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\S 1. Introduction.

Let $C$ be a nonempty closed convex subset of a real Banach space $B$ . Then,
a mapping $T:Carrow C$ is called nonexpansive on $C$, if

$\Vert Tx-Ty\Vert\leqq\Vert x-y\Vert$ for all $x,$ $y\in C$ .
Let $F(T)$ be the set of fixed points of $T$ , that is,

$F(T)=\{z\in C : Tz=z\}$ .
The theorem of Browder-G\"ohde-Kirk[2], [5], [8] assures that if $B$ is uniformly
convex and if $C$ is bounded, closed, and convex, then such a mapping must have
a fixed point. Recently, Kirk-Ray [9], Pazy [11] and Takahashi [14] studied
the problem of the existence of fixed points for nonexpansive mappings defined
on unbounded sets. On the other hand, Baillon [1] has shown the first non-
linear ergodic theorem: If $B$ is a Hilbert space and $C$ is bounded, closed and
convex, then, the Ces\‘aro means

1 n-l
$S_{n}(x)= \sum_{k\overline{n}=0}T^{k}x$

converge weakly to an element of $F(T)$ for each $x\in C$. Later, Takahashi [14]

considered the nonlinear ergodic theorem for an amenable semigroup of nonex-
pansive mappings in Hilbert spaces.

Our purpose in this paper is to obtain a necessary and sufficient condition
for a noncommutative semigroup of nonexpansive mappings defined on unbounded
sets in Banach spaces to have a common fixed point. This is a generalization
of Kirk-Ray [9] and Takahashi [14]. Furthermore, we deal with the problem
relative to nonlinear ergodic theory for a noncommutative semigroup of nonex-
pansive mappings in Banach spaces.

\S 2. Preliminaries.

Let $S$ be an abstract semigroup with identity and $m(S)$ the Banach space
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of all bounded real valued functions on $S$ with the supremum norm. For each
$s\in S$ and $f\in m(S)$ , we dePne elements $f_{s}$ and $f^{s}$ in $m(S)$ given by $f_{s}(t)=f(si)$

and $f^{S}(t)=f(ts)$ for all $t\in S$ . An element $\mu\in m(S)^{*}$ (the dual space of $m(S)$ ) is
called a mean on $S$ if $\Vert\mu\Vert=\mu(1)=1$ . Let $\mu$ be a mean on $S$ and $f\in m(S)$ . Then
we denote by $\mu(f)$ the value of $\mu$ at the function $f$ . According to the time
and circumstances, we write by $\mu_{t}(f(t))$ the value $\mu(f)$ . A mean $\mu$ is called
left [right] invariant if $\mu(f_{s})=\mu(f)[\mu(f^{s})=\mu(f)]$ for all $f\in m(S)$ and $s\in S$ . An
invariant mean is a left and right invariant mean. A semigroup which has a
left [right] invariant mean is called left [right] amenable. A semigroup which
has an invariant mean is called amenable. A semigroup $S$ is called left [right]

reversible if for every pair of elements $a,$ $b\in S$ , there exists a pair $c,$ $d\in S$ such
that $ac=bd[ca=db]$ . Day [4] proved that a commutative semigroup is amenable.
Granirer [6], [7] showed that every left [right] amenable semigroup is left
[right] reversible. We also know that $\mu\in m(S)^{*}$ is a mean on $S$ if and only if

$inf\{f(s) : s\in S\}\leqq\mu(f)\leqq\sup\{f(s) : s\in S\}$

for every $f\in m(S)$ . Furthermore we have the following: Let $S$ be a left
amenable semigroup and $\mu$ be a left invariant mean on $S$ . Then, we have

$\sup_{s}\inf_{t}f(st)\leqq\mu(f)\leqq\inf_{s}\sup_{t}f(st)$

for every $f\in m(S)$ . In fact, let $f$ be an element of $m(S)$ and $\mu$ be a left in-
variant mean on $S$ . Then we have

$\mu(f)=\mu(f_{s})\leqq\sup_{t}f_{s}(t)=\sup_{t}f(st)$

and hence $\mu(f)\leqq\inf_{s}\sup_{t}f(st)$ . Similarly, we can prove $\sup_{s}\inf_{t}f(st)\leqq\mu(f)$ .

