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1. Introduction.

The purpose of this paper is to improve the results of K. Maruo and H.
Tanabe [4], K. Maruo [5] on the eigenvalue distribution.

Let £ be a bounded domain in real space R™ with generic point x=(x1, ***, Xn)-
We denote by a=(ay, -+, a,) a multi-index of length |a|=a;+ - +a, and use
the notations

De=D31 ... Dan D,=—+/—10/0x;.

For an integer m=0, H,(f2) is to be the set of all functions whose distribution
derivatives of order up to m belong to L*{2) and we introduce in it the usual
norm

Il w=lnlmo=(], = IDwul?dz)".

Q2 talsm
H,(2) denotes the closure of C5(2) in H,(2).
Let B be a symmetric integro-differential sesquilinear form of order m with
bounded coefficients
Blu,vl= % a.sx)D*uDPudx

Q1al1fism

satisfying
Blu, ul=od|ullf,  for any ueV

where ¢ is some positive constant and V is some closed subspace of H,,(2)
containing H,(2). Let A be the operator associated with this sesquilinear form :
an element u of V belongs to D(A) and Au=feL*2) if Blu, v]=(f,v) is
valid for any veV. It is well known that A is a positive definite self-adjoint
operator in L%{2). In this paper we assume that £ has restricted cone property
and that 2m>n as in [4], [6]. For ¢>0 let N(#) be the number of the eigen-
values of A which do not exceed t.
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Maruo and Tanabe [4] and Maruo investigated the asymptotic distribu-
tion of eigenvalues of the operator A, and under various smoothness asumptions
on the coefficients of B deduce formulas with remainder estimates. In parti-
cular, Maruo [5] proved that

Nty=cot™ =m0 "=P1m)  as t—o0 (LD

for any 6<(h+1)/(h+3) if the coefficients a.g (|a|=|8|=m) belong to the
class C*** (0<h=1) in some domain containing £. But it is impossible to prove
(1) for 1/2<6<1 by the method used in [4], [6], even if all the coefficients
a.p belong to the class C=(2). Without assuming 2m>n, Metivier [6] proved
that holds for §=h/(h+1) if the coefficients a.s belong to the class C™.
But in no information about asymptotic behavior of the spectral function of
A was obtained. Seeley proved that for Laplace operator under the Dirich-
let boundary condition holds for #=1, which is the best estimate. Let
B(2) (0<r<0) be the space of functions u in £ such that 0¢u are bounded
and continuous for |a|=[r] and |82u(x)—d2u(y)|/|x—y|* (x—y| =1, x, yEQ)
bounded for |a|=[7], when #=t—[7z]>0. Here and in what follows, for a real
number ¢ we denote by [z] the largest integer which is not larger than 7z, set
¢=7r—[7] and use the notation 0%=(d/0x.)%!--- (0/0x,)%". The conclusion of
this paper is that holds for any 0<t/(z+2) if the coefficients of B satisfy
the following conditions. For |a|=]|B|=m a.s belongs to B7(£), and when
>2, for |a|+|B8]=2m—1 a,p belongs to 37 (Q) (z'=(r—2)/2). In the proof
of our theorem the result of Tsujimoto plays an important role.

The author wishes to thank Professor H. Tanabe and Mr. K. Maruo for
helpful advices.

2. Main theorem.

As was stated in the introduction let £ be a bounded domain in R”™ having
the restricted cone property and it is assumed that 2m>n. For x= £ we write
0(x)=min{l, dist (x, 0£2)}. Suppose that

Sgﬁ(x)‘pdx <oo ' @.1)

for some positive number p <1 which will be specified later.
We state smoothness assumption on the coefficients of B :
For |a|=|Bl=m aqp belongs to B°(2) (2.2)

and when t>2,

for |a|+|B|=2m—1 aqp belongs to B7(2) (2.3)
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where v'=(z—2)/2.
MAIN THEOREM. In the situation stated above the following asymptotic for-
mula for N(t) holds as t—oco:

