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Introduction.

In this paper we study the problem of finding a smooth map between smooth
manifolds with nice Morin singularities in a given homotopy class. A geometric
interpretation of Morin singularities of a smooth map f:N—P is as follows.
Let Si(f) denote the set of all points x of N such that the kernel rank of df.
is 7. For a certain map f, S%(f) becomes a submanifold of N and we may define
Sti(f) as the set S/(f|Si(f)) for f|S¥f) : S(f)—P similarly. Let n=dimN\,
p=dim P and 7/=max(1l, n—p-1). Let I, be the r-sequence (z, 1, ---, 1). Then
we may continue to define S?7(f) as S'(f|S?r-1) inductively. A point of S*°(f)
or ST7(f) is called a Morin singularity of symbol (¢, 0) or I, respectively. How-
ever this approach does not make it clear for what part of smooth maps f, S’r(f)
can be defined. For this we review the following important observation due to
Boardman [2].

There exist a submanifold 2*°(N, P) and a series of submanifolds ; 271N, P)
DN, P)D .- DXYI(N, P)D -+ in the infinite jet space J*(N, P). The codi-
mension of X*°(N, P) is i{(p—n-+i) and that of XI(N, P) is n—p-+r for n=p
and »(p—n-+1) for n<p. He has shown that if a jet map j°f : N—=J°(N, P)
of f is transverse to all submanifolds 2*°(N, P) and X7r(N, P), then S*°(f) and
SIr(f) coincide with (G=f)"*(2*°%N, P)) and (5=f)"Y(2Ir(N, P)) respectively.
Therefore for generic maps f we may consider S*°(f) and S¥7(f).

For any integer »=1 we define a subset £2.(N, P) of J°(N, P) as the set of
all jets z such that either z is of maximal rank or a point of X*°(N, P) or
212(N, P)\NXTr+1(N, P). Then 2.N, P) becomes an open subbundle of the fibre
bundle J>(N, P) over N. The first result of this paper is the following.

THEOREM 1. Let p=2. Then for any continuous section s of N into 2.(N, P),
there exists a smooth map g : N—P such that j°g becomes a section of N into
Q.(N, P) homotopic to s in 2,(N, P).

Next we will study the problem of eliminating the Morin singularities S’r(f)
with codimS?7(f)=n from f admitting only Morin singularities.
reduces it to a problem of finding a continuous section of N into £,_;(NV, P)
homotopic to j°f. We will show that if ;°f is transverse to 27r(N, P) for a
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connected and closed manifold N, then the number of points of S?r(f) modulo 2
is the unique obstruction of finding the above section. We should note that this
number is just the Thom polynomial of the topological closure X7r(N, P) for f
(see the definition of [10]).

THEOREM 2. Let r=2, p=2 and codimX*(N, P)=n. Let N and P be
orientable manifolds. Then

(1) A smooth map [ with 7°f(N)CQ.(N, P) is homotopic to a smooth map g
such that j°g(N)C82,-,(N, P) and j=f and j°g are homotopic as continuous sec-
tions of N into Q.(N, P) if and only if the Thom polynomial of ST(N, P) for f
vanishes.

(2) In particular f is homotopic to such a smooth map g in the following
cases;

1) n>p and r=1 (mod 4)

i) n>p,r=2,3 or 4 (mod4) and n—p=1 (mod 2) and

i) n=Zp and n+p+r+rir+1)/2=0 (mod 2).

It will be shown by the Morse inequalities that the similar statement of
for p=1 is not true. If N is an open manifold, then is
a direct consequence of Gromov [8, Theorem 4.1.1] and if n<p, it is also a
special case of du Plessis [4, Theorem B]. So the rest cases will be treated in
this paper. The case »=2 of should be compared with [6, Theorem
1.3] which will play an important role in a proof of (Sections 2 and 3).

The case n=p and p=2 of has been proved by Levine [12,
Theorems 1 and 2] for n>2 and by Eliasberg [5, Corollary of Theorem 4.9]
for n=2. Let X¥r(n, p) be a fibre of X77(N, P) over NXP. To estimate the
primary obstruction class of j*f to be deformed to a section of 2,_,(N, P) over
N (see [18]) we will calculate the number of connected components of 37r(n, p)
and their orientability in Section 4. In Section 5 we will define the dual class
of each connected component of X7r(N, P) for j°f in HeodimZIr@.P(N - ) where
G is either Z or Z/2 depending on its orientability. It will be shown that these
dual classes vanish except for at most one class and that their sum is equal to
the Thom polynomial modulo 2. A proof of Theorem 2 in Section 6 is based
on these facts. For the calculation of Thom polynomials of Morin singularities
see, for example, [7, 11, 15, 17 and 19].

§1. Morin singularities.

Let N and P be paracompact and Hausdorff C* manifolds (simply smooth
manifolds) of dimensions n and p respectively. Let J*(V, P) denote the % jet
space (0=k=c0). If s=t, then we have the canonical projection =§ : J*(N, P)
—JYN, P). Let n% and z% be the projections of J*(N, P) onto N and P mapping
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a k jet onto its source and target respectively. In this section we review the
definition of Boardman submanifold X ?(N, P) only for I=(;, 0) and I, of J*(N, P)
in [2].

We begin with recalling the total tangent bundle D over J2(N, P)([2, Defini-
tion 1.9]). This notion is related to the derivation of functions on J/~(, P). A
function ¢ from an open set U of J*(N, P) into R is called smooth if there
exists a smooth function ¢ on some open subset of J*(N, P) with ¢=¢-x%.
Any smooth section D of D over U determines a homomorphism between the
module of smooth functions on U. That is, D¢ is a smooth function on U with
property D(¢i+¢:)=D¢,+D¢,. Any vector field d on an open set V of N
defines a smooth section D of D on (z%) (V) characterized by the following
equality for any smooth map f : V—P

(%) D] f=d(g-j=]).

