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Introduction.

The purpose of this paper is to prove the rationality for the local Hecke
series of some classical groups over p-adic fields, and to calculate the degrees
of its numerator and the denominator. '

Let 2 be a p-adic field. Let K be either % itself, a quadratic extension of
k, or the (unique) central division quaternion algebra over k2. We denote by
x— % (x€K) the canonical involution. Let e be an element of the center of
K such that ¢&=1, V be an n-dimensional (right) vector space over K with a
non-degenerate e-hermitian form @(, ), and L be a maximal lattice in V (cf.
§1-1). Let G be the connected component (in the sense of an algebraic group
over k) of

é:{gEGL(V); D(gx, gy)=p(g) D(x, y) for all x, yeV, u(g)sk*}.

Let U be the subgroup of G consisting of all elements of G which leave L
invariant. It is known that U is a maximal compact subgroup of G. For m
=0, set

X(m)y={geG; gLC L, ord,u(g)=fmj},

where ord,(x) is the p-order of x for x=k, and the positive integer f is deter-
mined by the condition ord,p(G)=fZ. Let T(m) be the characteristic function
of X(m) in G, considered as an element of the Hecke algebra of the group G
with respect to U (see §1-2). Then the (local) Hecke series of the group G
with respect to U is by definition

Zoan(T)=3 T T™,

where T is an indeterminate.

Our main result is that the Hecke series Z g yy(T) is a rational function in
T, and the degree of the numerator is 2°—1 or 2*—2, while that of the deno-
minator is 2%, where v is the Witt index of (V, @).

When @ is an alternating form, the Hecke series has been studied in
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G. Shimura [12], L. Satake [11], and A.N. Andrianov [1], [2], [3] The present
work owes much to the works of Satake and Andrianov.

The authors sincerely express their hearty thanks to Professor Y. lhara for
drawing their attention to Hecke series.

NOTATIONS AND CONVENTIONS. Throughout this paper, £ denotes a p-adic
number field, i.e. a complete discrete valuation field of characteristic 0 with
finite residue field. The valuation-ring of %2 and its maximal ideal are denoted
by o and p=(x), respectively. For x&% we denote by ord,x the p-order of x.
Let p be the number of elements of the residue field o/p. We denote by |S]|
the cardinality of a finite set S. For a ring R with unit element, we denote
by R* the unit group of K. When X, ---, X, are variables, R[X,, ---, X,]
(resp. R[[X;, -+, X»]]) denotes the ring consisting of polynomials in (X;, ---, X5)
(resp. formal power series in (X, -+, X,)). For any set S, M, »(S) denotes the
set of nXm matrices with entries in S. Put M, .(S)=M,(S). If S is a ring
with unit element, M,(S) forms a ring, and we denote by 1, the unity of AM,(S).
Put GL,(S)=M,(S)*. As usual, Z, Q, and C are the ring of rational integers,
the field of rational numbers, and the complex number field, respectively. The
0.; means the usual Kronecker’s symbol.

§1. Preliminaries.

In this section, we shall recall the definitions and several properties of e-
hermitian forms and their Hecke algebras, following mainly Satake and
Hijikata [9].

1-1. Let K be either £ itself, a quadratic extension field of %, or the
(unique) central division quaternion algebra over k. We denote the maximal
order in K and its unique two-sided maximal ideal by © and P=(II), respec-
tively. Let e be the ramification exponent, i.e., #0O=P°. We denote by x —
X% the canonical involution of K over k. Let ¢ be an element of the center of
K, satisfying e2=1. Let V be a right vector space over K of dimension =,
and @ be an e-hermitian form on V, i.e., a k-bilinear mapping VXV — K such
that @(xa, yb)=ad(x, y)b, D(y, x)=¢ ®(x, y), for any x, yeV, a, beK.

REMARK 1. There are following five cases.

case(O) K=k, ¢e=1, (@ is a symmetric form).

case(Sp) K=k, e=—1, (@ is an alternating form).

case(U) K is a quadratic extension field of .

case(U*) K is a division quaternion algebra over 2, e=1, (@ is a quaternion
hermitian form).

case(U") K is a division quaternion algebra over %, e=—1, (@ is a quaternion
anti-hermitian form).
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We assume that @ is non-degenerate, i.e., @(x, V)=0 implies x=0. Let v
be the Witt index of (V, @) (cf. [6]) and put n=n,+2v. It is known that
0=n,=4 in case(0), n,=0 in case(Sp), 0=n,=2 in case (U), 0=n,Z1 in
case (U*), and 0=n,<3 in case(U"). An O-submodule L of V is called a
lattice if it is finitely generated and L @ K=V. When a is a (fractional) two-
sided ideal of £, a lattice L is called a-integral if it satisfies the following two
conditions :

(1) @(x, y)=a, for any (x, y)€LXL,

(2) For any x in L, there exists an element £ of a such that @(x, x)=E&-+¢E.

