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Introduction.

Let M be a compact complex manifold and L a holomorphic line bundle on
M. Let I'(L) denote the vector space of all holomorphic sections of L and let
P(I’(L)) denote the projective space of hyperplanes of I'(L). A holomorphic
line bundle L on M is said to be very ample if we can define a map j,: M—
P('(L)) by jux)={sel'(L)|s(x)=0} for xM and furthermore j, is a holo-
morphic imbedding.

A compact simply connected homogeneous complex manifold M is called a
C-space. If M has a Kihler metric it is said to be a kdhlerian C-space. Let L
be a very ample holomorphic line bundle on a kdhlerian C-space M. Consider
the homogeneous ideal of the projective submanifold j,(M) in P{I(L)). For
example, for a complex Grassmann manifold M imbedded into a projective space
by the Pliicker coordinates, it is known that the homogeneous ideal of M is
generated by quadrics. Moreover E. Cartan has realized in his Theése some
exceptional complex simple Lie groups as the projective automorphism groups
of projective submanifolds defined by some quadrics — these projective sub-
manifolds are all kidhlerian C-spaces. (See pp. 272-276.)

Motivated by these facts, we ask whether the homogeneous ideal of j (M)
of a kdhlerian C-space M is generated by quadrics or not. In this note we
shall prove that if M is a Hermitian symmetric space of compact type the
answer is affirmative for each L of Main Theorem). We give also a
sufficient condition for a general kihlerian C-space in order that the question is
affirmative (Main Theorem).

For a compact projective manifold M and a very ample holomorphic line
bundle L on M, Mumford has given a cohomological condition in order that
the homogeneous ideal of j, (M) is generated by quadrics. Our basic formula-
tion in section 1 is due to Mumford [7], while our condition for kihlerian C-
spaces is not for the cohomologies of L but for the Chern class of L.

After having finished this work, the authors learned that our to
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Main Theorem follows from the standard monomial theory [6] developed recently
by Lakshmibai, Musili and Seshadri. They use the cellular decomposition of
M effectively in studying the relations on j,. (M) between monomials of homo-
geneous coordinates of P(I'(L)), while our proof depends on the representation
theory of semi-simple Lie algebra.

1. Preliminaries.

In this section we recall the basic formulation due to Mumford [7]. Let M
be a compact complex manifold and L a holomorphic line bundle on M. We
denote by I'(L) the vector space of all holomorphic sections of L. The base
points of I'(L) are the points x&M such that s(x)=0 for all s€l'(L). If I'(L)
has no base points, L defines a canonical holomorphic map j, of M into a pro-
jective space in the following way; For a complex vector space V, let P(V)
denote the projective space of hyperplanes of V. We define a holomorphic map
jri M—PI(L)) by ju(x)={sel'(L)|s(x)=0} for xe M.

A holomorphic line bundle L on M is called very ample if I'(L) has no
base points and j;: M— P((L)) is an imbedding. Note that the vector space
I’(L) is canonically isomorphic to the space of homogeneous coordinate functions
on the projective space P(I'(L)). The k'* symmetric power of I'(L), which we
denote by S*I'(L), is canonically isomorphic to the space of homogeneous poly-
nomials of degree %k in the homogeneous coordinates of P(I'(L)). Thus if L is
very ample the vector space of homogeneous polynomials of degree & which
vanish on j.(M) is nothing but the kernel of the canonical map

SH(L) —=T(L%.

Now our problem is whether the homogeneous ideal of j,.(M) is generated
by quadrics or not. This is the same as asking whether the canonical map
(1.1) SE2(LYRKer (SH(L) — I'(L?)) —> Ker (S*['(L) — I'(L*%))
is surjective for all k=2.

Let L, N be holomorphic line bundles on M and ¢: ['(LYQI'(N)—I'(LRN)
the canonical map. Let ®R(L, N), S(L, N) denote the kernel and the cokernel
of ¢ respectively.