The total tangent bundle D is identified with (z%)*TN by (x). Hence any
smooth section d of (7%)*TN yields a smooth section of D denoted by (zx%)*d.
If d is a section of (z%)*TN and ¢ is a function on J*(N, P), then ((z%)*d)
(¢ox%) is of the form (¢ex%,,) for some function ¢ on J***(N, P). In the sequel we
simply write d(¢) for ¢. Most of the arguments in the definition of XZ(N, P)
in [2] are treated over J*(N, P). However we will work over J*(N, P) where
bk is not less than the length of symbol I, for we will need finiteness of the
dimension of J*(N, P). This approach is guaranteed mainly by [2, Lemmas 1.12,
1.20 and 2.20] and commented in [2, p. 412, line 33].
Let K,=(z%)*TN and P=(z})*TP. First we recall a homomorphism

di: K,—> P over J*(N, P).

Let z be any k& jet of J*(NV, P) with target y of P. Let m, denote the ideal of
smooth function germs vanishing at y. For any section d of K, near z and a
smooth function ¢ in a neighbourhood of y we obtain a smooth function d¢ on
a neighbourhood of z in J*(N, P). This defines a homomorphism &, : K, ,®m,
—R by mapping (d(z), ¢) onto d¢(z) where K, , is a fibre of K, over z. Since
d annihilate mj at y, h, induces h; : K, .Qm,/mj;—R. By identifying m,/m}
with Hom(TP,, R) h; yields a homomorphism d,, ,: K, ,—7T P, which is what we
want to define. Let X%, P) denote the set of all 2 jets z such that the kernel
rank d,, is 2. We define bundles K, and @, over 2*(N, P) as the kernel bundle
Ker(d,) and the cokernel bundle Cok(d,) respectively. Let ¢ be the canonical
projection of P onto @, over 2N, P).

Next we define Y #?(N, P) for /=max(l, n—p-+1) and 7=0 or 1. There
has been defined a symmetric homomorphism #4,: K;QK,—P over J¥N, P) in
[2, Corollary 4.5] (Later we will see briefly the definition of &, together with
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h,, r=3). Then e-h, yields a homomorphism
d, : K, —> Hom(K,, @Q,) over XN, P).

We define 2“7 (N, P) to be the set of all £ jets z of 2%(NV, P) such that the kernel
rank of d, over z is j. If j=1, we put K,=Ker(d,) and Cok(d,) becomes the
line bundle Hom(K,, @,). The definition of Y?(NV, P) goes by induction on r as
follows. Again we have a symmetric homomorphism ((=2)

hiv : QK. QK —> P over SN, P).
The composition
st @ KCQKQK, — P —> Q,
induces a homomorphism
diss : K,—> Hom(@K,, Q) over 3TN, P).

Then X7¢+1(N, P) denotes the set of all £ jets z of Z7¢(N, P) such that d,.; is
a null homomorphism over z. Let YZ¢9(N, P) denote the set X7¢(N, P)\31t+1
(N, P) over which d;:+, is an isomorphism.

Here we see what a map h;4, is (h, will be defined similarly). See the details
in [2, Theorem 4.17). Extend the vector bundles K; to K; over a small neigh-
bourhood of Y7¢(N, P) (i=1 and 2) and take any smooth sections D, of K, and
D,, -+, D;y; of K,. For a germ ¢ near y of P we obtain a smooth function
D;4i(-+- Dy(D1g)) on a neighbourhood of X7¢(N, P). Furthermore it follows that
if either ¢ is a germ of mj or one of {D,}’s vanishes on z, then D,(--- Dy(D;6))

t
vanishes on z. Therefore we obtain a map QK, .QK, .Xm,/m;—R where K, ,
is a fibre of K; over z. By identifying m,/mi with Hom(TP,, R) we have
4
ht+1,z : ®K2,2®Kl,z —_—> TPy

Since the operation of {D;}’s on a function is a derivation, #;,; becomes sym-
metric.

The next important fact is that d,., is extendable to a surjective homomor-
phism ([2, (7.6)])

diss : T(ST-1(N, P) —> Hom(QK,, Q)  over 3TN, P).
The kernel bundle of d,.; over X?¢(N, P) is equal to T(27¢(N, P)). This means

that the normal bundle of I7¢(N, P) in S7t-1(N, P) is given by Hom(®K,, Q).
By [2, (7.7)] we have that K,NT (2 ¢-1(N, P))=K, over X'¢(N, P).

REMARK 1.1. Although we have reviewed the definition of XZ¢(N, P) over
J*(N, P), more careful arguments show that we can actually construct a submani-
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fold X?¢(N, P)’ in J*(N, P) together with the bundles Kj, Q; over J*N, P)’, K;
over X'2(N, P)’ and the homomorphisms d;,; over (zi*)-Y(Z!¢(N, P)") so that
d;+; comes from di.; by =f.; and consequently X7t(N, P) coincides with
(H YT IYN, P)). See [2, Lemma 2.20, 3.6 and 3.10].