REMARK 2. In case (Sp) and (U*), (2) is a consequence of (1). In case (O)
and (U-), (1) is a consequence of (2) (cf. or [16])).

A lattice L is called maximal a-integral if it is maximal in the class of a-
integral lattices. For any maximal P!-integral lattice L in V, there exists, by
results of Eichler [7], Bruhat [6], Shimura [13], and Tsukamoto [16], a system
of vectors {e;, ¢;(1=7/=v)} such that

L=3 e+ B i+ L§P, (LLD)

D(e;, e;)=0D(es, ¢5)=0, D(e;, ej)=0;; for all 7, 7,

where L{" is the unique maximal R'-integral lattice in V,=( e; K+ efK)* (L
denoting the orthogonal complement). For £ K, put

T (5)=E&+¢€E. (1.1.2)
Then
Lp={xeV,; O(x, x)eT.(PBY}. (1.1.3)

We now fix any maximal P'-integral lattice L in V, and a system of vectors
{es, ef (1=ZiZv)} satisfying once for all. We take furthermore an Q-basis
(fy, =+, fay) of L§P, and understand that a K-linear transformation of V is rep-
resented by a matrix with respect to the basis (ey, -+, ey, f1, =+, fny €1, =+, €1).
For any matrix g=(g;;) with entries in K, we denote by g* a matrix whose
(i, j)-entry is gz;. Then the e-hermitian form @ is written as follows:

D(x, y)=x*Ry for any x, yeV=K"=M, (K), (1.1.4)
L,
where R= R, , R¥=gR,e M, (K). Set
el,
G={geGL.(K); g*Rg=p(g)R with u(g)ek?}, (1.1.5)

Go={gEGL,(K); g*Rog=po(g)R, With p(g)ek}, (1.1.6)
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G (resp. Go)=the connected component of 6(resp. 50)
as algebraic group over k. (L.1.7)

Define a positive integer f by
ord,u(G)=fZ . (1.1.8)

Consider the following subgroups of G;

U={uesG; uL=L} (an open compact subgroup of G), (1.1.9)
Eo(X¥)7? )
Eoe k™, X=diag. (x4, -+, x,)
He h, : ,  (1.1.10)
1€K™, ho€Go, pto(ho)=&,
X
(X5 x
1 =
N=4|.0 1,, * |€G; X:( >6M,(K) . (1.1.11)
0 1
0 0 X
Then
G=UHN=UHU (cf. [11; §9-27). (1.1.12)

REMARK 3. Except for case (O) with n,=even and case (U7), G itself is
connected, i.e., G=G. For case (O) with ny=even (resp. case (U7)), G is defined
by the additional condition det (g)=pu(g)"/? (resp. ﬁ(g):p(g)”, N denoting the
reduced norm of M,(K)/k).

1-2. Let G be as in §1-1, and L(G) (resp. Lz(G)) be the set of all com-
pactly supported continuous functions on G with values in C (resp. Z). Set

LG, )={fe LG); flugu)=f(g) for all u, w'el, geG}, (1.2.1)
Lz(G, U)y=Lz(G)NL(G, U).

For f,, f.= L(G, U), define their product by the convolution

(fixfo(@)=| fileg)fe) dg  (8€6), 1.2.2

where dg, is the bi-invariant Haar measure on G, normalized by the condition
that the total volume of U equals 1. The multiplication gives the C-
module L(G, U) (resp. the Z-module L4(G, U)) the structure of a C-algebra
(resp. Z-algebra). The algebras L(G, U) and Lz(G, U) are called the Hecke
algebras of the group G with respect to U. They are commutative, and their
structures have been determined by Satake [11]. We quote his results. First,
some notation. For r=(ry, -+, 7,; 7)€ Z*XZ, put
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zro(D*)"t 0
nT= if n,=0,
0 D
po(@)o(D*"* 0 0
= 0 w0 if ne=1, (1.2.3)
0 0 D
where D=D(@r)=diag. (I["1, ---, II"»), and @ denotes an element of G, such that
ord,pe(w)=f. Set
A={(ry, -, 1 r)€EZYXZ; 1= -+ =r,Sfer/2}

unless in case (O) with n,=0,

={(ry, =, 1 YOEZ’XZ; 1= -+ Zrya =Min(ry, ro—r,)}

in case (O) with 7n,=0. (1.2.4)
Define r® (0=i=<y) as follows;
©,--,0,1,-,1; 2/fe) if fe=1 or 2,
b_-(._—/

r®= ! 0=<i<y—2)
a-,1,2-,2; 1) if fe=4,
N —

:
O, --,0,1; 2 if fe=1 and not case (O) with n,=0,
r¢v=< 0, ---,0,1; 1) if fe=2 or case(O) with 7n,=0,
a--,1,2; 0 if fe=4,
{ o, --,0; 1 if fe=1 or 2,
r(V):
a --,1; D if fe=4. (1.2.5)

