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§1. Introduction.

Let C be a nonempty closed convex subset of a real Banach space B. Then,
a mapping T : C—C is called nonexpansive on C, if

ITx—Tyl=x—yl for all x, yeC.
Let F(T) be the set of fixed points of T, that is,
FT)={zeC : Tz=z}.

The theorem of Browder-Gohde-Kirk [2], [5], assures that if B is uniformly
convex and if C is bounded, closed, and convex, then such a mapping must have
a fixed point. Recently, Kirk-Ray [9], Pazy and Takahashi studied
the problem of the existence of fixed points for nonexpansive mappings defined
on unbounded sets. On the other hand, Baillon has shown the first non-
linear ergodic theorem: If B is a Hilbert space and C is bounded, closed and
convex, then, the Cesaro means

n-1

Su(x)= "5 Thy

n k=o
converge weakly to an element of F(T) for each x=C. Later, Takahashi
considered the nonlinear ergodic theorem for an amenable semigroup of nonex-
pansive mappings in Hilbert spaces.

Our purpose in this paper is to obtain a necessary and sufficient condition
for a noncommutative semigroup of nonexpansive mappings defined on unbounded
sets in Banach spaces to have a common fixed point. This is a generalization
of Kirk-Ray [9] and Takahashi [14]. Furthermore, we deal with the problem
relative to nonlinear ergodic theory for a noncommutative semigroup of nonex-

pansive mappings in Banach spaces.

§2. Preliminaries.

Let S be an abstract semigroup with identity and m(S) the Banach space
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of all bounded real valued functions on S with the supremum norm. For each
s€S and fem(S), we define elements f; and f* in m(S) given by f;{#)=f(st)
and f@)=f(ts) for all t€S. An element pem(S)* (the dual space of m(S)) is
called a mean on S if ||u|=p(1)=1. Let x be a meanon S and f&m(S). Then
we denote by p(f) the value of p at the function f. According to the time
and circumstances, we write by p(f(t)) the value u(f). A mean g is called
left [right] invariant if u(f)=p(f) [p(f=wp(f)] for all fem(S) and s&€S. An
invariant mean is a left and right invariant mean. A semigroup which has a
left [right] invariant mean is called left [right] amenable. A semigroup which
has an invariant mean is called amenable. A semigroup S is called left [right]
reversible if for every pair of elements a, b S, there exists a pair ¢, d=S such
that ac=bd [ca=db]. Day proved that a commutative semigroup is amenable.
Granirer [6], [7] showed that every left [right] amenable semigroup is left
[right] reversible. We also know that pg=m(S)* is a mean on S if and only if

inf{f(s) : seSt=pu(f)=sup{f(s) : s€S}

for every fem(S). Furthermore we have the following: Let S be a left
amenable semigroup and p be a left invariant mean on S. Then, we have

sup inf f(st)= u(f)=inf sup f(st)

for every fem(S). In fact, let f be an element of m(S) and g be a left in-
variant mean on S. Then we have

u(f)=plf s)ésgp I s(t)zsgp S(st)

and hence p(f)=<inf sup f(st). Similarly, we can prove sup irgf F(st)= pf).

We also have that if S is a right amenable semigroup and y is a right in-
variant mean on S, then we have

sup inf f(ts)= p(f)=inf sup f(ts)

for every fem(S).

Let B be a real Banach space and let B* be its dual, that is, the space of
all continuous linear functionals f on B. The value of f<B* at x&B will be
denoted by <{x, f>. With each x= B, we associate the set

Jx)y={feB* : {x, H=Ix*=I71*.

Using the Hahn-Banach theorem, it is immediately clear that f(x)# @ for any
x€B. The multi-valued operator J : B—B* is called the duality mapping of B.
A Banach space B is said to be smooth provided

lim ||x+thtll—-llxll ()
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exists for each x, heB. When this is the case, the norm of B is said to be
Gateaux differentiable. The space B is said to have uniformly Gateaux differen-
tiable norm if for each h<B, the limit () is attained uniformly for x with
lxl=1. It is well known that if B is smooth, then the duality mapping J is
single valued. It is also known that if B has uniformly Giteaux differentiable
norm, J is uniformly continuous on bounded sets when B has its strong topology
while B* has its weak star topology ; see [3]. Let K be a subset of B. Then,
we denote by 9(K) the diameter of K. A point x< K is a diametral point of K
provided

sup{llx—yl : yeK}=0(K).