We also have that if $S$ is a right amenable semigroup and $\mu$ is a right in-
variant mean on $S$ , then we have

$\sup_{s}\inf_{t}f(ts)\leqq\mu(f)\leqq\inf_{s}\sup_{t}f(ts)$

for every $f\in m(S)$ .
Let $B$ be a real Banach space and let $B^{*}$ be its dual, that is, the space of

all continuous linear functionals $f$ on $B$ . The value of $f\in B^{*}$ at $x\in B$ will be
denoted by $\langle x, f\rangle$ . With each $x\in B$ , we associate the set

$J(x)=\{f\in B^{*} : \langle x, f\rangle=\Vert x\Vert^{2}=\Vert f\Vert^{2}\}$ .
Using the Hahn-Banach theorem, it is immediately clear that $J(x)\neq\emptyset$ for any
$x\in B$ . The multi-valued operator $J$ : $Barrow B^{*}$ is called the duality mapping of $B$ .
A Banach space $B$ is said to be smooth provided

$\lim_{tarrow 0}\frac{\Vert x+ih\Vert-\Vert x\Vert}{t}$ $(*)$
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exists for each $x,$ $h\in B$ . When this is the case, the norm of $B$ is said to be
G\^ateaux differentiable. The space $B$ is said to have uniformly G\^ateaux differen-
tiable norm if for each $h\in B$ , the limit $(*)$ is attained uniformly for $x$ with
$\Vert x\Vert=1$ . It is well known that if $B$ is smooth, then the duality mapping $J$ is
single valued. It is also known that if $B$ has uniformly G\^ateaux differentiable
norm, $J$ is uniformly continuous on bounded sets when $B$ has its strong topology
while $B^{*}$ has its weak star topology; see [3]. Let $K$ be a subset of $B$ . Then,
we denote by $\delta(K)$ the diameter of $K$. A point $x\in K$ is a diametral point of $K$

provided
$sup\{\Vert x-y\Vert : y\in K\}=\delta(K)$ .

A closed convex subset $C$ of a Banach space $B$ is said to have normal structure,
if for each closed bounded convex subset $K$ of $C$, which contains at least two
points, there exists an element of $K$ which is not a diametral point of $K$. A
Banach space $B$ is called uniformly convex if the modulus of convexity

$\delta(\epsilon)=\inf\{1-\frac{1}{2}\Vert x+y\Vert$ : $\Vert x\Vert,$ $\Vert y\Vert\leqq 1,$ $\Vert x-y\Vert\geqq\epsilon\}$

is positive in its domain of definition $\{\epsilon : 0<\epsilon\leqq 2\}$ . A closed convex subset of
a uniformly convex Banach space has normal structure and a compact convex
subset of a Banach space has normal structure.

\S 3. Fixed point theorems.

Before proving fixed point theorems for a noncommutative semigroup of
nonexpansive mappings defined on unbounded sets in a Banach space, we prove
the following Lemmas.

LEMMA 1. Let $C$ be a nonempty closed convex subset of a Banach space $B$ ,
let $S$ be a left reversible semigroup of nonexpansive mappings $t$ of $C$ into itself,
and suppose that $\{tx:t\in S\}$ for some $x\in C$ is bounded. Then, the real valued
functions $f$ and $g$ on $B$ defined by $f(y)= \inf_{s}\sup_{t}\Vert stx-y\Vert$ and $g(y)= \inf_{s}\sup_{t}\Vert stx-y\Vert^{2}$

for each $y\in B$ are continuous and convex.
PROOF. Let $y\in B$ and $r>0$ . Then, there exists a positive number $M$ such

that
$\Vert stx-y\Vert^{2}-\Vert stx-z\Vert^{2}$

$=$ ( $\Vert$ stx– $y\Vert+\Vert$ $stx-z\Vert$ )( $\Vert$ stx– $y\Vert-\Vert stx-z\Vert$ )