N(t):COt"/2m+ O(t(n—(i)/zm)

for any number @ satisfying 0<0<z/(z+2) where

Co= SQc(x)dx s

c(x)=(27r)‘”g . -
|oz|=l,8x=m.a""9w)é <t

3. Some lemmas.

Following Maruo and Tanabe [4], we extend the operator A to a mapping
on V to V* where V* is the antidual of V. This extended operator which is
again denoted by A is definded by

Blu, v]=(Au, v) for any veV

where the bracket on the right stands for the duality between V* and V in
this case. Identifying L% Q) with its antidual we may consider Vo LA () V*
algebraically and topologically, and as is easily seen V is a dense subspace of
V* under this convention. The resolvent of A thus extended is a bounded linear
operator on V* to V. We use the same notation as those of to denote
various norms. Let A be a complex number which is not on the positive real
axis and d(2) be the distance from the point A to the positive real axis.
LEMMA 3.1. There exists a constant C such that

(1) MA=D -2 =1/d (D),

(i) A= ey =ClAM/d(A),

(i) A=)y =C121/d(A),

(iv) A= e 2 =C1 21/ d(A)
ProoF. See [4]

REMARK. Since all coefficients of B are bounded, it follows that for any
u, veV | Blu, v]| £Klu| x|l for some constant K. We note that the constant

C of is independent of 2 and depends on only 4, K.
LEMMA 3.2. Let T be a bounded operator on V*to V. Then T has a kernel

M in the following sense:
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(T= | Mex, )f0)My  for fe LX),

M(x, v) is continuous in 2X 2 and there exists a constant C such that for any
x, yef

| M(x, y)| SCI T ? | Tl piamy»®am?| T ngzm=nem?| T || $rn/zm®,
ProoF. See [4].

REMARK. For x°eR", 0<7r=1 we set S, (x")={x:]x—x°|<r}. When V=
H,(S,(x%), the constant C of is independent of x°, 7.

4. Estimates of resolvent kernels —1.

Let A, be the operator associated with B under the Dirichlet boundary con-
ditions. That is, an element u of H,(2) belongs to D(4,) and Aju=fc L¥Q)
if B[u, v]=(f, v) is valid for any veH,(2). Let K;, K be the kernels of
(A—A)"! and (A,—A)"* respectively.

LEMMA 4.1. For any p>0 the following inequality holds:

!i[ n/Zm
d(2)

[ Ka(x® x°)—K3(x°, x| =Cp ([a[x=1em/o(x)d(A)?

for any x°€ 8, |2 =1, 4.1)
where Cp is a constant depending on p but not on x° and A.
PrROOF. See [4].

Next, we consider B on S.(x% (0<r=0d(x°). Let A,, be the operator asso-

ciated with B under the Dirichlet boundary conditions. By definition for any
u, veflm(ST(ﬂ)) we have

Blu, v]l=(A: ,u, v)

where the bracket on the right denotes the pairing between the antidual

H_(S/(x%) of Hpu(S,(x") and Hn(S,(x%) in this case. Let K!™ be the kernel
of (A ,—A)™"
LEMMA 4.2. For any ¢>0 the following inequality holds:
n/2m
[K9(x° xO)—K3m(x°, x| écq[g(z)(u[ 1-1/2m [ (7))

12l=1, (4.2)
where C4 1s a constant depending on q but not x°, r and A.
Proor. We extend the operator (A4;,—24)"' to a mapping on H_,(£2) to
H,(9). This extended operator which is denoted by (A;,—2A)"! is defined by
{ (A1, —DY  on S(x% for feLQ)

on 2—S,(x%

(A=A f=
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where f=f|g 0. For an operator S on H_,(2) to Hn.(2) we denote by
ISllc-m,mas 1SNc-m. 055 1Sllco,m>» ISllco,0> the norms of S considered as an operator
on H.,(2) to Hn(2), on H_,(2) to L¥2), on L¥2) to H,(2), on L¥2) to LX)
respectively. Moreover in the case of £=S5.x° we denote by ISl c=m, m> 0

