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\S 1. Introduction.

Let $X$ be a complex manifold and $A$ a compact complex submanifold of $X$.
We say that $A$ is exceptionally embedded in $X$ or exceptional in $X$ if there
exist a neighbourhood $U$ of $A$ and a proper holomorphic map $\mathfrak{p}$ from $U$ to a
domain of $C^{N}$ that $\mathfrak{p}|_{U-A}$ is a biholomorphic map from $U-A$ to $\mathfrak{p}(U-A)$ . In
1962, H. Grauert proved in [1] the following criterion for exceptional sets.

THEOREM I. (Grauert, Satz 8 in [1]).

Under the above notations, if the normal bundle of $A$ in $X$ has its zero
section as an exceptional set, then $A$ is exceptional in $X$.

In view of Theorem I, it is natural to ask whether the converse of the
above statement holds or not, and it is also shown by Grauert that the converse
is false. So the more detailed description of exceptional sets are desirable. In
the present article, in particular, we examine the case where $A\cong P^{1}$ .

The main result is
THEOREM 2. Let $X$ be a complex manifold containing a complex analytic

submanifold A. SuPpose that $A\cong P^{1}$ and $N_{A/X}$ , the normal bundle of $A$ in $X$, is
seminegative in the sense that every rank 1 holomorphic subbundle of $N_{A/X}$ has
nonpOsjtjve degree. Then $A$ has a holomorphjcally convex neighbourhood in $X$.

As a corollary, we have
COROLLARY. Under the above assumptions, if moreover there exists a neigh-

bourhood of $A$ in $X$ which contains no compact complex analytic subvariety of
dimension $\geqq 1$ except for $A$ , then $A$ is excePtional in $X$.

In order to prove Theorem 2, we prove the following theorem by using
Kodaira’s technique in [3].

THEOREM 1. Let $X$ be a complex manifold of dimension $r$ and $A$ a complex
analytic submanifold of X. $SuPPose$ that $A\cong P^{1}$ and
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$N_{A/X}\cong\bigoplus_{a=1}^{m+n}H^{a_{\alpha}}$

where $r=m+n,$ $m>0,$ $n\geqq 0,$ $H$ denotes the holomorphjc line bundle of degree 1
over $P^{1}$ , and

$a_{1}\leqq\ldots\leqq a_{m}<0\leqq a_{m+1}\leqq\ldots\leqq a_{m+n}$ .
Then there exists a complex analytic family $\pi:\mathcal{V}\rightarrow\Delta^{l}$ of locally closed complex
analytic submanifolds of $X$ which satisfies the following conditions:

$0)$ $A\subset\pi^{-1}(0)$

1) $N_{A/\pi-1(0)}\cong\bigoplus_{\alpha=1}^{m}H^{a_{\alpha}}$

2) The infinitesimal displacement

$\sigma;T_{0}(\Delta^{l})\rightarrow H^{0}(A, N_{\pi-1(0)/X}|_{A})$

is bijective.
Here $\Delta^{l}=\{(t_{1}, \cdots , t_{l})\in C^{l} ; |t_{\nu}|<1, \nu=1,2, \cdots , l\}$ and $T_{0}(\Delta^{l})$ denotes the holomor-
phic tangent space of $\Delta^{l}$ at $0$ .

Theorem 1 follows from the theorem of Knorr-Schneider (cf. [2], Satz 3.4)

and Kodaira’s theorem (cf. [3], Main Theorem).

We note that Theorem 2 does not describe the whole aspect of the excep-
tional embeddings of $P^{1}$ in the sense that there exists an exceptional embedding
of $P^{1}$ whose normal bundle is not seminegative, which we construct in the
appendix.

The author expresses his sincere thanks to Professor S. Nakano, Dr. A.
Fujiki, and Dr. T. Akahori for their encouragement and valuable advices. He
also thanks the referee for pitiless criticisms.

\S 2. Construction of $\pi^{-1}(0)$ .
Let $X$ be a complex manifold of dimension $r$ containing a complex analytic

submanifold $A$ which is biholomorphic to $P^{1}$ . It is well known (cf. [5]) that $A$

is covered by two coordinate neighbourhoods $U_{0}$ and $U_{1}$ with local coordinates
$(t_{i}, u_{i})=(t_{i}, u_{i}^{1}, \cdots , u_{i}^{r}),$ $i=0,1$ , such that $U_{i}\cap A$ coincides with the subspace of
$U_{i}$ determined by $u_{i}^{1}=\ldots=u_{i}^{r}=0$ . Let the coordinate transformation be $(t_{0}, u_{0})$

$=g(t_{1}, u_{1})=(g^{0}(t_{1}, u_{1}),$ $g^{1}(i_{1}, u_{1}),$ $\cdots$ , $g^{r}(t_{1}, u_{1}))$ .
Since by the Grothendieck-Birkhoff’s theorem $N_{A/X}$ is a direct sum of holo-

morphic line bundles over $A$ , we may assume

(1) $g^{0}(t_{0},0, \cdots 0)=\frac{1}{t_{0}}$
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(2) $\frac{\partial(g^{0},\cdots.’.g^{r})}{\partial(t_{0}^{0},u_{0}^{1},\cdot,u_{0}^{r})}|_{u_{0}^{1}=\cdot\cdot\Leftarrow u_{0}^{r}=0}=(t_{0}^{-a_{1}}t_{0_{0}}^{-2}\theta_{1}(t_{0})\cdots$

...

$\theta_{r}(t_{0})t_{0}^{-a_{r}}0)$ .

Here $\theta_{1}(t_{0}),$ $\cdots$ , $\theta_{\gamma}(t_{0})$ are holomorphic functions on $U_{0}\cap U_{1}\cap A$ and $a_{\alpha}(\alpha=1,2$ ,

, r) are integers satisfying $N_{A/X}\cong\bigoplus_{\alpha=1}^{r}H^{a_{\alpha}}$ . In what follows we restrict our-

selves to the case where $r=m+n,$ $m>0,$ $n\geqq 0$ , and

(3) $a_{1}\leqq\cdots\leqq a_{m}<0\leqq a_{m+1}\leqq\cdots\leqq a_{m+n}$ .
We denote by $\mathcal{I}$ the ideal sheaf of $A$ in $X$.
LEMMA 1. Under the above conditions, we can choose the coordinates $(t_{i}, u_{i})$ ,

$i=0,1$ , so that they satisfy (1), (2) and moreover

(I) $g^{0}(t_{0}, u_{0}^{1}, \cdots , u_{0}^{m}, 0, \cdots , 0)\equiv\frac{1}{t_{0}}$ mod $\mathcal{I}^{-a_{1+1}}$

(II) There exist p0lyn0mials $f^{a}$ in $(t_{1}, u_{1})$ , for $1\leqq\alpha\leqq m$ ,

such that the degrees of $f^{\alpha}$ in $u_{1}$ are $\leqq-a_{1}$ , and

(4) $g^{\alpha}(t_{1}, u_{1}^{1}, \cdots u_{1}^{m},0, \cdots 0)\equiv f^{a}(t_{1}, u_{1}^{1}, \cdots u_{1}^{m})$ mod $\mathcal{I}^{-a_{1+1}}$

(5) $f^{\alpha}(0, u_{1}^{1}, \cdots u_{1}^{m})=0$ ,

(III) $g^{\beta}(t_{1}, u_{1}^{1}, \cdots , u_{1}^{m}, 0, \cdots , 0)\equiv 0$ mod $\mathcal{I}^{-a_{1}+1}$ , for $m+1\leqq\beta\leqq m+n$ .
PROOF. We prove, for every positive integer $k$ , there exist coordinates

$(t_{0k}, u_{0k})$ and $(t_{1k}, u_{1k})$ in the neighbourhoods of $U_{0\cap}A$ and $U_{1}\cap A$ , respectively,
such that, letting $(t_{0k}, u_{0k})=g_{k}(t_{1k}, u_{1k})=(g_{k}^{0}(t_{1k}, u_{1k}),$ $\cdots$ , $g_{k}^{r}(t_{1k}, u_{1k}))$ be the
coordinate transformation, (1), (2) and the following conditions hold.

$(I_{k})$ $g_{k}^{0}(t_{1k}, u_{1k}^{1}, \cdots , u_{1k}^{m}, 0, \cdots , 0)\equiv 1/t_{1k}$ mod $\mathcal{I}^{k}$

$(II_{k})$ There exist polynomials $f_{k}^{\alpha}$ ( $\alpha=1,$ $\cdots$ , m) in $(i_{1k}, u_{1k})$

such that the degrees of $f_{k}^{\alpha}$ in $u_{1k}$ are $\leqq-a_{1}$ and
$g_{k}^{\alpha}(t_{1k}, u_{1k}^{1}, \cdot. , , u_{1k}^{m}, 0, \cdot .. , 0)\equiv f_{k}^{a}(t_{1k}, u_{1k}^{1}, \cdot.. , u_{1k}^{m})$ mod $\mathcal{I}^{k}$ ,

$f_{k}^{\alpha}(0, u_{1k})=0$ .
$(III_{k})$ $g^{\beta_{k}}(t_{1k}, u_{1k}^{1}, \cdots , u_{1k}^{m}, 0, \cdots , 0)\equiv 0$ mod $\mathcal{I}^{k}$ for $m+1\leqq\beta\leqq m+n$ .