$\leqq$ ( $\Vert$ stx– $y\Vert+\Vert stx-z\Vert$ ) $\Vert y-z\Vert$

$\leqq M\Vert y-z\Vert$

for all $s,$ $t\in S$ and $z\in S_{r}(y)=\{v\in B:\Vert y-v\Vert<r\}$ . So, we have
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$\sup_{t}\Vert$ stx– $y \Vert^{2}\leqq\sup_{t}\Vert$
$stx-z\Vert^{2}+M\Vert y-z\Vert$

and hence $g(y)\leqq g(z)+M\Vert y-z\Vert$ . Similarly, we have $g(z)\leqq g(y)+M\Vert z-y\Vert$ .
Therefore, $|g(y)-g(z)|\leqq M\Vert y-z\Vert$ for all $z\in S_{r}(y)$ . This implies that $g$ is con-
tinuous on $B$ . Let $\alpha$ and $\beta$ be nonnegative numbers with $\alpha+\beta=1$ . Then, since

$\Vert st\tau:-(\alpha y+\beta z)\Vert^{2}\leqq\alpha\Vert$ stx– $y\Vert^{2}+\beta\Vert stx-z\Vert^{2}$ ,

we have

$\inf_{s}\sup_{t}\Vert stx-(\alpha y\perp\beta z)\Vert^{2}\leqq\inf_{s}$ ( $\alpha\sup_{t}\Vert$ stx– $y \Vert^{2}+\beta\sup_{t}\Vert stx-z\Vert^{2}$).

Put $a= \inf_{\iota}\sup_{t}||stx-y\Vert^{2}$ and $b= \inf_{*}\sup_{t}||$ $stx-z\Vert^{2}$ , and let $\epsilon>0$ . Then, there exist

$s_{1},$ $s_{2}\in S$ such that $\sup_{t}||$
$s_{1}tx-y\Vert^{2}<a+\epsilon$ and $\sup_{t}||$

$s_{2}tx-z\Vert^{2}<b+\epsilon$ . Since $S$ is left

reversible, we obtain $u_{1},$ $u_{2}\in S$ with $s_{1}u_{1}=s_{2}u_{2}$ . So, if $s_{0}=s_{1}u_{1}=s_{2}u_{2}$ , we have

$\sup_{t}\Vert s_{0}tx-y\Vert^{2}<a+\epsilon$ and $\sup_{t}\Vert s_{0}tx-z\Vert^{2}<b+\epsilon$

and hence
$\inf_{s}$ ( $\alpha\sup_{t}||$ stx– $y \Vert^{2}+\beta\sup_{t}||$ $stx-z\Vert^{2}$ )

$\leqq\alpha\sup_{t}||s_{0}tx-y\Vert^{2}+\beta\sup_{t}||s_{0}tx-z\Vert^{2}$

$<\alpha(a+\epsilon)+\beta(b+\epsilon)$

$=\alpha a+\beta b+(\alpha+\beta)\epsilon$ .

Since $\epsilon$ is arbitrary, we have

$g(\alpha y+\beta z)\leqq\alpha g(y)+\beta g(z)$ .
This implies that $g$ is convex on $B$ .

By the same method, we can prove that the function $f$ is continuous and
convex on $B$ .

LEMMA 2. Let $C$ be a nonempty closed convex subset of a Banach space $B$

and $S$ be a semigroup of nonexpansive mappings $t$ of $C$ into itself. Let $\{tx:t\in S\}$

be a bounded subset of $C$ and $\mu$ be a mean on S. Then, the real valued functions
$f$ and $g$ on $B$ given $b\backslash \sim f(y)=\mu_{t}\Vert tx-y\Vert$ and $g(y)=\mu_{t}\Vert fx-y\Vert^{2}$ for each $y\in B$ are
continuous and conve,$\backslash$ .

PROOF. Since
$-\{|y-z\Vert\leqq|\{tx-y1-Itx-z\Vert\leqq\Vert y-z\Vert$

for $y,$ $z\in B$ we have

$-!|y-z\Vert\leqq\mu_{t}\Vert tx-y\Vert-\mu_{t}\Vert tx-z\Vert\leqq\Vert y-z\Vert$ .
Therefore, $f$ is continuous in $y$ , By linearity of $\mu$ and convexity of norm $\Vert$ . $\{$ ,
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$f$ is convex in $y$ .
By the same method, we can prove that the function $g$ is continuous and

convex on $B$ .

