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1. Introduction.

Let $D$ be the open unit disc in the complex plane. We assume that the
reader is somewhat familiar with the theory of $H^{\infty}=H^{\infty}(D)$ as a function alge-
bra (see [4]) including Hoffman’s paper [6] on the parts of $H^{\infty}$ .

We recall Carleson’s fundamental characterization of interpolating sequences
for $H^{\infty}[1]$ . In terms of the pseudo hyperbolic metric, $\chi(z, w)=|z-w|/|1-\overline{z}w|$ ,

a sequence $\{z_{n}\}$ in $D$ (possibly finite) is interpolating if it is uniformly separated,
that is

$\inf_{n}\prod_{k\neq n}\chi(z_{k}, z_{n})>0$ .

Garnett [3] found a characterization of interpolating sequences, which is
more geometric in nature. It is stated in terms of the concept of a Carleson
measure, namely, a finite measure $\mu$ on $D$ for which there exists a constant $K$

such that $\mu(S_{\theta,h})\leqq Kh$ for every set of the form $S_{\theta,\hslash}=\{re^{i\varphi}$ : $0<1-r<h,$ $|\varphi-\theta|$

$\leqq h/2\}$ (equivalently, for all sufficiently small $h$ ).

THEOREM (Garnett). Let $\{z_{n}\}$ be a separaied sequence in $D$ , that is, one for
which $\inf_{n\neq k}\chi(z_{n},z_{k})>0$ . Let $\mu$ be the measure on $D$ assigning point mass $1-|z_{n}|$

to $z_{n}$ for each $n$ and $0$ elsewhere. Then, $\{z_{n}\}$ is interpolating if and only if $\mu$

is a Carleson measure.
Note that the condition that $\{z_{n}\}$ be separated is a natural (and simple) one

since every uniformly separated sequence is necessarily separated.
It was Hoffman [5], [6] who characterized the Gleason parts of the maximal

ideal space $\mathcal{M}$ of $H^{\infty}$ as being either singleton points or analytic discs and who
saw the connection with interpolating sequences. A homomorphism in $\mathcal{M}$ is
non-trivial (its part is an analytic disc) or trivial (a one point part) correspond-
ing to whether it lies in the closure in $\mathcal{M}$ of some interpolating sequence or
not.

1) Some of the results of this Paper form a portion of this author’s doctoral thesis
(1978) submitted to the University of California, Santa Barbara.
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In this paper we are interested in the class $C$ of all subsets $C$ of $D$ for
which a sequence in $C$ is interpolating if (and only if) it is separated; and, the
class $C^{\prime}$ of all subsets $C$ of $D$ whose closures in $\mathcal{M}$ contain only non-trivial
homomorphisms. In particular in \S 3 we observe that they are the same class,
$C=C^{\prime}$ , and obtain other useful characterizations of the class $C$ . For example,
let $\rho(z, w)=(1/2)ln(1+\chi(z, w))/(1-\chi(z, w))$ be the hyperbolic metric on $D$ and let
$ d\rho$ give hyperbolic length on $[0,1$ ). For $S\subset D$ and $0<\epsilon<1$ let $N(S, \epsilon)$ denote
the pseudo hyperbolic $\epsilon$ -neighborhood of $S$ . Then, $S\in C$ if and only if the pro-
duct measure $ d\gamma=d\lambda d\rho$ restricted to $N(S, \epsilon)$ is a Carleson measure, where $ d\lambda$

gives Lebesgue measure on the unit circle.
In \S 4 we investigate curves in $D$ ending on the boundary. We use Gar-

nett’s theorem to show that such a curve is in the class $C$ if and only if it is
pseudo hyperbolically close to one for which arc length is a Carleson measure.
Another application allows us to characterize the nontrivial points in the rela-
tive interior of the fiber of $\mathcal{M}$ lying above 1.

2. Preliminaries.

Let $z\in D,$ $0<\delta<1,$ $S\subset D$ . Throughout the paper we will use the notation

$D(z, \delta)=\{w\in D;x(z, w)<\delta\}$ , $N(S, \delta)=\cup\{D(z, \delta):z\in S\}$

for the pseudo hyperbolic $\delta$-neighborhoods of a point and of a set.
We need a series of concepts and elementary lemmas concerning the pseudo

hyperbolic geometry of $D$ .
DEFINITION 2.1. Let $0<\delta<1$ . A set $S\subset D$ is said to be $\delta$-seParated if

$\chi(z, w)\geqq\delta$ for every pair $z,$ $w$ of distinct points of $S$ . Given a set $V\subset D$ we
say that $ S\delta$-covers $V$ if $N(S, \delta)\supset V$ .

The next lemma follows from an easy maximality argument and the suc-
ceeding lemma from a standard compactness argument.

LEMMA 2.2. Given a set $V\subset D$ and $\delta\in(0,1)$ there is a $\delta$-seParated subset $S$

of $V$ such that $ S\delta$-covers $V$ .
LEMMA 2.3. Let $0<\delta<1,0<\epsilon<1$ , and $z\in D$ . Then there exists a finite con-

stant $M=M(\delta, \epsilon)$ such that the number of Points of a $\delta$-seParated subset of $D(z, \epsilon)$

does not exceed $M$.
The next lemma isolates some of the technical calculations we encounter

with the use of the pseudo hyperbolic metric.
LEMMA 2.4. Let $0<\epsilon<1$ . Then, there exist Positive constants $k_{\epsilon}$ and $K_{\epsilon}$ such

that for each $re^{i\theta}$ in $D$ , the following hold;

(a) For each $\rho e^{t\varphi}$ in $D(re^{i\theta}, \epsilon)$

$k_{\epsilon}(1-r)\leqq(1-\rho)\leqq K_{\epsilon}(1-r)$ .
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(b) If $\chi(\rho e^{i\varphi}, re^{i\theta})<\epsilon$ , then

$k_{\epsilon}(1-r)\leqq|\rho e^{i\varphi}-re^{i\theta}|\leqq K_{\epsilon}(1-r)$ .
(c) If $A$ is the area of $D(re^{i\theta}, \epsilon)$ , then

$k_{\epsilon}(1-r)^{2}\leqq A\leqq K_{\epsilon}(1-r)^{2}$ .
(d) For $ 0<h<1-\epsilon$ and for every angle $\varphi$ , if K. $h<1$ and $re^{i\theta}\in S_{\varphi,h}$ , then

$D(re^{i\theta}, \epsilon)\subset S_{\varphi,K_{\epsilon}h}$ .