Let L be a very ample holomorphic line bundle on M. Then L is said to
be normally generated if the canonical map

@: I(L#**=I"(L)Q - QI'(L) —> I'(L*)

is surjective for every k=1. Note that L is normally generated if and only if
S(LE, LH)=(0) for all 7, j7=1. Note also that if L is normally generated, so is
L? for p=1. In fact, via the surjection SPI'(L)—I'(L?) we can identify P(I'(L?))
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canonically with a linear subspace of P(S?I'(L)). Then we get a commutative
diagram

. PUI'(L7)

M P(SPI'(L))

Q§?\\.HRL»°//1;//

where S, denotes the p™ Veronese imbedding. Thus L? is also very ample.
This together with S(L?%, L?7)=(0) for 7, j=1 implies the normal generation of
Le,

LEMMA 1.1. (Mumford [7], p. 39) Let L be a normally generated holomor-
phic line bundle on M. Then the canonical map (1.1) is surjective for every

k=2, that is, the homogeneous ideal of j(M) is generated by quadrics, if and
only if the canonical map

(1.2) d®@e: R(LY, LYQI(L*) — R(LY, L7*5)

is surjective for every i, j, k=1,

ProOPOSITION 1.2. (Mumford [7], p. 49) Let L, N, F be holomorphic line
bundles on M. If

(@) the linear map
¢ RN, LYQI'(F) — R(NQF, L)
defined by ¢(Ba:Qb)Qc)=3(a:ic)Db; (a;,€I'(N), byI'(L), c€l'(F)) is surjec-

tive, and
(b) SN, L)=(0),
then the linear map
¢’ RN, F)YRQJIL(L) — RINQL, F)

defined by ¢'(Ta:Rc)Qb)=2(a:b)Qc: (a,€'(N), bel'(L), c;€I'(F)) is surjective.
LEMMA 1.3. Let L be a normally generated holomorphic line bundle on M
and let p=1. If the linear map

(1.3) ¢: KL, DRI(L) —> K(L™, L)

defined by (X a;Qb,)Qc)=3(a;c)Qb; (a;&I'(LY), by, cel'(L)) is surjective for
every 1= p, then the map (1.2) is surjective for every i, j, k=p, and hence (by
Lemma 1.1) the homogeneous ideal of j,o(M) is generated by quadrics.

PrOOF. (cf. Mumford [7], p. 51) Interating, we see that
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KLY, LYRI(L)) — R(L*, L)
is surjective for every i=p, j=1. Since S(L? L)=(0) for every i=1,

KLY, LHYQI(L) —> R(LH, LY)

is surjective for every i=p, j=1 by Proposition 1.2l Interating again, we find
that

R(LY, LYQI(L*) —> R(L***, LY)

is surjective for every 1=p and j, k=1. Thus we get the required assertion.
g.e.d.

2. Kihlerian C-spaces.

A compact simply connected homogeneous complex manifold is called a C-
space. A C-space is said to be kdhlerian if it carries a Kihler metric. In this
section we summarize some known results on kidhlerian C-spaces and holomor-
phic line bundles on these manifolds (cf. Borel-Hirzebruch [1], Bott [3], Sakane-
Takeuchi [8], Takeuchi [9]).

We recall first the basic construction of kihlerian C-spaces. Let g be a
complex semi-simple Lie algebra. Take a Cartan subalgebra f) of g and denote
the real part of § by hr. A weight of a g-module relative to § will be identified
with an element of Yz by means of the duality defined by the Killing form (,)
of g. In particular, the root system X of g relative to § is a subset of Dg.
Choose a lexicographic order on Yz and let /I denote the fundamental root sys-
tem of 2. Take a subsystem I7, of IT and set X, =3ZIl,. We define a sub-
algebra u of g by

u=h+ 3 g,

aeX U+

where g, is the root space for @ and X+ is the set of positive roots. Now let
G be the simply connected complex Lie group with the Lie algebra ¢ and U
the (closed) connected complex Lie subgroup of G generated by u. Then the
quotient complex manifold

M=G/U

is a kdhlerian C-space. Conversely any kidhlerian C-space M is obtained in this
way.

