta(\mathcal{E})\cdot F)$ is positive, where $\Delta(\mathcal{E})$ is the
cycle $-C_{2}(\mathcal{E})\iota d(\mathcal{E}))=C_{1}(\mathcal{E})^{2}-4C_{2}(\mathcal{E})$ .

PROOF. Assume that $\mathcal{E}\otimes \mathcal{L}$ is in $M(\alpha;x, y)$ for some $\alpha>0,$ $x\leqq 0,$ $y$ and a
line bundle $\mathcal{L}$ . Then

$(C_{1}(\mathcal{E})\cdot H^{2})=(-\alpha D+(\alpha p+1)F\cdot H^{2})-2(C_{1}(\mathcal{L})\cdot H^{2})\equiv 1$ (mod2)

and
$(\Delta(\mathcal{E})\cdot F)=(\Delta(\mathcal{E}\otimes X)\cdot F)=\alpha^{2}-4x>0$ .

Conversely, assume that $(C_{1}(\mathcal{E})\cdot H^{2})$ is odd and $(\Delta(\mathcal{E})\cdot F)$ is positive. Since
$(C_{1}(\mathcal{E})\cdot H^{2})$ is odd, replacing $\mathcal{E}$ by $\mathcal{E}\otimes X$ for suitable line bundle $X$ , we may
assume $C_{1}(\mathcal{E})=-D+(P+1)F$ (or $-2D+(2P+1)F$ ). If $C_{2}(\mathcal{E})=xD^{2}+yD\cdot F$ then
$(\Delta(\mathcal{E})\cdot F)=1-4x$ (or $4-4x$ respectively). Therefore we have $x\leqq 0$ .

LEMMA (1.7). Let $\mathcal{E}$ be a vector bundle of rank 2 on $P^{2}$ . If $C_{2}(\mathcal{E})\leqq 0$ then
$H^{0}(P^{2}, \mathcal{E})\neq(0)$ .

PROOF. First notice that $\mathcal{E}$ is not simple since $\Delta(\mathcal{E})=C_{1}(\mathcal{E})^{2}-4C_{2}(\mathcal{E})\geqq 0([3]$

Corollary 4.3.1). Since $C_{1}(\mathcal{E}^{v})=-C_{1}(\mathcal{E}),$ $C_{2}(\mathcal{E}^{v})=C_{2}(\mathcal{E})$ and $\mathcal{E}^{v}=\mathcal{E}(-C_{1}(\mathcal{E}))$ , we may
assume $C_{1}(\mathcal{E})\leqq 0$ and $C_{2}(\mathcal{E})\leqq 0$ . Let $n$ be the least integer such that $H^{0}(P^{2}, \mathcal{E}(n))$

$\neq(0)$ . We have to show that $n\leqq 0$ . Take a nonzero section $s$ of $\mathcal{E}(n)$ . Then
the scheme of zeros of $s$ represents the second Chern class of $\mathcal{E}(n)$ . So we see
that

$C_{2}(\mathcal{E}(n))=n^{2}+nC_{1}(\mathcal{E})+C_{2}(\mathcal{E})\geqq 0$ .
If $n$ were positive, we would have $2n>-C_{1}(\mathcal{E})$ . Hence $C_{1}(\mathcal{E}(n))=2n+C_{1}(\mathcal{E})>0$ .
This implies, however, that $\mathcal{E}$ is simple ([5] Proposition (4.1)). This is a con-
tradiction. Thus we have $n\leqq 0$ .

PROPOSITION (1.8). Let $\mathcal{E}$ be a vector bundle of rank 2 on X. If $(C_{2}(\mathcal{E})\cdot F)$

ff $0$ then there is a line bundle $\mathcal{L}=O_{X}(lD+mF)$ such that $l\geqq 0$ and $\mathcal{E}\otimes X^{v}$ has a
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nonzero section whose scheme of zeros has codimenston $\geqq 2$ .
PROOF. Since $(C_{2}(\mathcal{E})\cdot F)\leqq 0$ , by Lemma (1.7) we have $\pi_{*}\mathcal{E}\neq 0$ . $\pi_{*}\mathcal{E}$ is

torsion free because so is $\mathcal{E}$ . Let $\mathcal{L}’$ be an invertible subsheaf of $\pi_{*}\mathcal{E}$ such that
the composition

$\pi^{*}X’arrow\pi^{*}\pi_{*}\mathcal{E}arrow \mathcal{E}$

is not zero. This morphism defines an elements $s$ of $Hom(\pi^{*}\mathcal{L}’, \mathcal{E})$

$=H^{0}(X, \pi^{*}\mathcal{L}^{\prime\vee}\otimes \mathcal{E})$ . Let $Y$ be the scheme of zeros of $s$ . Let $A$ be the maximal
effective divisor contained in Y. $s$ is regarded as a section of $\pi^{*}X^{\prime^{v}}\otimes \mathcal{E}(-A)$

and its scheme of zeros has codimension $\geqq 2$ . Then $\mathcal{L}=\pi^{*}\mathcal{L}’\otimes O_{X}(A)$ is a
desired line bundle.