PROOF. The reader should have no difficulties calculating a), b), c) using
the fact that $D(re^{i\theta}, \epsilon)$ is the Euclidean disc with radius $\epsilon(1-r^{2})/(1-\epsilon^{2}r^{2})$ and
center $r(1-\epsilon^{2})e^{i\theta}/(1-\epsilon^{2}r^{2})$ .

Part (d) is slightly more technical and we include its proof. Suppose $0<h$

$<1-\epsilon$ , K. $h<1$ and $re^{i\theta}\in S_{\varphi}h$ for some $\varphi$ Since $ 1-h>\epsilon$ , any pseudo hyperbolic
disc $D(re^{i\theta}, \epsilon)$ whose center has modulus $\geqq 1-h$ will fail to contain $0$ . Since
$K_{\epsilon}h<1$ , the same is true of $S_{\varphi.K_{g}h}$ . Let $A$ denote the $\epsilon$ -neighborhood of $S_{\varphi h}$ .
We show that $A\subset S_{\varphi,K_{\epsilon}h}$ which implies the result. The angle centered at $\varphi$

subtended by $A$ equals $h$ increased by the angle subtended by $D(1-h, \epsilon)$ , namely,
$h+2\sin^{-1}[\epsilon h(2-h)/(1-h)(1-\epsilon^{2})]$ . This, in turn, does not exceed $h+\pi\epsilon(2-h)h/$

$(1-h)(1-\epsilon^{2})$ which is less than or equal to $(1+2\pi(1-\epsilon^{2})^{-1})h\leqq K_{\epsilon}h$ . Further-
more, the minimum modulus of points of $A$ is $(1-h-\epsilon)/(1-\epsilon+\epsilon h)$ which is easily
seen to be no smaller than $1-(1+2\pi(1-\epsilon^{2})^{-1})h\geqq 1-K_{\epsilon}h$ . Thus $A\subset S_{\varphi,K_{\epsilon}h}$ as
required.

Later on we will require the following alternative description of the mea-
sure $\gamma$ mentioned in the introduction.

LEMMA 2.5. Let $\gamma$ be the product measure on $D$ given by $ d\gamma=d\lambda d\rho$ where
$ d\lambda$ gives Lebesgue measure on the unit circle and $ d\rho$ gives hyperbolic length on
$[0,1)$ . Then, if $dA$ represents two dimensional Lebesgue measure on $D$ and $S$ is
a measurable subset of $D$ ,

$\gamma(S)=\int_{s}\frac{dA}{|z|(1-|z|^{2})}$ .

PROOF. It is enough to verify the equation for sets of the form $S=$

$\{re^{i\theta} : r_{1}\leqq r\leqq r_{2}, \theta_{1}\leqq\theta\leqq\theta_{2}\}$ in $D$ . Then, changing to polar coordinates,

$\int_{S}\frac{dA}{|z|(1-|z|^{2})}=\int_{\theta_{1}}^{\theta_{2}}\int_{r_{1}}^{\tau_{2}}\frac{1}{1-r^{2}}$ drd $\theta=\int_{\theta_{1}}^{\theta_{2}}[\frac{1}{2}\log\frac{1+r_{2}}{1-r_{2}}-\frac{1}{2}\log\frac{1+r_{1}}{1-r_{1}}]d\theta$

$=\int_{\theta_{1}}^{\theta_{2}}\rho(r_{1}, r_{2})d\theta=\int_{\theta_{1}}^{\theta_{2}}\int_{r_{1}}^{r_{2}}d\rho d\theta=\gamma(S)$ .
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3. Characterizations of the class $C$ .
Before proceeding to the main theorem of this section we require some

lemmas. The first of these is well known.
LEMMA 3.1. Let $0<\delta<1$ and let $S$ be a $\delta$-seParated sequence in $D$ which is

a finite disjoint union of interpOlatjng sequences. Then, $S$ is interpolating.
LEMMA 3.2. Let $\{z_{n}\}$ be an interpolating sequence in $D$ and let $0<\delta<1$ ,

$0<\epsilon<1$ . If $S$ is a $\delta$-seParated subsequence of $N(\{z_{n}\}, \epsilon)$ , then $S$ is an interpolat-
ing sequence.

PROOF. By Lemma 2.3 there are at most $M_{\delta}$

, , points of $S$ in each disc
$D(z_{n}, \epsilon)$ . Therefore, $S$ can be decomposed into the union of at most $M_{\delta}$

, , sets,
$S_{i}$ , each having at most one point in each disc $D(z_{n}, \epsilon)$ . By Lemma 3.1 it is
enough to show each $S_{i}$ is interpolating.

Let $K_{\epsilon}$ be the constant of Lemma 2.4, fix $h$ so that $0<h<1-\epsilon,$ $K_{\epsilon}h<1$ and
choose $\theta$ . If $w\in S_{i}\cap S_{\theta,h}$ , then there is an $m$ such that $\chi(u’, z_{m})<\epsilon$ . By part
(d) of Lemma 2.4 we see that $z_{m}\in S_{\theta,K_{\epsilon}h}$ and by part (a) of the same lemma,
$1-|w|\leqq K_{\epsilon}(1-|z_{m}|)$ . Hence,

$\sum_{w\in s_{\theta h\cap S_{i}}}(1-|w|)\leqq\sum_{z_{m}\in S_{\theta K_{g}h}},K_{\epsilon}(1-|z_{m}|)$
.

and the result is clear from Garnett’s theorem.
Hoffman [6] showed that the closure of an interpolating sequence in $\mathcal{M}$

contains only non-trivial homomorphisms. The next result shows that inter-
polating sequences are the only separated sequences with that property.

