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Introduction.

Let G be a finite group and @(G) the set of G-isomorphism classes of all
finite (left) G-sets. Then ©(G) is a semi-ring with addition and multiplication
induced by disjoint union and cartesian product, respectively. The Burnside ring
A(G) of G 1is defined to be the Grothendieck ring of @(G). Let A(G)* be the
unit group of the Burnside ring A(G).

In this note we shall study A(G)* and the homomorphism u : RO(G)— A(G)¥,
where RO(G) is the real representation ring of G and u is the homomorphism
defined by T. tom. Dieck (see 1.2). By the famous theorem of Feit-Thompson
(G is solvable if |G| is odd) and by a result of A. Dress (idempotents of A(G)
are determined by perfect subgroups of G, cf. Proposition 1.4.1), we know
that

|A(G)*| =2 if |G| is odd

(cf. Proposition 1.5.1). Therefore, it remains to study A(G)* and the homo-
morphism u : RO(G)— A(G)* for groups G of even order.

In Section 1, we describe the well known results for A(G)* and the homo-
morphism u : RO(G)—A(G)*.

Section 2 is the main part of this note, and we obtain the following Theorem
A and Theorem B.

THEOREM A (cf. Theorem 2.2, Corollary 2.4 and Lemma 2.5). u: RO(G)—
A(G)* is surjective if and only if wu:RO(G')—A(G")* is surjective for every
homomorphic image G’ of G such that |C(G")| =2, where C(G’) is the center of G’.

THEOREM B (cf. Theorem 2.9 and Theorem 2.11). Let 1-H—-G—K—1 bea
group extension. Then we have

() K acts on A(H)* (cf. 2.6) and Res§(A(G)*)C(AH)*)X, where Res§ is the
natural restriction homomorphism from A(G)* to A(H)*,

Gi) 7f |K| is odd and u: RO(H)—A(H)* is surjective, then u: RO(G)—
A(G)* is surjective and Res% : A(G)*—(A(H)*)X is an isomorphism,

(iii) if the group extension is split and |K| is odd, then Res§ : A(G)*—
(A(HH®)X 4s an isomorphism.
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In Section 3, we give a few examples. By Theorem A we obtain the follow-
ing example.

EXAMPLE (cf. Example 3.1). Let D, be a dihedral group of order 2m. We
put G=Dp, X -+ XDy, If my, -+, m, are relatively prime integers and m;>1
(=1, +--, r), then u: RO(G)—A(G)* is surjective.

The surjectivity of u: RO(G)—A(G)* does not necessarily imply the same
for subgroups of G. Here is an example. -

EXAMPLE (cf. Example 3.4). We put

Cis=CsXCs=<(opX<{osy and Aut(Cy)=CyXCy=<(7:)X<t2),
where C, is a cyclic group of order m. Moreover, we put
H={0y, 04, t1'75> and G={oi, 03, T1, T2) .

Then u: RO(G)—A(G)* is surjective and u: RO(H)—A(H)* is not surjective.
Throughout this note, we use the following notation:
1 the unit element of G,
(H) the conjugate class of a subgroup H of G,
@(G) the set of conjugate classes of all subgroups of G,
Ng(H) the normalizer of a subgroup H of G in G,
X¢ the set of fixed points of a G-set X,
[ X | the cardinal number of a set X,
[X] the element of A(G) represented by a finite G-set X,
KY> the subgroup of G generated by a subset ¥ of G,
14y the unit element [point] of A(G),

R the field of real numbers,
A the ring of rational integers,
R* the unit group of a ring R.

1. Well known results for A(G)* and u: RO(G)—A(G)*.

1.1. Any finite G-set X is isomorphic to the disjoint union of some coset
G-spaces G/H. Since G/H and G/F are G-isomorphic if and only if (H)=(F)
in @(G), A(G) is a free module with basis {{G/H]|(H)e®(G)}. For a finite
G-set X, let ¥'(X): O(G)—Z be the mapping defined by

V(XNH)=|X"]  for (H)ed(G).

Let Hom(®@(G), Z) be the ring of all mappings from @(G) to Z with the ring
structure induced by the ring structure of Z. It is well known that the assign-
ment ¥ : X—¥(X) induces an injective ring homomorphism

¥ A(G) —> Hom(9(G), Z).
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Therefore, we can view A(G) and A(G)* as a subring of Hom(®(G), Z) and a
subgroup of Hom (D(G), Z)*=Hom (P(G), {+1}), respectively.

1.2. Let V be a real representation of G. Let u(V) be an element of A(G)*
defined by

u(VY(H)=(—1)%me""  for (H)e®(G)

(cf. Proposition 5.5.9). The assignment u : V—u(V) induces a homomorphism
u: RO(G)— A(G)* such that u(V+W)=u(V)u(W). For a regular representation
V=RG we have dimgV¢=1 and dimgV =|G|. Therefore if |G| is even, then
there exists a non-trivial unit of A(G).