A closed convex subset C of a Banach space B is said to have normal structure,
if for each closed bounded convex subset K of C, which contains at least two
points, there exists an element of K which is not a diametral point of K. A
Banach space B is called uniformly convex if the modulus of convexity

oe)=inf {1—3 1x+31 ¢ xl, IS1, Ix—ylze}

is positive in its domain of definition {¢ : 0<e=<2}. A closed convex subset of
a uniformly convex Banach space has normal structure and a compact convex
subset of a Banach space has normal structure.

§3. Fixed point theorems.

Before proving fixed point theorems for a noncommutative semigroup of
nonexpansive mappings defined on unbounded sets in a Banach space, we prove
the following Lemmas.

LEMMA 1. Let C be a nonempty closed convex subset of a Banach space B,
let S be a left reversible semigroup of nonexpansive mappings t of C into itself,
and suppose that {tx :t<S} for some x=C is bounded. Then, the real valued
functions f and g on B defined by f(y):irslf sxgplIstx—yIl and g(y):irslf sypllstx—yll2

for each y<= B are continuous and convex.
Proor. Let y=B and »>0. Then, there exists a positive number M such
that
Istx—yl*—llstx—z|*

=(stx—yl+lstx—z|)(|stx—yl|—|stx—z|)
S(Istx—yll+lstx—z|)lIly—=z|
=M|y—=z|

for all s, t€S and z€S,(y)={veB:||y—v|<r}. So, we have
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Slng Stx_yllgésypll stx—z||*+M|y—z|

and hence g(y)=g(z)+M|y—z|. Similarly, we have g(z)=g(y)+M|z—yl.
Therefore, |g(v)—g(@)|=M|y—z| for all zeS,(y). This implies that g is con-
tinuous on B. Let a and 8 be nonnegative numbers with a+3=1. Then, since

sty —(ay+B2)|°<alstx—y|*+ B stx—z|*,
we have

inf sgpii stx—{ay+Bz)|*<inf (a Slzlp” stx—y|I*+ Sltlpﬂ stx—z|?).
$ S

Put a:ixslf SltlpH stx—v|* and b:h}f sgpl[stw—zllz, and let ¢>0. Then, there exist
$1, $:<S such that sgp[!sltxv—y[!2<a+s and sxtlplisztx—z]}2<b+s. Since S is left
reversible, we obtain u,;, u,=S with s,u,=s,u,. So, if so=8,u;=s,u,, we have
supflsitx—yl*<a+e and sxgp][sotx—zH2<b+s
and hence
inf (e supl|stx —y||*+ B supllstx—=z*)

=asup|setx—y|*+f suplsitx—z]*

<ala+e)+pb+e)
=aa+pb+(a+P)s.
Since ¢ is arbitrary, we have

glay+pz)=ag(y)+pgl2). |

This implies that ¢ is convex on B.

By the same method, we can prove that the function f is continuous and
convex on B.

LEMMA 2. Let C be a nonempty closed convex subset of a Banach space B
and S be a semigroup of nonexpansive mappings t of Cinto itself. Let {tx :t=S}
be a bounded subset of C and p be a mean on S. Then, the real valued functions

f and g on B given by fM=pltx—yl and g(y)=p.ltx—y|® for each y=B are
continuous and convex.
PROOF. Since

—ily—zislltx—yl—lltx—z| =] y—zl
for v, z€ B we have
—iv=z|=pltx—yl—pltx—zl=y—z| .

Therefore, f is continuous in y. By linearity of g and convexity of norm |-,
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f is convex in y.
By the same method, we can prove that the function g is continuous and
convex on B.

THEOREM 1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space B and S be a left reversible semigroup of nonexpansive mappings t of C
into itself. Then, F(S)#=@ if and only if there exists an element x<C such that
{tx :t=S} is bounded.