It is clear that in case (O) with n,=0 and v=1, 4 is generated by +r®, +r®
as semi-group, and that in the other cases A4 is generated by +r®, r@®, ...  r® ag
semi-group. Let ¢® (0=/=<vy) be the characteristic function of the double coset
Urr®U. Clearly, ¢® e L(G, UyC L(G, U). Then

G= [EU::’U (disjoint union), (1.2.6)
re

LG, U)=Z[c®, (c®)™, ¢D, ... ], (1.2.7)

L(G, U):—_C[C(O)’ (C(O))—l, C(l), -, C(u)] , (1.2.8)

and ¢“?(0=<7/=<y) are algebraically independent over C (cf. [11; Theorem 1 and
§971). Especially, (1.2.6) implies that U is a maximal compact subgroup of G.
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We quote Satake’s result on the Fourier transform of L(G, U) in the same
language as in Andrianov [4; Proposition 3.1]. Let X,, -+, X, be algebraically
independent over C and C[ X35, ---, Xi] be an algebra generated by X,, X7?, -,
X,, X;1. From (1.1.12), for each element g=G, the double coset UgU can be
decomposed into left cosets in the form

UgU=T11U=r™in,, 1.2.9)

el

where m;=(mgy, -+, miy; Mmi)€Z*XZ, n;€N, and [ is a finite index set. The
set {m;; il} is uniquely determined by UglU. We denote by C(g) the charac-
teristic function of UgU in G. Put

V(C(g)= 3 XL (X,/gh)ms, (1.2.10)
j=1

el

where ¢ is the number of elements of O/P. Since {C(g); g=G} spans L(G, U)
over C, we can extend to a C-linear mapping from L(G, U) into CL X%, ---, XZ].
By using the left coset decomposition one checks that ¥ is a C-algebra
homomorphism. Let S, denote the group of all permutations of the variables
X, -+, X, and w® (1=/=<v) denote the transformation;

Xo— Xo(p*X)'¢,  Xir—> p72 X7,

X;— X; (7#0,7) (1.2.11)
where pA=gno/2+*-1 (r=dim, (Ker T.)/dim,(K)), i.e.,
| No/2—1 in case (O)
0 in case (Sp)
A={ (n,—1)/e in case (U) (1.2.12)
ne—1/2 in case (U%)
n,—3/2 in case (U7).

Let W denote the group of automorphisms of the algebra C[X%, ---, Xf] gen-
erated by S, and w® (1=/=vy)(resp. S, and wPw® (1=/<j<v)) except for case
(O) with 7n,=0 (resp. in case (O) with n,=0).

THEOREM (S) (Satake [11; Theorem 3]). The above mapping defines a C-
algebra isomorphism between L(G, U) and the W-invariant subalgebra C[ X%, -,
X,

§2. Main results.

In this section, we shall define the Hecke series (§ 2-1) and state the main
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results (§ 2-2). We keep all notations in § 1.

2-1. For m=0, set
Xm)={geG; gLC L, ord,u(g)=/fm}. (2.1.1)

(see (1.1.5), (I.1.8))

Let T(m)(€ Lz(G, U)) be the characteristic function of X(m) in G.

DerFINITION 1. The Hecke series (resp. the index function series) of the
group G with respect to U is an element of Lz(G, U)[[T1](resp. Z[[T]])
given by (2.1.2) (resp. (2.1.3)).

Z(G.U)(T):mi)oT(m) T, 2.1.2)

2.0 (T)= 33 [U\X(m)| T™. (2.1.3)

0

The series (2.1.2) is of interest in connection with the theory of Hecke
operators for automorphic forms on classical groups. We shall show that the
series (2.1.2) and (2.1.3) are rational functions of T. Set

Lo (T)= S ¥ (T(m) T™. (2.1.4)

As in Andrianov [2], [3], in place of Z,1»n(T), we shall treat chiefly {g,0)(T),
which is an element of C[ X%, ---, XEIW[[T]]. When v=0, we obtain imme-
diately ;

Z.un(T)=1/1—-C(w)T), (2.1.5)
and

z2e,n(T)=1/(1-T). (2.1.6)

We assume v=1, hereafter.

2-2. Let us state the theorems. Assume y=1.
THEOREM 1. The following formal identity holds:

P(Xo, -, X, T)

Co.n(T)= 0X,, -, X3 T)’

(2.2.1)

where Q(Xy, -, X; TV=U—XDH  TI  (1—p4 X, - X, ) X,T)Y and

r=1 12{1<<ipSy
P(X,, =, X,; TeQ[X,, -+, X,; TINCLX5, -, X:IW[T], satisfying
(i) P(Xy -, X5 0)=1,
(ii) the degree in T of P(Xy, -+, X,; T) is 22—2 if fe=l, and 2°—1 if
fe=2 or 4. Moreover if fe=1 or 2, the term of highest degree in T of P is

(__l)v—lq—y(y—l)/ZpAu(z""l—l)(Xl Xy)2v-1—1(XoT)2v_2 if fe—:-l ,
(__1)u—1q—v(v—1)/2pAu(2V—l)+Bv(X1 X,,)Zy“l(XoT)gy'l if fe’:.? ,
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where A and B are constants defined at (1.2.12) and [3.1.18), respectively. Finally,
P(X,, -+, X,; T) and Q(X,, -, X,; T) have no common divisor in C[X,, -+,
X,; T1.