THEOREM 1. Let $C$ be a nonempty closed convex subset of a uniformly convex
Banach space $B$ and $S$ be a left reverstble semigroup of nonexpansive mappings $t$ of $C$

into itself. Then, $F(S)\neq\emptyset$ if and only if there exists an element $x\in C$ such that
$\{tx;t\in S\}$ is bounded.

PROOF. Suppose that $\{tx:t\in S\}$ is bounded for some $\tau\in C$ and define the
real valued function $f$ on $B$ by

$f(y)= \inf_{s}\sup_{t}||$ stx– $y\Vert$ .

Then, by Lemma 1, $f$ is continuous and convex. Furthermore, dePne

$r= \inf\{f(y) : y\in C\}$ and $K=\{y\in C : f(y)\leqq r+1\}$ .
Then, it is obvious that $K$ is nonempty, closed and convex. Since $\{tx:t\in S\}$

is bounded, $K$ is also bounded. Since $f$ is weakly lower semicontinuous and $K$

is weakly compact, we obtain that $C_{0}=\{u\in C : r=f(u)\}$ is nonempty. If $r=0$,
then since $\Vert u-v\Vert\leqq f(u)+f(v)=0$ for $u,$ $v\in C_{0}$, we have that $C_{0}$ consists of a
single point. Let $r>0$ . Suppose that $\Vert u-v\Vert=\epsilon>0$ for some $u$ and $v$ in $C_{0}$

and choose a positive number $a$ such that

$[1-\delta(\epsilon/r+a)](r+a)<r$ .
Since $u,$ $v\in C_{0}$ , there exist $s_{1},$ $s_{2}\in S$ such that

$\sup_{t}||s_{1}tx-u\Vert<r+a$ and $\sup_{t}||$ $s_{2}tx-v\Vert<r+a$ .

Since $S$ is left reversible, there exist $u_{1},$ $u_{2}\in S$ such that $s_{1}u_{1}=s_{2}u_{2}$ . So, if $s_{0}=$

$s_{1}u_{1}=s_{2}u_{2}$ , we have

$\sup_{t}\Vert s_{0}tx-u\Vert<r+a$ and $\sup_{t}||$
$s_{0}tx-v\Vert<r\neq a$ .

Since $B$ is uniformly convex, we have that for any $t\in S$ ,

$\Vert\frac{u+v}{2}-s_{0}tx\Vert\leqq[1-\delta(\epsilon/r+a)](r+a)<r$

and hence $f(u+v/2)= \inf_{\iota}\sup_{t}||$ $stx-(u+v)/2\Vert<r$ . This is a contradiction. There-

fore $C_{0}$ is a single point; say $z$ . Since for each $s_{0}\in S$

$\inf_{\iota}\sup_{t}\Vert stx-s_{0}z\Vert\leqq\inf_{l}\sup_{t}\Vert s_{0}stx-s_{0}z\Vert$

$\leqq\inf_{1}\sup_{t}||$ $stx-z\Vert=r$ ,

we have $s_{0}z=z$ and hence the point $z$ is a common fixed point of $S$ . The con-
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verse is obvious.
As a direct consequence of Theorem 1, we have the following [14]:

COROLLARY 1. Let $C$ be a nonempty closed convex subset of a Hilbert space
$H$ and $S$ be a left amenable semigroup of nonexpanstve mappings $t$ of $C$ into itself.
Then, $F(S)\neq\emptyset$ if and only if there exists $x\in C$ such that $\{tx:t\in S\}$ is bounded.

By using Lim’s fixed point theorem [10], we can prove a generalization of
Theorem 1.

THEOREM 2. Let $C$ be a nonempty closed convex subset of a reflexive Banach
space which has normal structure and $S$ be a left reversible semigroup of nonexpansive
mappings $t$ of $C$ into itself. Then, $F(S)\neq\emptyset$ if and only if there exists an element
$x\in C$ such that $\{tx:t\in S\}$ is bounded.

PROOF. Suppose that $\{tx:t\in S\}$ is bounded for some $x\in C$ . Then, as in
the proof of Theorem 1, define

$f(y)= \inf_{l}\sup_{t}\Vert$ stx– $y\Vert$ ,

$r= \inf\{f(y) : y\in C\}$ ,
and

$K=\{y\in C : f(y)\leqq r+1\}$ .