1.3. Let @ be the field of rational numbers and @ its algebraic closure. Let
I" be the Galois group of @ over Q. Let RO(G)?® be the submodule of RO(G)
generated by the set, denoted by ab(G), of all absolutely irreducible real repre-
sentations of G. The group I’ acts naturally on RO(G), RO(G)*® and ab(G).
Then we have

Imageu=u(RO(G)*®) and |Imageu|=2!2b@ /Tl

(cf. [2] Lemma 5.2). Let {: A(G)—R(G, Q) be the natural ring homomorphism
defined by ([ G/H1)=1%, where R(G, Q) is the rational representation ring of G.
If { is surjective and the Schur index of every element of ab(G) over Q is odd,
then we have

(1.3.1) |Image u | =2!2>@ /T

(cf. [2] Lemma 5.5).

14. If ¢ is a non-trivial idempotent of A(G), then (1—2¢)eImageu (cf. [2]
Theorem 5.4). It follows that u is not surjective if G is not solvable. The
converse is not always true (cf. Example 5.9). In general A(G)* is not
generated by Imageu and {(1—2¢)|e<A(G) and e*=e¢}. In fact, for the sym-
metric group &;, there exists only one non-trivial idempotent e of A(S;) and
we have

AG)*2dmageu, (1—2e)>
(cf. [2] 5.11.1).
1.5. If G is an abelian group, then u: RO(G)—A(G)* is surjective,

A(GY*={—1uw), Qaey—[G/HDI(H)€PD(G) and |G/H|=2)

and |A(G)*| =2+ where m(G)=|{H)e@(G)||G/H|=2}| (cf. Example
4.5 and Example 5.6).

2. The homomorphism % : RO(G)— A(G)*.
2.1. We put



348 T. MaTsupa and T. MivaTa

S(G)={H)e®(G) | if HDH’ and H’ is normal in G, then H'=<1>}V{G},
AGYr={ac A(G)* | a(G)=1},
AG={ X G)”(H)[G/H] | nan €2},

(H)ES(

AG)§=A(G)*NA(G),

Min(G)={H | H is a non-trivial minimal normal subgroup of G} .
A(G), is a subring of A(G) with the unit element 1,4, (cf. Lemma 3.3),
A(G)s a subgroup of A(G)* and A(G)*=+A(G)*. Let f:G—G’ be a group
homomorphism and X a G’-set. Then we may regard X as a G-set via f, which
we denote by f*(X). So f induces a ring homomorphism f*: A(G')— A(G)
defined by f*([(X])=[f*(X)]. For a subgroup H of G, X# is a WH-set, where
WH=NgH)/H. The assignment wy: X—X¥# induces a ring homomorphism

og: AG)— AWH).

If H is normal in G, then the natural projection p : G—G/H induces an injective
ring homomorphism p*: A(G/H)—A(G) (cf. Theorem 4.4). So we can view
the group A(G/H)* as a subgroup of A(G)*.

THEOREM 2.2. We have the following (i) and (ii).

(1) AGy=C 11  A(G/H)")-A(G)§

(H)EMIin(G)

and
( II AG/H)NAGK={lae}-

(H)EMin(G)

(i) If V is an irreducible faithful real representation of G, then u(V)e
A(G)s. Moreover, if as(A(G)yNnImageun), then a=u(Vi+ - +V,) for some
trreducible faithful real representations Vy, -+, V, of G.

PROGOF OF (i). Suppose that a= A(G)*. We put

a= n(H)[G/H] (nmel),

(HYED(G)

and Min (G)={H,, ---, Hs}. Since (G/H)¥ is non-empty if and only if F is con-
jugate to a subgroup of H in G,

le(a):HEI nan[G/H] and g (a)e A(G/Hy)*.
1
We put inductively,

a; = ﬂij(aj—l> (=1, - ’ S),
Jj=1

where ay=a. Then a,€ A(G)}, wu ;)€ AG/H)* and
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a=( o (a;-1)-a.

RROOF OF (ii). For a non-trivial normal subgroup H of G, V¥ is a real
representation of G/H, so VZ={0}. It follows that u(V)e A(G){. The last part
is obtained by (). ‘ Q.E.D.

COROLLARY 2.3. We have

AGY=_ 11 1A(G/H)Jor .

H is norma

COROLLARY 24. u: RO(G)—A(G)* is surjective if and only if A(G/H){C
Image(u : RO(G/H)—A(G/H)*) for any normal subgroup H of G.

LEMMA 25. Let C(G) be the center of G. If |C(G)| =3, then A(G)§={lia}.