REMARK 4. Except for case (O) with n,=0, Q(X,, -+, X,; T) can be ex-
pressed as Q(X,, -, X,: T):we:v[VI/S,, (1—w(X)T). Thus QX,, ---, X,; T) is

the exact denominator in these cases. In case (O) with n,=0, it is also clear,
because

Con(Xo, =, Xo; T)=Cer,vn(Xe, p71 Xy, -+, p7X,; T)

where G’'=GSp(y, k) is the symplectic similitudes group of genus v (matrix size
is 2v), and U’'=G’ " GL,,(0).

The following corollary is easily obtained by [Theoreml (S) and [Theorem 1.

COROLLARY OF THEOREM 1. The Hecke series Z,u(T) of the group G
with respect to U is a rational function in T with coefficients in L(G, U). The
degree of the numerator is 2°—2 if fe=1 and 2*—1 otherwise. And the degree
of the denominator is 2°.

REMARK 5. In case (Sp) the above results have been obtained by Hecke
G. Shimura (v=2 with some conjectures on the degrees of the numerator
and the denominator for the general n), I. Satake (explicit conjecture on
the denominator of {1y (7)), and A. N. Andrianov [1], [2], (v=3 and
proved [Theorem 1). In case (U*), for v=1, the result is given in Y. lhara
and by Mr. Yoshihiro Furukawa.

By the definition of ¥((1.2.10)), specializing X;=q¢* (0=/=<v) we obtain the
index function series z¢.»(T) as a rational function in T. Furthermore we
shall prove the following theorem, which gives us more handy expression for
z.o(T).

THEOREM 2. The following identity holds:

zenT=p(T1)/o(T), (2.2.2)

where ¢(T)= f[(l—(p"q”“'“”’z)f”T) and p(TYeZ[T] satisfying p(0)=1 and the
r=0

degree of p(T) is at most v.
REMARK 6. In case (Sp) the above theorem is proved in [11; Appendix [-4].

§3. Proofs.

First, we describe an explicit decomposition of the set X(m) into left U-
cosets (§3-1). In §3-2 we calculate some partial sum of the multiple Hecke
series of GL,(K). By using the results of §3-1 and §3-2, the theorems will
be proved.

3-1. Let the notations be as in §1 and §2. For v=1, set
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I={geG; gLC L}, @3.1.1)

L=M,©O)NGL.K), 3.1.2)

U,=GL,D), (3.1.3)
0—{0} if n,=0,

= | (3.1.4)
GoNM,(2O) if ne=l,
0* if m,=0,

Uy= (3.1.5)
GoNGLn®) if mozl.

If n,=0 we put p,(h)=~h for any hel,, and w=p(w)=r. For,C€l, and hel,
such that po(h)(C*)'el, set

F(C, m)={Y, Z)e M B HYX My, (B
h*RyZC'eM,,, (D), Y*C+eC*Y +Z*R,Z=0}. (3.1.6)
We define a mapping ¢.» from F(C, h) into I as follows;
() (CH)™1 —(R*RZCH* Y
oY, Z)= 0 h-1a, Z |. (3.1.7)
0 0 C
We introduce an equivalence relation on the set F(C, h) by
bi~by (by, b, F(C, b)),
when there exists some element b, in F(1,, 1) satisfying
@, (b)=¢a, b0, ry (1) . 3.1.8)
Let F(C, h) be a set of representatives of the equivalence classes of F(C, k). For
r=(ry, -, r,)eZ*, R(r) denotes a set of representatives of Up\Uv<HT1'., )U,,
e o
0 mm)
LEMMA 1. For each m=0, let X(m)C G be the subset defined at (2.1.1);
then we have the following disjoint union decomposition of X(m);

X(m)= I I I )U(Pcc,wm)(b),

057 S5T), Sfem CER(r) bEF (C,a™

such that each element of R(r) is of the form(

where r=(ry, -+, r,), and @ is defined at (1.2.3) (if n,=0, put w=n).
LEMMA 2. For u,, u,€U, and e,U,, the mapping
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Y, Z) —> (u)'Yus, Zu,)

defines a bijection between F(C, h) and F(u,Cu,, he,), compatible with the equiv-
alence relation defined at (3.1.8).

The above two lemmata follow easily from the definitions of X(m) and
¢, (see (2.1.1) and (3.1.7)). Especially, | F(C, w™)| depends only on r and m
(CeR(r)). We shall describe a set of representatives of the equivalence classes
of F(C, h) for C=diag. (II"1, ---, II"*) and h=w™.