LEMMA (1.9). Let $\mathcal{E}$ be a vector bundle of rank 2 on $X$ with $C_{2}(\mathcal{E})=xD^{2}+yD\cdot F$.
If $\mathcal{E}$ has a nonzero section such that its scheme of zeros has codimenston $\geqq 2$ then
$x\geqq 0$ and $bx+y\geqq 0$ .

PROOF. Let $Y$ be the scheme of zeros of the section. Then $Y$ represents
the second Chern class of $\mathcal{E}$ . The complete linear systems $|F|$ and $|D-aF|$

are base point free. Thus we see that $(C_{2}(\mathcal{E})\cdot F)=x\geqq 0$ and $(C_{2}(\mathcal{E})\cdot D-aF)$

$=bx+y\geqq 0$ .
(1.10) PROOF OF THEOREM (1.5). Let $\mathcal{E}$ be as in Theorem (1.5). Then we

have $(C_{2}(\mathcal{E})\cdot F)=x\leqq 0$ . By Proposition (1.8) there are integers $1\geqq 0$ and $m$ such
that $\mathcal{E}(-lD-mF)$ has a nonzero section whose scheme of zeros has codimension
$\geqq 2$ . The section makes the line bundle $O_{X}(lD+mF)$ a subsheaf of $\mathcal{E}$ and then
by the stability we have

$(lD+mF\cdot H^{2})=lp+m<(C_{1}(\mathcal{E})\cdot H^{2})/2=1/2$ .

Hence $lP+m\leqq 0$ . The second Chern class of $\mathcal{E}(-lD-mF)$ is

$\{l(l+\alpha)+x\}D^{2}+\{y+(\alpha+2l)m-l(\alpha p+1)\}D\cdot F$ .

By Lemma (1.9) we have $1(l+\alpha)+x\geqq 0$ and

$b\{l(l+\alpha)+x\}+y+(\alpha+2l)m-l(\alpha p+1)\geqq 0$ .

Using the inequality $lP+m\leqq 0$, we get

$y\geqq l(\alpha P+1)-(\alpha+2l)m-b\{l(l+\alpha)+x\}$

$\geqq l(\alpha p+1)-(\alpha+2l)m$

$\geqq 2l(l+\alpha)P+l$ .
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\S 2. The moduli of $M(\alpha;0,0)$ .
In this section, we investigate the moduli of $M(\alpha;0,0)$ .

PROPOSITION (2.1). Let $\alpha$ be a $po\alpha tive$ integer and $\mathcal{E}$ be a vector bundle of
rank 2 on $X$ with $C_{1}(\mathcal{E})=-\alpha D+(\alpha P+1)F$ and $C_{2}(\mathcal{E})=0$ . Then $\mathcal{E}$ is stable if and
only if $\mathcal{E}$ is obtained from a non-tnvial extension

$0arrow O_{X}arrow \mathcal{E}arrow \mathcal{O}_{X}(-\alpha D+(\alpha P+1)F)arrow 0$ .

PROOF. If $\mathcal{E}$ is in $M(\alpha;0,0)$ then (1.5.1) says that

$0\geqq l(\alpha P+1)-(\alpha+2l)m$

$\geqq 2l(l+\alpha)P+l$ .

Therefore $l=m=0$ . Hence $\mathcal{E}$ has a nonzero section whose scheme of zeros has
codimension $\geqq 2$ . Since $C_{2}(\mathcal{E})=0$ , the section makes $O_{X}$ a line subbundle of $\mathcal{E}$ .
Thus we get an extension;

$0arrow O_{X}arrow \mathcal{E}arrow \mathcal{O}_{X}(-\alpha D+(\alpha P+1)F)arrow 0$ .
This is non-trivial because $\mathcal{E}$ is stable.

Conversely, assume that there is a non-trivial extension

$0arrow O_{X}arrow \mathcal{E}arrow o_{X}(-\alpha D+(\alpha P+1)F)arrow 0$ .