It is known that the group Z of weights of g-modules is given by
2(4, @eZ for each an}.
(a, a)
It is a lattice of Yz generated by the fundamental weights {4,|a<II} corre-
sponding to II. We put

Zz{AebR
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z,={AeZ|(4, I )=},
which is a subgroup of Z generated by {A.lasII—1II,}. We define further

t={4eZ,|(4, a)>0 for each acII—II}.
Then we have
Zi= X Z'A,,
acell-1T4

where Z* denotes the set of positive integers. For each A= Z,, there exists a
unique holomorphic character X, of U such that X (exp H)=exp (A4, H) for each
HeY., Let L, denote the holomorphic line bundle on M associated to the prin-
cipal bundle U—-G—M by X,. The correspondence A— L, induces a homomor-
phism of Z, to the group H(M, ©*) of isomorphism classes of holomorphic line
bundies on M.

(I) The above homomorphism Z,—H M, ©*) is an isomorphism. In parti-
cular, under this isomorphism the subset —Z7 corresponds to the set of isomor-
phism classes of very ample holomorphic line bundles on M.

Thus the group G acts on each holomorphic line bundle L on M, and hence
I’(L) is a G-module in the canonical way. In particular, if L is very ample the
canonical imbedding j.: M—P{(L)) is G-equivariant.

() For each A<Z%, I'(L_y) is an irreducible G-module with the lowest
weight — A, that 1is, the G-module ['(L_,) is contragredient to an irreducible G-
module with the highest weight A.

LEMMA 2.1. Let L be a very ample holomorphic line bundle on a kihlerian
C-space M. Then L is normally generated.

ProOOF. We may assume by (I) that M=G/U and L=L_, for some A< Z}.
Since the canonical map ¢: ['(L.)®*—I"(L_4*) (k=1) is a G-homomorphism and
I(L_4*=I(L_4,) is an irreducible G-module by (II), it is enough to show that
¢ is not trivial. We claim that ¢(s® - ®s)#0 for sel'(L_4), s#0. Suppose
that ¢(s® --- ®s)=0, then the homogeneous polynomial s*S*I'(L_,) vanishes
on j._,M) and hence s vanishes on j._,M). This is a contradiction.

q.e.d.

3. The decomposition of tensor products of irreducible modules.

Let g be a complex semi-simple Lie algebra and let I be the fundamental
root system of g as in section 2. Take a subsystem II, of II. Let W be the
Weyl group for II and W, the subgroup of W generated by reflections relative
to the roots of II,. We put

D={AZ|(2, a)=0 for each acll}
and
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D,={2€Z|(A, «)=0 for each a<1l,}.
Note that the set Z7T defined in section 2 for II, is a subset of D. We define
a subset W' of W by
Wi={weW|wDCD,}.
LEMMA 3.1. (Borel-Hirzebruch [1]) Every element weW can be uniquely

written as w=w,w* where w,= W, and we W1
We put
1
== 27
P 2,

e+

LEMMA 3.2. For acll—II, and w,sW,,

(wip—p, @)=0.
ProoOF. Put
_Ll 5 _L
o1 2 TEZﬂ\E‘*‘T ’ p2= 2 reX+-%y ’

so that p=p;+p,. Since w,p,=p, for w,€W,, w,p—p=w,p:—p;. On the other
hand, w;0,—p:=— ZH nett (na€Z, n,=0) and (&, B)<0 for acll,, pell-1I,.
aelly
Thus we get our assertion. q.e.d.
For 2D let [41] denote the character of an irreducible g-module with the

highest weight 2. Now take elements A, y€D. Suppose that in the character
ring of ¢ we have

Lella]= 2 M, ()],

where M, ,(v) are non-negative integers with M, ;(¢+4)=1. Let 4(2) denote
the set of all weights of an irreducible g-module with the highest weight 4 and
m(r) the multiplicity of a weight = 4(Q).

LEMMA 3.3. (Brauer-Weyl) For ve D,

M, (v)= WZEWdet (w)ym(y+p—w(p+p)) .