LEMMA 3. For 0=r,=< .- <r,=<fem, put C=diag. (I, ---, II"™") and h=w™.
Take an element Z=(zy, -+, z,) in M, (K). Then a necessary and sufficient
condition for the existence of Y such that (Y, Z)eF(C, h)is z;€ L{i™Y for all i.
(See for the definition of L{.)

Proor. If (Y, Z)eF(C, h), we have Y*C+eC*Y +Z*R,Z=0. Denoting by
v:; the (7, y)-entry of Y, we have

yilli4 Sﬁriyij—f—Z}kRon:O ;

Especially, @(z;, z;)=T.(—3¥;;[I"). This means that z;= L{». Conversely,
suppose that z;€ L{i~Y for all . We remark that, for any t€Z and o=G,,

L& I = L+ (3.1.9)
and
cLM=L t’:t+e'01'dp #0(0') . (3.1.10)

As 7,20, z;e L{P C LPIT'=M,,,(B~Y). From the definition of Pl-integrality,
we have R,eM, (B"). By using and we obtain A*R,z; Il Ti=
to(WRoh 'z II" "€ M, , (). Define Y =(y;;) € M,(K) as follows. For each
i (1Zi<y) take y; B! such that @(z;, z;)=T.(—5;;II"). Take any element
in B! as y;; for i>J, and set y;;=—&/"i(5;;/I"i+2zfRoz;). Then it is obvious
that (Y, Z) is in F(C, h). g.e. d.

For ZeM,, ,(K) satisfying the condition in we choose an element
Y, in M(B-Y such that (Y, Z)eF(C, h). For meZ, set

L™ =B"~Ker T.. (3.1.11)
L’™ is a (left) o-module and has the property
gL/ =™ (3.1.12)

By [3.1.9) and [3.1.12), we can regard L{™ /L{™*® (resp. L’¢™ /L’™*D) as a vector
space over /P (resp.o/p). Put

0=dimgp L/ L§*Y, 0'=dimy, L'/ LD, 3.1.13)

where ! was determined by the fixed maximal Pl-integral lattice L. For r=
(ry, -+, r,)EZ” satisfying 0<r,< -+ <r,, set



Local Hecke series 143

| yillie L'@i=b/Lreri=b for 1</<y
Y)={Y=(i,) EMSK); y;€Pt/PTi7" for i>] (3.1.14)
Fullmit-elliy;;=0 ,
Zr=A{Z=(zy, -, 2)EMpn (K); zi€ L§T"P/L{#P for all 4}, (3.1.15)

LEMMA 4. For 0=r < - <r,<fem, put C=diag. (II™, ---, I[I"v) and h=w™.
Then the set {(Yz+Y, Z); YEY (), Z€Z(r)} is a system of representatives of

the equivalence classes of F(C, h).
Proor. By Lemma 3,

Y=, Z=(z1, -, 2.)
F(C, h)y=3(Yz+Y, Z); z;e L{t™ Y, yllie L'7i-b (1<i=<y)
vy, €B7 for 1>, yu=—8ll iy, ;).
(3.1.16)

If Yz+Y, Z) and (Y +Y’, Z’) are equivalent, (Z—Z')C* is in M, .(BY.

Hence in this case we may assume that Z=Z2'&Z(r). From the definition of

equivalence and (3.1.14) we obtain the required result easily. g.e.d.
For r=(ry, ---, r,)EZ"*, put

a(X)=a,(X,, -, X,)= ) JH (X;/gh™s.  (3.1.17)

nmii £
R(r)93i=< . )
\ 0 "Hmiy
PROPOSITION 1.

V(T (m)= > grm pAe @M g (X) XT,

osryssry,sfem

where for r=(ry, ---,r,) we put p(r):zy;(v—z'—l—l)ri, a(r)zﬁlm, and e¢(r)=
[{1=i=v; r;=o0dd} |, and the half integer B is defined by
pE=gotrolzp=d+ele - p—=dim, (Ker T.) (3.1.18)

(see [3.1.13) for the definitions of 0 and a’).
PROOF. By using Lemmas 1-4, we obtain

UTm)=_ 3 YO 1ZE)] XX

T1SETy, S
From (3.1.14) and (3.1.15), |Y ()| and |Z(r)| are easily calculated. q.e.d.

3-2. In this subsection, denote by N (resp. N’) the set {1, ---, v} (resp.
{1, -+, v—1}). We shall define the multiple Hecke series of GL,(K), which was
introduced by Andrianov in [2], [3], as a generalization of the Hecke series of
GL,(K) (cf. Tamagawa [14)).
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DEFINITION 2. The multiple Hecke series of GL,(K) (resp. the multiple
index function series of GL,(K)) is an element of C[X,, ---, X,1[[ty, -+, 1]
(resp. C[[t, .-, t,1]) given by (3.2.1) (resp. (3.2.2)).