Since $(C_{1}(\mathcal{E})\cdot H^{2})=1$ , we have to show that for every invertible subsheaf $\mathcal{L}$ of
$\mathcal{E},$ $(C_{1}(\mathcal{L})\cdot H^{2})\leqq 0$ holds. If contrary there were an invertible subsheaf $\mathcal{L}$ of $\mathcal{E}$

such that $(C_{1}(X)\cdot H^{2})\geqq 1$ then $X$ would not be contained in $O_{X}$ . Therefore the
composition

$Xarrow \mathcal{E}arrow O_{X}(-\alpha D+(\alpha p+1)F)$

is not zero. Comparing H-degrees, we see that the morphism $Xarrow$

$O_{X}(-\alpha D+(\alpha p+1)F)$ is an isomorphism. This is a contradiction.

THEOREM (2.2). The moduli of $M(\alpha;0,0)$ is the projective space
$P(H^{1}(X, O_{X}(\alpha D-(\alpha p+1)F))^{\vee})$ and has a universal family.

PROOF. Denote by $\mathcal{M}$ the line bundle $O_{X}(-\alpha D+(\alpha P+1)F)$ and $W$ the
cohomology group $H^{1}(X, \mathcal{M}^{v})$ . For $\mathcal{E}$ in $M(\alpha;0,0)$ , taking a choice of a non-
trivial extension

$0arrow 0_{X}arrow \mathcal{E}arrow \mathcal{M}arrow 0$

is equivalent to taking a choice of a nonzero element of $H^{0}(X, \mathcal{E})\simeq k$ . So the
set $M(\alpha;0,0)$ is parametrized by the projective space $P=P(W^{\vee})$ . Let $\rho$ and $\sigma$

be the projections $X\cross Parrow X$ and $X\cross Parrow P$ . A universal quotient morphism
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$W^{\vee}\otimes O_{P}arrow O_{P}(1)$ defines an element $\xi$ of $H^{0}(P, W\otimes O_{P}(1))\simeq H^{1}(X\cross P, \rho^{*}\mathcal{M}^{\vee}\otimes\sigma^{*}O_{P}(1))$ .
$\xi$ provides us with an extension

(2.2.1) $0arrow\sigma^{*}O_{P}(1)arrow \mathcal{E}arrow\rho^{*}\mathcal{M}arrow 0$ .
We claim that $\mathcal{E}$ is a universal family of $M(\alpha;0,0)$ . Assume that there are a
k-scheme $T$ and a vector bundle $\mathcal{R}$ on $X\cross T$ such that for every closed point
$t$ of $T,$ $\mathcal{R}_{t}=\mathcal{R}\otimes k(t)$ is in $M(\alpha;0,0)$ . Let $\rho’$ and $\sigma’$ be the projections
$X\cross Tarrow X$ and $X\cross Tarrow T$ . Since $H^{1}(X, \mathcal{R}_{t})=0$ for all $t\in T,$ $\sigma_{*}’(\mathcal{R})$ is locally free
([1] EGA $m,$ $7.7$ and 7.8). By this and Proposition (2.1), $\sigma^{\prime*}\sigma_{*}’\mathcal{R}$ is a line sub-
bundle of $R$ and the cokernel of $\sigma^{r*}\sigma_{*}’\mathcal{R}arrow \mathcal{R}$ is isomorphic to the line bundle
$\sigma^{\prime*}X\otimes\rho^{\prime*}\mathcal{M}$ for a line bundle $\mathcal{L}$ on $T$ . Put $\mathcal{G}=X^{v}\otimes\sigma_{*}’\mathcal{R}$ . Then there is an
extension

(2.2.2) $0arrow\sigma^{\prime*}\mathcal{G}arrow \mathcal{R}\otimes\sigma^{\prime*}\mathcal{L}^{v}arrow\rho^{\prime*}\mathcal{M}arrow 0$ .
This corresponds to an element of $H^{1}(X\cross T, \rho^{\prime*}\mathcal{M}^{v}\otimes\sigma^{\prime*}\mathcal{G})\simeq H^{0}(T, W\otimes \mathcal{G})$ which
can be regarded as a morphism $W^{\vee}\otimes O_{T}arrow \mathcal{G}$. By Proposition (2.1), this is sur-
jective at every closed point of $T$ therefore actually surjective by Nakayama’s
lemma. By the universality of $P$ there is a morphism $g:Tarrow P$ such that
$\mathcal{G}\simeq g^{*}O_{P}(1)$ and the pull back of the extension (2.2.1) by the morphism $id\cross g$

is equivalent to (2.2.2). Thus we get $\mathcal{R}\otimes\sigma^{\prime*}X^{v}\simeq(id\cross g)^{*}\tilde{\mathcal{E}}$ . This shows that
$P$ is the fine moduli space of $M(\alpha;0,0)$ and $\mathcal{E}$ is a universal family.