We prove this by induction on $k$ .
If $k=1$ , then (1) and (2) already implies $(I_{1}),$ $(II_{1}),$ $(III_{1})$ , since $-a_{\alpha}>0$ for

$1\leqq\alpha\leqq m$ .
Assume that there exist coordinates $(t_{0k}, u_{0k}),$ $(t_{1k}, u_{1k})$ in the neighbourhoods

of $U_{i}\cap A$ , satisfying $(I_{k}),$ $(II_{k}),$ $(III_{k})$ . Let $\{g_{k}^{0}\}_{k}^{\prime}$ denote the k-th homogeneous
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term of $g_{k}^{0}(t_{1k}, u_{1k}^{1}, \cdots , u_{1k}^{m}, 0, \cdots , 0)$ . By the Laurent expansion theorem there
exist homogeneous polynomials $g_{k}^{0+}(t_{1k}, u_{1k}^{1}, \cdots , u_{1k}^{m})$ and $g_{k}^{0-}(t_{1k}, u_{1k}^{1}, \cdots , u_{1k}^{m})$ in
variables $u_{1k}^{1},$ $\cdots$ , $u_{1k}^{m}$ with coefficients in the power series rings $C\{t_{1k}\}$ and
$C\{1/t_{1k}\}$ , respectively, such that

(6) $\{g_{k}^{0}\}_{k}^{\prime}=g_{k}^{0+}+g_{k}^{0-}$

We set

(7) $t_{1k+1}=t_{1k}-t_{1k}^{2}g_{k}^{0+}$

(8) $t_{0k+1}=t_{0k}-g_{k}^{0-}(1/t_{0k}, t_{0k}^{-a_{1}}u_{0k}^{1}, \cdots , t_{0k}^{-a_{m}}u_{0k}^{m})$ .
Then we have

$t_{0k+1}-1/t_{1k+1}=t_{0k}-g_{k}^{0-}(1/t_{0k}, t_{0k}^{-a_{1}}u_{0k}^{1}, \cdots , t_{0k}^{-a_{m}}u_{0k}^{m})$

$-(t_{1k}(1-t_{1k}g_{k}^{0+}(t_{1k}, u_{1k}^{1}, \cdots u_{1k}^{m})))^{-1}$

$\equiv t_{0k}-g_{k}^{0+}(t_{1k}, u_{1k}^{1}, \cdots u_{1k}^{m})$

$-1/t_{1k}-g^{0+}(t_{1k}, u_{1k}^{1}, \cdots , u_{1k}^{m})$ mod $\mathcal{I}^{k+1}$

$\equiv\{g_{k}^{0}\}_{k}^{\prime}-(g_{k}^{0+}+g_{k}^{0-})=0$ mod $\mathcal{I}^{k+1}$ .
Thus, if we take $(t_{0k+1}, u_{0k})$ and $(t_{1k+1}, u_{1k})$ as coordinates, then $(I_{k+1}),$ $(II_{k})$ ,
$(III_{k})$ are satisfied.

Let $(t_{0k+1}, u_{0k})=g_{*k}(t_{1k+1}, u_{1k})=(g_{*k}^{0}, \cdots , g_{*k}^{r})$ be the coordinate transforma-
tion. Letting $\{g_{*k}^{\alpha}\}_{k}^{\prime}$ be the k-th homogeneous term of $g_{*k}^{\alpha}(t_{1k+1},$ $u_{1k}^{1},$ $\cdots$ , $u_{1k}^{m},$ $0$ ,
... , $0$) for $1\leqq\alpha\leqq r$ , by the Laurent expansion theorem we have homogeneous
polynomials $g_{k}^{\alpha+}$ and $g_{k}^{\alpha-}$ satisfying

(9) $\{g_{*k}^{a}\}_{k}^{\prime}=g_{k}^{a+}+g_{k}^{a-}$

where the coefficients of $g_{k}^{\prime\ell+}$ (or $g_{k}^{r\ell-}$ ) are contained in $C\{t_{1k+1}\}-C$ (or $C\{1/t_{1k+1}\}$ ).

We set

(10) $g_{k}^{\prime\nu+}=g_{k}^{\alpha_{\coprod}}+t_{1k+1^{-a_{1+1}}}g_{k\Delta}^{a}$ , for $1\leqq\alpha\leqq m$ .

Here the coefficients of $g_{k}^{\alpha_{\Delta}}$ are contained in $C\{t_{1k+1}\}$ and the coefficients of $g_{k\square }^{\alpha}$

are polynomials of degree $\leqq-a_{1}$ in $t_{1k+1}$ . We put

(11) $u_{1k+1}^{N}=u_{1k}^{\alpha}+f_{1k+1^{-a_{1}+a_{\alpha}+1}}g_{k}^{\alpha_{\Delta}}$

$u_{0k+1}^{\alpha}=u_{0k}^{\ell t}-g_{k}^{\alpha-}(1/t_{0k+1}, t_{0k+1^{-a_{1}}}u_{0k}^{1}, \cdots t_{0k+1}^{-a_{m}}u_{0k}^{m})$ ,

for $1\leqq\alpha\leqq m$ ,
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(12) $u^{\beta_{1k+1}}=u^{\beta_{1k}}+t_{1k+1}^{a_{\beta}}g^{\beta_{k}+}$

$u^{\beta_{0k+1}}=u^{\beta_{0k}}-g^{\beta_{k}-}(1/t_{0k+1}, t_{0k+1}^{-a_{1}}u_{0k}^{1}, \cdots t_{0k+\iota^{-a_{m}}}u_{0k}^{m})$ ,

for $m+1\leqq\beta\leqq m+n$ .
Then we have

(13) $u_{0k+1}^{a}\equiv u_{0k}^{\alpha}-g_{k}^{a-}(t_{1k+1}by(2)u_{1k}^{1}, \cdots , u_{1k}^{m})$ mod $\mathcal{I}^{k+1}$

$by(9)\equiv f_{k}^{\alpha}(t_{1k+1}, u_{1k}^{1}, \cdots u_{1k}^{m})+\{g_{*k}^{\alpha}\}_{k}^{\prime}-g_{k}^{\alpha-}$ mod $\mathcal{I}^{k+1}$

$by(2)\equiv f_{k}^{\alpha}(t_{1k+1}, u_{1k+1}^{1}, \cdots , u_{1k+1}^{m})+g_{k}^{\alpha}\square $ mod $\mathcal{I}^{k+1}$ ,

for $1\leqq\alpha\leqq m$ .
Since $g_{k\square }^{a}$ is a polynomial in $t_{1k+1}$ and $u_{1k+1}^{1},$ $\cdots$ , $u_{1k+1}^{m}$ , of degree $\leqq-a_{1}$ satisfy-
ing $g_{k}^{a}\square (0, u_{1k}^{1}, \cdots , u_{1k}^{m})=0,$ $(II_{k+1})$ is satisfied if we put

(14) $f_{k+1}^{\alpha}(t_{1k+1}, u_{1k+1}^{1}, \cdots u_{1k+1}^{m})$

$=f_{k}^{\prime\gamma}(t_{1k+1}, u_{1k+1}^{1}, \cdots u_{1k+1}^{m})+g_{k\square }^{a}(t_{1k+1}, u_{1k+1}^{1}, \cdots u_{1k+1}^{m})$ .
In view of (2), $(III_{k})$ and (12), it follows immediately that $(III_{k+1})$ is satisfied by
$(t_{0k+1}, u_{0k+1})$ and $(t_{1k+1}, u_{1k+1})$ . $q$ . $e.d$ .

Let $(t_{i}, u_{i}),$ $i=0,1$ , be the coordinates satisfying the conditions (2), (I), (II),
(III). We may assume that the coordinate neighbourhoods $U_{i}$ are polydiscs de-
fined by $U_{i}=\{(t_{i}, u_{i});|t_{i}|<3, |u_{i}|<1\}$ , and $(t_{i}, u_{i})$ are defined on the closures
of $U_{i}$ .