F(t: X):F(tly Tty tv; Xl} Tty Xy)o 2 17 v ar(X>; (3-2-1)

srissT,

fO=7@y, -, t)= X thtw|R@I. (3.2.2)

0srSST,

THEOREM (A) (Andrianov [3; Theorem 31). For 1<r=», put v,=IIt,-rss
Then F(t; X) is an element of CLXJ[[t1INCLtILLX]], and the following formal
identity holds;

— P(O)(th ) tv; X]) ) Xu)
B Q(O)(tl) R le T Xu) ’

Fty, o5ty Xy o0, X))

where QW (t; X)= 11 II (A—gretv2X, - X; v,) and PO, -, t;

T=1 1891 <ipsSy
X, o, X)elClvy, -, vy Xy, -, X such that
i) POy, -, -1, 05 Xy, -+, X0)=1,
(ii) the term of highest degree in (vy, -+, V,-1) 1S

Mo(t : X)z(__l)u—lq-u(v+3)2"'3+v(X1 Xy)zv-lq y]i ‘Ur(#) .

((ﬁ):_r_'(Tv—‘—r)ﬁ" the binomial coeﬁicz’ent.)
EXAMPLES OF P,
PO, ; X)=1,
POt ty; Xy, Xo)=1—¢* X, X,t%,
POy, ty, ts; Xy, Xoy Xs)=1—q {503+ (q7 +q 2+ ®)ssv10:+ ¢ 4s,5,03}
+¢ 4 (14+¢ s {vi+g " s1vive g7 sev1v3+¢ 7 sevi}
—q  ssv e {se0i+H (g7 + g7 +q7®)Ssvive+ g 5181+ P svhd,

where s;= X, +Xo+X,, ;=X Xo+XoXs+X: X1, 8:=X, X, X, vi=t;, v,=t;t;, and
v3=1lsls.
For any subset I={i, -, i, CN (1=, < - <i,=Zv—1), we define a poly-
nomial ¢ (v) in v by
0. (V)
Piy-1,0) = Q1 p1-1,(V) ’

onV)= (3.2.3)

13
where go,-(v)=j|| (v’—1) for any /=1 and put 7,=0 and 7,.;=v. (We understand
=1

that ¢ (®)=1) The following proposition is proved in a quite similar manner
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to [3; Theorem 3].
PROPOSITION 2. For 0=r=v—1, put z,=q¢"* "v,_,. Then

f(th Tty tu):pm)(tl) "ty tu)/q(O)(tl) Tty tu) )
v-1

where ¢y, -, t,)=TI 1—z,) and

=0

PO, )= B o Tz IT (1—2)).
ICN! ierl

JEN' -1

(N’-I denotes the complement of I in N'.)
We shall compute certain partial sum of F(¢; X). For any ICN, set

Fi@y, -, t: Xy, o, X))= S > e tva (X)), (3.2.4)
and
frlty, =, t)= 2 -t |R(I)|, (3.2.5)
R

where, for r=(r,, -+, r,)EZ?,
s={1=i<y; r; is odd}. (3.2.6)

For any subset /C N, define a function pf on Z* as

pfnN= % (=17 II (=1, (3.2.7)
Toct i€IgUI!
IcN-1 0

where r=(ry, -, r,)€2".
LEMMA 5.
2¥ if sin=I,
pf (r)= )
0 otherwise .
In other words, 27*p¥ is the characteristic function of {reZ”; s(r)=I} in Z".
Proor. If I=@, it is clear. Suppose [+ @, and take an element a in I.
Then
pf (N=A—(=1"0) i (r1, =+, Fac1, Passy =05 1)

Thus the lemma is proved by induction on |[]. g.e.d.
For any subset JC N, we set ¢,=(3, -, ;) as follows;

—t; if iel,
i (3.2.8)
t; if el
Put
POt X)=PO(t; X) ﬁ I (4gmedeX, - X, v,), (3.2.9)
r=1187;<<ipsSy
and

pOO=pO I (1427, (3.2.10)
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where z,=¢"® "v,_, for 0=r=v—1.
PROPOSITION 3.

Fi(t; X)=P(t; X)/QP@; X)),
F1®=p"®)/¢ @,

where
QWE; X)=11 TII (1—(g7oveX, - X, v)?,
=1 1511 <ipsy
¢®0)=11 1—2)
PPt X)=2" 3 (—DHIPD(, 0 X),
Iocl
LCN-I
and

PPO=2" F (DT Dtrur,).

neN-1

Especially, the total degree of P> (resp. p§¥) in (vy, ---, v,) is at most 2°'—3
(resp. 2v—1), and the term of degree 2"**—3 (resp. 2v—1) is 0,5, Mi(t; X) (resp.

yv—-1
Oi1,,g" V@ DI T v2.0,), where
=1

My(t; X)=(—1)-1g-re+»2=20(X, ... Xy>2”-l”1jivz<¥>-uy. (3.2.11)

ProoF. The first part of this proposition is easily verified by [Theoreml (A),
and Put ¢;,=(#, -, t}) and v= }1;7:;_,+J.. Then for
1<r<Ly, vi=(=1)71y, where 7={v—r—+1, ---,v}. As the term of highest
total degree in (vy, ---, v,) of P (t; X) is M,(t; X), that of P{P(t; X) is

27 3 (—DEdVIDIM (s X)=0,,My(t; X).