[Slc-m.009 [Sllco, m>g> ISllco,00, them respectively. We note that for j=—m, 0,
k=0, m

(AL s =) s 0 = N(AL— D7, B - 4.3)

We take a real valued function §€C3(£2) such that &(x)=1 for |x|<1/2, &x)=0

for |x|>3/4 and put & (x)=&(x—x°/r). Let u=(A¢—2A) f—(AL,—2) f and v=
Eu. Now,

Blu, &v]—4Au, &v)=BL(A:—)""f, §v]—2(As—2)f, &)

—BL[(A1,,— )Y, ]+ 2(Ar,— )7, Ev)=0.
So that

Blv, v]—2(, v)=Blv, v]—Blu, &v].
Hence, noting the present lemma can be proved just as Lemma 42 of [4].

5. Approximation of coefficients by smooth functions.

We set for |a|=|f|=m

Gap= 2, J%(azaaﬂ)(x°)(x~x°)7, (5.1)

I71s[T

and for |a|+|B|=2m—1

G 1
B i 7!

(02aap)(x)(x—x°)" . (5.2)

Moreover for |a|+4|B]=2m—2 we put d,3=0. If £<2, for |a|4|B|=2m—1
we put d.3=0. We shall consider the following symmetric sesquilinear form :

Bifu,vl= 2 | a.(D*uDPudx.

lal,181sm

We note that there exist constants »°, C° independent of x° such that for 0<r=<
r’<1, xeS5(x% and £=R"

S dap(x)EetE=ColE|Pm . (5.3)

lal=181=m
Hence we have for any ue< Hn(S(x%)
Bilu, ul=C°E’|ul/%— 2" ul?

where E° A° are constants independent of x° r. We put
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Bz[u; U]:Bé[u, 'U:|+/20(u, 'l)) .

Let A, , be the operator associated with B, under the Dirichlet boundary condi-
tions. By definition for any u, ve Ha(S-(x%) we have B,[u, v]=(A,,u, v) where
the bracket on the right denotes the pairing between the antidual H-,(S/{(x°))
of Hn(S,(x%) and Hn(S,(x%) this case. We denote by K% the resolvent kernel
of A, . For 6<(0, z/2) we set A={A: §<arg 2=2x—40, |2]>0}.

LEMMA 5.1. There exist constants Ci, C, independent of x°, v such that

| K37(x, 3)| SCi| 2| miemotgmcarwynaitien 6-4)

for x, yeSAx%), 2 A.
Proor. We set for yR"

B,,[u, v]=By[e <® 71>y, ¢<% 1>y

= Gos(x)D+in)u(D—in)fvdx

xa|,\ﬂ|smSST(z°>

n
where <{x, p>= > x,9;. Let A, be the operator associated with B, under the
=1

Dirichlet boundary conditions. That is, an element u of Hn(S,(x%) belongs to
D (A,) and A,u=f< L*(S(x") if B,[u, v]=(f, v) is valid for any vE Hn(SH(x%).
Let
R,[u, vl=B,[u, v]1—Bylu, v].
We note that for 0=k =<m, v& Hn(S(x®)
[V m-e ZCI2]*2™(0llm+ [ 212 0]6)

where C is a constant independent of », x°. Hence we get

| RLo, v31=C 38 (2174 | H([wlmt 1212 0lo)

On the other hand, we have for ve H(S.(x?)

|BLo, 01—, ) ZC- 8 (ol |21l

=C(lvlln+ 12172 v]0)*
for A= A. Hence, for sufficiently small C, we have that
| B,Lv, v1—A@, v)| ZC{[v|n+ [ 2]%]v])* (5.5)

for 2€ 4, vE Hu(S{(x®), 7 such that | 7] =C,|2]"*™. According to Lax-Milgram
theorem, A,—2 has a bounded inverse defined in the whole of H_,.(S,(x®). From
we have for 1€ 4
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(i) A= e-m,my, =C,

(it) (A= M -m, 0, =C|2] 717,
(i) (A= o my=Cla] 77,
iv) A= w0,=Cl2] 7.