Then, it is obvious that $K$ is nonempty, closed, bounded, and convex. Let $z\in K$

and $t_{0}\in S$ . Then, since $t_{0}z\in C$ and

$\inf_{l}\sup_{t}\Vert stx-t_{0}z\Vert\leqq\inf_{l}\sup_{t}||t_{0}stx-t_{0}z\Vert$

$\leqq\inf_{l}\sup_{t}\Vert stx-z\Vert\leqq r+1$ ,

we have that $K$ is S-invariant. So, from Lim’s fixed point theorem, there exists
a common fixed point for the semigroup $S$ . The converse is obvious.

Similarly, we can prove the following:

THEOREM 3. Let $B$ be a Banach space whose bounded closed convex subsets
have the common fixed $p\alpha nt$ pr0perty relative to left reversible semigroups of
nonexpansjve mappjngs, let $C$ be a nonempty closed convex subset of $B$, and supp0se
that $S$ is a left reversible semigroup of nonexpansive mappjngs $t$ of $C$ into itself.
Then, $F(S)\neq\emptyset$ if arld only if there exists an element $x\in C$ such that $\{tx;t\in S\}$

is bounded.

COROLLARY 2 (Kirk-Ray [9]). Let $B$ be a Banach space whose bounded closed
$com)ex$ subsets have the fixed pojnt pr0perty relative to nonexpansjve xlfmappings,
let $C$ be a closed convex subset of $B$, and suppose $T$ : $Carrow C$ is a nonexpansjve
mappjng. If there exists $u\in C$ such that the set $G(u, Tu)=\{z\in C$ : $\Vert z-u\Vert\geqq$

$\Vert z-Tu\Vert\}$ is bounded, then $T$ has a fixed pojnt in $C$.
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PROOF. Let $a= \sup$ { $\Vert y-z\Vert$ : $y,$ $z\in G$ ( $u$ , Tu)} and $x=Tu$ . Then, by mathe-
matical induction, we prove that $\{T^{n}x : n=0,1, 2, \}$ is bounded. In fact, it
is obvious that $\Vert x$ –Tu $\Vert\leqq 3a$ . Let $\Vert T^{k-1}x-Tu\Vert\leqq 3a$ . If $T^{k-1}x\in G$ ( $u$ , Tu), then,
since $Tu\in G$ ( $u$ , Tu) and $(1/2)(u+Tu)\in G$ ( $u$ , Tu), we have

$\Vert T^{k}x-Tu\Vert\leqq\Vert T^{k-1}x-u\Vert\leqq\Vert T^{k-1}x-Tu\Vert+\Vert Tu-u\Vert\leqq a+2a=3a$ .
If $T^{k-1}x\not\in G$ ( $u$ , Tu), we have

$\Vert T^{k}x-Tu\Vert\leqq\Vert T^{k-1}x-u\Vert<\Vert T^{k-1}x-Tu\Vert\leqq 3a$ .

Using Theorem 3 here, we complete the proof.

\S 4. Ergodic theorems.

Let $C$ be a closed convex subset of a Banach space $B$ and $S$ be a semigroup
of nonexpansive mappings $t$ of $C$ into itself. Then, if $\{tx:t\in S\}$ for some $x\in C$

is bounded and $\mu$ is a mean on $S$, we can define the real valued continuous con-
vex function $g$ on $B$ by $g(y)=\mu_{t}\Vert tx-y\Vert^{2}$ for each $y\in B$ ; see Lemma 2. So,
let us define

$M(x, \mu)=\{z\in C : g(z)=\inf_{y\in C}g(y)\}$ .

THEOREM 4. Let $C$ be a nonempty closed convex subset of a uniformly convex
Banach space $B$ , let $S$ be an amenable semigroup of nonexpansive mappings $t$ of $C$

into itself, and let $\mu$ be an invariant mean on S. Supp0se that

$F(S)=\cap\{F(t) : t\in S\}\neq\emptyset$ .
Then, the set $M(x, \mu)\cap F(S)$ consists of a single point for each $x$ and the pojnt is
independent of $\mu$ .