1,CI
IeN-1I
The statement on pf* is similarly proved. g.e.d.
3-3. Let us prove and 2. We keep all notations in §3-2. First,
let T be an indeterminate. For any subset /C N and A=1, set

(X D=5Tr 3 e tvalX), (3.3.1)
m= SriSesT, SMm
PG X T=STr S i tvaX), (3.3.2)
m=0 0S7y5-57,522m
s(r=1I1
E;T)=2T™ 3 et |RO)|, (3.3.3)
m=0 0STiS ST, SM
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and
Eo@: Ty= T S -0 |[R). (3.3.4)
m=0 0S7y<-ST,S22M
s(r)y=1

By the definition of Hecke series and Propositions 1 and 2, we have

Lea.on(T) { L p*, ¢4, -, gp*; X; XT) i fe=1,
G. - I§NPB|I|C1(fe/2)(qppA’ qv-lpA’ . qu; X; XOT) otherwise,
and
i(qva’ qy—lpA: T qu; T) if fé:1 »
Z(G’U')(T): B I\#(fe/2 A4 144 A4 :
1§Np INggrem (grp4, v ip4, -+, qp?; T) otherwise.
As
Cit; X; T)=F(ty, -, t.y, t,T; X)/1-T),
and

i(“ T):f(tl’ E) tu—l; tuT)/(l_T) y

in the case fe=1 Theorems 1 and 2 are proved. (Note that if fe=1 then B=0).
Suppose fe=2. Put

ovtl_g
Pl(l)(tly Tty tv—l: tyT; X): 20 al.m(tly Tty tv; X)Tm .
Then we get

I—T)T  TI (I—(g7eorX, - X, v 2T)0¢; X; T)

721 15173 <ipsy
=S @ anlt; DT s st XIT™,
By Proposition 3
oy o1t X)=05,.,,M,{; X) (see (3.2.11)).

Therefore in this case Theorem 1 is obtained, and Theorem 2 is similarly proved.
Finally, suppose fe=4. Put
PPt X)=P@; O T (478X, o Xov)),

Siy <o LipSy

and
2v+2_5

PI(2)(t1) Ty ty—l, th; X): Z—)O ‘Bl,m(t; X)Tm .

Then we have
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- T A—(g7oorRX, o X, o) TP X; T)

r=1 121 <ipsV

=S (Brant; OT™Bramst; XOT™ kB rumalt; X)T™
' +‘BI.4m+3(t; X)T™+},

and similar formula for £®(; T). This proves Theorems 1 and 2 except that
the degree of P(T) is 2*—1. We can easily see that the coefficient of T of
p(T) (see Theorem 2) is not 0 as a polynomial in p. Therefore the degree of
P(T) is 2»—1. Now our theorems are proved. g.e.d.

§4. Examples.

In this section we shall present some explicit formulae of Hecke series for
small v. Unfortunately we do not know the value f in case (U~) completely.
Thus we omitt case (U”). Note that fe is 1 or 2 except for case (U"). Table 1
gives the values f, 9, and B. For v=1 the Hecke series are explicitly given in
(I). Tables 2 and 3 give the image of the generators of Lz(G, U) under the
isomorphism ¥ for v=2. (Using these tables we can easily write down Hecke
series explicitly.) Finally in (III), we present an example of the Hecke series
in the case fe=4.

For the classification of anisotropic e-hermitian forms over p-adic fields, see
r6l, [71, [13], [14]1, [16]. Note that if L (resp. M) is maximal P'-integral (resp.
PBi+sem_integral) lattice in V, there exists an element g in G such that M=gL.
This implies that we may consider { modulo fe. In case (U), we assume e=1.

[Table 1]
No. no (R, ) f 0 B
case (O) (@) 0 (0,0 1 0 0
) 1 (2s,0) or (2zs, 1) 2 1 —1/2
2) 1 (@rs,0) or (2s, —1) 2 0 1/2
(i) 2 (S, 0 1 1 0
3) 2 (S, 0) or (xS,, 1) 2 2 —1
4) 2 (S, —1) or (nS,, 0) 2 0 1
BY 3 (2rs+S,, 0) or 2ris+nS, 1) 2 2 -1/2
6) 3 (2s+xS,, 0) or 2rs+=2S,, 1) 2 1 1/2
(iii) 4 (Se+xS,, 0) 1 2 0
case (Sp) (iv) 0 (0, 0) 1 0 0
case (U) (v) 0 (0,0 1 0 0
with e=1
7 1 (s, 0 or (ms, 1) 1 —1
& 1 (ms,0)or (s, —1 2 0 1