Let K7 be the kernel of (A4,—A)"'. From and (5.6) we have for
x, yESA(x°), 24

(5.6)

[KY(x, y)|=C|z|r2m-t (5.7
where C is a constant independent of x° ». We note that
K%3™(x, y)=e<*"¥ 12K x, y).

From [5.7), setting =—C,|1|**™ (x—y)/|x—y|, we have the present lemma.
q.e.d.
Let e, -(x, y, t) be the spectral function of A, ,.
LEMMA 5.2. There exists a constant C independent of x°, v such that for any
t>1

leé,r(x°, x% H—c(xOtrim | = C—i—t‘”‘”’m (5.8)

where

c(x”)=(27r)“”g

0 0(+19 1
|ax=xﬁ1:maaﬁ(z ’* <

PROOF. Let A, ,(x, D)u= 3 DPd.p(x)D*u). By definition of A,, we

lal, 1B1sm
have D(A, )DC35(S5.x%) and for any u<C3(S(x?), ﬁz,r(x, Dyu=A, ,u. From
we see that A, , satisfies the assumption of the main theorem of
[117]. Noting and Remark 2.2 of [11], from the main theorem of we
have the present lemma.
LEMMA 5.3. There exists a constant C independent of x°, v and 2 such that

| K% 7(x°, x°)—c'(x)(=Ar2m-1 éC% |2 miEm/d(2)

for |A|=1 (5.9)
where

(nz/2m)

¢'(x%)= sin (nz/2m)

¢(x9).
ProOF. We note that

0 0 0
K3m(x°, x°>:S AR AL
0 t—2A
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o n/2m
C/(XO)(_Dn/Zm—l:c(xo)So dit__z ) )

Hence we have
IZIKE,T(xO, xO)_C/(xO)(_Z)n/2m—1|

o ey (20, 0) o d(rim
= So t—2A clx )So t—A

A

[rleastets 2t Dcleiren]
0 .

|t—2]*
Using we have

I<C1 w pn-1/2m J
= 780 [t—2]2 t

L) t(n 1/2m

_ l (n-1>/2m-1
=7l Vot

Setting 1/| 2] =e*?, we have

I t(n—l)/zm d oo t(n—l)/zm
So [t—e??]|? t—So t*+2t-cos (r—¢)+1

_ sin{ln—1x—¢)/2m} -7
~ sin(r—¢)-sin{(n—1)x/2m}

=Ci21/d@). a.e.d.

dt

6. Estimates of resolvent kernels —2.

In this section we shall estimate the difference between the resolvent kernels
of A, , and those of A, ..

LEMMA 6.1. There exists a constant C independent of x° r and A such that
for 0<r<»®(x®), |A]>1

| Ky7(x% x9)—K37(x° x|

6.1)
(Cliél)) | 2] 7 g | 3| 102m A | 2] 2em),
PrROOF. We note that for x=S,(x?), 0<r<#°(x°)
laas(x)—aap(x)|=Cr7, if la|=|B|=m. 6.2)
laap(x)—aap(x)| =Cr™, if |a|+|B]=2m—1. (6.3)

For fe L*(S,(x°%) we set u=(A,,—A0)'f—(4;,—A)"'f. Then we have
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—B[u, u]+A(u, u)
=B[(Az,—)7'f, u]l—B[(As,,—D)7'f, ul

(@0p(%)—Bas(x)} D*(As,— ) f)DPud x

1m+|,91g2m—1gs,.(x0>

@ ag(2)D*(Ag,r— ) f)DPudx

Ial+1ﬁ1§2m—2SST(x0)
—2{ (A= ds,
Sr(x0

Hence, using (6.3), we have
| BLu, ul—Ai(u, u)