\S 3. The moduli of $M(1;0,1)$ .
In this section, we investigate the moduli of $M(1;0,1)$ .
PROPOSITION (3.1). If $\mathcal{E}$ is in $M(1;0,1)$ then there is a non-trivial extension

$0arrow O_{X}arrow \mathcal{E}(F)arrow O_{X}(-D+(p+3)F)arrow 0$ .
PROOF. In this case, (1.5.1) says that

$1\geqq l(P+1)-(1+2l)m$

$\geqq 2l(l+1)p+l$ .
From these we deduce that $l=0$ and $m=0$ or $m=-1$ . Assume $m=0$ . $\mathcal{E}$ has a
nonzero section whose scheme of zeros has codimension $\geqq 2$ . Let $Y$ be the
scheme of zeros of the section. There is an exact sequence

$0arrow O_{X}arrow \mathcal{E}arrow \mathcal{I}_{Y}\otimes\det \mathcal{E}arrow 0$ ,

where $\mathcal{I}_{Y}$ is the sheaf of ideals of $Y$ in $X$. Since $C_{2}(\mathcal{E})=D\cdot F,$ $Y$ is a line in a
fibre of $\pi$ . Denote by $\mathfrak{N}_{Y/X}$ the normal bundle of $Y$ in $X$ then $\mathcal{E}\otimes O_{Y}\simeq \mathfrak{N}_{Y/X}$

([4] Chapter II, 5.1). On one hand, we have that det $\mathcal{E}\otimes O_{Y}\simeq \mathcal{O}_{Y}(-1)$ . On the
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other hand, det $\mathfrak{N}_{Y/X}$ is obviously isomorphic to $O_{Y}(1)$ . Thus we see that this
is not the case. We have, therefore, that $m=-1$ and hence $\mathcal{E}(F)$ has a non-
zero section whose scheme of zeros has codimension $\geqq 2$ . Since $C_{2}(\mathcal{E}(F))=0$ ,

the section gives rise to a line subbundle $O_{X}$ of $\mathcal{E}(F)$ and we get an extension;

$0arrow O_{X}arrow \mathcal{E}(F)arrow o_{X}(-D+(p+3)F)arrow 0$ .

Tbis extension is not trivial because of the stability of $S$ .

PROPOSITION (3.2). Let $\mathcal{E}$ be a vector bundle of rank 2 on X. Then the
following conditions are equivalent to each other.

(1) There is a non-trivial extenston

$0arrow O_{X}arrow \mathcal{E}(F)arrow O_{X}(-D+(p+3)F)arrow 0$

and $\mathcal{E}$ is not stable.
(2) There are a line $Y$ in a fibre of $\pi$ and an exact sequence

$0arrow O_{X}(-D+(P+1)F)arrow \mathcal{E}arrow \mathcal{I}_{Y}arrow 0$ .

PROOF. (1) $\Rightarrow(2)$ . Let $\mathcal{L}$ be an invertible subsheaf of $\mathcal{E}(F)$ such that

$(C_{1}(\mathcal{L})\cdot H^{2})\geqq(C_{1}(\mathcal{E}(F))\cdot H^{2})/2=3/2$ .

$X$ is not contained in $O_{X}$ so that the composition

$\mathcal{L}arrow \mathcal{E}(F)arrow O_{X}(-D+(p+3)F)$

is a nonzero morphism and not an isomorphism because the extension is non
trivial. This shows that if $X=O_{X}(lD+mF)$ then $l\leqq-1,$ $m\leqq P+3$ and $lp+m=2$ .
We see that $1=-1$ and $m=P+2$ . Then $\mathcal{E}(F)\otimes X^{v}=\mathcal{E}(D-(P+1)F)$ has a non-
zero section whose scheme of zeros $Y$ has codimension $\geqq 2$ . So we have

$0arrow O_{X}arrow \mathcal{E}(D-(P+1)F)arrow O_{X}(D-(p+1)F)\otimes \mathcal{I}_{Y}-0$ .

Since $C_{2}(\mathcal{E}(D-(P+1)F))=D\cdot F$, we see that $Y$ is a line in a fibre of $\pi$ . Tensor-
ing the above sequence with the line bundle $O_{X}(-D+(p+1)F)$ , we get a desired
exact sequence.