LEMMA 3.3. Let $S$ be a separated sequence in $D$ which is not interpOlatjng.
Then, the closure of $S$ in $\mathcal{M}$ contains a trivial homomorphism.

PROOF. Let $S$ be as above. Since by Lemma 3.1 $S$ is not the finite union
of interpolating sequences there is a net $\{w_{\alpha}\}$ in $S$ which is eventually out of
every interpolating sequence and which converges to some homomorphism $h$ .

Suppose $h$ is nontrivial. Then $h$ is in the closure of some interpolating
sequence $\{z_{n}\}$ . Choose some $0<\epsilon<1$ . By Lemma 3.2 the sequence $S\cap N(\{z_{n}\}, \epsilon)$

is interpolating so the net $\{w_{\alpha}\}$ is eventually out of this sequence, that is, $h$ is
in the closure of $S-N(\{z_{n}\}, \epsilon)$ . One of Hoffman’s characterizations of a non-
trivial homomorphism in [6] implies that if $h$ is in the closures of two subsets
$S_{1}$ and $S_{2}$ of $D$ , then $\chi(S_{1}, S_{2})=0$ . But $\chi(S-N(\{z_{n}\}, \epsilon), \{z_{n}\})\geqq\epsilon$ , which brings
a contradiction. Thus $h$ must be a trivial homomorphism.

The main result of this section gives several necessary and sufficient con-
ditions for a set to belong to the class $C$ of the introduction.

THEOREM 3.4. If $S$ is a subset of $D$ , then the following are equivalent:
(a) The closure of $S$ in $\mathcal{M}$ contains only nontrivial homomorPhisms.
(b) For each $\delta\in(0,1)$ , each $\delta$-seParated subset of $S$ is an interpolatjng
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sequence.
(c) For some interpolaiing sequence $\{z_{n}\}$ and some $\epsilon\in(0,1),$ $S\subset N(\{z_{n}\}, \epsilon)$ .
(d) For each (or for some) $\epsilon\in(0,1)$ the measure $\gamma$ restr icted to $N(S, \epsilon)$ is a

Carleson measure.
PROOF. $(a)\Rightarrow(b)$ : This is the content of Lemma 3.3.
$(b)\Rightarrow(c)$ : By Lemma 2.2 there is a $\delta$-separated set $T$ which $\delta$-covers S.

Then, $S\subset N(T, \delta)$ and by (b), $T$ must be an interpolating sequence.
$(c)\Rightarrow(a)$ : Let $\{w_{\alpha}\}$ be a net in $S$ converging to a homomorphism $h$ . Since

$S\subset N(\{z_{n}\}, \epsilon)$ there is a net $\{z_{n(\alpha)}\}$ in $\{z_{n}\}$ such that for each $\alpha,$
$\chi(w_{a}, z_{n(\alpha)})<\epsilon$ .

Since $\chi$ is lower semicontinuous on $\mathcal{M}\times \mathcal{M}[6]$ ,

$\chi(h, \lim_{a}z_{n(a)})\leqq\lim_{\alpha}\chi(w_{\alpha}, z_{n(\alpha)})\leqq\epsilon<1$ .

Since the interpolating sequence $\{z_{n}\}$ contains only nontrivial homomorphisms
in its closure, $h$ is in a nontrivial part, and this is true for all $h$ in the closure
of $S$ .

$(b)\Rightarrow(d)$ : Choose $\epsilon\in(0,1)$ and $ 0<\delta<1-\epsilon$ . Let $S_{0}$ be a $\delta$-separated sequence
in $S$ which $\delta$-covers $S$ . By (b) $S_{0}$ is an interpolating sequence $\{z_{n}\}$ and by the
triangle inequality if $\sigma=\epsilon+\delta$ , then $\{z_{n}\}$ a-covers $N(S, \epsilon)$ .

Let $K_{\sigma}$ be the constant of Lemma 2.4, fix $h$ with $0<h<1-\sigma,$ $K_{\sigma}h<1$ , and
fix $\theta$ . For each $w\in N(S, \epsilon)\cap S_{\theta,h}$ there is a $z_{m}$ such that $\chi(w, z_{m})<\sigma$ . By
Lemma 2.4(d) and the choice of $h$ , since $w\in S_{\theta,h}$ we have $z_{m}\in S_{\theta,K_{\sigma}h}$ . Thus,

$N(S, \epsilon)\cap S_{\theta,h}\subset_{z\in S}\bigcup_{m\theta\cdot K_{\sigma}h}D(z_{m}, \sigma)$
.

Once and for all choose $\tau$ such that $K_{\sigma}h\leqq\tau<1$ . Then, the above inclusion im-
plies, using Lemma 2.5 and the fact that $|z|\geqq 1-K_{\sigma}h\geqq 1-\tau$ for $z\in S_{\theta}h$ , that

$\gamma(N(S, \epsilon)\cap S_{\theta,\hslash})\leqq\sum_{z_{m}\in S_{\theta,K_{\sigma}\hslash}}(1-\tau)^{-1}\int_{D(z_{m},\sigma)}(1-|z|)^{-1}dA$ .

Now, by Lemma 2.4 (a), (b) we have the facts that if $z\in D(z_{m}, \sigma)$ , then $1-|z|$

$\geqq k_{\sigma}(1-|z_{m}|)$ , and the area of $D(z_{m}, \sigma)$ is bounded above by $K_{\sigma}(1-|z_{m}|)^{2}$ . Thus,
we may continue the above estimate

$\sum_{z_{m}\in s_{\theta\cdot K_{\sigma}h}}\int_{D(z_{m},\sigma)}(1-|z|)^{-1}dA\leqq k_{\sigma}^{-1}K_{\sigma}\sum_{z_{m}\in s_{\theta\cdot K_{\sigma}h}}(1-|z_{m}|)$ .

Since $\{z_{n}\}$ is interpolating, the result follows by Garnett’s theorem.
$(d)\Rightarrow(b)$ : Clearly if (b) holds for some $\delta\in(0,1)$ it holds for all such $\delta$ .