For sufficiently small positive number $\epsilon$ there exists a complex manifold $V^{\epsilon}$

of dimension $1+m$ obtained by patching the polydiscs $V_{0}^{\epsilon}=\{(s_{0}, z_{0}^{1}, \cdots , z_{0}^{m});|s_{0}|$

$<2,$ $|z_{0}^{a}|<\epsilon,$ $1\leqq\alpha\leqq m$ } and $V_{1}^{\epsilon}=\{(s_{1}, z_{1}^{1}, \cdots , z_{1}^{m});|s_{1}|<2, |z_{1}^{\alpha}|<\epsilon, 1\leqq\alpha\leqq m\}$ by
the following coordinate transformation:

.15) $s_{0}=1/s_{1}$

(16) $z_{0}=f^{\alpha}(s_{1}, z_{1}^{1}, \cdots z_{1}^{m})$ , $1\leqq\alpha\leqq m$ .
Note that $V^{\epsilon}$ contains $P^{1}$ as an analytic submanifold and $z_{0}^{\alpha},$ $s_{0}z_{0}^{\alpha},$ $(1\leqq\alpha\leqq m)$

can be extended as holomorphic functions on $V^{\epsilon}$ , which we identify with $z_{0}^{a}$ ,
$s_{0}z_{0}^{\alpha}$ . We identify $s_{0}$ with a meromorphic function which extends $s_{0}$ by (15). Set

(17) $z_{i}=(z_{i}^{1}, \cdots z_{i}^{m})$ $i=0,1$ ,

(18) $z_{0}=f(s_{1}, z_{1})$

(19) $z_{1}=f^{*}(s_{0}, z_{0})$ .
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We denote by $\mathcal{I}$ the ideal sheaf of $P^{1}$ in $V^{\epsilon}$ .
PROPOSITION 1. For sufficiently small $\epsilon$ , there exists a holomorphic embed-

ding of $V^{\epsilon}$ into $X$ which is comPatible with the embeddings of $P^{1}$ into $V^{\epsilon}$ and $X$.
PROOF. Proposition 1 is equivalent to the assertion that for sufficiently small

$\epsilon$ we can find holomorphic embeddings of $V_{i}^{\epsilon}$ into $U_{i}$ satisfying the compatibility
condition to make them into a well defined holomorphic map from $V^{\epsilon}$ to $X$

which is compatible with the embedding of $P^{1}$ . -To prove this, as usual, it
suffices to show the existence of vectors of convergent power series $\tilde{\varphi}_{0}(s_{0}, z_{0})$

(in $z_{0}$ ) and $\tilde{\varphi}_{1}(s_{1}, z_{1})$ (in $z_{1}$ ) whose coefficients are holomorphic functions on
$\{s_{0} ; |s_{0}|\leqq 2\}$ and $\{s_{1} ; |s_{1}|\leqq 2\}$ , respectively, such that

(20) $\tilde{\varphi}_{1}(s_{1}, z_{1})=g(\tilde{\varphi}_{0}(s_{0}, z_{0}))$

for any $(s_{0}, z_{0})\in V_{0}^{\epsilon}$ and $(s_{1}, z_{1})\in V_{1}^{\epsilon}$ satisfying (15) and (16).

We shall construct such $\tilde{\varphi}_{0}$ and $\tilde{\varphi}_{1}$ satisfying the following additional con-
ditions:

(A) The orders of $\tilde{\varphi}_{0}(s_{0}, z_{0})-(s_{0}, z_{0},0)$ and
$\tilde{\varphi}_{1}(s_{1}, z_{1})-(s_{1}, z_{1},0)$ are at least $-a_{1}$ .

(B) Regarding $\tilde{\varphi}_{1}(1/s_{0}, f^{*}(s_{0}, z_{0}))-(1/s_{0}, f^{*}(s_{0}, z_{0}), 0)$ as a
power series in $z_{0}$ , its coefficients are holomorphic functions
on $\{s_{0} ; |s_{0}|\geqq 1/2\}$ whose orders at $\infty$ are at most $-a_{1}$ .

We set $\varphi_{0}(s_{0}, z_{0})=\tilde{\varphi}_{0}(s_{0}, z_{0})-(s_{0}, z_{0},0)$ and $\varphi_{1}(s_{1}, z_{0})=\tilde{\varphi}_{1}(s_{1}, f^{*}(1/s_{1}, z_{0}))-$

$(s_{1}, f^{*}(1/s_{1}, z_{0}), 0)$ . Then (A) is equivalent to

(A) The orders of $\varphi_{0}(s_{0}, z_{0})$ and $\varphi_{1}(s_{1}, z_{0})$ are at least $-a_{1}$ ,

and (B) is equivalent to

(B) The coefficients of $\varphi_{1}(s_{1}, z_{0})$ are holomorphic on $\{s_{1} ; 0\leqq|s_{1}|\leqq 2\}$

and have poles of orders at most $-a_{1}$ at $\{s_{1}=0\}$ .
Note that (A) and (B) implies that $\varphi_{1}(s_{1}, f(s_{1}, z_{1}))$ is a vector of power series
whose coefficients are holomorphic functions on $|s_{1}|\leqq 2$ , since $f(O, z_{1})=0$ by (5).

Therefore we have only to find holomorphic functions $\varphi_{0}$ and $\varphi_{1}$ on $V_{0}^{\epsilon}$ and $V_{1}^{\epsilon}$

respectively, satisfying (A), (B) and

(C) $(1/s_{0}, f^{*}(s_{0}, z_{0}), 0)+\varphi_{1}(1/s_{0}, z_{0})$

$=g((s_{0}, z_{0},0)+\varphi_{0}(s_{0}, z_{0}))$ , for $(s_{0}, z_{0})\in V_{0\cap}^{\epsilon}V_{1}^{\epsilon}$ .

To show the existence of such $\varphi_{0}$ and $\varphi_{1}$ , it suffices to find sequences of
vectors of polynomials $\{\varphi_{0}^{v}(s_{1}, z_{0})\}$ and $\{\varphi_{1}^{v}(s_{0}, z_{0})\}(\nu=0, 1, )$ in $z_{0}$ , satisfying
the following conditions:
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$(A_{\nu})$ The degrees and the orders of $\varphi_{0}^{\nu}$ and $\varphi_{1}^{\nu}$ are
$\leqq-a_{1}+\nu$ and $\geqq-a_{1}$ , respectively.

$(B_{\nu})$ The coefficients of $\varphi_{1}^{\nu}$ are holomorphic functions
on { $s_{1}$ ; $0<|s_{1}|$ S2} and have poles of orders at
most $-a_{1}$ at $\{s_{1}=0\}$ .

(C.) $(1/s_{0},$ $f((s_{0}, z_{0}),$ $0$) $+\varphi_{1}^{\nu}(1/s_{0}, z_{0})$

$\equiv g((s_{0}, z_{0},0)+\varphi_{0}^{\nu}(s_{0}, z_{0}))$ mod $\mathcal{J}^{-a_{1}+\nu}$

$(D_{\nu})$ $\varphi_{i}^{v-1}\equiv\varphi_{i}^{\nu}$ mod $\mathcal{J}^{-a_{1}+\nu}$ $i=0,1$ .
$(E_{\nu})$ There exists a convergent power series $A(z_{0})$ in $z_{0}$ with

coefficients in $C$ which is independent of $\nu$ , such that

(21) $\varphi_{0}^{\nu}(s_{0}, z_{0})\ll A(z_{0})$ for $|s_{0}|\leqq 2$

and

(22) $\varphi_{1}^{\nu}(s_{1}, z_{0})\ll A(z_{0})$ for $1/2\leqq|s_{1}|\leqq 2$ .
Here $\ll$ means that the coefficients of the right hand side are greater than the
absolute values of the corresponding coefficients of the left hand side. We shall
prove (E.) for the convergent power series

$A(z_{0})=\frac{c}{16b}\sum_{k=1}^{\infty}\frac{b^{k}(z_{0}^{1}+\cdots+z_{0}^{m})^{k}}{k^{2}}$

for suitable $b$ and $c$ .
The existence of the sequences satisfying $(A_{\nu})\sim(E_{\nu})$ is proved by the induc-

tion on $\nu$ . If $\nu=0$ we set $\varphi_{1}^{0}(s_{1}, z_{0})=0$ and $\varphi_{0}^{0}(s_{0}, z_{0})=0$ . Let us assume $that_{-}^{\tau}for$

$\nu\leqq r$ there exist $\varphi_{1}^{\nu}(s_{1}, z_{0})$ and $\varphi_{0}^{\nu}(s_{0}, z_{0})$ satisfying $(A_{\nu})\sim(E_{\nu})$ . We let

$\psi(s_{0}, z_{0})=\{(\frac{1}{s_{0}},$ $f^{*}(s_{0}, z_{0}),$ $0)+\varphi_{1}^{r}(\frac{1}{s_{0}},$ $z_{0})$

$-g((s_{0}, Z_{0},0)+\varphi_{0}^{r}(s_{0}, z_{0}))\}-a_{1}+1+T$

where $\{$ $\}_{-a_{1}+1+r}$ denotes the $(-a1+1+r)$-th homogeneous term. Obviously

(23) $\psi(s_{0}, z_{0})=\{(0, f^{*}(s_{0}, z_{0}), 0)-g((s_{0}, Z_{0},0)+\varphi_{0}^{r}(s_{0}, z_{0}))\}_{-a_{1}+1+r}$ .
First we estimate $\{f^{*}(s_{0}, z_{0})\}_{-a_{1}+1+r}$ . There exists $b_{0}$ such that for some con-
stant $K_{0}$ ,