ProOOF. For a maximal element (H) of S(G)— {G}, if a= A(G)§, then

a(H)=1+ng|WH|==1,

for some ny<=Z. Since |C(G)|=3, we have |WH|=3. It follows that a=1,.
Q.E.D.
26. Let 1-H—-G—K—1 be a group extension. We define K-action on
A(H) as follows. For each g<G, let 3: H—H be the automorphism defined by
g(h)=ghg™'. We define G-action on A(H) by

gra=g%a) (geG and ac A(H)).

Then H acts trivially on A(H). Therefore K=G/H acts on A(H). Similarly
K acts on RO(H).
2.7. For a subgroup H of G, let

Res% : A(G) — A(H) and Res§: RO(G) — RO(H)

be the natural restriction ring homomorphisms. We put Res§ =Res%|i Let
1-H—-G—K—1 be a group extension and X a finite G-set, then g: g% X)—X
(defined by g(x)=g-x) is an H-isomorphism for any g=G. It follows that
Image Res§ C(A(H)*)X .
Similarly,
Image (Res§ : RO(G) — RO(H))CRO(H)X .

For each real representation V of G, the diagram
¢(H)\——>’* =0(G)
u(Res%(V)) u(V)
N ¥

is commutative, where 7y is a mapping induced by the inclusion map 7: H—G.
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Therefore, the diagram

Res$
RO(G) ROH)X®
(2.7.1)
u Res% u
A(G)* =(A(H)*)¥

is commutative,

LEMMA 2.8. Let 1-H—G—K—1 be a group extension. If |K| is odd, then
Res% is injective.

Proor. It is sufficient to prove that

(La +Res)ONNAG)*= {luw} -

Suppose that (1, +a)s A(G)* and Res§(a)=0. For any subgroup L of G, the
diagram

Res%
A(G) A(L)
lRes?, l ResfnL
v Res¥nr
ACH) AHNL)

is commutative, and |L/HNL| is odd. Therefore, by induction on |G|, we can
assume that a((L))=0 for every proper subgroup L of G. Suppose that a(G)+0.
Since (1uqF+a)sA(G)*, a(G)=—2. Let K, be a maximal subgroup of K and L
its pre-image. Then

a((L)=—24m|(G/L)*|=—2+m|G/L|=0

for some integer m. Since |G/L| is odd, a((L))#0. This contradiction implies
that «(G)=0. That is, a=0. Q.E.D.
THEOREM 2.9. Let 1-H—G—K—1 be a group extension. If |K| is odd and
u: ROH)-AH)* is surjective, then u:RO(G)—A(G)* is surjective and
Res% : A(G)*—(AH)*)E is an isomorphism.
ProoF. Since u: RO(H)—A(H)* is surjective, u : RO(H)X—(AH)*)X is sur-
jective. Let V be a K-invariant real representation of . Then we observe that

Res%(RG ® V)=|G/H|-V and |G/H| is odd.
RH

It follows that RO(G)—RO(H)X/2-RO(H)X is surjective. Therefore u-Res§:
RO(G)—(A(H)*)¥ is surjective. By the commutative diagram and
2.8, the desired result follows. Q.E.D.
COROLLARY 2.10. Let 1-H—G—K—1 be a group extension. If |K| is odd
and H is an abelian group, then u: RO(G)— A(G)* is surjective and | A(G)*|=2m*1,
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where m=|{(H,) e @(G)|HDH, and |H/H,| =2} |.

ProOF. It is trivial by 1.5 and [Theorem 29.

THEOREM 2.11. Let 1-H—G—K—1 be a split group extension. If |K| is
odd, then Res§ : A(G)—A(H)X is a split epimorphism and Res§ : A(G)*—(A(H)*)%
is an isomorphism.

PROOF. As an abelian group, A(H)¥ is generated by K-orbits of [H/H,]’s.
We put K,={keK|kH,t'CH}. By the Mackey double coset formula,
Res§([G/K,-H,]) is the sum of K-orbit of [H/H,]. Therefore Res% is a split
epimorphism. By Res% is an isomorphism. Q.E.D.

3. Examples.

ExaMpLE 3.1. Let D, be a dihedral group of order 2m. We put G=
Dy X - XDy, If my, ---, m, are relatively prime integers and m;>1 (=1, ---, r),
then u: RO(G)— A(G)* is surjective. Moreover, by we have

| A(G)*|=2°,
where
(dom)+2) TL(dom)+1)  if my is even
3=

p__‘
1 1| (d(m;)+1) if m; is odd for each j,
j=

and d(m)=|{i | 7 is a positive divisor of m}| (cf. [2] Example 5.7).
PROOF. By and it is sufficient to prove that
3.1.1) A(GH{CImage(u : RO(G’) — A(G)*)

for each homomorphic image G’ of G such that |C(G’)|<2. G’ has one of the
following three types of groups (mutually exclusive).

) Dp X -+ XDy, where my, ---, m, are relatively
prime odd integers and m;>1 (=1, ---, »).