§2. A generalization of a theorem of Eliasberg.
For a jet z of Y% ®(N, P) we have a nonsingular homomorphism
(e°h2)z : Kl,z®K1,z I Ql.z-

For each orientation of @, , we can consider the index s of (e<h,),. We define
the semi index of z as min(s, 7—s). Let Y{*?(N, P) denote the set of all jets
z of J4O(N P) such that the semi index of z is s.
We take a sequence of submanifolds NDON,DN,D - DN, and an open set
U of N as follows. Every Nj; is a closed subset in N with codim N;=n—p+j.
N\\N, is a disjoint union of N, s=0, ---, [//2]. There exists a smooth map
g of a neighbourhood of N\U into P. Let C3%_(N, P; {N;}, g) denote the space
of all smooth maps f:N—P for n=p such that
(C-1) f coincides with g on a neighbourhood of N \U,
C-2) (G*NHMEEON, P)=N,; (G HITYN, P))=N, for 1<t<r and
(F*HE1N, P))=@ for t>r,
(C-3) f has no other type of singularities.
Let Homy (TN, TP; {N.}, g) denote the space of all homomorphisms & of TN
into TP such that
(H-1) A coincides with dg on a neighbourhood of N\U,
(H-2) h has a neighbourhood V' of N; where there exists a smooth map f5
in C3.(V, P; {VNN}, g|V) with df,=f1|V,
(H-3) h is of maximal rank outside of MN,.

THEOREM 2.1. Let N;, g and h be as above. Assume that N is connected,
N, sN\U, nonempty for 0=s=[i/2] and n=p=2. Then for any homomorphism
h there exists a smooth map f of C3.(N, P; {Ny, g) such that df and h are
homotopic in Homg (TN, TP; {N;}, g).

PrOOF. The case r=1 of the theorem is [6, Theorem 4.7]. We use it to
prove the case »=2. For h we have a smooth map f,:V—P in (H-2). Take
a sufficiently small tubular disk neighbourhood W of N, in V so that (N, NU)\
W is nonempty. Then g is extendable to a smooth map g on a neighbourhood
of (NNUYUW

{ g on a neighbourhood of N\U
§'=

fh on W
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by the fact that A=dg on a neighbourhood of N\U and df,=h|V. Now we
apply the theorem of Eliasberg [6, Theorem 4.7] for (N \N,, P ; N\\N,, 2).
Then we obtain a smooth map f’ of C3,(N\N,, P ; N\\N,, 2) such that df’ is
homotopic to A |(N\N,). Extend f’ to a smooth map

f’ on N\N,
f:
fh, on W.

Then f has the required properties. Q.E.D.

§3. Proof of Theorem 1.

First we shall prove the relative form of for the special case
that N is an open set of R*® and P=R?.

PROPOSITION 3.1. Let n=p=2 and N be an open submanifold of R". Let
s be a smooth section of 2N, R?) over N for which there exists an open set U
in N and a smooth map g of a neighbourhood of N \U into RP such that j*g=s
on N\U and that j*g is transverse to every submanifold X1t(N, R?) on N\U.
Then there exists a smooth map f such that j* f(N)CQ,(N, R?) and j*f is homo-
topic to s relative to N\U as sections of 8£,(N, R?) over N.

We will need the following lemma.

LEMMA 3.2. For a section s given in Proposition 3.1 there exists a homotopy
52 (0<2Z1) of sections of 2.(N, R?) over N such that

(1) se=s and s;| N U=s|N~\U for any A,

(2) s, is transverse to every XTt(N, RP),

(3) there is a smooth map g of a neighbourhood V of (s;)"* (2% N, RP)) and
NNU into R? with g|(N\U)=g|(N\U) and j*g|V=s,|V.

PrRoOOF. We prove the lemma by induction on ». In the proof we simply
write XIr for XIr(N, R?) and N, for s {(X?r). First we show that s is homo-
topic to a section represented by a smooth map on a neighbourhood of N, and
N NU. We may suppose that N,N\U is nonempty and that s is transverse to
XY1r. We use the same notations in Section 1. Let d/ denote the homomorphism
of TN into TR? induced from d, by s. It follows from Section 1 that TN,C
(s|N)*(T(2 7)) and that K,N\T (3 ?r)= {0} since s~1(XIr+1) is empty. This means
that d7|TN, is an injective homomorphism. By Hirsch’s immersion theorem
we have a homotopy of monomorphisms k;:TN,—TRP? covering a homotopy
relative to (NNU)NN;, 7; : N,—RP? such that k,=d?|TN, and 7, is an immersion
with k,=d(;). Extend %; to a homotopy %, : TN|N,—TR? of homomorphisms
of rank p—1 for any 2 so that 2,=d/ over N,. By using k; we can deform s
to s; in Q.(N, R?) so that d?|TN, induced from d, by s; coincides with d().
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In fact we may apply the covering homotopy property of the fibre bundle
k| X1r: YIr 34N, R?)’ (see Remark 1.1) to the following;

2
s|N, l
ka . ,
N- > YN, R?)

where £, is identified with a map sending a point x of N, into (2;)|(TN),. Let
si: N,—XIr be the homotopy over 2; with s;=s|N,. Since s is transverse to
2Ir we can extend s; to a homotopy s; : N—2,(N, R?) relative to N U so that
(s;)"Y(X¥In=N, and s; is transverse to X!r for any A.

Let (s,)*K;= K, (s)*Q,=Q, and d/,, be induced from d,,, by s;. Then the normal

bundle of N, in N is Hom(Kl@(iaz(%)Kz), Qy and df., : TN, ,—Hom(@K,, Q)

over N, is a surjective homomorphism by Section 1. Therefore we obtain line
bundles L, ---, L, in TN|N, such that L, is mapped isomorphically onto

Hom((thz, Q,) by d/y;. Then K,, L,, ---, L, are linearly independent in TN|N,
and span TN|N, together with TN,. Here we fix a diffeomorphism 4 of a

neighbourhood of the zero section of K;|N,P é}z L, on a sufficiently small neigh-

bourhood U(N,) of N, in N. Next we consider a system of local coordinates of
P near the image of N,. We take a metric of TP. Since dY|TN is of rank
p—1 over N, we have the orthogonal line bundle Q; in (:)*TP. Let j : Qi—
(7)*TP be the inclusion. Then d7|(L.,D ---PL,)PH; is an injective homomor-
phism. So we have an immersion 7p of a neighbourhood of the zero section of
LD - PLDQ; into P such that ip| N,=1,.