(24) $f^{*}(s_{0}, z_{0})\ll\frac{K_{0}}{c}A(z_{0})$ ,

for $b>b_{0},$ $c>16$ , and $1/2\leqq|s_{0}|\leqq 2$ . Thus,
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(25) $\{f^{*}(s_{0}, z_{0})\}_{-a_{1}+1+r}\ll\frac{K_{0}}{c}A(z_{0})$

for $b>b_{0},$ $c>16$ , and $1/2\leqq|s_{0}|\leqq 2$ . Next we estimate

(26) $\{g((s_{0}, z_{0},0)+\varphi_{0}^{r}(s_{0}, z_{0}))\}_{-a_{1}+1+r}$ .
We expand $g(s_{0}+y_{0}, y_{1}, \cdots, y_{m+n})$ into a power series in $y_{0},$ $\cdots,$ $y_{m+n}$ . Since $g$

is a vector of holomorphic functions of $s_{0},$ $y_{0},$
$\cdots$ , $y_{m+n},$ $1/2\leqq|s_{0}|\leqq 2,$ $|y_{0}|\leqq 1/6$ ,

, $|y_{m+n}|\leqq 1/2$ , there exist constants $K_{1}$ and $L$ such that

(27) $g((s_{0}+y_{0}, y_{1}, \cdots, y_{m+n})-\frac{1}{s_{0}},0,$ $\cdots$ , $0)$

$\ll K_{1}\sum_{k=1}^{\infty}L^{k}(y_{0}+\cdots+y_{m+n})^{k}$ ,

for $1/2\leqq|s_{0}|\leqq 2,$ $|y_{0}|\leqq 1/6,$
$\cdots,$ $|y_{m+n}|\leqq 1/2$ . It is well known*) that for a

natural number $k$ ,

(28) $A(z_{0})^{k}\ll(\frac{c}{b})^{k-1}A(z_{0})$ .
Hence, if

(29) $b>2L(m+n+1)c$

we obtain

(30) $\{g((s_{0}, z_{0},0)+\varphi_{0}^{r}(s_{0}, z_{0}))\}_{-a_{1}+1+r}\ll K_{1}\sum_{k=2}^{\infty}L^{k}(m+n+1)^{k}A(z_{0})^{k}$

$\ll K_{1}A(z_{0})\sum_{k\Rightarrow 2}^{\infty}L^{k}(m+n+1)^{k}(\frac{c}{b})^{k-1}$

$\ll\frac{K_{1}L(m+n+1)c}{b}A(z_{0})$ .

Combining this with (25) we obtain

(31) $\psi(s_{0}, z_{0})\ll\{\frac{KK_{0}}{c}+\frac{K_{1}L(m+n+1)c}{b}\}A(z_{0})$ ,

for $1/2\leqq|s_{0}|\leqq 2$ . We dePne $\eta_{I}(s_{0})$ by

(32) $\psi(s_{0}, z_{0})=\sum_{||-}\eta_{I}(s_{0})z_{0}^{I}$ ,

where $I$ is a multi-index of length $m$ . Expanding $\eta_{I}(s_{0})$ into a Laurent series

$*)$ See [4], p. 50, Corollary.
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(33) $\eta_{I}(s_{0})=$
$\sum_{-\infty<\mu<\infty}$

$\eta_{I\mu^{S^{\mu_{0}}}}$ ,

where $\eta_{I\mu}=(\eta_{I\mu}^{0}, \cdots , \eta_{I\mu}^{m+n})\in C^{m+n+1}$ , we let

(34)
$\eta_{I^{1}}^{\alpha}(s_{0})=\sum_{\mu\leqq-a_{\alpha}}\eta_{I\mu^{S_{0}^{\mu}}}$

,

and

(35)
$\eta_{J}^{ao}(s_{0})=\sum_{\mu>-a_{a}}\eta_{I\mu^{S_{0}^{\mu+a_{a}}}}$ ,

for $1\leqq\alpha\leqq m+n$ . Further we define $\hat{\eta}_{I}^{0}(s_{0})$ by

(36) $\hat{\eta}_{J}^{0}(s_{0})=\eta_{I}^{0}(s_{0})-\sum_{1\leqq a\leqq m+n}\theta_{\alpha}(s_{0})\eta_{I}^{\alpha 0}(s_{0})$ ,

where $\eta_{I}(s_{0})=(\eta_{I}^{0}(s_{0}), \cdots \eta_{I}^{m+n}(s_{0}))$ . We expand

(37)
$\hat{\eta}_{l}^{0}(s_{0})=\sum_{-\infty<\mu<\infty}\hat{\eta}_{I\mu^{S}0}^{0\mu}$ , $\hat{\eta}_{I\mu}^{0}\in C$ .

We put

(40) $\psi^{1}(s_{0}, z_{0})=(\sum_{1\mu-}\hat{\eta}_{I\mu}^{0}sgz_{0}^{I},\sum_{\mu<-a_{1}.|I|=-a_{1}+1+r}\eta_{l\mu}^{1}s\# z_{0}^{I}$ ,

... , $\sum_{\mu<-a_{m+n}.|I|=-a_{1}+1+r}\eta_{I\mu}^{m+n}s\# z_{0}^{I}$
),

and

(41) $\psi^{0}(s_{0}, z_{0})=(\sum_{I\mu=a_{1}+1+r}\hat{\eta}_{I\mu}^{0}s\#^{+2}z_{0}^{I},\sum_{1\mu-}\eta_{I\mu}^{1}s_{0}^{\mu+a_{1}}z_{0}^{I}$ ,

... ,
$\geqq m+n^{|I|=-a_{1}+1+r}$

$\sum_{\mu-a}\eta_{I\mu}^{m+n}s_{0}^{\mu+a_{m+n}}z_{0}^{l}$).

It is easily checked that

(42) $\psi(s_{0}, z_{0})=\psi^{1}(s_{0}, z_{0})+\psi^{0}(s_{0}, z_{0})[s_{0}^{-2}\theta_{1}(s_{0})\theta_{m+n}(s_{0})0$ $s_{0}^{-a_{m+n}}0]$

for $\frac{1}{2}\leqq|s_{0}|\leqq 2$ .

The following lemma is proved easily by Cauchy’s integral formula.
LEMMA. There exists a constant $K_{2}$ such that for any holomorphic function

(43) $\eta(s_{0})=$
$\sum_{-\infty<\mu<\infty}$

$\eta_{\mu}s_{0}^{\mu}$ on $\frac{1}{2}\leqq|s_{0}|\leqq 2$ ,

we have
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(44)
$\sup_{|s_{0}|\leqq 2}|\sum_{\mu\geqq 0}\eta_{\mu}s_{0}^{\mu}|\leqq K_{2}\sup_{1/2\leqq|s_{0}|<2}|\eta(s_{0})|$

,

and

(45) $\sup_{1/2\leqq|s_{0}|}|\sum_{\mu<0}\eta_{\mu}s\#|\leqq K_{2}\sup_{1/2\leqq\rceil s_{0}|\leqq 2}|\eta(s_{0})|$ .

Thus, letting

(46) $K_{3}=(m+n+1)2^{-a_{1}+a_{m+n}+1}\times K_{2}(\sum_{1\leqq\alpha\leqq m+n}\sum_{1/2\leqq|s_{0}|\leqq 2}|\theta_{a}(s_{0})|+1)$

we obtain

(47) $\psi^{1}(s_{0}, z_{0})\ll\{\frac{K_{0}}{c}+\frac{K_{1}L(m+n+1)c}{b}\}K_{3}A(z_{0})$ ,

for $1/2\leqq|s_{0}|\leqq 2$ , and

(48) $\psi^{0}(s_{0}, z_{0})\ll\{\frac{K_{0}}{c}+\frac{K_{1}L(m+n+1)c}{b}\}K_{3}A(z_{0})$ ,

for $|s_{0}|\leqq 2$ .
Therefore, if we set

(49) $\varphi_{1}^{r+1}(s_{1}, z_{0})=\varphi_{1}^{r}(s_{1}, z_{0})-\psi^{1}(\frac{1}{s_{1}},$ $z_{0})$

and

(50) $\varphi_{0}^{\tau+1}(s_{0}, z_{0})=\varphi_{0}^{r}(s_{0}, z_{0})+\psi^{0}(s_{0}, z_{0})$ ,

then $\varphi_{1}^{r+1}(s_{1}, z_{0})$ and $\varphi_{0}^{r+1}(s_{0}, z_{0})$ satisfy $(E_{r+1})$ if

(51) $c>\max\{16,2K_{0}K_{3}\}$ ,

and

(52) $b>\max\{b_{0},2K_{1}K_{3}L(m+n+1)c\}$ ,

which are conditions independent of $r$ .
are easily checked.