1
=CIr Az =07 flmllullntr™ 2 1(Aer =7 [l el Ul m-1sk

+ 2 o= -l s}

Since (Ai,,—A)7Yf, (A, ,— D7 fE Hna(S.(x"), there exists a constant C independent
of », x° and A such that for j=1, 2

paY (Y ey M Y

ZCI2 772 ™([[(Ag, 7= D I+ 1212 (As, » =D f )N el 1 212 el o)
Hence we have

| B, ul—Au, w)] C{rer™ 2] 712m 4|2 227} Q
where

Q=U(Asr =D fllm+ [212[(Ae, ,— D fllo)[ | m A1 212 wllo) -

The present lemma can be proved just as Lemma 6.2 of [4], based upon this
inequality. g.e.d.
From (4.1), (4.2}, (5.9), (6.1), we have for 0<r<r°3(x°)

| Ka(x? x°)—c'(xO)(—2)™/2m1]

lzln/zmj lel—llzm D ) lzll—llzm q . IZI
=0 lCP<5<x°>d(z>) B T >‘” A (6.4)
o |2i1~1/2m |2|1—2/2m i 1em
e gyt AT ALl
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7. Proof of the main theorem.

Let e(x, v, t) be the spectral function of A.
LEMMA 7.1. For any 0<(0, v/(c-+2)) there exists a constant Cy independent
of x and t such that

le(x, x, £)—c(x)t2m| S Cot=0212mG(x)? (7.1)

for any x82 and t>1.

ProoF. Now we follow the method of Agmon [2]. Let L(§) be an oriented
curve in the complex plane from & to &=t o not intersecting [0, o). Then,
for >0, ¢>0 we have

et ., t>~?lﬁ»gmc/(x><—z)n/2m-ldz)

§A§1ﬂ:— SL(§> {K.(x, X>_C/<x>(“2)n/2m_l} dz‘

+(A47")E - [ Ke(x, )]
:Il+12 .

In proving we may assume without loss of generality that ¢*/2™d(x)>1.
We take p=p,(t)=tt/*™d(x))~? and

L&)={z=t+iu: p.)=|u| =t} U {z: |z|=+/21, Rez=1}.
Using we have

I=Cpua(O) {1 Ke(x, x)—c'(x)(—=&)"* ™[+ | " (x) [E1"2m 7}

A gy 1]
=eu 0] A G ) T ) T

. ‘E|1-1/2m |E|1—2/2m _]_~ —am) L et
SR e R EAGK }

Noting that t=1£| =4/ 9t, we get
I,<C trizm {Cp(t1/2m5(x))"1‘0)p+cql‘“1’0>q’2m'7’"‘1-5(96)0‘1
_I_rrta/zma(x)ﬁ_+_rr/t(—1+0)/2m5(x)0+t(—2+0>/2m5(x)0
_I_r—:lt—IIZm_{_t—ﬂ/Zmé(x)—l?}.

On the other hand, again by we have
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[Z|n/21nJ | z|1-1/2my\ p |z|1-1/2m\q . |z|
Iécgm 4@ 1Cp(5(x)d(z)> +C r d@) ) 4

. [Z11—1/2m Izll_zlzm_l__l_ 1am
7 s e Hdz|
t
<<
:c{Smu)—FSkzﬁgﬁ?z}

:]1,1+Il,2 .
We note that

[ Smduscrr@emaoyre,
tx

S” L du<Clog ¢mix)).
22'%¢} U
Hence we have

I, SCtrizm {Cp(tllzmg(x))—(1-0>p_|_cqt-c1—0)q/2mr—q5(x)0q

+rrto/2m5(x)0+rrrt(—1+ﬂ)/zm5<x>0+t(—2+0)/2m5(x)6’
l -1/2m 1/2m
1710 log (¢ 3o}

and

I,,=C t"/z”‘{Cp(t”zmﬁ(x))‘p—i—Cq(tl’2mr)’q+rT

+rr't—1/2m+t—2/2m+ it—I/Zm}, .
s

Ist case: (tV2™3(x)) 207 <#%(x).