Now we construct a smooth map f; of a small neighbourhood V of N, in
U(N,) into P such that

(1) )*Ki=(*f)*K;=K; (i=1 and 2) and (s)*@,=(j*f,)*@;=Q, over N,,

(2) d¥ |(T'N;_;|N,) and the induced homomorphism of TN,_,|N, into

Hom(K,, Q,) from dys, by i*f, coincide over N, for 1<t<r.
In fact, let x be any point of N, with s;(x)=Xi"(N, R?). We take a system of

local coordinates (#;, -+, tp-r, o, By, -+, Ric1, L, =+, [;) near x in N so that
(@) (ty, -+, tp-») is a system of local coordinates of N, near x,
(b) ky, --, k-4 are local coordinates coming from K,/K, by h for which

d(x) corresponds to the quadratic form —>§.,k?-+30ic1, k2,
{&) k comes from K, and /; from L, by h. ,
Since 7, : N,»P is an immersion, we can take (t;, -+, t,-r, o, =, [, t,) @S a
system of local coordinates of P near 7,(x) where ¢, comes from Q] by 7. Then
fs is given by the following normal form of a smooth map with a Morin singu-
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larity of symbol I, in [14] in a small neighbourhood of x.
(*) (tlr Tty tp-—'r, k; kl) Y ki—lr lZy Tty lr) -_—>

(tly Ty tp-T) 121 Tty lT;
(/2= kE+ 3 e+ 3 WD) DIk D DR,

We must note the compatibility of f; and g. By we can express g near
every point of (N\U)N\N, as in () together with the properties (a), (b) and (c).
After expressing g in this way we extend the coordinates to those in (a), (b)
and (c) to construct fi.

Now we construct a homotopy s, of s,|N,and j*f|N, by using the structure
of the vector bundle of J*(N, R?). Let

$2=QR—=As; N, +A—=DJ*fIN, (1=1=2).

It follows from (1) and (2) that s; gives a homotopy of N, into 27~ and that s;
induces the homotopy of bundle maps between normal bundles of N, and 27r.
Hence s; is extendable to a homotopy 5; of V into a tubular neighbourhood of
2 Ir relative to VN(NN\U) so that §; is transverse to 2 ¥ and (5;) (2 r)=N,. Then
we can extend §; to a homotopy 5; of N into £,(N, P) relative to N\U so that
5, is transverse to 277 with (5,) (2 ?")=N, which is what we want.

Now we can prove the lemma by induction on ». The case of »=1 follows
from the above result. For the case »>1, we use the above homotopy §; (0=2
<2) and the inductive hypothesis of the case r—1 for 5,. Since 5, is already
represented by a smooth map on a neighbourhood of N\U and V, we can con-
struct a homotopy §; (2=<21=3) of N into 2.N, P) relative to N\U with prop-
erties requested. Q.E.D.

PROOF OF PROPOSITION 3.1. Let U’ be an open set with U’CU such that
g is defined on N \U’. By we may suppose that the given section
s has the properties (2) and (3) for U’ of Furthermore we may
deform s so that s™%(X' 3@ (N, R?)N\U) is nonempty for any u. Then the section
wies of Hom(T'N, TP) over N becomes an element of Homy (TN, TP; {N.}, g).
It follows from that there exists a smooth map f of C3_ (N, P;
{N:}, g) so that xfes and df are homotopic in Homg (TN, TP; {N,}, g) by a
homotopy s; with s,=r%s and s;=df. By the definition every s, is realized
by a smooth map f, in a sufficiently small neighbourhood V' of N, with Prop-
erties (H-1, 2 and 3). Since a fibre of =% is contractible, there exists a lift §;
of N into J*(N, P) covering s; with s,=s, §,=7%f and 5:1V=j*f(,. Since s;
is of maximal rank outside of N, it follows that §; is a homotopy of sections
of 2,(N, R?) over N. This is what we want to prove. - Q.E.D.

- PROOF OF THEOREM 1. Let {V,} be an open covering of P, each of which
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is diffeomorphic to R?. Since N is compact we may take a finite covering Uj,
-+, Un of N such that every U, is diffeomorphic to an open set of R* and U,
is mapped into some V,, say V, by nkes. We show the following assertion
(Ag by induction on g.

(A, There exists a smooth map f, of a neighbourhood W, of \ 9., U; into
P such that j*f, is homotopic to s|W, in 2.(W,, P).

Let W, be a small neighbourhood of U, in (x%es)"%(V,). Then A, follows
from [Proposition 3.1] since V, is diffeomorphic to R?. We prove A,.; under the
inductive assumption of A, Take an open neighbourhood U of \4.,U; such that
Uc W, and a neighbourhood Ogy 0f Ugsy in (whes)"(Vyy). We apply
3.1 to a section s|Oy; and a smooth map f,|0p; W, Then we may extend
fq to @ smooth map fg+1 : Oge1— Viyaq S0 that j* f.; is homotopic to s|O,., relative
to O,,;N\U. Then we can define fgi; : U\UOg—P by

fan on Oy
fq+1:
fa on U.

If we put Wy ,=U\UOgy4;, then fg4, is a required smooth map. QE.D.