ProoF. See the proof of [2], Ch. VI, §9, Proposition 2.
For 2D we define non-negative integers k.(2) (asIl) by

_ 20, @)
ko()=Max { o red@}.
THEOREM 34. Let psZ1, 2D and suppose that

Ledl2]= 2 M, a()lv].



Symmetric submanifolds 273

If psZ7 satisfies the inequalities

31) 2 @) o D

(a, &) —
for all asIl—1I,, then
[t Ao JAD= 33 My s0)Dv+ Ao ]
for a’ll—11,.
PrOOF. At first we claim that if v& D satisfies M,, (v)#0 then

3.2) M, ()= 3 det (wm—p-+o—wsp).
wi1EW

Since M,, ;(v)#0, we have m(v+p—w(z+p))#0 for some weW by
We put c=v+p—w(p+p)€4(2). Decomposing w™'=w,w' as in we
get

wvt+p)=wi(g+pe)+twitw .

Since peZ7i, wi'p=p and thus
wvtp)=ptwilp+wiw'r.
Note that w'(v+p)e D, since y+peD. For acll—II,

2w'v+p), @)  2ptwitptwitw'r, a)
(a, a) - (a, a)

_2p, ) | 2wiwTt, @) | 2wi'p—p, ) | 2p, @)
G (a, @) (@, @) (a, )

Since 2(p, @)/(a, ®)=1, we have by and

2(w'(v+p), algH_ 2y, a) . 20wt'w 'z, @) >1,
(@, a) (a, @) (a, a)
Hence w'(v+p)eD. Because v+p is regular, that is, (v+p, a)#0 for all ac ],
we have w'=id and we get our assertion.
Now we shall show that if v'&D satisfies Mui4,,200")#0 then v'=y+ A,

for some v=D. Since p'=p+ 4, also satisfies [3.1), by we have
Myigp. 2(0)= 3 det(wm(' —p—Au+p—wip).
wiEW

Thus ¢'=v' —p—A4+p—w,p4(2) for some w,€W,. Obviously (v/—A4,, a)=
(v, @)=0 for a<ll,. For acll—II, we have
200 —A4, @) 2ptwip—p+7, a)

(a, @) (a, @)

Apy @) | 2y @)
(a, a) (a, @) —

1%

0
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by and [3.I). Therefore v'— A, €D.

Now we see that

1 ,u+/1a',l(V,):My+Aa',).(V+Aa')
= X det(w)m+Ao—p—Ao+p—w.p)
wiEW]

= > det(wom@y—p+p—w,:p)

wIiEW,
= y,l(y)- g.e.d.

COROLLARY 3.5. Let A€ Z%, I€Z* and suppose that

UAJLA)= 2 M.z, ()l ]

If the integer | satisfies the inequalities
2(2, )
(33) 2k )
for all acIl—II,, then
[(l+1)l]El]=u§) Mz, (0)v+42].

PROOF. Since A= X n.Ad.(n.eZ*), our assertion follows from(Theorem 3.4

acll 11 d
g.e.d.

For a=ll let ax be the unique element in Wa\D. we define an involutive
automorphism = of Il by w=-—w, where w,&W is the unique element in W
such that w,D=—D. We set a*=xn(ax)ED.

LEMMA 3.6. For 2€D and a<ll,

2(4, a*)

(a*, a®)

ka(A)=

Proor. Take 7€4(2). Then wre—D for some we&W. Since wa=
a*—ﬂZHn,g‘B (Z=ng=0), we have
[

2z, @) _ wr, wa) 2wz, ax) 3 2wz, B)

(a0, @) ~ (@, )  (a, @) (@, @)
< 2w, ax) 2wz, ax)
= (a, )  (ax, ax)

Since w,4 is the lowest weight in 4(4), we have wr:on—gZ}”mﬁ‘B (Z=mp=0).

Thus we get
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2wk, ax) _ Aw(A), ax) _ 2(2, a*)

e =

On the other hand, since as=w’a for some w’W, we have

(ax, ax) -

(ax, ax)  (a* a®)’

2@, a®) _ 2wk, ax) _ 2w T'wik, @)

(a* a¥)

where w''w, A= 4(2). Hence k. (D)=2(, a*)/(a*, a*).