(vi)
case (1) (9
with e=2

(10)
(11)
(12)
(13)
case (U*) (14)
(15)
(16)
(17)

where s€p*, P° is the different of K/k in case (U) with ¢e=2, and

=IO O NN - O

Local Hecke series

(53.' 0)
(0, _5)

0, —o+1)

(s, —0) or (s, —0-+1)
(S4, —0)

(Sy, —0+1D)

(0, 0)

O, 1)

1, 0)

(1, =1

—

i b =t b et e

2a, b,
S;= ; @1€0%, biEY, c;EP—P?,

bl 2C1

Oor1l

O = O O N

—1/2

1/2
0
1/2

—1/2
1/2

—1/2

—1/2
1/2
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2a;, b -
S,= i @y, C2E0%, byeo, k(v/—det S,) is unramified over &,

b, 2¢,

as 53
SS—__ ’ a3EDX, b3€§B’ C3Ep_‘p2)

bs ¢

a, 54 R
S= ; Ay, C1E0%, b EPoHL,

b, ¢,

(I) We suppose that y=1. Then
1+ A,T
Z(G,U)(T):' l—‘A':’}‘—}‘l‘AgTz )

where

0 if fe=1,

A1:
gpA+Bc@  if fe=2,

C(O) +C(1)

Ay=1{ ¢®

c(l) _(qu+B__1)C(0)

cOem
A3:
(gp#c®)re

in case (O) with n,=0,

if fe=1 and not case (O) with n,=0,

if fe=2,
in case (O) with #n,=0,

otherwise,

(see (1.2.5) for the definition of ¢®).
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(II) We suppose that y=2. Put S;=X,;+X, and S,=X,X,. Then
14+B,T—B,T*—B,T?

Zaon(D)=q_ B, T+BT*—B,B,T*+B:T*’
where
if fe=1,
lIf(Bl)—{ .
Z)A+BXO{51+I)2AS S +(PA+B+Z)A B__ —1pA—B)SZ} lf fezz,
g 1p*AX3S, if fe=1,
¥(B,)= _
—1p3A+BX%Sz{Sl+p2ASISZ+(pA+B_{__pA-B_qu+B)SZ} lf fezz,
if fe= v
(B, :{
g lptrEBX3SE  if fe=2,
{X0(1+p“sl+p“5) if fe=1,
Xo(1+p24S24p*4S3—2p24S,)  if fe=2,
w5 {p“X%(Sl+2pASZ+p“SISZ) if fe=1,
UL XS A 9SS 2814 pASH ST 9} i fe=2,

Y (Bo)=X3§(p*4S:)7e.
(II)-1°; the case fe=1.
V(c®)=q*X3S:,
Xo(14+p72S,) in case (O) with n,=0,
U(c®)=
Xo(1+p4S,+p?4S,)  otherwise,

U (c™®) is given in Table 2.

[Table 2]
No. X (c™®)
(1) 7 XSy
(ii) PIS1+p7ISIS+p 73 (p*—1)S,
(iii) PIS1H PSS+ p 3 (p*—1) (p+ 1S,
(iv) p7Si+p71S1S+p 7 (P2 —1)S,
v) p7ESiHpTESSeHp 7 (P + D (p—1D)S.

(vi) P72S1+S1Se+ (PP —1) (p2+1)S,



Local Hecke series 151

(I-2°; the case fe=2.

V(@)= XS,

U(cO)+T(c D)+ T (c®)=V(T()).  (see
V(c®)y=Xo{g 'Si+(p)p*g"0"*S1S,+CSs}

where C is given in Table 3, k=dim,(Ker T.), and

»  (U) with e=1,
(P)Z{ )
1 otherwise.
[Table 3]
No. | (D (@) (3) 4 (5) |
] C 0 \ pi(p*—1) 0 | PTG =D+D | p(p*—D) (
No. (6) (7) (8) (9)
C P —1)(p+1) | p(p*+1D)(p—1) | p~(p*—1)(p:+1) 0
\ No. (10) a1 (12) (13)
[ c p=(p*—1) p=(p*—1) P =D (p+1) | p(p*—1)
{ No. (14) (15) (16) 17)
“ C pe(p*—1) pe (1) (p—1) pe(pt—1) b (p*—1) (p*+1)

(III) An example in the case fe=4.

Let K, be the unique unramified quadratic extension field of 2. A division
quaternion algebra K is realized as a cyclic algebra (K, n), i.e.,, K=K,+ K Il
where II*=rx and IIBII-*=j for all f€ K, In case(U") with n,=1 and v=1,
put Ry=u—u (us(K,NO)*, uck) and [=0. Then A=-1/2, B=-3/2, 0=1,
and f:42:2.

_ L+ {cD+ 2@} T
Z(G,U)<T)_“ l_c(o)—l{c(l)Z_Zpgc(o)Z}T+p66(0)2T2_'
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