PROOF. Let $\mu$ be an invariant mean on $S$ and $x\in C$. Then, since $F(S)\neq\emptyset$ ,
$\{tx:t\in S\}$ is bounded and hence we can define the set $M(x, \mu)$ . Consider

$r= \inf\{\mu_{t}\Vert tx-y\Vert^{2} : y\in C\}$

and
$C_{1}=\{y\in C : \mu_{t}\Vert tx-y\Vert^{2}\leqq r+1\}$ .

Then, it is obvious that $C_{1}$ is nonempty, closed and convex. The set $C_{1}$ is also
bounded. In fact, if $y_{0}\in C_{1}$ , we have

$\inf_{t}\Vert tx-y_{0}\Vert^{2}\leqq\mu_{t}\Vert tx-y_{0}\Vert^{2}<r+2$ .

So, there exists $t_{0}\in S$ such that $\Vert t_{0}x-y_{0}\Vert^{2}<r+2$ . Hence $C_{1}$ is bounded. Since
$y\vdasharrow\mu_{t}\Vert tx-y\Vert^{2}$ is weakly lower semicontinuous and $C_{1}$ is weakly compact, $*$-we
have that

$M(x, \mu)=\{z\in C_{1} : r=\mu_{t}\Vert tx-z\Vert^{2}\}$
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is nonempty, closed and convex. If $z\in M(x, \mu)$ and $s\in S$, then since $sz\in C$ and

$\mu_{t}\Vert tx-sz||^{2}=\mu_{t}\Vert stx$ – $sz||^{2}\leqq\mu_{t}\Vert tx-z\Vert^{2}=r$ ,

we have that $M(x, \mu)$ is S-invariant. So, by Theorem 1, there exists an element
$u$ in $M(x, \mu)$ such that $su=u$ for all $s\in S$ .

Now, we show that the set $M(x, \mu)\cap F(S)$ is a single point. Let $u,$ $v\in$

$M(x, \mu)\cap F(S)$ . If $r=0$, then since

$\Vert u-v\Vert^{2}\leqq 2\Vert u-tx\Vert^{2}+2\Vert tx-v\Vert^{2}$ ,
we have

$\Vert u-v\Vert^{2}\leqq 2\mu_{t}\Vert u-tx\Vert^{2}+2\mu_{t}\Vert tx-v\Vert^{2}=0$

and hence $u=v$ . So, let $r>0$ . Let $\Vert u-v\Vert=\epsilon>0$ and choose a positive number
$a$ such that

$[1-\delta(\epsilon/\sqrt{r}+a)](\sqrt{r}+a)<\sqrt{r}$ ,

where $\delta$ is the modulus of convexity of the norm. Since $u,$ $v\in M(x, \mu)$ , there
exist $t_{0},$ $t_{1}\in S$ such that

$\Vert f_{0}-u\Vert<\sqrt{r}+a$ and $\Vert t_{1}x-v\Vert<\sqrt{r}+a$ .

Since $S$ is right amenable, there exist $u_{0},$ $u_{1}\in S$ such that $u_{0}t_{0}=u_{1}t_{1}=s_{0}$ . For
each $t\in S$ , we have

$\Vert ts_{0}x-u\Vert=\Vert tu_{0}t_{0}x-u\Vert\leqq\Vert$ toX– $u\Vert<\sqrt{\gamma}+a$

and
$\Vert ts_{0}x-v\Vert=\Vert tu_{1}t_{1}x-\iota\Vert\leqq\Vert t_{1}x-v\Vert<\sqrt{\gamma}+a$ .

Since $X$ is uniformly convex, we have

$\Vert(u+\iota))/2-ts_{0}x\Vert\leqq[1-\delta(\epsilon/\sqrt{r}+a)](\sqrt{r}+a)<\sqrt{r}$

and hence

$\mu\iota\Vert tx-\frac{u+v}{2}\Vert^{2}=\mu_{t}\Vert ts_{0}x-\frac{u+u}{2}\Vert^{2}<r$ .

This is a contradiction. Therefore, the set $M(x, \mu)\cap F(S)$ is a single point. Let
$u\in F(S)$ . Then, we know that

$\sup_{s}\inf_{t}\Vert tsx-u\Vert^{2}\leqq\mu_{t}\Vert tx-u\Vert^{2}\leqq\inf_{s}\sup_{t}||isx$
– $u\Vert^{2}$ .