(ax, ax)

COROLLARY 3.7. For a€ll and 2, p<D,

(a, a)

ka(A+ )=k (A)+ k().

2

275

g.e.d.

REMARK. Note that if I is irreducible and a1l has the same length as
the highest root a, of 2, which is the same as that « has the largest length in
II, then a*=a, In particular, in this case the integer k.(A,) for the corre-
sponding fundamental weight A, is given as follows; Let a,= E‘_,Haaa (a . EZ").

ac

If « has the same length as the highest root a,, then k,(A.)=a,.

We give here the table of the integers k.(4,) (a«<Il) for each irreducible

Dynkin diagram I1.

A4, (121)

B, (iz2)

c; (123)

D, (1z4)

Es

Eg

Table 1.
a1 [¢2)] a3 ar—1 ay
O——O——0—  ¢=*
1 1 1 1
[+31 as as a1 (244
2 2 2 1
a1 a2 as ar-1 ar
O OO 400 =m0
2 2 2 1
a1
ai Qs a3 —%I_Z<Z 1
2 2 2 & 1
[+31 ag as a4 as
e ‘o)
12 13 2 1
60 2
al 23] as Qa4 as (273
O— O
E l4 3 2 1
az702
a1 Qo as a4 as Qe ar
O* g™ > o
2 5 4 3 2

4 le
ago 3
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ay az as ay
Oo—-==—0—0
Fy 2 3 3 2

a1 az
G ===
2 2 2

In the table the integer attached to a;=II denotes k.,(A.,) for the cor-
responding fundamental weight A.,.

4. Main theorem.

MAIN THEOREM. Let L_4(A&€Z7) be a very ample line bundle on a kdhlerian
C-space M=G/U. If a positive integer | satisfies the inequalities

24, a)
(a, a)

for all asIl—II,, then the homogeneous ideal of jilli(M) is generated by
quadrics.

ProoF. We shall show that the linear map

A1 I= ka(/l)/

¢ RILLy, Lo)QI(L_oy) —> R(LYY, L_y)

in is surjective for all i=[. Then our assertion will follow from
Lemmas and 2.1l
Note that the canonical map
o I(LENR(L- ) —> [(LED

is a G-homomorphism so that the kernel ®R(L%,, L_, ) of ¢ is a G-module and

¢ is a G-homomorphism. By the same argument as in the proof of Lemma 2.1,
we see that ¢ is surjective. In general, for a g-module V, the character of V
is denoted by [ V], and for a character X of g, the character contragredient to
X is denoted by X*. Suppose that

LAJLAT= 2 Mis, A0DV],

so that
LAPLAT = 3 Mia 0)D*.

Then it follows from section 2 (II) that
[F(LiA)®F(L-A)]=%)Mm, AW)vI*.

Recalling that M; 4 4(G+1)A)=1 and [I'(LEH]=[G+1)AT* and the surjectivity
of ¢, we get



Symmetric submanifolds 277

[R(L Ly L_op]= P Mg 40)[v]*.
vE(E+1A

Let seR(L:,, L_4) and v_,#0 the element of I'(L_,) corresponding to a
lowest weight vector. We claim that if ¢(sQv_,)=0 then s=0. Taking a basis
{b} of I'(L_y), we can write s=3a,;Qb; (a,€I'(L%y)). Then 0=¢(sQuv_, )
=>(a,;v_n)&Xb; and hence a,v-,=0 in ['(L%}). Since the canonical map

¢1 ST(L_)—> I(Liy

is surjective by [Lemma 2.1, there is an element A,€S(L.,) such that ¢(A))
=a; Now a,;v_,=0 in I'(L%}) is the same as that the homogeneous polynomial
Ajv_4 vanishes on j_,(M). Since v_,*0, the homogeneous polynomial A;
vanishes on j;_,(M). Therefore a;=0 in I'(L%,) and we get s=O0.