PROOF. Suppose that {¢{x:{=S} is bounded for some x=C and define the
real valued function f on B by

f(y)=ir31f sup| stx—yll.

Then, by Lemma 1, f is continuous and convex. Furthermore, define
r=inf{f(y) : y€C} and K={yeC : f(y)<r-+1}.

Then, it is obvious that K is nonempty, closed and convex. Since {tx:t<S}
is bounded, K is also bounded. Since f is weakly lower semicontinuous and K
is weakly compact, we obtain that C,={usC : r=/(u)} is nonempty. If r=0,
then since |u—v||< f(u)+ f(v)=0 for u, veC,, we have that C, consists of a
single point. Let #>0. Suppose that |u—v||=¢>0 for some u and v in C,
and choose a positive number a such that

[1—d(e/r+a)lr+a)<r.

Since u, v=C,, there exist s;, s,=S such that

Sl%p]lsltx——ull<r+a and sxtlpllsgtx—-vll<r+a.
Since S is left reversible, there exist u;, u,<S such that s,u;=s,u,. So, if s,=
S1U1=SsU,, W€ have

sntlpllsotx——ull<r+a and s?pllsotx~—v}[<r+a.
Since B is uniformly convex, we have that for any =S,

u+tv
{ ;_—v-—sotx“§[1——5(e/r+a)](r+a)<7'

and hence f(u-+v/2)=inf sxtlpll stx—(u—+v)/2]|<r. This is a contradiction. There-

fore C, is a single point; say z. Since for each s,=S

inf sgpl[stx—sozll <inf sgp]] SoStx—Sez|l
8 8
<inf sypllstx—zllzr ,
$

we have s,z=z and hence the point z is a common fixed point of S. The con-



548 W. TAKAHASHI

verse is obvious.
As a direct consequence of Theorem 1, we have the following [14]:

COROLLARY 1. Let C be a nonempty closed convex subset of a Hilbert space
H and S be a left amenable semigroup of nonexpansive mappings t of C into itself.
Then, F(S)+@ if and only if there exists x=C such that {tx :tS} is bounded.

By using Lim’s fixed point theorem [10], we can prove a generalization of
Theorem 1.

THEOREM 2. Let C be a nonempty closed convex subset of a reflexive Banach
space which has normal structure and S be a left reversible semigroup of nonexpansive
mappings t of C into itself. Then, F(S)+ @ if and only if there exists an element
x€C such that {tx :t=S} is bounded.

PROOF. Suppose that {fx:¢=S} is bounded for some x=C. Then, as in
the proof of Theorem 1, define

f(y)=ilslf sypll stx—yl,

r=inf{f(y) : yC},
and

K={yeC : f(y2)<r+1}.

Then, it is obvious that K is nonempty, closed, bounded, and convex. Let z=K
and t,&S. Then, since t,z=C and

inf s?p!] stx—t,z|| =inf s?plltostx—tozH
3 S
<inf sxtlpllstx—-2||§r+l ,
$

we have that A is S-invariant. So, from Lim’s fixed point theorem, there exists
a common fixed point for the semigroup S. The converse is obvious.
Similarly, we can prove the following :

THEOREM 3. Let B be a Banach space whose bounded closed convex subsets
have the common fixed point property relative to left reversible semigroups of
nonexpansive mappings, let C be a nonempty closed convex subset of B, and suppose
that S is a left reversible semigroup of nonexpansive mappings t of C into itself.

Then, F(S)#=@ if and only if there exists an element x<C such that {tx :t<S}
s bounded.

CoroLLARY 2 (Kirk-Ray [9]). Let B be a Banach space whose bounded closed
convex subsets have the fixed point property relative to nonexpansive selfmappings,
let C be a closed convex subset of B, and suppose T : C—C is a nonexpansive
mapping. If there exists usC such that the set G(u, Tu)={zeC : |z—u|=
lz—Tul} is bounded, then T has a fixed point in C.
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PROOF. Let a=sup{|y—z| : y, z€G(u, Tu)} and x=Tu. Then, by mathe-
matical induction, we prove that {T"x : n=0, 1, 2, ---} is bounded. In fact, it
is obvious that |x—Tu|<3a. Let |T*'x—Tu|<3a. If T*'x=G(u, Tu), then,
since TueG(u, Tu) and (1/2)(u+Tu)e G(u, Tu), we have

IT*x—Tu| || T* 'x—u|Z|T*x—Tull+ | Tu—u|<a+2a=3a.
If T*¥'xeG(u, Tu), we have
IT*x—Tul| S| T*x—u| <|T**x—Tu|<3a.