(2) $\Rightarrow(1)$ . Tensoring the given exact sequence with the line bundle $O_{X}(F)$ ,

we have

(3.2.1) $0arrow O_{X}(-D+(p+2)F)arrow \mathcal{E}(F)arrow O_{X}(F)\otimes \mathcal{I}_{Y}arrow 0$ .

Since $H^{l}(X, O_{X}(-D+(p+2)F))=(0)(i=0,1)$ ,

$H^{0}(X, \mathcal{E}(F))\simeq H^{0}(X, O_{X}(F)\otimes \mathcal{I}_{Y})\simeq k$ .

Let $s$ be a nonzero section of $\mathcal{E}(F)$ and $Z$ be the scheme of zeros of $s$ . By
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(3.2.1), we see that $H^{0}(X, \mathcal{E}(F-A))=(O)$ for any positive divisor $A$ . Hence $Z$ is
of codimension $\geqq 2$ . $Z$ must be empty because of $C_{2}(\mathcal{E}(F))=0$ . Thus we get
an exact sequence

(3.2.2) $0arrow O_{X}arrow \mathcal{E}(F)arrow O_{X}(-D+(p+3)F)arrow 0$ .

If $\mathcal{E}(F)\simeq O_{X}\oplus \mathcal{O}_{X}(-D+(p+3)F)$ then the cokernel of the morphism $O_{X}(-D$

$+(p+2)F)arrow \mathcal{E}(F)$ in (3.2.1) contains the torsion subsheaf $O_{F}(-1)$ . This is
impossible and hence (3.2.2) does not split.

REMARK (3.3). Let $\mathcal{L}=o_{X}(-D+(P+1)F)$ and $Y$ be a line in a fibre of $\pi$ ,
then $H^{1}(X, X)=H^{2}(X, X)=(O)$ and det $\mathfrak{N}_{Y/X}\simeq X^{\vee}\otimes O_{Y}$ . Hence $\mathcal{E}xt_{O_{X}}^{1}(\mathcal{I}_{Y}, L)\simeq O_{Y}$

and $Ext^{1}(\mathcal{I}_{Y}, \mathcal{L})\simeq H^{0}(Y, \mathcal{E}_{X}t_{O_{X}}^{1}(\mathcal{I}_{Y}, X))\simeq k$ so that the set of all isomorphism
classes of such vector bundles as in Proposition (3.2) is in one to one correspon-
dence with the set of all lines in fibres of $\pi$ ([2] Remark 1.1.1).

(3.4) Put $\tilde{X}=P(\mathcal{V}^{v})$ . Let $\tilde{\pi}$ be the projection of $\tilde{X}$ to $P^{1},\tilde{D}$ be a divisor
on $\tilde{X}$ such that $\tilde{\pi}_{*}O_{\tilde{X}}(\tilde{D})\simeq V^{\vee}$ and fl be a fibre of $\tilde{\pi}$ . Denote by $\Omega$ the relative
differential sheaf of $\pi$ : $Xarrow P^{1}$ . There is an exact sequence

(3.4.1) $0arrow O_{X}arrow(\pi^{*}\mathcal{V}^{v})(D)arrow\Omega^{\vee}arrow 0$ .

From this we get

$\tilde{X}\cross X\simeq P((\pi^{*}\mathcal{V}^{v})(D))P^{1}$

$\bigcup_{\tilde{Y}}$

$\simeq$

$P(\Omega^{\vee})\cup$

$\tilde{X}$ parametrizes all the lines of fibres of $\pi$ and the morphism

$\tilde{Y}\subsetarrow\tilde{X}\cross Xp1arrow\tilde{X}$

is the universal family of the lines. Now we consider the following diagram

(3.4.2)
$\tilde{X}\int^{\tilde{q}}\tilde{X}\cross X\downarrow$

$\supset$
$\tilde{X}\cross X\supset\tilde{Y}$

$\backslash _{X}^{q}$

$P1\downarrow f$

$P^{1}\cross P^{1}$ $\supset$ $\Delta_{P1}$

where $\Delta_{p1}$ is the diagonal of $P^{1}\cross P^{1}$ .