Let si, -+, s¥it4® be linearly independent lowest weight vectors with
weight —v in R(LY,, L_y). It follows from the above that then ¢(si®uv-,), -,
P(s)fit A9Qv_ ) are linearly independent lowest weight vectors with weight
—(+A4) in K(LY{, L_4. This implies that ¢ is surjective for =/, because

LR(LEY, L_p]= CZ}D Mg, Ao+ A7*
v#(+1A

for 1=/ by q.e.d.

REMARK. By an explicit description (Borel-Hirzebruch [1]) of the Chern
form of L, (A<Z,), we see that is a condition for the Chern class of L_,.

Let I be an irreducible Dynkin diagram and /7, a subset of I/ such that
IT—1I1, consists of only one root, say «, and that the highest root «a, of the
root system Y with the fundamental root system I/ has an expression as

ac=a+ > agf, ageZt.
gell;

Such a pair (I, II,) is called an irreducible symmetric pair. The root « is
called a distinguished root of II. Let now (II, IT,) be a general pair of Dynkin
diagrams. Decompose II into the sum of irreducible components:

=i ... JilIt,
and put
i=1Jll,, =1, -, t.

If each pair (IT%, II?) is irreducible symmetric, the pair (I, II,) is called a sym-
metric pair. It is known that the k&hlerian C-space corresponding to a sym-
metric pair is a Hermitian symmetric space of compact type. Conversely any
Hermitian symmetric space of compact type is obtained in this way (cf. Take-

uchi [97, §4).
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Now we give here the table of distinguished roots for each irreducible Dyn-
kin diagram II.

Table 2.
A 1zl ay s, ay
B, (Iz3) a
C, (=3 (24
D, (124 ay, ai, au
Es a1, Ay
E, (243

F, G, E; no distinguished roots

In the table the numbering of II is the same as that in Table 1.

COROLLARY OF MAIN THEOREM. Let L be a very ample holomorphic line
bundle on a Hermitian symmetric space M of compact type. Then the homo-
geneous ideal of j (M) is generated by quadrics.

Proor. We may assume that M=G/U is associated to a symmetric pair
(II, II,) and L=L_, for some A=Z}{. Now we claim that

24, a)

(a, a)

k()=

for all a=Il—1II,. Decompose the Lie algebra g into the direct sum of complex
simple Lie algebras:

3=6:D --- Dg: -
Since then an irreducible g-module is the tensor product of irreducible g;-modules
(i=1, ---, t), we may assume that (/I, II,) is irreducible symmetric. Let a be

the distinguished root for (II, II,). Then A=pAd, (pZ*), and hence
24, a)/(a, @)=p and ko (A)=pk.(A,) by Thus it is enough to
show that %k.(A4,)=1. But this follows from Tables 1 and 2.
Hence we can take /=1 in Main Theorem. q.e.d.
REMARK. The same argument shows that if M is the kdhlerian C-space
corresponding to (/I, II,) with

(a) H:Bly H——H.l: {al}} or
(b) H:Cl; H—‘le {(1'1},
then the same conclusion holds for M. But these kihlerian C-spaces are also

Hermitian symmetric spaces, so that these cases are included in our
ExaMPLE 1. Let II be

N N,

~N N

OO 000 —O——0  O——O—— +++ =——O—0 s
[+31 az
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II-1I,={a,, a;} and A=/A,+Aa,, Then M=Py (C)XPy,(C) and the imbed-
ding jp_,: M—PUI'(L_y) is given by

[Zijosile X [wj]osjszv2 I [ZiwjjosisN‘ .
0SjsSNg

This imbedding is called the Segre imbedding and the homogeneous ideal of
Jo_ (M) is generated by quadrics (cf. Hodge-Pedoe [5], vol. 2, p. 98).
EXAMPLE 2. Let IT be

[ SUUNIC GRNN  C GHUUU O —
a az Qn ay )

II-II,={a,} and A=4,,. Then M is the complex Grassmann manifold of n-
planes in C¥*' and the imbedding j,_,: M—P{'(L.p) is the Pliicker imbed-
ding. The homogeneous ideal of j,_,(M) is generated by quadrics and this is
well known (cf. for example, Hodge-Pedoe [5], vol. 1, p. 315).
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