REMARK 3.3. By the similar proof of we can show the relative
form of [Theorem 1l as [Proposition 3.1L

§4. Topological properties of Xr(n, p).

Let X7r(n, p) (or simply X?r) be the fibre of X/r(R", R?) over the origin
(0, 0). In order to study the number of connected components of X’r(n, p) we
use the Boardman’s construction of Remark 1.1 for J*(R™, R?) restricted on the
fibre J*(n, p) over (0, 0). By fixing bases of R® and R? we obtain a canonical
identification
h i Jt*i(n, p) —> JH(n, p)xHom(S*+'R*, RP)

mapping a jet z to xi*'(z) and ¢+1 derivations of z. Let X7t be the fibre of
2It(R™ RP?) over the origins. Let K,=K{|2¥, Q,=Q1{|2% and K,=K;|X'?.
We identify (n&u)*T R* with Ji(n, p) X R* for u=n or p. By the construction
of Section 1 and Remark 1.1 we have inclusions

l.z . éKx —> Zi’ XSZRn over Zi,
t+1
lee1 + OQ@EH*K, —> X1t X SR over 21t (1=2)
U
where OK; denote the u symmetric product of K; and the projection

e : Y1 XR?P —> (z)*Q, over X1t
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Then we can define the following homomorphisms by using 7; and e (:=2)
by : 3% xHom(S?R", R?) —> Hom(OK,, Q)  over IV
kot : 370 xHom(S™R", R?) —> Hom( O (xh)*K,, (x)*Qy)  over IIv.

It follows from the definition of d;,, that 272 is the set of all 2 jets z in 2* X
Hom(S2R", R?) for which k,(z) is a quadratic form of rank /—1 and XZt+/'(t=2)
is the set of all ¢+1 jets z in 27¢ x Hom(S**'R"™, R?) for which k;,,(z) is a null
homomorphism. Now we calculate the number of connected components of X7,
that is, of X7~

Let 7 be the canonical ; dimensional vector bundle over the grassmann
manifold G; ,_; of all 7 spaces in R*. Then y becomes a subbundle of the trivial
n bundle 8™ over G; ,_;. Let 2 denote the connected subspace of all homomor-
phisms of maximal rank in Hom(6"/y, 6?) over G; ,-; (=max(l, n—p+1)). Let
K; , and Q, , be fibres determined by z. Then X is canonically identified with
2 by mapping a 1 jet z to a homomorphism d, , : R"/K, ,—R? induced from d;
over K; .Gy o

Next we see Y77 (r=2). For a jet z of 277 we have the symmetric quadratic
form of rank /—1, ky(n3(2)) over (n})(z). If we fix an orientation of Q,, we can
define an index of k,(w3(z)), say s. So the number min(s, 7—s) is well defined
for z which we call the semi index of z. Let Xir(n, p) (=2%) denote the
set of all jets z with the semi index s of XYir. We show that YIr is connected.

Let H be the subset of Hom(Cz)Kz, @,) consisting of all quadratic forms of rank
i—1 with semi index s. Let 7 be the canonical 7 bundle over the oriented grass-
mann manifold 5“_1-. Let Gy ;-1(y) (resp. G;, »-:(7)) be the associated grassmann
bundle of y (resp. 7). Let G (resp. 5) denote the fibre product of X" and G, ;-,(7)
(resp. Gi,:-1(7)) over Gy n-i. For z of 2¥" we define a map

g . H—C
by g(ko(2))=(K,., K., di,). U n>p and s#(G—1)/2, then we can define a

map Z so that the following diagram commutes

H

/m
Y
D «—— M

where the vertical map comes from the covering map. In fact, for z=2'' we
can choose orientation of @, , so that the index of k,(z) is s. This orientation
of @, , determines an orientation of K, , denoted by o(K,,). So we define & by
§@)=(K,,, oK, ,), K, ,, d.,). Let K, and K, be the induced bundles of dimen-
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sions 7 and 1 over G or G of 7 and the canonical line bundle ever G ;-:(7)
respectively. Let O, be the induced bundle of Q, by the projection of G or G
onto 2. Then we define a map

u : Hom(K,OK,, §,) — Hom(K,OK,, )
induced from the inclusion KzOﬁlcﬁlOﬁl and an injection
iy 1 H—> Hom((K,/K,)OK,/K>), §))=Ker(x)

so that 7y maps k,(z) onto a nonsingular quadratic form induced from k.(z) over
g(ky(2)) or g(ks(2)).

Then the image of H is the space of all nonsingular quadratic forms of
given index s which becomes connected. Hence X' is connected for n>p and
s#(—1)/2. Other cases for 212" follows similarly. The connectedness of Xir
(r=3) follows by induction on r since X Tt11' js the inverse image of the zero

section of Hom(té)l(né)*KQ, (rd)*Q,) by k;+;. Therefore we have

PROPOSITION 4.1. (1) If n=p, then Xir(n, p) is connected. If n>p, then
2ir(n, p) is connected.

(2) If n>p, then XZir(n, p)\2ir+i(n, p) has two connected components (r =2).

The next question is to see whether XIr(n, p) is orientable or not.

PROPOSITION 4.2. (Case 1;n=p) 2X'r(n, p)is orientable if and only if either
n+p+r+rir+1)/2=0 or n=i=1.

(Case 2 ; n>p) 2ir(n, p) is orientable in the following cases

(i) s#(@—1)/2 and r(r+1)/2=1 (mod 2)

(ii) s=@G—1)/2, r=1 (mod2) and r(r+1)/2=1 (mod 2)

(iii) s=@G—1)/2, n=1 and r(r+1)/2=1 (mod?2).