PROPOSITION (3.5). Denote by -T the line bundle

$O_{\tilde{X}\cross X}(-\tilde{X}\cross D+(p+1)\tilde{X}\cross F-\tilde{D}\cross X-(p+3)\tilde{F}\cross X)$ .
Then
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$\mathcal{I}^{\vee}\otimes 0_{Y}\simeq\det \mathfrak{N}_{\tilde{Y}/\tilde{X}\cross X}$

and
$H^{1}(\tilde{X}\cross X,\overline{\mathcal{L}})=H^{2}(\tilde{X}\cross X,\overline{\mathcal{L}})=0$ .

PROOF. As a divisor on $\tilde{X}\cross X,\tilde{X}\cross XP^{1}$ is linearly equivalent to $\tilde{X}\cross F+\hat{F}\cross X$.
Thus we have $\tilde{X}\cross X|_{\tilde{X}xX}\sim 2f^{-1}(x)P^{1}P^{1}(x\in\Delta_{p1}(k))$ . By the exact sequence (3.4.1),

we see that $\tilde{Y}$ is linearly equivalent to $(\tilde{D}\cross X+\tilde{X}\cross D)|_{\tilde{X}xX}$ on $\tilde{x}_{P}x_{1}X$. There-
fore we have

det $\mathfrak{N}_{\tilde{Y}/\tilde{X}xX}\simeq \mathfrak{N}_{\tilde{Y}/\tilde{X}xX}\otimes \mathfrak{N}_{\tilde{X}xX/\tilde{X}\cross X}P^{1}P^{1}$

$\simeq O_{\tilde{Y}}((\tilde{D}\cross X+\tilde{X}\cross D)|_{\tilde{Y}}+2f^{-1}(x)|_{\tilde{Y}})$

$\simeq \mathcal{I}^{\vee}\mathfrak{U}_{\tilde{Y}}$

The vanishing of cohomology groups is straightforward.

(3.6) As in Remark (3.3), there is a vector bundle $Q$ on $\tilde{X}\cross X$ defined by
an exact sequence

$0arrow farrow Qarrow \mathcal{I}_{i’}arrow 0$ .
By Proposition (3.2) and Remark (3.3), $Q$ is a family of vector bundles on $X$

which parametrizes the set of all the isomorphic classes of such vector bundles
as in Proposition (3.2).

PROPOSITION (3.7). There is an exact sequence

(3.7.1) $0arrow\tilde{q}^{*}O_{\tilde{X}}(\tilde{D}+(p+1)\tilde{F})arrow Q’arrow q^{*}O_{X}(-D+(p+3)F)arrow 0$

on $\tilde{X}\cross X$, where $Q’=Q(\tilde{X}\cross F+\tilde{D}\cross X+(p+2)F\cross X)$ .
PROOF. By Proposition (3.2), $\tilde{q}_{*}Q(\tilde{X}\cross F)$ is an invertible sheaf on $\tilde{X}$ so that

$\tilde{q}^{*}\tilde{q}_{*}Q(\tilde{X}\cross F)$ is a line subbundle of $Q(\tilde{X}\cross F)$ . Put $\mathcal{G}=\tilde{q}^{*}\tilde{q}_{*}Q(\tilde{X}\cross F)$ . We claim
that $\mathcal{G}\simeq O_{\tilde{X}}$ . $x(-\tilde{F}\cross X)$ . Since $\mathcal{G}$ is a line subbundle of $Q(\tilde{X}\cross F)$ , we have
$C_{2}(Q(\tilde{X}\cross F)\otimes \mathcal{G}^{v})=0$ . If $C_{1}(\mathcal{G})=x\tilde{D}\cross X+y\tilde{F}\cross X$ then

$C_{2}(Q(\tilde{X}\cross F)\otimes \mathcal{G}^{v})=(\tilde{X}\cross F-C_{1}(\mathcal{G}))\cdot(\tilde{X}\cross F-C_{1}(\mathcal{G})+C_{1}(Q))+C_{2}(Q)$

$=(x^{2}+x)(\tilde{D}^{2})\cross X-x(p+3)\tilde{D}\cross F+x\tilde{D}\cross D$

$-(y+1)(p+3)\tilde{F}\cross F+(y+1)\tilde{F}\chi D$

$+(2xy+y+x(p+3)+1)(D\cdot F)\cross X$ .
$C_{2}(Q(\tilde{X}\cross F)\otimes \mathcal{G}^{v})=0$ implies $x=0$ and $y=-1$ . So we have $\mathcal{G}\simeq O_{\tilde{X}xX}(-F\cross X)$

and get an exact sequence

$0arrow O_{\tilde{X}}$ . $Xarrow Q(\tilde{X}\cross F+\hat{F}\chi X)arrow\det Q(\tilde{X}\cross F+\hat{F}\cross X)arrow 0$ .
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By tensoring this sequence with the line bundle $\tilde{q}^{*}O_{\tilde{X}}(\tilde{D}+(p+1)F)$ , the desired
exact sequence is obtained.