Put $a= \inf_{s}\sup_{t}\Vert tsx-u\Vert^{2}$ and let $\epsilon$ be an arbitrary positive number. Then, we
have

$\sup_{t}\Vert tsx-u\Vert^{2}\geqq a>a-\epsilon$

for all $s\in S$ . Fix $s\in S$ . Then, for each $t\in S$ , there exists a $t_{0}\in S$ such that
$\Vert t_{0}tsx-u\Vert^{2}>a-\epsilon$ . Since $t_{0}$ is nonexpansive, we obtain $\Vert tsx-u\Vert^{2}\geqq\Vert t_{0}tsx-u\Vert^{2}>$
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$a-\epsilon$ . So, we have $\inf_{t}\Vert tsx-u\Vert^{2}\geqq a-\epsilon$ and hence

$\sup_{l}\inf_{t}\Vert tsx-u\Vert^{2}\geqq a=\inf_{\}\sup_{t}\Vert$ tsx– $u\Vert^{2}$

Therefore, we have

$\sup_{s}\inf_{t}||tsx-u\Vert^{2}=\mu_{t}\Vert tx-u\Vert^{2}=\inf_{s}\sup_{t}||tsx-u\Vert^{2}$ .

This implies that $M(x, \mu)\cap F(S)=\{z\}$ is independent of $\mu$ .
THEOREM 5. Let $C$ be a nonempty closed convex subset of a Banach space $B$

with a uniformly $G\delta teaux$ differentiable norm, let $S$ be an amenable semigroup of
nonexpansive mappings $t$ of $C$ into itself, and let $\mu$ be an invariant mean on $S$ .
Suppose that

$F(S)=\cap\{F(t):t\in S\}\neq\emptyset$

and let $u,$ $x\in C$. Then, $u\in M(x, \mu)$ if and only if $\mu_{t}\langle z-u, J(tx-u)\rangle\leqq 0$ for all
$z\in C$, where $J$ is the duality mapping of $B$.

PROOF. For $z$ in $C$ and $0\leqq\lambda\leqq 1$ , we have

$\Vert tx-u\Vert^{2}=\Vert tx-\lambda u-(1-\lambda)z+(1-\lambda)(z-u)\Vert^{2}$

$\geqq\Vert tx-\lambda u-(1-\lambda)z\Vert^{2}+2(1-\lambda)\langle z-u, J(tx-\lambda u-(1-\lambda)z)\rangle$ .

Let $\epsilon>0$ be given. Since the norm of $B$ is uniformly G\^ateaux differentiable, the
duality map is uniformly continuous on bounded subsets of $B$ from the strong
topology of $B$ to the weak star topology of $B^{*}$ . Therefore,

$|\langle z-u, J(tx-\lambda u-(1-\lambda)z)-J(tx-u)\rangle|<\epsilon$

if $\lambda$ is close enough to 1. Consequently, we have

$\langle z-u, J(tx-u)\rangle<\epsilon+\langle z-u, J(tx-\lambda u-(1-\lambda)z)\rangle$

$\leqq\epsilon+\frac{1}{2(1-\lambda)}\{\Vert tx-u\Vert^{2}-\Vert tx-\lambda u-(1-\lambda)z\Vert^{2}\}$

and hence

$\mu_{t}\langle z-u, J(tx-u)\rangle\leqq\epsilon+\frac{1}{2(1-\lambda)}\{\mu_{t}\Vert tx-u\Vert^{2}-\mu_{t}\Vert tx-\lambda u-(1-\lambda)z\Vert^{2}\}\leqq\epsilon$ .

Therefore, we have $\mu_{t}\langle z-u, J(tx-u)\rangle\leqq 0$ for all $z\in C$ .
Since for $z,$ $u\in C$,

$\Vert tx-z\Vert^{2}-\Vert tx-u\Vert^{2}\geqq 2\langle u-z, J(tx-u)\rangle$ ,

and $\mu_{t}\langle z-u, J(tx-u)\rangle\leqq 0$ for all $z\in C$, then $u\in M(x, \mu)$ .
THEOREM 6. Let $C$ be a nonempty closed convex subset of a Hilbert space

$H,$ $S$ be an amenable semigroup of nonexpansive mappjngs $t$ of $C$ into itself and
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$\mu$ be an invariant mean on S. SuppOse that
$F(S)=\cap\{F(t) : t\in S\}\neq\emptyset$ .