\S 3. Analytic families.

The remaining conditions $(A_{r+1})\sim(D_{r+1})$

$q.e.d$ .

Let the notations be as in \S 1 and \S 2. In virtue of Proposition 1, we can
identify $V_{0}^{\epsilon},$ $V_{1}^{\epsilon}$ and $V^{\epsilon}$ with locally closed analytic submanifolds of $X$. By (2),

we may assume

(53) $|f(s_{1}, z_{1}^{1}, \cdots , z_{1}^{m})|>|z_{1}|$ for $|s_{1}|=2$ and $|z_{1}|<\epsilon$ ,

(54) $|f(s_{1}, z_{1}^{1}, \cdots z_{1}^{m})|<|z_{1}|$ for $|s_{1}|\leqq 1/2$ and $|z_{1}|<\epsilon$ ,

(55) $|f^{*}(s_{0}, z_{0}^{1}, \cdots z_{0}^{m})|>|z_{0}|$ for $|s_{0}|=2$ and $|z_{0}|<\epsilon$ .
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We set
$V_{i}=\{x\in V^{\epsilon} ; |s_{i}|\leqq 1/2\}$ $i=0,1$ ,

$V^{i}=V_{i}\cup(V_{0}^{\epsilon}\cap V_{1}^{\epsilon})$ $i=0,1$

and
$V=V^{0}\cup V^{1}$ .

Since $N_{A/V}$ is a direct sum of line bundles of negative degree, $A$ is exceptional
in $V$ and since $V$ is locally an intersection of polydiscs, for sufficiently small $\epsilon$ ,
$V$ is a holomorphically convex manifold with maximal compact analytic subset $A$ .

Let $P$ represent a point in $V$ whose coordinate in $V^{i}$ is $(s_{i}, z_{i})$ . We define
a function $\tilde{\delta}$ on $V$ by

$5(p)=\min(\epsilon-|z_{0}|, \epsilon-|z_{1}|)$ for $p\in V^{0}\cap V^{1}$ ,

$=\epsilon-|z_{0}|$ , for $p\in V^{0}-V^{1}$

$=\epsilon-|z_{1}|$ , for $p\in V^{1}-V^{0}$ .
By (53) and (55), $\tilde{\delta}$ is continuous on $V$ . Note that

(56) $\tilde{\delta}<\epsilon-|z_{0}|$ on $V$ ,

by (54).

LEMMA 2. There exists a constant $\tilde{K}_{0}$ such that for any posjtive integer $\kappa$

and holomorphic function $f$ on $V^{0}\cap V^{1}$ satisfying $|f(p)|<5^{-\kappa}$ , there exist holomor-
phic functions $f_{0}$ and $f_{1}$ , defined on $V^{0}$ and $V^{1}$ respectively, satisfying

(57) $f(p)=f_{0}(p)-f_{1}(p)$ on $V^{0}\cap V^{1}$ ,

(58) $|f_{0}(p)|<K_{0}\delta^{-\kappa}$ on $V^{0}$

and

(59) $|f_{1}(p)|<K_{0}\delta^{-\kappa}$ on $V^{1}$ .
PROOF. Let $f$ be a holomorphic function on $V^{0}\cap V^{1}$ . We expand

$f=$
$\sum_{-\infty<\mu<\infty.I}$

$f_{\mu I}s_{0}^{\mu}z_{0}^{I}$ .

We put

$f_{0}=\sum_{\mu\geqq 0,I}f_{\mu I}s_{0}^{\mu}z_{0}^{I}$

$f_{1^{=_{\mu}}\S_{I}^{f_{\mu I}s_{0}^{\mu}z_{0}^{I}}}0$

Then $f_{i}$ are holomorphic on $V^{i},$ $i=0,1$ , and satisfy (57).

By (53) there exists a positive number $e$ such that if $|s_{0}|\leqq 1/2+e$ , then
$\tilde{\delta}(p)=\epsilon-|z_{0}|$ . We note that there exists a constant $K_{0}^{\prime}$ such that for every



722 T. OHSAWA

holomorphic function $g(s_{0})=\sum_{-\infty<\mu<\infty}g_{\mu}s_{0}^{\mu}$ on $\{s_{0} ; 1/2\leqq|s_{0}|\leqq 1/2+e\}$ , we have

(60)
$\sup_{|s_{0}|\leq 1/2+e}\sum_{0\leqq\mu}g_{\mu}s\#\leqq K_{0}^{\prime}\sup_{1/2\xi|s_{0}|\leqq 1/2+e}|g(s_{0})|$

(61) $\sup_{|s_{0}|\geqq 1/2}\sum_{\mu<0}g_{\mu}s\#\leqq K_{0}^{\prime}\sup_{1/2\leqq|s_{0}|\xi 1/2+e}|g(s_{0})|$ .

Let $(s_{0}, z_{0})\in V^{0}$ . If $|s_{0}|\leqq 1/2+e$ , then

(62) $|f_{0}(s_{0}, z_{0})|\leqq K_{0_{1/2\leq|S}}^{\prime}\sup_{0^{|S1/z+e}}|f(s_{0}, z_{0})|$ (by (60))

$\leqq K_{0}^{\prime}\sup_{1/2\leq|s_{0}|\leqq 1/2+e}5(s_{0}, z_{0})^{-\kappa}$

$(=K_{0}^{\prime}(\epsilon-|z_{0}|)^{-\kappa})=K_{0}^{\prime}\tilde{\delta}^{-\kappa}$ .
If $|s_{0}|\geqq 1/2+e$ , then similarly as above,

(63) $|f_{0}(s_{0}, z_{0})|\leqq|f(s_{0}, z_{0})|+|f_{1}(s_{0}, z_{0})|$

$\leqq\delta^{-\kappa}+K_{0}^{\prime}(\epsilon-|z_{0}|)^{-\kappa}$

$\leqq(1+K_{0}^{\prime})\tilde{\delta}^{-\kappa}$ (by (56)).

Hence (58) holds. On the other hand, if $p\in V^{1}-V^{0}$ , then $|z_{0}(p)|<|z_{1}(p)|$ and
$|s_{0}(p)|\geqq 1/2(s_{i}(p), z_{i}(p)$ denote the values of $s_{j},$ $z_{j}$ at $p$ ). Hence by (61),

(64) $|f_{1}(p)|\leqq K_{0}^{\prime}(\epsilon-|z_{0}|)^{-\kappa}\leqq K_{0}^{\prime}5(p)^{-\kappa}$ .
Therefore, for any $p\in V^{1}$ we have

(65) $|f_{1}(p)|\leqq K_{0}^{\prime}(\epsilon-|z_{0}|)^{-\kappa}\leqq K_{0}^{\prime}5(p)^{-\kappa}$ .

Hence we obtain (58) and (59) for $\tilde{K}_{0}=K_{0}^{\prime}+1$ .
Let $N_{V/X}|_{A}$ denote the restriction of $N_{V/X}$ to $A$ . We denote by $\underline{N_{V/X}}(N_{V/X}|_{A})$

the sheaf of germs of holomorphic sections of $N_{V/X}(N_{V/X}|_{A})$ .
LEMMA 3. The restrzction map $\rho_{0}$ : $H^{0}(V,$ $\underline{N_{V/X})}\rightarrow H^{0}(A, N_{V/X}|_{A})$ is surjective.
PROOF. We have the following exact sequence.

$0\rightarrow N_{V/X}|_{A}\rightarrow N_{A/X}\rightarrow N_{A/V}\rightarrow 0$ .

Since $N_{A/X}\cong\bigoplus_{\gamma=1}^{m+n}H^{a_{\gamma}},$ $N_{A/V}\cong\bigoplus_{a\Rightarrow 1}^{m}H^{a_{\alpha}}$ , and

(66) Hom $(\bigoplus_{\beta\Leftarrow m+1}^{m+n}H^{a}\beta \bigoplus_{a=1}^{m}H^{a_{a}})=0$ ,

it follows that

(67) $N_{V/X}|_{A}\cong\oplus^{m+n}H^{a_{\beta}}\beta\Rightarrow m+1$
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We have the following exact sequence.

(68) $0\rightarrow \mathcal{I}^{\nu+1}\otimes\underline{N_{V/X}}\rightarrow \mathcal{J}^{\nu}\otimes\underline{N_{V/X}}\rightarrow \mathcal{J}^{\nu}/\mathcal{J}^{\nu+1}\otimes N_{V/X}|_{A}\rightarrow 0$ .