Given $\epsilon\in(0,1)$ from (d), let $ 0<\delta_{0}<\epsilon$ and $\delta=\delta_{0}/2$ . Let $\{z_{n}\}$ be a $\delta_{0}$-separated
sequence in $S$ . Fix $ 0<h^{\prime}<1-\delta$ and $\theta$ , let $K_{\delta}$ be the constant of Lemma 2.4
and let $h=K_{\overline{\delta}^{1}}h^{\prime}$ .

We now notice that $D(z_{n}, \delta)\subset N(S, \epsilon)$ since $z_{n}\in S$ . By Lemma 2.4 (d) if
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$z\in S_{\theta,h}$ then $D(z, \delta)\subset S_{\theta,h},$ . Thus,

$V=\bigcup_{z_{n}\in S_{\theta\cdot h}}D(z_{n}, \delta)\subset S_{\theta.h^{\prime}}\cap N(S, \epsilon)$ .

Since the $z_{n}’ s$ are $ 2\delta$-separated the triangle inequality implies that the union $V$

is disjoint. From Lemma 2.4 (a), (c) we have $1-|z|\leqq K_{\delta}(1-|z_{n}|)$ for $z\in D(z_{n}, \delta)$

and the area of $D(z_{n}, \delta)$ is bounded below by $k_{\delta}(1-|z_{n}|)^{2}$ . Using this and keep-
ing Lemma 2.5 in mind we estimate

$\gamma(V)=\sum\gamma(D(z_{n}, \delta))$

$\geqq\sum\frac{1}{2}K_{\sigma}^{-1}(1-|z_{n}|)^{-1}\int_{D(z_{n},\delta)}dA$

$\geqq\frac{1}{2}K_{\sigma}^{-1}k_{\delta}\sum(1-|z_{n}|)$

where the sum ranges over those $z_{n}\in S_{\theta,h}$ . Thus, with the same convention
on the sum, for some $K^{\prime}$ ,

$\sum(1-|z_{n}|)\leqq 2K_{\delta}k_{\delta}^{-1}\gamma(V)$

$\leqq 2K_{\delta}k_{\delta}^{-1}\gamma(N(S, \delta)\cap S_{\theta.h^{\prime}})$

$\leqq 2K_{\delta}k_{\overline{\delta}^{1}}K^{\prime}h^{\prime}=(2K_{\delta}^{2}k_{\delta}^{-1}K^{\prime})h$

where the last step follows from the hypothesis that $\gamma$ restricted to $N(S, \delta)$ is
a Carleson measure. Hence $\{z_{n}\}$ is an interpolating sequence by Garnett’s
theorem.

4. Curves belonging to $C$ .
The main result of this section is Theorem 4.1 below which characterizes

those curves in $D$ which belong to the family $C$. We will first give the simpler
direction of the proof. The other direction will be accomplished by a series of
lemmas.

We note that the curve described in Theorem 4.1 must tend to a single
point of the unit circle, although this fact is not used in the proof. If it accu-
mulates at more than one point, it must accumulate on an arc. It is easily

shown that such a curve would contain trivial homomorphisms from the \v{S}ilov
boundary of $\mathcal{M}$ in its closure.

THEOREM 4.1. Let $\Gamma$ be a curve in $D$ ending at the unit circle. Then, $\Gamma$

belongs to $C$ if and only if there is a (necessa $rzly$ rectifiable) $cun$) $e\Gamma^{\prime}$ in $D$ such
that

(a) $\Gamma\subset N(\Gamma^{\prime}, \epsilon)$ for some $0<\epsilon<1$ .
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(b) The measure $\nu(E)$ measuring the total arclength of $\Gamma^{\prime}$ contained in $E$

is a Carleson measure.
PROOF. Suppose the existence of a curve $\Gamma^{\prime}$ as described in the statement

of the theorem. Since $\Gamma\subset N(\Gamma^{\prime}, \epsilon)$ , we see that for any net $\{z_{a}\}$ in $\Gamma$ there is
a corresponding net $\{w_{\alpha}\}$ in $\Gamma^{\prime}$ such that eventually $\chi(z_{a}, w_{\alpha})<\epsilon$ . If $\{z_{\alpha}\}$ con-
verges to a homomorphism $h$ in $\mathcal{M}$ then, by the lower semicontinuity of $\chi,$ $\{w_{\alpha}\}$

must converge to a homomorphism $h^{\prime}$ in the same part as $h$ . Hence, using the
equivalence of (a) and (b) of Theorem 3.4 it is enough to show that $\Gamma^{\prime}$ belongs
to $C$ .

Let $0<\delta_{0}<1$ , set $\delta=\delta_{0}/2$ and let $S$ be a $\delta_{0}$-separated set in $\Gamma^{\prime}$ . By the tri-
angle inequality $ D(z, \delta)\cap D(w, \delta)=\emptyset$ for each pair $z,$ $w$ of distinct points of S.
Also, by Lemma 2.4 (d), for small enough $h$ and any $\theta$ , for each $z\in S_{\theta.h}$ we
have $D(z, \delta)\subset S_{\theta,K_{\delta}h}$ . Thus,

$V=\cup\{D(z, \delta):z\in S_{\theta,h}\cap S\}\subset S_{\theta,K_{\delta}h}$ .
Since $\nu$ is a Carleson measure, there is a $K$ such that

$K(K_{\delta}h)\geqq\nu(S_{\theta,K_{\delta}h})\geqq\nu(V)=\Sigma\nu(D(z, \delta))$

the last sum being over all $z\in S_{\theta,h}\cap S$ . Since $\Gamma^{\prime}$ ends on the unit circle, for
any $z\in S,$ $\Gamma^{\prime}$ eventually leaves $D(z, \delta)$ . Thus, the total arclength of $\Gamma^{\prime}$ in
$D(z, \delta)$ exceeds $k_{\delta}(1-|z|)$ by Lemma 2.4 (b). Therefore, with the same conven-
tion on the sum as above

$K(K_{\delta}h)\geqq\Sigma k_{\delta}(1-|z|)$ .