Otherwise XYir(n, p) is nonorientable.

ProoF. In the proof we write 27 for X?7. For the proof we will calculate
the first Stiefel-Whitney class of X7. Let p, be the projection of 2{ onto G
(r=2). Since H is an open set of Ker(x), we obtain that the tangent bundle of
2T is isomorphic to the Whitney sum of (p)*TG, (p)*(Ker(u)) and

T_s(mD*Ker(k,) | 2f. Hence we have

WAED=(p WG+ W (Ker(w)+(@D* 3 Wi(Ker (k).
W(Ker(u))=W,(Hom(K,OK,, 0.))

=W, (K,OR)+iW.(Qy)

=iW (K +W (K +iW (K

=W, (K +G+DW,(K,),
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W3 Ker(k)= 3 W.(OR)+W,(@)

fl

= K+ W@

=(r(r+1)/2—=3W.(K,)+r—2)W(Q)).

It follows from the standard topological properties of grassmann manifolds that
Wi(G)=(n+p+1)W(K)+iW,(K,). Therefore we have

WS =p¥{(n+p+r+iW.(K)+r+1)/2—3W, (K}

If n>p, s#GE—1)/2 (>1), then it follows that j)’r"(Wl(le))=0. Since the fibre
of & is connected, p,’!‘:Hl(é i Z)2)—HY3! ; Z/2) is injective. Hence W,(27)
is zero if and only if r(r+1)/2=1 (mod?2).

If n>p, s=(G—1)/2 (i>1), then X! is orientable if and only if (i) either r=1
(mod2) or n=¢ and (i) r(r+1)/2=1(mod2) by the similar argument. If n=p,
then ;=1 and K,=K, Hence X(n, p) is orientable if and only if either
n-+p-+r+rir+1)/2=0 (mod2) or n=:i=1. Q.E.D.

Let XIr(n, p) denote the topological closure of X7r(n, p) in J*(n, p). It
follows that both of X’7(n, p) and X!r(n, p)\2!7(n, p) are algebraic sets in a

Euclidean space J*(n, p). Let d; (n, p) be the¥dimension of X‘r(n, p) as an
algebraic set.

PROPOSITION 4.3. Let r=2. The dimension®of 3%r(n, p)NIir(n, p) is smaller
than dg (n, p)—1.

For a while we identify J*(n, p) with Hom(P4.,S*R*, RP) by fixing a basis
of R® and R?. Then we write z€J*(n, p) as (z,, ‘-, z;) for homomorphisms z;:
SiR*—RP?. For subspaces L,CL,CR™ with L,CKer(z,) we define

he : R L@LOLS(D S'Ly) —> R?
by restricting z; (¢=2) and z, : R*/L,—RP? induced from z,.

LEMMA 4.4. An element z of X**5(n, p) belongs to X'r(n, p) if and only if
(1) s=0 and (ii) there exist an i dimensional subspace L, in Ker(d,,,) and 1 dimen-
sional subspace L, in L, such that the kernel rank of the homomorphism

he i R*/LOLOLB( S'L) —> R?

s not less than i+4r—2.

PROOF. Let z be an element of XZ/7(n, p). Then there exists a sequence
{zZ} in XIr(n, p) which converges to z. K, ,; and K, ,; denote the subspaces
of dimensions ¢ and 1 in R® determined by =z’ respectively. Then {(K .;, K; .i)}
gives a sequence in G, ;-;(7) which converges to an element, say (L,, Ly). It is
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clear that L,C K, ,. Hence we can define a homomorphism #, induced from z.
Since

By o RYK, @K sOKo (D S'Ko o) —> R?

converges to h, and the kernel rank of h,; is 7+r—2, it follows that the kernel
rank of 4, is not less than i+r—2.

Conversely we assume the conditions (i) and (ii) for z. Then it follows
from the fact rk(z,)<n—: that we may take a subspace L of dimension n—:
which contains the image of h, and a sequence of homomorphisms {a%} of R"
into L of rank n—: converging to z, such that Ker(a%)=L,. Letz/=(a%,z, -, 2s)
in J*(n, p). Then the kernel rank of h,; is +»—2 by the definition of z7.
This is equivalent to say that h,; induces a zero homomorphism of L,OL,D
(P7-sS*L,) into R?/L. This means that dimKer(d, ,;)=1 by Section 1 for r=
t=2. Hence z7 becomes a sequence of X’r. Clearly {z’} converges to z.

Q.E.D.

PROOF OF PROPOSITION 4.3. Let y be the :4s dimensional vector bundle
over Yi**(n, p) induced from the canonical 7+s dimensional vector bundle over
Givs,n-i-s. Let Gy s(r) be its associated grassmann bundle over which we have
the canonical / dimensional vector bundle denoted by 7,. Let 7, be the canonical
line bundle over G, ;-:(y;) and 7, the induced bundle of y; over G, :-:(y;). Ob-
viously G, ;-,(y:) consists of all triples (z, L;, L,) where z€X**n, p), L, is an
¢ dimensional subspace of K, , and L, is a 1 dimensional subspace of L,. The
projection of G, ;-,(y;) onto X**(n, p) is denoted by p. We consider the follow-
ing vector bundle over G, i-y(7s),

Hom(0"/1:@1.01&( & Or), 7).