Since $\mathcal{J}^{\nu}/\mathcal{J}^{\nu+1}\cong S^{\nu}(N_{A/V^{*}})$ ( $S^{\nu}$ denotes the v-th symmetric tensor product), by (67)

we have

(69) $H^{1}(A, \mathcal{J}^{\nu}/\mathcal{J}^{\nu+1}\otimes N_{V/X}|_{A})=0$ for $\nu\geqq 1$ .
By Remmert’s reduction theorem there exists a Stein space $\hat{V}$ and a proper
holomorphic map $\hat{p}$ : $V\rightarrow\hat{V}$ such that $\hat{P}|_{V-A}$ is a biholomorphic map from $V-A$

to $\hat{V}-\hat{p}(A)$ . By Grauert’s direct image theorem, $p_{*}^{1}\underline{N_{V/X}}$ is a coherent analytic
sheaf on $\hat{V}$ whose support is $\hat{p}(A)$ . Therefore for sufficiently large $\mu,$

$m^{\mu}p_{*}^{1}\underline{N_{V/x}}$

$=0$, where $m$ denotes the maximal ideal sheaf of $\hat{p}(A)$ in $\hat{V}$ . Thus, for suffici-
ently large $\mu,$ $p_{*}^{0}\mathcal{J}^{\mu}p_{*}^{1}\underline{N_{V/X}}=0$ . Hence by Grauert’s comparison theorem, we
have

(70) $H^{1}(V, \mathcal{J}^{\mu}\otimes\underline{N_{V/X}})=0$ , for sufficiently large $\mu$ .
Combining (68) and (69) with (70), we obtain $H^{1}(V, \mathcal{J}\otimes\underline{N_{V/X}})=0$ . Therefore the
restriction map $\rho_{0}$ is surjective.

Let $M$ be a complex manifold of dimension $r$ and $B$ a complex manifold of
dimension 1. A complex manifold $\mathcal{V}$ over $B$ with a smooth holomorphic map
$\pi$ : $\mathcal{V}\rightarrow B$ is called an analytic family of (locally closed) analytic submanifolds
of dimension $q$ of $M$ if $\mathcal{V}$ is a locally closed analytic submanifold of $M\times B$ of
codimension $r-q$ such that $\pi$ is compatible with the projection $p_{2}$ : $M\times B\rightarrow B$ .

From now on we assume $B$ is a polydisc containing $0,$ $M=X$, and $\pi^{-1}(0)=V$ .
We may assume that there are two coordinate neighbourhoods $U_{0}$ and $U_{1}$ in $X$

such that
$U_{i}\cap V=V^{i}$ , $i=0,1$ .

Further, we may choose the coordinates

$(s_{i}\sim,\tilde{z}_{i}, w_{i})=(s_{i}\sim,\tilde{z}_{t}^{1}, \cdots \tilde{z}_{i}^{m}, w_{i}^{1}, \cdots w_{i}^{n})$

of $U_{i}$ such that they are holomorphic on a neighbourhood of the closure of $U_{i}$ ,
$V$ is defined by $w_{i}^{1}=\ldots=w_{i}^{n}=0$ , and

$s_{i}\sim|_{V\cap U_{i}}=s_{l}$

$Z_{i}^{\alpha}|_{V\cap U_{i}}=z_{i}$ , $1\leqq\alpha\leqq m$ .
Let the coordinate transformations be

$(s_{1}\sim,\tilde{z}_{1})=\tilde{g}^{*}(s_{0}\sim,\tilde{Z}_{0}, w_{0})$

$w_{1}=\tilde{h}^{*}(s_{0}\sim,\tilde{z}_{0}, w_{0})$ ,
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and
$(s_{0}\sim,\tilde{z}_{0})=\tilde{g}(s_{1}\sim,\tilde{Z}_{1}, w_{1})$

$w_{0}=\tilde{h}(s_{1}\sim,\tilde{z}_{1}, w_{1})$ ,
on $U_{0}\cap U_{1}$ .

From now on we identify $(s_{i}, z_{i})$ with $(s_{i}\sim,\tilde{z}_{i})$ and we denote a point of $V^{i}$

by its coordinates $(s_{i}, z_{i})$ .
Let $\pi;\mathcal{V}\rightarrow\Delta^{l}$ be an analytic family of locally closed submanifolds of $X$

having
$\Delta^{l}=\{t=(t_{1}, \cdots , t_{l})\in C^{l} ; |t_{j}|<1,1\leqq j\leqq l\}$

as the parameter space. It is clear that the submanifolds $\pi^{-1}(t)$ are defined in
a neighbourhood of $V^{i}$ by simultaneous equations of the form

$w^{\beta_{i}}=\varphi^{\beta_{\ell}}(s_{i}, z_{i}, t)$ , $\beta=1,$ $\cdots$ $n$ ,

where the $\varphi^{\beta_{i}}(s_{i}, z_{i}, t)$ are holomorphic functions of $(s_{i}, z_{i}, t)$ defined in a neigh-
bourhood of $V^{i}\times 0$ in $V^{i}\times\Delta^{l}$ . We set

$\varphi_{i}(s_{i}, z_{i}, t)=(\varphi_{i}^{1}(s_{i}, z_{i}, t), \cdots \varphi_{i}^{n}(s_{i}, z_{i}, t))$ .
Take an arbitrary tangent vector

$\frac{\partial}{\partial t}=\sum_{i=1}^{l}\gamma_{i}\frac{\partial}{\partial t_{i}}$

of $\Delta^{l}$ at $0$, and set

$\psi_{l}(s_{i}, z_{i}, t)=\frac{\partial\varphi_{i}(s_{i},z_{i},t)}{\partial t}|_{t=0}$

$\{\psi_{i}(s_{i}, z_{i}, t)\}(i=0,1)$ represents a holomorphic section of $N_{V/X}$ .
We call $\{\psi_{i}(s_{i}, z_{i})\}$ the inPnitesimal displacement of $V$ along the tangent

vector $\partial/\partial t\in T_{0}(\Delta^{l})$ and denote it by $\sigma(\partial/\partial t)$ .
THEOREM 1. There exists an analytic family $\pi$ : $\mathcal{V}\rightarrow\Delta^{l}$ of locally closed

submanifolds of $X$ which satisfies the following conditions.

$0)$ $A\subset\pi^{-1}(0)$ (We identify $A$ with $A\times O.$ )

1) $N_{A/\pi^{-1(0)}}\cong\bigoplus_{a\Rightarrow 1}^{m}H^{a_{\alpha}}$

2) The infinitesimal displacement

$\sigma;T_{0}(\Delta^{l})\rightarrow H^{0}(A, N_{\pi-1(0)/X}|_{A})$

is bijective.

PROOF. By Lemma 3, there exist $\beta_{k}\in H^{0}(V, \underline{N_{V/X}}),$ $k=1,$ $\cdots$ $1$ , such that
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$\rho_{0}(\beta_{k})k=1,$ $\cdots$ , 1 are linearly independent and span $H^{0}(A, N_{V/X}|_{A})$ . To prove
the theorem it suffices to show the existence of vectors of holomorphic functions

(71) $\varphi_{i}(s_{i}, z_{i}, t)=(\varphi_{i}^{1}(s_{i}, z_{i}, t), \cdots \varphi_{\ell}^{n}(s_{i}, z_{i}, t))$ ,

defined on a neighbourhood of $V_{i}\times 0$ in $V_{i}\times\Delta^{l}$ , such that

(i) $\varphi_{i}(s_{i}, z_{i}, 0)=0$

$\frac{\partial\varphi_{i}(s_{i},z_{i},t)}{\partial t^{\rho}}|_{t\subset 0}=\beta_{\rho}^{i}(s_{i}, z_{i})$ , $1\leqq\rho\leqq l$ ,

where $\{\beta_{\rho}^{i}(s_{i}, z_{i})\}=\beta_{\rho}$ , and

(iii) $\varphi_{1}(\tilde{g}^{*}(s_{0}, z_{0}, \varphi_{0}(s_{0}, z_{0}, t)), t)=\tilde{h}^{*}(s_{0}, z_{0}, \varphi_{0}(s_{0}, z_{0}, t))$

for $(s_{0}, z_{0}, \varphi_{0}(s_{0}, z_{0}, t))\in U_{0}\cap U_{1}$ .
To prove this, it suffices to show the existence of the sequence $\{\varphi^{\mu_{i}}(s_{i}, z_{i}, t)\}$

satisfying the following properties.
(a) $\varphi^{\mu_{i}}(s_{i}, z_{i}, t)$ is a (vector valued) polynomial in $t$ of degree $\mu$ whose coefficients
are vectors of holomorphic functions on $V^{i}$ , such that

(b) $\varphi_{i}^{1}(s_{i}, z_{i}, t)=\sum_{\rho=1}^{l}\beta_{\rho}^{i}(s_{i}, z_{i})t_{\rho}$

(c) $\varphi^{\mu_{i}}(s_{t}, z_{i}, 0)=0$

(d) $\varphi^{\mu_{i}}(s_{i}, z_{i}, t)\equiv\varphi^{\mu_{i}-1}(s_{i}, z_{i}, t)$ mod $t^{\mu}$

(e) $\varphi_{1}^{\mu}(\tilde{g}^{*}(s_{0}, z_{0}, \varphi_{0}^{\mu}(s_{0}, z_{0}, t)), t)\equiv\tilde{h}^{*}(s_{0}, z_{0}, \varphi_{0}^{\mu}(s_{0}, z_{0}, t))$ mod $t^{\mu}$

(f) $\varphi^{\mu_{i}}(s_{i}, z_{i}, t)\ll\tilde{A}(t)$ , for $(s_{i}, z_{i})\in V^{i}$ .
Here,

(72) $\tilde{A}(t)=\frac{c}{165}\sum_{k=1}\frac{5^{k}(r_{1}+\cdots+t_{l})^{k}}{k^{2}}$

$c$ is a positive constant, and 5 is a function on $V$ with positive values which
are determined later.