In terms of the measure of Garnett’s theorem $\mu(S_{\theta,h})\leqq(KK_{\delta}k_{\delta}^{-1})h$ so by that
theorem $S$ is an interpolating sequence. The same holds for each separated set
in $\Gamma^{\prime}$ so $\Gamma^{\prime}$ belongs to $C$ as required.

Before proving the necessity of the condition in Theorem 4.1 we will give
several lemmas to be used in the construction of $\Gamma^{\prime}$ . The first is a well-known
fact from general topology; the second follows from an easy compactness
argument.

LEMMA 4.2. Let $\mathcal{V}$ be a cellection of open, connected subsets of a toPological
space such that $\cup \mathcal{V}$ is connected. If $V_{1},$ $V_{2}\in \mathcal{V}$ , then there is a finite subfamily
$\mathcal{V}_{0}$ of $\mathcal{V}$ such that $V_{1},$ $V_{2}\in \mathcal{V}_{0}$ and $U\mathcal{V}_{0}$ is connected.

LEMMA 4.3. Let $\Gamma$ be a curve in $D$ ending on the unit circle, and for some
$\delta\in(0,1)$ let $\{z_{n}\}$ be a $\delta$-seParated sequence in $\Gamma$ which $\delta$-covers $\Gamma$ If $I_{0}$ is a
finite set of indices and $W=\cup\{D(z_{k}, \delta):k\not\in I_{0}\}$ , then there is one component of
$W$ containing all but a finite subset of $\{z_{n}\}$ .

LEMMA 4.4. Let $\Gamma$ be a curve in $D$ ending on the unit circle and let $\{z_{n}\}$

be a $\delta$-seParated sequence in $\Gamma$ which $\delta$-covers $\Gamma,$ $0<\delta<1$ . Then, there is a parti-
tion of the indices into finite subsets $I_{n},$ $n=1,2,$ $\cdots$ such that for each $n$
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(a) $U\{D(z_{k}, \delta):k\in I_{n}\}$ is connected.
(b) $U\{D(z_{k}, \delta) : k\in I_{n}\}\cap\cup\{D(z_{k}, \delta) : k\in I_{n+1}\}\neq\emptyset$ .
PROOF. We construct the family $\{I_{n}\}$ inductively to have the following

properties in addition to (a) of the statement: (c) $m<n$ implies $I_{m}\cap I_{n}=\emptyset,$ $(d)$

$\{1, \cdots , n\}\subset I_{1}\cup$ $\cup I_{n},$ $(e)$ if $J_{m}=I-(I_{1}\cup\cdots\cup I_{m})$, then $U\{D(z_{k}, \delta):k\in I_{m}\}\cap$

$\cup\{D(z_{k}, \delta):k\in J_{m}\}\neq\emptyset$ , (f) $\cup\{D(z_{k}, \delta):k\in J_{m}\}$ is connected. In particular we
give the method for constructing $I_{1}$ and for $I_{p},$ $p>1$ , assuming $I_{1},$ $\cdots$ , $I_{p- 1}$ have
already been constructed.

If $p>1$ we know $U\{D(z_{k}, \delta):k\in I_{p- 1}\}\cap U\{D(z_{k}, \delta):k\in I_{p-1}\}\neq\emptyset$ and we
choose an index $k_{1}\in J_{p-1}$ such that $U\{D(z_{k}, \delta):k\in I_{p-1}\}\cap D(z_{k_{1}}, \delta)\neq\emptyset$ . If $p=1$

choose $k_{1}$ to be any index. For $p>1$ let $k_{2}=\inf\{k:k\in J_{p-1}\}$ and if $p=1$ choose
$k_{2}=1$ .

Now, $U\{D(z_{k}, \delta):k\in J_{p-1}\}$ is connected so, by Lemma 4.2, there is a finite
set $L$ containing $\{k_{1}, k_{2}\}$ such that $V=U\{D(z_{k}, \delta):k\in L\}$ is connected. If we
let $L_{0}=L\cup I_{1}\cup\cdots\cup I_{p-1}$ (if $p=1,$ $L_{0}=L$ ), then $L_{0}$ is a finite set and, by Lemma
4.3, $W=U\{D(z_{k}, \delta):k\not\in L_{0}\}$ has all but a finite subset $\{z_{k} ; k\in L_{1}\}$ of $\{z_{n}\}$ in
one component, $V_{1}$ . We note here that $L_{1}$ is contained in $J_{p-1}$ .

Every component $V_{1},$ $\cdots$ , $V_{n}$ of $W$ must meet $V$ , because if one of them,
$V_{t_{0}}$ , did not meet $V$ , then $V_{i_{0}}$ and $V\cup\cup\{V_{k} : k\neq i_{0}\}$ would be disjoint nonempty
open sets whose union is the connected set $U\{D(z_{k},\hat{0}):k\in J_{p-1}\}$ . Thus,
$\cup\{D(z_{k}, \delta):k\in L\cup L_{1}\}=V\cup(V_{2}\cup\cdots\cup V_{n})$ is a connected set. We set $I_{p}=$

$L\cup L_{1}$ . The reader can easily check that $I_{p}$ has the desired properties and that
$\{I_{n}\}$ is the required partition of the indices.