Then, the set $M(x, \mu)$ consists of a single point $x_{0}$ and the point $x_{0}$ is independent
of $\mu$ .

Furthermore, putting $Px=M(x, \mu)=x_{0}$ for each $x\in C$, then, $P$ is a nonex-
pansive retraction of $C$ onto $F(S)$ such that $Pt=tP=P$ for every $t\in S$ and $Px\in$

$\bigcap_{s\in S}\overline{co}\{stx:t\in S\}$ for every $x\in C$, where $\overline{co}$ $A$ is the closure of the convex hull

of $A$ .
PROOF. Let $\mu$ be an invariant mean on $S$ and $x\in C$ . Then, since $F(S)\neq\emptyset$ ,

$\{tx:t\in S\}$ is bounded and hence, for each $y$ in $H$, the real-valued function $t-\succ$

$\langle tx, y\rangle$ is in $m(S)$ . Denote by $\mu_{t}\langle tx, y\rangle$ the value of $\mu$ at this function. By
linearity of $\mu$ and of the inner product, this is linear in $y$ ; moreover, since

$| \mu_{t}\langle tx, y\rangle|\leqq\Vert\mu\Vert\cdot\sup_{t}|\langle tx, y\rangle|\leqq(\sup_{t}\Vert tx\Vert)\cdot\Vert y\Vert$ ,

it is continuous in $y$ , so by the Riesz theorem, there exists an $x_{0}\in H$ such that

$\mu_{t}\langle tx, y\rangle=\langle x_{0}, y\rangle$

for every $y\in H$. If $x_{0} \not\in\bigcap_{s\in S}\overline{co}\{stx:t\in S\}$ , then we have $x_{0}\not\in\overline{co}\{s_{0}tx;t\in S\}$ for

some $s_{0}$ in $S$ . By the separation theorem there exists a $y_{0}$ in $H$ such that

$\langle x_{0}, y_{0}\rangle<\inf\{\langle z, y_{0}\rangle : z\in\overline{co}\{s_{0}tx:t\in S\}\}$ .
So, we have

$\inf_{t}\langle s_{0}tx, y_{0}\rangle\leqq\mu_{t}\langle s_{0}tx, y_{0}\rangle=\mu_{t}\langle tx, y_{0}\rangle$

$=\langle x_{0}, y_{0}\rangle$

$< \inf\{\langle z, y_{0}\rangle : z\in\overline{co}\{s_{0}tx:r\in S\}\}$

$\leqq\inf_{t}\langle s_{0}tx, y_{0}\rangle$ .

This is a contradiction. Therefore, we have

$x_{0} \in\bigcap_{s\in S}\overline{co}\{stx:t\in S\}$ .

Let $u\in C$. Then, since

$\Vert x_{0}-u\Vert^{2}=\Vert tx-u\Vert^{2}-\Vert tx-x_{0}\Vert^{2}-2\langle tx-x_{0}, x_{0}-u\rangle$

for every $t\in S$ and hence

$\Vert x_{0}-u\Vert^{2}=\mu_{t}(\Vert tx-u\Vert^{2}-\Vert tx-x_{0}\Vert^{2}-2\langle tx-x_{0}, x_{0}-u\rangle)$

$=\mu_{t}\Vert tx-u\Vert^{2}-\mu_{t}\Vert tx-x_{0}\Vert^{2}\geqq 0$ ,

we have $x_{0}\in M(x, \mu)$ . If $u\in M(x, \mu)$ , then since
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$\mu_{t}\Vert tx-u\Vert^{2}-\mu_{t}\Vert tx-x_{0}\Vert^{2}\leqq 0$ ,

we have $u=x_{0}$ . Setting $Px=x_{0}$ , it follows from [14] and above that $P$ is a non-
expansive retraction of $C$ onto $F(S)$ such that $Pt=tP=P$ for every $t\in S$ and

$Px \in\bigcap_{s\in S}\overline{co}\{stx:t\in S\}$

for every $x\in C$ .
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