We prove this by a similar method as in the proof of Theorem 1. First,
we set

(73)
$\varphi_{i}^{1}(s_{i}, z_{i}, t)=\sum_{\rho=1}\beta_{\rho}^{i}(s_{i}, z_{i})t_{\rho}$ .

We may assume that $\beta_{\rho}^{i}(s_{i}, z_{i})$ are holomorphic on a neighbourhood of the closure
of $V^{i}$ , hence if we choose $c$ large enough (f) holds for $\varphi_{i}^{1}(s_{i}, z_{i}, t)$ and $(a)\sim(e)$

are obviously satisfied. Assume that we have $\varphi^{\mu_{i}}(s_{i}, z_{i}, t)$ satisfying $(a)\sim(f)$

for $\mu\leqq r$ . We set
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(74) $\tilde{\psi}(t)=\{\varphi_{1}^{r}(\tilde{g}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, z_{0z}t)), t)-\tilde{h}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, z_{0}, t))\}_{r+1}$ ,

and

(75) $\tilde{\psi}^{*}(t)=\{\varphi_{0}^{r}(\tilde{g}(s_{1}, z_{1}, \varphi_{1}^{r}(s_{1}, z_{1}, t)), t)-\tilde{h}(s_{1}, Z_{1}, \varphi_{1}^{r}(s_{1}, z_{1}, t))\}_{r+1}$ .
It is easy to check that

(76) $\phi(t)=-\tilde{\psi}^{*}(t)^{t}(\frac{\partial w_{1}}{\partial w_{0}})_{w_{0}=0}$ , on $V^{0}\cap V^{1}$ .

We may assume that

(77) $(\frac{\partial w_{1}}{\partial w_{0}})|_{w_{0}=0}=\left(\begin{array}{ll}s_{0}^{-a_{m+1}} & 0\\0 & s_{0}^{-a_{m+n}}\end{array}\right)$ .

We are going to estimate $\tilde{\psi}(t)$ . We expand $\tilde{g}^{*}(s_{0}, z_{0}, w_{0})$ and $\tilde{h}^{*}(s_{0}, z_{0}, w_{0})$ into
power series of $w_{0}=(w_{0}^{1}, \cdots , w_{0}^{n})$ :

(78) $\tilde{g}^{*}(s_{0}, z_{0}, w_{0})=.\sum_{j_{1,\prime}j_{n}\geqq 0}g_{j_{1}\cdots j_{n}}^{*}(s_{0}, z_{0})(w_{0}^{1})^{j_{1}}\cdots(w_{0}^{n})^{Jn}$ ,

(79) $\tilde{h}^{*}(s_{0}, z_{0}, w_{0})=$
$\sum_{j_{1},\cdots,j_{n}\geqq 0}$

$h_{j_{1}\cdots j_{n}}^{*}(s_{0}, z_{0})(w_{0}^{1})^{j_{1}}\cdots(w_{0}^{n})^{Jn}$ .

Since $\tilde{g}^{*}(s_{0}, z_{0}, w_{0})$ and $\tilde{h}^{*}(s_{0}, z_{0}, w_{0})$ are holomorphic on a neighbourhood of the
closure of $U_{0}\cap U_{1}$ , there exists a constant $M$ such that

(80) $j_{1},.Jn\leq\sum_{\sim 0}g_{j_{1}\cdots j_{n}}^{*}(s_{0}, z_{0})(w_{0}^{1})^{j_{1}}\cdots(w_{U}^{n})^{J_{n}}\ll\sum_{k=1}^{\infty}1L4$ $k(w_{0}^{\iota}+\cdots+w_{0}^{n})^{k}$ ,

and

(81) $\sum_{j_{1},\cdots.j_{n}\geqq 0}h_{j_{1}\cdots j_{n}}^{*}(s_{0}, z_{0})(w_{0}^{1})^{j_{1}}(w_{0}^{2})^{j_{2}}\cdots(w_{0}^{n})^{Jn}\ll\sum_{k=1}^{\infty}M^{k}(w_{0}^{1}+\cdots+w_{0}^{n})^{k}$ .

First, we estimate

(82) $\{\tilde{h}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, z_{0}, t))\}_{r+1}$ .
Since

(83) $\{\tilde{A}(t)\}^{k}\ll\frac{c}{5}\tilde{A}(t)k- 1$

for a natural number $k$ , we have as in the proof of Theorem 1,

(84) $\{\tilde{h}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, Z_{0}, t))\}_{r+1}\ll\tilde{A}(t)\sum_{k=1}^{\infty}(\frac{Mnc}{5})^{k}Mn$ .
Hence, if
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(85) $\frac{Mnc}{5}<\frac{1}{2}$

we obtain

(86) $\{\tilde{h}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, z_{0\prime}t))\}_{r+1}\ll\frac{2M^{2}n^{2}c}{5}\tilde{A}(t)$ .

Now we estimate

(87) $\{\varphi_{1}^{r}(\tilde{g}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, z_{0}, t)), t)\}_{r+1}$ .
We set

(88) $\tilde{g}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, z_{0}, t))=(s_{1}, z_{1})+\zeta(s_{0}, z_{0}, t)$ .
We have

(89) $\zeta(s_{0}, z_{0}, t)\ll\tilde{K}_{1}\tilde{A}(t)$

for some constant $\tilde{K}_{1}$ . We fix $\delta$ so that $0<\delta<1$ , and we set

(90) $V^{i,\delta}=\{(s_{i}, z_{i})\in V^{i} ; |s_{i}|<2-\delta\}$ .

There exists a constant $K_{2}(>0)$ such that if $p=(s_{1}, z_{1})\in V^{0}\cap V^{1,\delta}$ , then the co-
efficients of

(92) $\varphi_{1}^{r}(s_{1}+y_{0}, z_{1}^{1}+y_{1}, \cdots z_{1}^{m}+y_{m}, t)$

are holomorphic functions of $y_{0},$
$\cdots$

$y_{m},$
$|y_{0}|\leqq K_{2}\tilde{\delta}(p),$ $\cdots$ , $|y_{m}|\leqq K_{2}\tilde{\delta}(p)$ . From

now on we denote $\tilde{\delta}(p)$ simply by $\tilde{\delta}$ . Expanding the coefficients of $\varphi_{1}^{r}(s_{1}+y_{0}$,
$z_{1}^{1}+y_{1},$ $\cdots$ , $z_{1}^{m}+y_{m},$ $t$ ) into power series in $y_{0},$

$\cdots$ , $y_{m}$ , we obtain the inequality,

(93) $\varphi_{1}^{r}(s_{1}+y_{0}, z_{1}^{1}+y_{1}, z_{1}^{m}+y_{m}, t)$

$\ll\tilde{A}(t)\prod_{a=0}^{\infty}(1--Ky\frac{a}{2\delta})^{-1}$ on $V^{0_{\cap}}V^{1,\delta}$ .

Combining this with (88) and (89), we obtain

(94) $\{\varphi_{1}^{r}(\tilde{g}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, z_{0}, t)), t)\}_{r+1}$

$=\{\varphi_{1}^{r}((s_{1}, z_{1})+\zeta(s_{0}, z_{0}, t), t)-\varphi_{1}^{r}(s_{1}, z_{1}, t)\}_{r+}\wedge$

$\ll\tilde{A}(t)\{(1-\underline{\tilde{K}}_{1,K}\frac{A(t)}{25})^{-(m+1)}-1\}$

$\ll\sum_{k=1}^{\infty}\left(\begin{array}{l}m+k\\k\end{array}\right)(-\tilde{K}\frac{\tilde{K}_{1}}{25})^{k}\tilde{A}(t)^{k+1}$ .

Hence, if we assume
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(95) $\frac{\tilde{K}_{1}c}{5K_{2}5}<\frac{1}{2}$

we have
(96) $\{\varphi_{1}^{\tau}(\tilde{g}^{*}(s_{0}, z_{0}, \varphi_{0}^{r}(s_{0}, z_{0}, t)), t)\}_{r+1}$

$\ll 2^{m+2}\frac{\tilde{K}_{1}c}{5K_{2}\delta}\tilde{A}(t)$ , on $V^{0}\cap V^{1.\delta}$ .