Using here, we complete the proof.

§4. Ergodic theorems.

Let C be a closed convex subset of a Banach space B and S be a semigroup
of nonexpansive mappings ¢ of C into itself. Then, if {{x:t=S} for some x=C
is bounded and p is a mean on S, we can define the real valued continuous con-
vex function g on B by g(y)=glltx—y|? for each yeB; see So,
let us define

M(x, my={zC : g(Z)ziggg(y>}.

THEOREM 4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space B, let S be an amenable semigroup of nonexpansive mappings t of C
into itself, and let p be an invariant mean on S. Suppose that

FS)=N{F) : teS}+D .

Then, the set M(x, p)NF(S) consists of a single point for each x and the point is
independent of p.

PROOF. Let p be an invariant mean on S and xC. Then, since F(S)+ @,
{tx :t€S} is bounded and hence we can define the set M(x, p). Consider

r=inf{gtx—yl* : yeC}
and
Ci={yeC : wlitx—ylP=r+1}.

Then, it is obvious that C; is nonempty, closed and convex. The set C; is also
bounded. In fact, if y,=C,, we have

inflltx —yoll*= pelltz—yol* <r+2.

So, there exists t,=S such that [f,x—y,|?<#+2. Hence C, is bounded. Since
youlltx—y|? is weakly lower semicontinuous and C, is weakly compact,Zwe

have that
M(x, p)=1{z€C; : r=p.lltx—z|*
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is nonempty, closed and convex. If zeM(x, ) and s S, then since szC and
willtx—sz|?’=p | stx—sz|* = i ftx—z|°=r,

we have that M(x, p) is S-invariant. So, by Theorem 1, there exists an element
u in M(x, p) such that su=u for all s&S.

Now, we show that the set M(x, y))NF(S) is a single point. Let u, ve
M(x, p)NF(S). If »=0, then since i

lu—vl2<2|u—tx|*+2)tx—v|?,
we have
lu—v]2=2p | u—tx||24-2p, |t x —v]|2=0

and hence u=v. So, let r>0. Let |Ju—v||=¢>0 and choose a positive number
a such that
[l—de/vV7r+a)JVr+a)<s/r,

where ¢ is the modulus of convexity of the norm. Since u, veM(x, p), there
exist #,, £;=S such that

lto—u|<+/7+a and |t;x—v||<+/7+a.
Since S is right amenable, there exist u,, u,=S such that u.t,=u.f,=s,. For

each t=S, we have

tsox —ull=ltutox—ul S lltex—ull <7 +a
and
Itsex —v|=futix—v| = |tix—v| <7 +a.

Since X is uniformly convex, we have
[(u+v)/2—tsox || S[1—0(e// 7 +a) W/ T +a) <V T

and hence

2

=,

2

u-tv <r.

u+tv ‘t _utv
2 fsr—

This is a contradiction. Therefore, the set M(x, u)N\F(S) is a single point. Let
usF(S). Then, we know that

Melltx —

sup inflltsx— < plltx—u|* Sinf sup|tsx—ul®.
$ t

Put a:irslf SltlthSX—uHZ and let ¢ be an arbitrary positive number. Then, we
have

sxtxp[[tsx—ullzga>a—s

for all s&€S. Fix s=S. Then, for each t<S, there exists a t,&S such that
ltotsx—ul*>a—e. Since t, is nonexpansive, we obtain |[tsx—u|2=|tstsx—ul|?>
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a—e. So, we have inf|tsx—u|*=a—e and hence
L
sup i?fntsx—uilzga:inf sngtsx—uH2 .
8 8

Therefore, we have

sup irtlfl[tsx—ullz':yzﬂtx—qu:inf s?plltsx—un2 .