LEMMA 4.5. Let $\{z_{1}, \cdots , z_{n}\}\subset D,$ $0<\delta_{0}<1,$ $\delta=\delta_{0}/2$ . SuPpose $U\{D(z_{k}, \delta)$ :
$k=1,$ $\cdots$ , $n$ } is connected. Then, there is a segmental path beginning at $z_{1}$ , end-
ing at $z_{n}$ , joining all the pOjnts $\{z_{1}, \cdots , z_{n}\}$ such that if $z_{i}$ and $z_{j}$ are adjacent
points on the path,

(a) $\chi(z_{i}, z_{j})<\delta_{0}$ ,
(b) the segment between $z_{i}$ and $z_{j}$ is traversed no more than twice.
PROOF. Let $L$ be the set of indices $k$ such that there exists a segmental

path beginning at $z_{1}$ , ending at $z_{k}$ , joining some of the points $\{z_{1}, \cdots , z_{n}\}$ and
satisfying (a) and (b) above. Suppose $ L_{1}=\{1, \cdots , n\}-L\neq\emptyset$ . Then, $U\{D(z_{k}, \delta)$ :
$k\in L\}$ and $U\{D(z_{k}, \delta):k\in L_{1}\}$ are nonempty open sets whose union is the con-
nected set $\cup\{D(z_{k}, \delta):k=1, \cdots , n\}$ so there would exist $i_{0}\in L_{1},$ $j_{0}\in L$ such that
$ D(z_{i_{0}}, \delta)\cap D(z_{J_{0}}, \delta)\neq\emptyset$ . Thus, a segmental path joining $z_{1}$ to $z_{j_{0}}$ can be extended
in the obvious way to $z_{i_{0}}$ . Since by the triangle inequality, $\chi(z_{i_{0}}, z_{j_{0}})<\delta_{0}$ , this
extended path would satisfy (a) and (b) above. Thus $i_{0}\in L$ and this contradic-
tion proves $L=\{1, \cdots , n\}$ .

Next, consider the family $\mathcal{F}$ of all subsets $\{1, i_{1}, i_{2}, \cdots , i_{m}, n\}$ of $\{1, 2, \cdots n\}$

such that $\{z_{1}, z_{t_{1}}, z_{i_{2}}, \cdots , z_{i_{m}}, z_{n}\}$ can be joined by a segmental path beginning
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at $z_{1}$ , ending at $z_{n}$ and satisfying (a) and (b).

We have already shown $\mathcal{F}$ to be nonempty. Partially order $\mathcal{F}$ by inclusion
and let $F$ be a maximal set in the finite family $\mathcal{F}$ . Suppose $F\neq\{1, \cdots , n\}$ .
Then, as above there is an $i_{0}\in F$ and $j_{0}\in\{1, \cdots , n\}-F$ such that $ D(z_{\ell_{0}}, \delta)\cap$

$ D(z_{j_{0}}, \delta)\neq\emptyset$ . Let $\gamma$ be the path which joins the points $\{z_{k} ; k\in F\}$ as described
above. Let $\gamma^{\prime}$ be a path which is the same as $\gamma$ from $z_{1}$ to $z_{i_{0}}$ , traverses the
segment from $z_{i_{0}}$ to $z_{Jo}$ and back and then is the same as $\gamma$ from $z_{i_{0}}$ to $z_{n}$ . By
the triangle inequality $\chi(z_{i_{0}}, z_{j_{0}})<\delta_{0}$ and also the segment between $z_{i_{0}}$ and $z_{J_{0}}$

is traversed only twice. Thus, $\gamma^{\prime}$ is the desired type of path and the maxi-
mality of $F$ would be contradicted. Hence $F=\{1, \cdots , n\}$ and the lemma is
proved.

We are now in a position to complete the proof of Theorem 4.1.
PROOF OF NECESSITY IN THEOREM 4.1. Let $\Gamma\in c$ , let $0<\delta_{0}<1,$ $\delta=\delta_{0}/2$ and

let $\{z_{n}\}$ be a $\delta$-separated sequence in $\Gamma$ which $\delta$-covers $\Gamma$ Applying Lemma 4.4
we get a partition $\{I_{n}\}$ of the positive integers for which the conditions of that
lemma hold. From Lemma 4.4 (b) for each $i$ we may choose $k_{i}\in I_{i}$ and $ j_{i+1}\in$

$I_{i+1}$ such that
$ D(z_{k_{i}}, \delta)\cap D(z_{J\iota+1}, \delta)\neq\emptyset$ .

Since condition (a) of Lemma 4.4 holds, we can apply Lemma 4.5 to find a seg-
mental path $\Gamma_{i}$ joining the points $\{z_{k} ; k\in I_{i}\}$ . This path starts at $z_{j_{i}}$ (for $i=1$ ,
$j_{i}$ is any index in $I_{1}$ ) and ends at $z_{k_{i}}$ such that conditions (a) and (b) of the
lemma hold. If we extend $\Gamma_{i}$ segmentally from $z_{k_{i}}$ to $z_{j_{i+1}}$ , then it still satisfies
the conditions (a) and (b) since $\chi(z_{k_{i}}, z_{j_{i+1}})<\delta_{0}$ . This extended path $\Gamma_{i}$ ends at
$z_{J_{i+1}}$ and the (similarly extended) path $\Gamma_{i+1}$ begins at $z_{j_{i+1}}$ so all the paths $\Gamma_{i}$

can be joined together to give a path $\Gamma^{\prime}$ containing all the points of $\{z_{n}\}$ and
satisfying conditions (a) and (b) of Lemma 4.5. It is this path $\Gamma^{\prime}$ which satisfies
the present theorem as we now show.

Since $\{z_{n}\}\delta$-covers $\Gamma$ and $\{z_{n}\}\subset\Gamma^{\prime}$ we have $\Gamma\subset N(\{z_{n}\}, \delta)\subset N(\Gamma^{\prime}, \delta)$ and $\Gamma^{\prime}$

satisfies (a) of the present theorem.
Next, let $\Gamma_{m}^{\prime}$ be the union of all segments of $\Gamma^{\prime}$ which have $z_{m}$ as an end-

point and let $L_{m}$ be the total length of all these segments. Since each point
$z_{n_{0}}$ adjacent to $z_{m}$ on the path $\Gamma^{\prime}$ satisPes $\chi(z_{n_{0}}, z_{m})<\delta_{0}$ we see from Lemma
2.4 (b) that

$|z_{n_{0}}-z_{m}|<K_{\delta_{0}}(1-|z_{m}|)$ .