Then, setting »=(t/2"5(x))"2%/*, we have

-1+0+20/0)q

I1,1§C trizm {Cp(t1/2m5(x))—(1-0)p+cqt( am 5(x)(0+20/r>q
+t—0/2m5(x)—0+t-1/2m(t1/2m5(x>>0(1—2r'/r)
—1+20/t
4+t rm §(x)20/% - log (£1/*™d(x))} .
We note that (#1/2™§(x))% 4-2"/0=(t112"5(x))?%’* and
(£/2m(x))*" log (1*/™3(x) SC(t*m3(x)) " .

0

Hence, taking p=0/(1—0), 1= 12926/

, We have

567
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I, SCtn-0im(x)-f . (7.2)

By the same way, we have the same estimate for I,, /i, ,.

2nd case: (1/2™8(x))"20/"=¢(x).

Then we have

—20

S(x)<Ctomesto (7.3)

Setting »=#%(x), we have

[1,1§Ctn/2m {Cp(tl/Zma(x))—Cl—0)p+cq(t1/2m5(x>>—(l—0)q
+Zﬁ/2m5(x)0+r+t(—1+0)/2m5(x)rf+0+t(—2+0)/2m5(x)0

+(@#"d(x)) 7 - log (#/2™0(x))} .

Hence, noting 7.3}, taking p=q=60/(1—8), we get [7.2). Moreover we get the
same estimate for I,, I; , by the same way. Hence we have

le(x, x, )— SL(E)C'(x)(—z)"’zm'le( <C 1n-031m ()0

27t

Finally noting that

sin (nz/2m)
nw/2m

1
__s\n/2m-1 __4n/2m
27l Sm)( 2 dz—t

§C t(n_0>/2m5(x)—0 ,

we obtain the desired estimate. q.e.d.

If is satisfied for ¢ in Lemma 7.1, then integrating over 2 we

immediately obtain the asymptotic formula for N(¢) described in the main theorem.

[1]
£21]
[3]
[4]

5]
(6]

Bibliography

S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathe-
matical Studies, Princeton, 1965.

S. Agmon, Asymptotic formulas with remainder estimates for eigenvalues of
elliptic operators, Arch. Rational Mech. Anal., 28 (1968), 165-183.

R. Beals, Asymptotic behavior of the Green’s function and spectral function of
an elliptic operator, J. Functional Analysis, 5 (1970), 484-503.

K. Maruo and H. Tanabe, On the asymptotic distribution of eigenvalues of opera-
tors associated with strongly elliptic sesquilinear forms, Osaka J. Math., 8 (1971),
323-345.

K. Maruo, Asymptotic distribution of eigenvalues of non-symmetric operators as-
sociated with strongly elliptic sesquilinear forms, Osaka J. Math., 9 (1972), 547-560.
G. Metivier, Valeurs propres des problemes aux limites elliptiques irreguliers, Bull.
Soc. Math. France Mem., 51-52 (1977), 125-219.



[7]
(8]
£9]
(10]
(11]

Remainder estimates of asymptotic formulas 569

D. Robert, Sur la repartition du spectre d’operateurs elliptiques non auto-adjoints
a coefficients irreguliers, Osaka J. Math., 14 (1977), 593-607.

R.T. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the
Laplacian in a domain of R?®, Advances in Math., 29 (1978), 244-269.

H. Tanabe, On Green’s functions of elliptic and parabolic boundary values prob-
lems, Proc. Japan Acad., 48 (1972), 709-711.

H. Tanabe, On remainder estimates in the asymptotic formula of elliptic operators,
Proc. Japan Acad., 48 (1972), 377-380.

J. Tsujimoto, On the asymptotic behavior of spectral functions of elliptic opera-
tors, to appear.

Jun-ichi TsujiMOTO

Department of Mathematics
Faculty of Science

Osaka University

Toyonaka 560

Japan



	1. Introduction.
	2. Main theorem.
	3. Some lemmas.
	4. Estimates of resolvent ...
	5. Approximation of coefficients ...
	6. Estimates of resolvent ...
	7. Proof of the main theorem.
	Bibliography