This implies that M(x, pNF(S)={z} is independent of p.

THEOREM 5. Let C be a nonempty closed convex subset of a Banach space B
with a uniformly Géteaux differentiable norm, let S be an amenable semigroup of
nonexpansive mappings t of C into itself, and let p be an invariant mean on S.
Suppose that

FS)=M{F®):tcS}# @

and let u, x&C. Then, ucM(x, p) if and only if plz—u, Jtx—u)>=0 for all
z&C, where J is the duality mapping of B.
PrROOF. For z in C and 0=<1=1, we have

ltx—ul>=ltx—Au—1—Dz+{1—D(z—u)|?
>lltx—Au—1—)z|2+201—Dz—u, Jtx—iu—1—22)>.

Let ¢>0 be given. Since the norm of B is uniformly Gateaux differentiable, the
duality map is uniformly continuous on bounded subsets of B from the strong
topology of B to the weak star topology of B*. Therefore,

|[<z—u, Jtx—Au—1—2Az)—Jtx—u)y| <e
if 4 is close enough to 1. Consequently, we have
(z—u, Jtx—u)y<e+<{z—u, Jtx—Aiu—(1—2)z))
Set oo (el ftx—Au—(1—2el?)
and hence

1
pz—u, Jix—upset oy {pelltx—ul®—plltx—u—(1—2z|"} =e.

Therefore, we haye pmlz—u, Jtx—u)>=0 for all zeC.
Since for z, u=C,

tx—z|lP—tx—ul*=2{u—z, Jtx—u)),
and p,(z—u, JEx—u)>=0 for all zeC, then ueM(x, w).

THEOREM 6. Let C be a nonempty closed convex subset of a Hilbert space
H, S be an amenable semigroup of nonexpansive mappings t of C into itself and
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p be an invariant mean on S. Suppose that
FS)=MN{Ft) : tS} Q.

Then, the set M(x, p) consists of a single point x, and the point x, is independent
of p.

Furthermore, putting Px=M(x, p)=x, for each x=C, then, P is a nonex-
pansive retraction of C onto F(S) such that Pt=tP=P for every t€S and Pxc
QSE{SI.‘x:tES} for every x=C, where CoA is the closure of the convex hull

of A.

PROOF. Let p be an invariant mean on S and x=C. Then, since F(S)# @,
{tx :t=S} is bounded and hence, for each y in H, the real-valued function t—
{tx, y»> is in m(S). Denote by g {tx, y> the value of p at this function. By
linearity of ¢ and of the inner product, this is linear in y; moreover, since

|peCtx, o1 = pll-supl<tx, y>[=(suplitxl)-ll,
it is continuous in y, so by the Riesz theorem, there exists an x,=H such that
patx, ¥7=<{x0, ¥
for every yeH. If xogésgs co{stx :t=S}, then we have x,&co{s,tx:t<S} for
some s, in S. By the separation theorem there exists a y, in H such that

{xq, Yor<inf{{z, yo» : zEco{sotx :t=S}}.
So, we have
irt1f<sotx, Yoo =plSotx, Yor=ptx, Vo,
=<{Xo, Yo
<inf{{z, vy : z€co{sitx : t=S}}
§i1t1f<sotx, Vo)
This is a contradiction. Therefore, we have
x,E [\ Cofstx:t=S}.
SES
Let u=C. Then, since
[xo—ul®=ltx —ul®—ltx—xoll*—2{tx—x0, xo—u>
for every t<S and hence
[xo—ull®>=p(ltx —ul®—[ltx — x0[*—2{tx — x4, x0—u))
=peltx—ul®—plltx—x,|*=0,

we have x,eM(x, p). If ueM(x, p), then since
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pelltx—u|>—pelltx —xo[I*°=0,

we have u—=ux, Setting Px=x,, it follows from and above that P is a non-
expansive retraction of C onto F(S) such that Pt=tP=P for every t=S and

Pxe N\ co{stx :t=S}
sES

for every x<C.

(11]
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[13]
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