Then we can define a smooth section s by mapping (z, L;, L,) to a homomor-
phism of h,. It is clear that s is transverse to every manifold S* of all homo-
morphisms of kernel rank 4. It follows from that XZr(n, p)N2*+(n, p)
is equal to p(s~}(S™*2). Now we estimate the codimension of XIr(n, p)N
2i*%(n, p) in the case of either n=p, »r>2 and s>0 or n<p as follows:

codim(Zr(n, p)NZi*(n, PN—ds,

=codim(2*(n, p))+codim(S**""*)—dim Gy, ;-,—dim G;,s—d;,
2@ +s)(p—n-+i+s)+E+r—2)(p—n+i)—is—(—1)—d;,
=s(p—n+i)+s*+is+(@+r—2)(p—n-+i)—is—@—1)

=(s+i+r—2)(p—n-+i)+s*—G—1)
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>

{s+sz+r—1 if n=p
(s+r—D(p—n+1)+s* if n<p.

If n=p, r=2 and s=0, then we have codim¥ “™» =codimX * ¥ +2 for Ah=2. This
proves the proposition. Q.E.D.

§ 5. Dual classes.

In the rest of the paper I means I,. In this section we assume that N is
a connected and closed manifold. Let ¢; be codim 2 ?(N, P). We will define
the dual class ¢l , of JI(N, P) for a section u:N—Q,(N, P) in H*(N; Z) in
case TN, (zb-s)*TP and 2! are orientable. In the other cases ¢, can be de-
finable in H°/(N; Z/2) similarly and we can also follow the method defining the
dual class of X?2(n, p) in [15]. So we omit it. It will be seen that this dual
class is the primary obstruction class of x to be homotopic to a section of
2.(N, PYYLN, P) over N. By fixing a structure of a vector bundle on J*(N, P)
(see, for example, [3, Chapter 2]) we take a metric of J*(N, P). Note that
2I(N, P) is invariant under the coordinate changes of this bundle structure.
Let /% be the induced vector bundle (zk-u)*J*(N, P) and SI ,, (zk-u)*(JIN, P)).
Let D, (resp. S,) denote the associated disk (resp. sphere) bundle of J% and D
(resp. S), the unit disk (resp. sphere) of J*(n, p) for a while. Then JIND is
a cone of J7NS. By [13, Theorem 1] we can triangulate an algebraic set
SINS so that (SINIHNS becomes its subcomplex.

LEMMA 5.1. Let P be a finite simplicial complex of dimension p and Q its
subcomplex such that P\Q is a connected topological manifold and dim Q=p—2.
Then we have the following

(1) If PNQ is orientable, then H,+(CP, P; Z)=Z and HP*'(CP, P; Z)=Z.
(2) If P\Q is nonorientable, then H,.,(CP, P; Z)={0} and H?**(CP, P; Z)
=Z/2.

The proof of the lemma will be elementary. It follows from
4.3 and that
He(ZIND, ZINS ; Z)=Z.

Therefore we have
Hd1+n(_sz,umDu; S—{umsu) > Z)EZ

Let a generator of this homology group or its image in Hy,(D., S. ; Z) be
denoted by [S?7,]. By the Poincaré duality isomorphism H.(D, ; Z)=H*(N; Z),
[’Sz, «] is mapped onto an element of H°/(N; Z) denoted by cf,. We call ¢f,
the dual class of m—}’—) for u. The sum of all ¢f,, s=0, -+, [¢(—1)/2], is
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called the dual class of 2Z(N, P) for u and denoted by c¢i. If u is a jet section
7*f of a smooth map f, this class modulo 2 is called the Thom polynomial of X (N, P)
for f in [10].

Let £, denote the fibre of Q.(R*, R?) over the origin 0x0. Let c¢(x) denote
the primary obstruction class of u to be homotopic to a section of Q,_,(N, P)
over N ([18]). Then c(u) is an element of H/(N ; x.,(2,, 2,_,)). Since 7,(2,,
2,_,) vanishes for i<c; and £,_, is simply connected except for the case n=p
and I=(1, 1), we have

ﬂf.cl(gﬁ ‘QT—1>2HC](QT; ‘QT—I ’ Z)

by the Hurewicz isomorphism theorem except for the above case. (If this pair
is ¢; simple, this exception is unnecessary. In fact, for n=p=r=2, 2,(2, 2) is
simply connected.) On the other hand we have by Alexander duality theorem

HCI(‘QTr ‘Qr—l ; Z>;}ICI(QTmS) QT—lmS)
~H (ST URYNS, 2°NS)
=H* NSNS, (SINIHNS)

L-1/2]

il

HYY(ZINS ; Z)

§=0

where £2°¢ denotes the complement of £, in J*(n, p). Hence we have the follow-
ing proposition.

PROPOSITION 5.2. Let r=2 and for the case n=p let r>2 or n=p=r=2.
We assume that if one of Xi(n, p), s=0, ---, [(—1)/2] and N are orientable, then
(mkou)*TP is orientable. Then the primary obstruction class c¢(u) is equal to the
direct sum of the dual classes cl ., s=0, -, [(—1)/2] in H*(N ; P&V 2Gy)
where Gys=Z or Z /2 depending on whether Xi(n, p) is orientable or not.

Let u be a smooth section of 2.(N, P) over N transverse to every 27¢(N, P).
Let N, be u=*(Z%(N, P)). Then c;% is equal to the dual class of N, , in N.
We will use the following fact in a proof of [Proposition 5.3 Consider a closed
submanifold M such that NDOMDN, ;. Then the dual class of N,; is a cup
product of that of M in N and that of N, in M coming from the cohomology
group of N. Here we give a table of orientability of X for the case »=2 and
n>p by [Proposition 4.2

| r | 4k+42 4k+3 dh+4 4k+5

P (si(z’—l)/Z)‘ orientable non-orientable | non-orientable | orientable

? P (s:(z’—l)/Z)‘ non-orientable | non-orientable | non-orientable | orientable
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PROPOSITION 5.3.  Under the assumption as Proposition 5.2 in addition to ¢;=n,
¢l vanishes in the following cases:

(i) n>p and s#+G@—1)/2,

(ii) n>p, s=@—1)/2 and r=1 (mod4) and

(iiy n=p and n+p+r+rir+1)/2=0 (mod2).