(3.8) When we regard the exact sequence (3.7.1) as an element of

$H^{1}(\tilde{X}\cross X,\tilde{q}^{*}O_{\tilde{X}}(D+(p+1)\hat{F})\otimes q^{*}\mathcal{O}_{X}(D-(p+3)F))$

$\simeq H^{0}(\tilde{X}, H^{1}(X, O_{X}(D-(p+3)F))\otimes O_{\tilde{X}}(\tilde{D}+(p+1)F))$ ,

this defines a morphism

$\eta$ : $H^{1}(X, o_{X}(D-(P+3)F))^{\vee}\otimes G_{\tilde{X}}arrow \mathcal{O}_{\tilde{X}}(\tilde{D}+(p+1)F)$ .
By Proposition (3.2), for any closed point $x$ of $\tilde{X},$

$\eta(x)$ is a nonzero element of
$H^{1}(X, O_{X}(D-(P+3)F))$ . This means that $\eta$ is surjective at any closed point of
X. Therefore $\eta$ is surjective by Nakayama’s lemma and hence it defines a
morphism

$\Psi$ : $\tilde{X}arrow P=P(H^{1}(X, o_{X}(D-(P+3)F))^{\vee})$

such that $\Psi^{*}O_{P}(1)\simeq \mathcal{O}_{\tilde{X}}(D+(p+1)F)$ .
REMARK (3.9). The cohomology groups $H^{1}(X, o_{X}(D-(p+3)F))$ and

$H^{0}(\tilde{X}, O_{\tilde{X}}(\mathfrak{H}+(p+1)F))$ are dual to each other.
PROOF.

$H^{1}(X, o_{X}(D-(P+3)F))$

$\simeq H^{1}(P^{1}, \pi_{*}O_{X}(D-(p+3)F))$

$\simeq H^{1}(P^{1}, \mathcal{V}(-(p+3)))$

$\simeq H^{0}(P^{1}, \mathcal{V}^{v}(P+1))^{\vee}$

$\simeq H^{0}(\tilde{X}, O_{\tilde{X}}(\tilde{D}+(p+1)F))^{\vee}$

(3.10) Let $\xi$ be a nonzero element of $H^{1}(X, O_{X}(D-(p+3)F))$ and $\mathcal{E}$ be the
vector bundle which is defined by the extension

(3.10.1) $0arrow O_{X}arrow \mathcal{E}(F)arrow \mathcal{O}_{X}(-D+(p+3)F))arrow 0$

corresponding to $\xi$.
LEMMA (3.11). $\mathcal{E}$ is not stable if and only if $H^{0}(X, \mathcal{E}^{v})\neq(0)$ .
PROOF. If $H^{0}(X, \mathcal{E}^{v})\neq(0)$ , then $\mathcal{E}^{\vee}$ is not stable because of $(C_{1}(\mathcal{E}^{v})\cdot H^{2})=-1$ .

On $the^{-}contrary$ , if $\mathcal{E}$ is not stable then by Proposition (3.2), there is an exact
sequence

$0arrow O_{X}(-D+(P+1)F)arrow \mathcal{E}arrow \mathcal{I}_{Y}arrow 0$ .
Thus $\mathcal{E}^{v}=\mathcal{E}(D-(P+1)F)$ contains $O_{X}$ .
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(3.12) Taking dual of the exact sequence (3.10.1) and tensoring it with
$O_{X}(F)$ , we have

$t$

$0arrow o_{X}(D-(p+2)F)arrow \mathcal{E}^{v}arrow \mathcal{O}_{X}(F)arrow 0$ .

If $H^{0}(X, \mathcal{E})\neq(0)$ , let $s$ be a nonzero section of $\mathcal{E}^{\vee}$ , then $t(s)\neq 0$ because
$H^{0}(X, O_{X}(D-(p+2)F))=(0)$ . Now consider the following diagram

$0$ $0$ $0$

$0arrow$
$o_{F}(1)\uparrow$ $arrow \mathcal{E}^{v}\otimes O_{F}\uparrowarrow$ $0_{F}\uparrow$