Consequently, we have

(97) $\tilde{\psi}(t)\ll\frac{c}{5}(K_{3}+2^{m+2}\frac{\tilde{K}_{1}}{K_{2}5})\tilde{A}(t)$ , on $V^{0}\cap V^{1.\delta}$

where $\tilde{K}_{3}=2M^{2}n^{2}$ . Similarly, there are constants $M^{\prime},\tilde{K}_{1}^{\prime},\tilde{K}_{2}^{\prime}$ , and $\tilde{K}_{3}^{\prime}$ , such that,
if

(98) $\frac{M^{\prime}nc}{5}<\frac{1}{2}$

and

(99) $\frac{\tilde{K}_{1}^{\prime}c}{5K_{2}^{\prime}5}<\frac{1}{2}$ ,

we have

(100) $\tilde{\psi}^{*}(t)\ll\frac{c}{5}(K_{3}^{\prime}+2^{m+2}\frac{\tilde{K}_{1}^{\prime}}{K_{2}\delta})\tilde{A}(t)$ , on $V^{1}\cap V^{0.\delta}$ .

Combining this with (76), (77) and (97) we obtain

(101) $\emptyset(t)\ll K_{4}\frac{c}{5\delta}\tilde{A}(t)$ , on $V^{0}\cap V^{1}$ ,

for some constant $K_{4}$ .
We let

(108) $5=b^{\prime}cK_{4}^{-1}\tilde{\delta}^{-1}$ ,

where $b^{\prime}$ is a positive constant determined later. Then we have

(109) $\tilde{\psi}(t)\ll\frac{1}{b’}\tilde{A}(t)$ on $V^{0}\cap V^{1}$ .

By Lemma 2, there exist vectors of polynomials $\psi_{0}(s_{0}, Z_{0}, t)$ and $\psi_{1}(s_{1}, z_{1}, t)$

which are homogeneous of degree $r+1^{*)}$ and satisfy

(110) $\tilde{\psi}(t)=\psi_{0}(s_{0}, Z_{0}, t)\left(\begin{array}{lll}s_{0}^{-a_{m}} & +1 & 0\\0 & & s_{0}^{-a_{m+n}}\end{array}\right)-\psi_{1}(s_{1}, Z_{1}, t)$ ,

$*)$ The coefficients of $\psi_{0}(\psi_{1})$ are holomorphic functions on $V^{0}$ (resp. $V^{1}$).
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on $V^{0}\cap V^{1}$ ,

(111) $\psi_{0}(s_{0}, z_{0}, t)\ll\frac{2^{a_{m+n}}K_{5}}{b’}\tilde{A}(t)$ , on $V^{0}$ ,

and

(112) $\psi_{1}(s_{1}, z_{1}, t)\ll\frac{2^{a_{m+n}}K_{5}}{b’}\tilde{A}(t)$ , on $V^{1}$ .

Therefore, if we choose $b^{\prime}$ so that

(113) $\frac{MnK_{4}5}{b’}<\frac{1}{2}$ ,

(114) $\frac{M^{\prime}nK_{4}5}{b’}<\frac{1}{2}$ ,

(115) $\frac{\tilde{K}_{1}K_{4}}{b\tilde{K}_{2}}<\frac{1}{2}$ ,

(116) $\frac{\tilde{K}_{1}^{\prime}K_{4}}{b’ K_{2}}<\frac{1}{2}$ ,

and

(117) $\frac{2^{a_{m+n}}K_{5}}{b’}<1$ ,

we obtain

(118) $\psi_{0}(s_{0}, Z_{0}, t)\ll\tilde{A}(t)$ , on $V^{0}$ ,

and

(119) $\psi_{1}(s_{1}, z_{1}, t)\ll\tilde{A}(t)$ , on $V^{1}$ .
We set

(120) $\varphi_{0}^{r+1}(s_{0}, z_{0}, t)=\varphi_{0}^{r}(s_{0}, z_{0}, t)+\psi_{0}(s_{0}, z_{0}, t)$ ,

and

(121) $\varphi_{0}^{\tau+1}(s_{1}, z_{1}, t)=\varphi_{1}^{r}(s_{1}, z_{1}, t)+\psi_{1}(s_{1}, z_{1}, t)$ .
It is clear that $\varphi_{0}^{r+1}$ , and $\varphi_{1}^{r+1}$ satisfy the conditions. $q$ . $e$ . $d$ .

Let $\iota$ : $\mathcal{V}\rightarrow X\times\Delta^{l}$ be the inclusion map and $p_{1}$ : $X\times\Delta^{l}\rightarrow X$ the projection onto
the Prst factor. In Theorem 1, if in particular we assume $a_{\beta}=0$ for $ m+1\leqq\beta$

$\leqq m+n$ , then by 2), $ p_{1}\circ\iota$ is a biholomorphic map on a neighbourhood of $A$ . Since
$\pi$ is a l-convex map on a neighbourhood of $A$ in the sense of Knorr-Schneider
(cf. [2]) there exists a holomorphically convex neighbourhood of $A$ in $X$ (cf.

Satz 3.4 in [2]). Therefore combining this with Kodaira’s theorem on analytic
families of compact complex manifolds (cf. Main Theorem in [3]), we have
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THEOREM 2. Let $X$ be a complex manifold containing a complex analytic

submanifold A. Supp0se that $A\cong P^{1}$ and $N_{A/X}$ is seminegative in the sense that
every rank 1 holomorphic subbundle of $N_{A/X}$ has nonp0sitive degree. Then $A$

has a holomorphically convex neighbourhood in $X$.
As a corollary we have
COROLLARY. Under the above assumptions, if moreover there exisis a neigh-

bourhood of $A$ in $X$ which contains no compact complex subvariety of dimension
$\geqq 1$ except for $A$ , then $A$ is excepti0nal in $X$.

PROBLEM. Find an algebraic proof of Theorem 2. Namely, let $X$ be a non-
singular projective algebraic variety over an algebraically closed field $k$ . Assume
that $X$ contains a nonsingular rational curve $A$ and $N_{A/X}$ is seminegative. Then,
is there an algebraic space $Y$ (in the sense of M. Artin) and a proper morphism
$\varpi:X\rightarrow Y$ such that $\varpi(A)$ is a point?

Appendix.

We show an example of exceptional embedding of $P^{1}$ whose normal bundle
is not seminegative.

Let $\zeta$ be an inhomogeneous coordinate of $P^{1}$ . We set $U_{0}=\{\zeta;|\zeta|<2\}$ and
$U_{1}=\{\zeta;1/2<|\zeta|\leqq\infty\}$ . We define an analytic space $U$ by patching $U_{0}\times C^{2}$ and
$U_{1}\times C^{2}$ along $(U_{0\cap}U_{1})\times C^{2}$ as follows,

(1) $u_{1}=\zeta^{4}u_{0}+\zeta v_{0}^{2}$ ,

(2) $v_{1}=\zeta^{-1}v_{0}$ .

Here $(\zeta, u_{0}, v_{0})$ and $(\zeta^{-1}, u_{1}, v_{1})$ denote the coordinates of $U_{0}\times C^{2}$ and $U_{1}\times C^{2}$ ,
respectively. Note that $U$ is the total space of an analytic fiber bundle over $P^{1}$

whose fiber is biholomorphic to $C^{2}$ and structure group is the complex analytic
diffeomorphism group of $C^{2}$ . $U$ contains $P^{1}$ as an analytic submanifold of codi-
mension 2 which is defined by the local equations $u_{1}=v_{1}=0$ and $u_{0}=v_{0}=0$ .
Clearly $N_{P^{1}/U}=H\oplus H^{-4}$ .

In the similar way as above we define an analytic space $V$ by the following
equations:

(3) $u_{1}^{\prime}=\zeta^{4}u_{0}^{\prime}+\zeta v_{0}^{\prime}$ ,

(4) $v_{1}^{\prime}=\zeta^{-2}v_{0}^{\prime}$ .
$V$ is the total space of an analytic vector bundle over $P^{1}$ . Since

(5) $\left(\begin{array}{ll}1 & 0\\-\zeta^{-3} & 1\end{array}\right)\left(\begin{array}{ll}\zeta^{4} & \zeta\\ 0 & \zeta^{-2}\end{array}\right)\left(\begin{array}{ll}0 & -1\\1 & \zeta^{3}\end{array}\right)=\left(\begin{array}{ll}\zeta & 0\\0 & \zeta\end{array}\right)$ ,
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$V\cong H^{-1}\oplus H^{-1}$ . Therefore $V$ contains $P^{1}$ as an exceptional subset.
On the other hand, there exists a double covering from $U$ to $V$ , defined by

$u_{i}^{\prime}=u_{i}$ and $v_{i}^{\prime}=v_{i}^{2}(i=0,1)$ . Hence $P^{1}$ has a holomorphically convex neighbour-
hood system in $U$ whose member contains no compact analytic subset of positive
dimension other than $P^{1}$ itself. Therefore $P^{1}$ is exceptional in $U$ .
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