Since $\{z_{n}\}$ is $\delta$-separated, there are at most $M_{\delta,\delta_{0}}$ points of $\{z_{n}\}$ which are ad-
jacent to $z_{m}$ on $\Gamma^{\prime}$ . Also, by construction, the segment between $z_{m}$ and each
adjacent point is traversed no more than twice. Thus, $L_{m}<K_{1}(1-|z_{m}|)$ with
$K_{1}=2M_{\delta,\delta_{0}}K_{\delta_{0}}$ .

Fix $h$ sufficiently small and fix $\theta$ . If $w\in\Gamma^{\prime}$ , then for some $m_{0}w$ is on a
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segment with $z_{m_{0}}$ as endpoint. Thus, $\chi(w, z_{m_{0}})<\delta_{0}$ . If, in addition, $w\in S_{\theta.h}$ ,

then, by Lemma 2.4 (d), $z_{m_{0}}\in S_{\theta,K_{\delta_{0}}h}$ . Hence,

$\Gamma^{\prime}\cap S_{\theta.h}\subset\cup\{\Gamma_{m}^{\prime} : z_{m}\in S_{\theta,K_{\delta_{0}}h}\}$

and, therefore,
$\nu(S_{\theta.h})\leqq\sum L_{m}\leqq K_{1}\sum(1-|z_{m}|)$

the sums extending over $z_{m}\in S_{\theta,K_{\delta 0}}h$ . Because $\{z_{n}\}$ is separated and $\Gamma\in C,$ $\{z_{n}\}$

is an interpolating sequence. Thus, aPplying Garnett’s theorem we are finished.
Although one should verify it analytically (and we do so below in a general

situation) it is intuitively clear that arclength is a Carleson measure for curves
ending, say, at 1 which are convex (as in [10]) or, more generally, monotone
in almost any reasonable sense. Thus, such curves have only nontrivial homo-
morphisms in their closures and each separated subsequence on such curves is
an interpolating sequence.

THEOREM 4.6. Let $\Gamma$ be a curve in $D$ ending at 1. SuPpose for $z=re^{i\theta}=$

$x+iy$ on $\Gamma$ that $\theta\geqq 0,$ $\theta$ is a nonincreasing function and $x$ is a nondecreasing
function of the parameter of the curve as $z\rightarrow 1$ . Then, $\Gamma\in C$ . In addition, sup-
pose $\{z_{n}=re^{i\theta_{n}}=x_{n}+iy_{n}\}$ is a sequence in $D$ tending to 1 such that $\theta_{n}\geqq\theta_{n+1}\geqq 0$ ,
$x_{n}\leqq x_{n+1}$ and $\chi(z_{n}, z_{n+1})\geqq\epsilon>0$ for some $\epsilon\in(0,1),$ $n=1,2,3,$ $\cdots$ . Then, $\{z_{n}\}$ is
an interpolating sequence.

PROOF. Given a sequence $\{z_{n}\}$ as described in the statement of the theorem,
the segmental curve $\Gamma$ joining the points of the sequence in order satisfies the
description of $\Gamma$ in the statement of the theorem. If we first show that $\{z_{n}\}$

is separated, then by Theorems 4.1 and 3.4 the proof will be completed as soon
as we show that the arclength of $\Gamma$ is a Carleson measure.

If we show that the conditions on the points $\{z_{n}\}$ are enough to prove that
eventually $\chi(z_{n}, z_{n+2})\geqq\epsilon$ , then a simple induction shows that $\{z_{n}\}$ is separated.
To begin with it is not hard to verify that for all large $n$ the ray of smallest
angle tangent to $D(z_{n}, \epsilon)$ intersects it at a point whose real part is less than
$x_{n}$ . From this it is clear geometrically that for the cases where $y_{n+1}\leqq y_{n}$ the
conditions $x_{n+1}\leqq x_{n+2}$ and $\theta_{n+1}\leqq\theta_{n}$ alone are enough to ensure $\chi(z_{n}, z_{n+2})\geqq\epsilon$ .
For the cases where $y_{n}<y_{n+1}$ it is equally evident, recalling the euclidean equa-
tion of the pseudo hyperbolic circle of radius $\epsilon$ about $z_{n}$ , that the worst case
occurs for $\theta_{n+1}=\theta_{n}$ and $r_{n+1}=(r_{n}+\epsilon)/(1+\epsilon r_{n})$ . To finish the demonstration one
can then, for example, calculate the point $w_{n+1}^{\prime}=(r_{n}+\epsilon)$ cos $\theta/(1+\epsilon r_{n})+i(r_{n}-\epsilon)$

$\sin\theta/(1-\epsilon r_{n})$ of this $\epsilon$ -circle about $z_{n}$ which lies directly below $w_{n+1}$ . A direct
calculation shows that $\chi(w_{n+1}, w_{n+1}^{\prime})\rightarrow 0$ . Thus, once again, eventually $\chi(z_{n}, z_{n+2})$

$\geqq\epsilon$ .
It remains to prove that the arclength of $\Gamma$ is a Carleson measure and this
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follows from a simple inequality. Namely, suppose $z=re^{i\theta}=x+iy,$ $w=\rho e^{i\varphi}=$

$u+iv,$ $0<\varphi\leqq\theta,$ $0<x\leqq u$ and $z$ and $w$ are close to 1. Then,

$|z-w|\leqq 2(u-x)+2(\theta-\varphi)$ .
To complete the proof fix $\theta$ and $h$ small and let $z_{n}=r_{n}e^{i\theta_{n}}=x_{n}+iy_{n},$ $n=$

$1,$ $\cdots$ , $N$, be any finite subset of $\Gamma\cap S_{\theta,h}$ in the order for which the $x_{n}’ s$ are
nondecreasing, the $\theta_{n}’ s$ nonincreasing. Then, from the inequality

$\sum_{n=1}^{N- 1}|z_{n}-z_{n+1}|\leqq 2\sum_{n=1}^{N- 1}(u_{n+1}-u_{n})+2\sum_{n=1}^{N-1}(\theta_{n}-\theta_{n+1})$

$=2[(u_{N}-u_{1})+(\theta_{1}-\theta_{N})]$

$\leqq 2$ [(diameter of $S_{\theta,h})+h$]

$\leqq 2[2h+h]=6h$ .
This makes it clear that the total arclength of $\Gamma$ in $S_{\theta,h}$ is bounded above by
$6h$ and shows that the arclength of $\Gamma$ is a Carleson measure.