1 C.X H, where H has type (I) and C; is a
cyclic group of order 2.

(11D Dy, X -+ XDp,, where my, -+, m, are relatively
prime integers, m;>1 (7=1, ---, ») and 4|m,.

If G’ has type (II), then [3.1.1) is true by the following For the
other two types, it will be proved by the same way.

LEMMA 3.2. If my, -, m, are relatively prime odd integers, then (3.1.1) is
true for G=CyXDp,X =+ XDp,.

Proor. We put
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Dyp,=<0y, 7 | oPi=7i=1 and 7' -0 7i=07",
C=<{p> and L={u, 7;|i=1-,7>.

Since each subgroup of {u-z;:75* -+ -z,> is normal in G, if (H)e(S(G)—{G}),
then H is an elementary abelian 2-group conjugate to a subgroup of L. Suppose
that a= A(G)f. We can put

a=( > nglG/HD+14e,

HCL and pu¢H
where nyeZ. Let L,, ---, L, be all subgroups of L such that pecL;and |L/L;]
=2 for each ;. Considering a((L;)), we have

ng;=0 or -1 for each 7.
Moreover, we have

(3.2.1) if ny,,=0 for some i, then a=1,4, .

PrOOF oF (3.2.1). We proceed by induction on ». If »=1, then

AG)s={1luw, Qae—LG/<zD]1—[G/{p-7>]1+LGD}.
So, (3.2.1) is true for r=1. Suppose that n;,=0 and »>1. We observe that

Wepla) =1+ ) > nglG'/H']),
u

HcCL and r1€H

where G'=CyXDp,X -+ XDy, and H'=H/<{r;>. By the assumption of induction,
if ryeL,, peHCL and 7;€H, then ny=0. In particular,

N<ryr e, >=0 if ;L.
Similarly,
N<rgyene,>=0 if z;=L; for some 7.
Therefore we have
ng=0 if ;= H for some 7.

If L, is a subgroup of L such that |L/L,|=2 and L,Nn\{g, 71, -, 7.} is empty,
then L,={p-7y, -+, p7,>. For a maximal proper subgroup H of L,,

a((H)=1+n.,|(G/L)* | +nxg|(G/H)? | ==1.

Since [(G/L,)¥| is even and |(G/H)¥| is divisible by 4, nyz=0. It follows that
a=ly or (lae—[G/L:]). Since (14 —[G/L,]) is not in A(G)*, a=l,g.
Therefore we obtain (3.2.1).

Let V; (i=1, ---, r) be the real representation of D, (=1, -+, ») determined

by
0w ol
g, — y Ty
0 3 1 0
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where &,, is a primitive m-th root of 1. We put V=V,;X --- XV,. Then V is an
irreducible faithful real representation of G, where g acts on V by p(v)=-—v.
If ac A(G)§ and a#1,4,, then
a-u(V)=l,e (by (3.2.1)).
Q.E.D.

ExampLE 3.3. Let 1-C,XC,—»G—C;—1 be a split group extension, where
p is an odd prime and C, is a cyclic group of order p. We put C,xXC,=
(oo X<oyy and Co=<r)>. If z7'g;v=07! (=1, 2), then u : RO(G)—A(G)* is not
surjective.

PROOF. Any subgroup of C,XC, is normal in G. It follows that there is
no irreducible faithful real representation of G. Since (145 —2[G/<{>]+[G)) is
an element of A(G)}, the desired result follows from 2.2, (ii). Q.E.D.

Similarly, For each of the following groups G, u: RO(G)—A(G)* is not
surjective :

D,xD, (p is an odd prime), D,X D, and DD,
(* means the central product).

ExAMPLE 34. We put

Cis=C3 X Cy=<(apX <oy and Aut(Cy;)=CoXCy=<{7) X<t .
Moreover, we put
H:<01, O, Tl'T2> and G:<0'1, gz, T1, Tg> .

Then u: RO(H)—A(H)* is not surjective and u : RO(G)— A(G)* is surjective.

PrROOF. We put 0=0,-0, and z=z;-7,. Since (144, —2lH/<{t)]1+[H/{2])
is an element of A(H)}, it is sufficient to prove that there is no absolutely irre-
ducible faithful real representation of H. Since

QC:=Q&::1+Q& 4+ -+,

every irreducible faithful representation appears in Q[&;;1[<{z>], where &, is a
primitive m-th root of 1 and Q[&;51[<z>] is a twisted group ring. Since -7}
is the complex conjugation and {(z;-73)¢<{r>, no absolutely irreducible faithful
representation of H is defined over R. It follows that u: RO(H)—A(H)* is not
surjective. The surjectivity of u: RO(G)—A(G)* will be proved by the use of

Corollary 2.4] and by similar calculations as in Example 3.1. Q.E.D.
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