Proor. First we show that ¢;% vanishes for n>p, s#(#—1)/2 and t=2
(mod4). In this case it follows from Propositions 4.1 and 4.2 that X't and X{:-1
are orientable and that XI:-1\YI: has two connected components, say 2+ and
Y-. Therefore both of manifolds N,_, s and N, , are orientable. Let N* denote
the closure of (x)~(2*). Then itis clear that N, ; bounds N*. Hence the dual
class of N, , vanishes in H°Y®(N ; Z). Consider the triple NDN, DN, , for
t=2 (mod4). Then it follows from the above remark and the above table that
the dual class of N, , for n>p and s#(—1)/2 vanishes in H°/(N, G).

It follows from and [1, Corollary 5.3] that Xi(n, p) is orientable if
n+p is even and that the dual class of ¢ is an element of 2 torsion if 7 is odd.
Hence if n>p, s=(¢—1)/2 and r=1(mod4), then p-+n is even and the dual class
of N, , is an element of 2 torsion of H/(N ; Z)=Z, that is, vanishes by con-
sidering NDON;DON; ;.

For n=p it follows from [Proposition 4.2 that X7z is orientable for n-+p odd
and X' is orientable for n+p even. By [1, Corollary 5.3] ¢i and c]2 are ele-
ments of 2 torsion in both cases. Therefore by the similar arguments ¢/ vanishes.

Q.E.D.

§6. Proof of Theorem 2.

We have assumed in that N and P are always orientable for
simplicity. However this assumption can be weakened in the first part (1) of
as ‘If 37r(n, p) and N are orientable, then f*TP is also orientable.’
We prove in this form.

PROOF OF THEOREM 2. By a proof is reduced to the problem
of finding a section of 2,_,;(N, P) homotopic to j*f in £.(N, P). This is possible
if and only if ¢} ;», vanishes for 0=s=<[(7—1)/2] by [Proposition 5.2 However
it vanishes except for the case s=(—1)/2 by Proposition 5.3 Therefore this
is equivalent to say that the Thom polynomial of X!(N, P) for f vanishes. This
is the first part of Furthermore ¢! ;x; for s=(/—1)/2 vanishes in
both cases of (i) and (iii). In case (ii) we have always s#(G—1)/2 since n—p
is odd. This is the second part. Q.E.D.




(1]
[2]
(3]
[4]
[5]
(6]
(7]
L8]
£9]
(10]
(11]

(12]
[13]

[14]
[15]
(16]
(17]
[18]
[19]

Elimination of Morin singularities 487

References

Y. Ando, On the elimination of certain Thom-Boardman singularities of order two,
J. Math. Soc. Japan, 34 (1982), 241-268.

J. M. Boardman, Singularities of differentiable maps, IHES Publ. Math., 33 (1967),
21-57.

J. Damon, Thom polynomials for contact class singularities, thesis, Harvard Univ.,
1972.

A. A. du Plessis, Maps without certain singularities, Comment. Math. Helv., 50
(1975), 363-382.

J. M. Eliasberg, On singularities of folding types, Math. USSR-Izv., 4 (1970), 1119-
1134.

J. M. Eliasberg, Surgery of singularities of smooth mappings, Math. USSR-Izv., 6
(1972), 1302-1326.

T. Gaffney, The Thom polynomial of XLLLI Singularities, Proc. Sympos. Pure
Math., Vol. 40, Part I, Amer. Math. Soc., 1983, 399-408.

M. L. Gromov, Stable mappings of foliations into manifolds, Math. USSR-Izv., 3
(1969), 671-694.

M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242~
276.

A. Haefliger and A. Kosinski, Un théoréme de Thom sur les singularités des ap-
plications différentiables, Séminaire H. Cartan E.N.S., 1956/57, Exposé N°8.

A. Lascoux, Calcul de certains polynémes de Thom, C.R. Acad. Sci. Paris, 278
(1974), 889-891.

H. I. Levin, Elimination of cusps, Topology, 3 (1965), 263-296.

S. kojasiewicz, Triangulation of semianalytic sets, Ann. Scuola Norm. Sup. Pisa
Sci. Fis. Mat., 18 (1959), 87-136.

B. Morin, Formes canoniques des singularités d’une application différentiable, C.R.
Acad. Sci. Paris, 260 (1965), 5662-5665, 6503-6506.

F. Ronga, Le calcul des classes duales singularités de Boardman d'ordre deux,
Comment. Math. Helv., 47 (1972), 15-35.

F. Ronga, Le calcul de la classe de cohomologie entiére duale a X%, Lecture Notes
in Math., 192, Springer, 1971, 313-315.

F. Sergeraert, Expression explicite de certains polynémes de Thom, C. R. Acad.
Sci. Paris, 276 (1973), 1661-1663.

N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton,
1951.

R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, 6
(1955-56), 43-87.

Yoshifumi ANDO

Department of Mathematics
Yamaguchi University
Yamaguchi 753

Japan



	Introduction.
	THEOREM 1. ...
	THEOREM 2. ...

	\S 1. Morin singularities.
	\S 2. A generalization ...
	THEOREM 2.1. ...

	\S 3. Proof of Theorem ...
	\S 4. Topological properties ...
	\S 5. Dual classes.
	\S 6. Proof of Theorem ...
	References