Theorem 4.6 includes the case in [9] where the sequence $\{z_{n}\}$ is upper tan-
gential with $r_{n}$ increasing and $\theta_{n}$ decreasing as well as the similar case in [7]

where the sequence need not be tangential and the monotonicity need not be
strict. In addition, it includes the answer to the question asked in [7] whether
one obtains the same results for the case of $x_{n}$ nondecreasing and $y_{n}$ non-
increasing.

There is one final question we wish to answer. We have already pointed
out that if a curve $\Gamma$ belongs to $C$ , then it ends at some point on the unit circle.
Thus, from [8] the nontrivial homomorphisms in the closure of $\Gamma$ belong to the
relative interior of the fiber of $\mathcal{M}$ lying above that point. It is formally possible
at this point that some nontrivial homomorphisms in the relative interior of the
fiber do not lie in the closure of a curve in C. We show next that this possi-
bility does not occur.

THEOREM 4.7. Let $h$ be a nontrivial homomorphism in the relative interior
of the fiber of $\mathcal{M}$ lying above 1. Then, $h$ is in the closure of some curve $\Gamma$ in C.

PROOF. By Hoffman’s results $h$ lies in the closure of some interpolating
sequence $\{z_{n}\}$ . Without lcss of generality we may assume this sequence
(eventually) to lie above the radius to 1. Because $h$ is in the relative interior
of the fiber there exists ([8]) a convex curve $\Gamma^{\prime}$ which is tangent from above
to the unit circle at 1 such that $\{z_{n}\}$ is (eventually) below $\Gamma^{\prime}$ .

We next construct a subsequence $\{w_{n}\}$ of the sequence $\{z_{n}\}$ . Let $\epsilon\in(0,1)$

be such that $\{z_{n}\}$ is $\epsilon$ -separated. Given $z\in D$ define $\sigma(z)$ to be the $\epsilon$ -pseudo
hyperbolic neighborhood of the radial segment in $D$ from $z$ to the unit circle.
We assume that $\{z_{n}\}$ has been listed in non-decreasing order of modulus. Let
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$\zeta_{1}=z_{1}$ . Let $\zeta_{2}$ be the first point $z_{n}$ which does not belong to $\sigma(\zeta_{1})$ . Note that
also $\zeta_{1}\not\in\sigma(\zeta_{2})$ . Next, let $\zeta_{3}$ be the first point $z_{n}$ such that $\zeta_{3}\not\in\sigma(\zeta_{1})\cup\sigma(\zeta_{2})$ . This
pattern continues inductively to produce a subsequence $\{\zeta_{n}\}$ of $\{z_{n}\}$ such that
for each $n,$ $z_{n}\in\sigma(\zeta_{k})$ for some $k$ and such that for each $n,$ $m,$ $\zeta_{n}\not\in\sigma(\zeta_{m})$ . We
rearrange the sequence $\{\zeta_{n}\}$ in a non-increasing order of argument and obtain
the desired subsequence $\{w_{n}\}$ .

We now describe the construction of the curve $\Gamma$ For each $k$ let $w_{k}^{\prime}$ denote
the point of intersection of the radius through $w_{i}$ with $\Gamma^{\prime}$ . Beginning at $w_{1}^{\prime}$

we traverse the radius toward $w_{1}$ . Each time we arrive at a point of the same
modulus as some $z_{n}$ in $\sigma(w_{1})$ which lies to our right we traverse the segment
to $z_{n}$ and back and then continue until we reach $w_{1}$ . At this point we traverse
the radius toward $w_{1}^{\prime}$ , adding excursions as before for points $z_{n}$ in $\sigma(w_{1})$ to our
right until we reach $w_{1}^{\prime}$ . From $w_{1}^{\prime}$ we traverse $\Gamma^{\prime}$ to $w_{2}^{\prime}$ . We traverse the
radius from $w_{2}^{\prime}$ to $w_{2}$ and back making excursions similar to those just described
but only for points $z_{n}$ not already reached. Again we traverse $\Gamma^{\prime}$ from $w_{2}^{\prime}$ to
$w_{3}^{\prime}$ . This scheme is continued and the resulting curve is the curve $\Gamma$ we seek.

It remains to show that the arclength of $\Gamma$ is a Carleson measure. Con-
sider a region $S_{\theta,h}$ with $h$ sufficiently small. The part of $\Gamma$ in $S_{\theta,h}$ can be
divided into three types. The first consists of the arcs of $\Gamma^{\prime}$ in $S_{\theta,h}$ . Because
$\Gamma^{\prime}$ is convex we see that their total length is no more than a constant times $h$ .
The second type consists of segments of radii in $S_{\theta,h}$ joining points $w_{k}^{\prime}$ and $w_{k}$

for which $w_{k}\in S_{\theta,h}$ and, also, of the doubly traversed segment joining a point
of such a radius to a point $z_{n}$ within a pseudo hyperbolic distance $\epsilon$ . For either
of these (using Lemma 2.4 (b) for the latter) the total arclength added is no
more than a constant times $1-|z_{n}|$ . Using Garnett’s theorem once more we
see that the total contribution of this second type is no more than a constant
times $h$ . The third type consists of the portion in $S_{\theta,h}$ of segments of radii
joining points $w_{k}^{\prime}$ and $w_{k}$ for which $w_{k}\not\in S_{\theta,h}$ . By the construction of $\{w_{n}\}$ the
points of intersection of these radii with the arc $|z|=1-h$ , arg $z-\theta|<h/2$,
form an $\epsilon$ -separated subset of this arc. Thus, there are at most a fixed number
of these independent of $\theta$ and $h$ . Each such segment has length no greater
than $h$ and, thus, in total again contribute no more than a constant times $h$ .
From this we see that the arclength of $\Gamma$ is a Carleson measure and we are
finished.
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