–0
$\uparrow$ $\uparrow$ $\uparrow$

(3.12.1) $0arrow o_{X}(D-(P+2)F)arrow$ $\mathcal{E}^{v}$ $arrow O_{X}(F)arrow 0$

$\uparrow$ $\uparrow$ $\uparrow u$

$0arrow \mathcal{O}_{X}(D-(p+3)F)\uparrowarrow \mathcal{E}^{v}(-F)\uparrowarrow$ $O_{X,\uparrow}$

$arrow 0$

$0$ $0$ $0$

where the morphism $u$ is defined by the nonzero section $t(s)$ of $O_{X}(F)$ . Take
cohomology groups of the diagram (3.12.1) and then we get

$0arrow H^{0}(X, \mathcal{E}^{v})arrow^{t}H^{0}(X, O_{X}(F))arrow^{v}H^{1}(X, O_{X}(D-(p+2)F))$

$\uparrow$ $\uparrow u$

$\phi$

$\uparrow h$

$0$ $arrow$ $H^{0}(X, O_{X})$ $arrow H^{1}(X, O_{X}(D-(p+3)F))$

$\uparrow$

$0$

PROPOSITION (3.13). $\xi$ is contained in $kerh$ .
PROOF. $h(\xi)=h\phi(1)=vu(1)=vt(O)=0$ .
(3.14) Let $x$ be a closed point of $P^{1}$ and $F_{x}=\pi^{-1}(x)$ . Consider the exact

sequence
$0arrow o_{X}(D-(P+3)F)arrow O_{X}(D-(p+2)F)arrow O_{F_{x}}(1)arrow 0$

and take cohomology groups. Then we get the exact sequence

$0arrow H^{0}(F_{x}, O_{F_{x}}(1))$

$h_{x}$

$arrow H^{1}(X, o_{X}(D-(P+3)F))arrow H^{1}(X, o_{X}(D-(P+2)F))arrow 0$ .
Let $\xi$ be a nonzero element of $H^{1}(X, O_{X}(D-(p+3)F))$ and $\mathcal{E}$ be the vector bundle
defined by $\xi$ as in (3.10). The converse of Proposition (3.13) holds.

PROPOSITION (3.15). If $\xi$ is contained in $kerh_{x}$ for some closed point $x$ of
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$P^{1}$ then $\mathcal{E}$ is not stable.
PROOF. Standard diagram chasing shows that $H^{0}(X, \mathcal{E}^{\vee})\neq(0)$ . By Lemma

(3.11), $\mathcal{E}$ is not stable.
Denote by $S$ the union of $kerh_{x}’ s$ where $x$ runs through all closed points

of $P^{1}$ .

LEMMA (3.16). The set $S$ is not contained in any proper linear subspace of
$H^{1}(X, O_{X}(D-(p+3)F))$ .

PROOF. Let $x$ be a closed point of $P^{1}$ and $u_{x}$ be a morphism

$\mathcal{V}^{\vee}(P)arrow \mathcal{V}^{v}(p+1)$

which vanishes at $x$ . Then the morphisms

$h_{x}$ : $H^{1}(X, O_{X}(D-(p+3)F))arrow H^{1}(X, O_{X}(D-(p+2)F))$

and
$u_{x}$ : $H^{0}(P^{1}, \mathcal{V}^{v}(p))arrow H^{0}(P^{1}, \mathcal{V}^{v}(p+1))$

are dual to each other. Thus it suffices to prove that the intersection of
$imu_{x}’ s$ is (0). Let $x_{1},$

$\cdots$ , $x_{l}(l=p+2-a)$ be distinct closed points of $P^{1}$ . Then
$imu_{x_{1}}\cap\cdots\cap imu_{x_{l}}=(0)$ because

$\mathcal{V}^{v}(p+1)=O_{P1}(p+1-a)\oplus o_{p1}(p+1-b)\oplus o_{P^{1}}(p+1)$ .
The projective version of Lemma (3.16) is available.

PROPOSITION (3.17). $\Psi(\tilde{X})$ is not contained in any hyperplane of $P$ .

(3.18) Proposition (3.17) shows that the morphism $\eta$ in (3.8) induces an
injective morphism of global sections. By Remark (3.9), $\eta$ induces an isomorphism
of global sections so that $\Psi$ is defined by the complete linear system
$|O_{\tilde{X}}(\tilde{D}+(p+1)\tilde{F})|$ . Putting all these above together, an argument similar to the
proof of Theorem 2.2 shows the following theorem.

THEOREM (3.19). The moduli on $M(1;0,1)$ is the complement of the dual
3-dimenstonal rational scroll (X, $ox(\tilde{D}+(p+1)\tilde{F})$ ) and has a universal family.
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