On defining equations of symmetric submanifolds in complex projective spaces

By Yusuke SAKANE and Masaru TAKEUCHI

(Received March 2, 1979)

Introduction.

Let M be a compact complex manifold and L a holomorphic line bundle on M. Let $\Gamma(L)$ denote the vector space of all holomorphic sections of L and let $P(\Gamma(L))$ denote the projective space of hyperplanes of $\Gamma(L)$. A holomorphic line bundle L on M is said to be very ample if we can define a map $j_L \colon M \to P(\Gamma(L))$ by $j_L(x) = \{s \in \Gamma(L) \mid s(x) = 0\}$ for $x \in M$ and furthermore j_L is a holomorphic imbedding.

A compact simply connected homogeneous complex manifold M is called a C-space. If M has a Kähler metric it is said to be a kählerian C-space. Let L be a very ample holomorphic line bundle on a kählerian C-space M. Consider the homogeneous ideal of the projective submanifold $j_L(M)$ in $P(\Gamma(L))$. For example, for a complex Grassmann manifold M imbedded into a projective space by the Plücker coordinates, it is known that the homogeneous ideal of M is generated by quadrics. Moreover E. Cartan has realized in his Thèse some exceptional complex simple Lie groups as the projective automorphism groups of projective submanifolds defined by some quadrics — these projective submanifolds are all kählerian C-spaces. (See [4] pp. 272-276.)

Motivated by these facts, we ask whether the homogeneous ideal of $j_L(M)$ of a kählerian C-space M is generated by quadrics or not. In this note we shall prove that if M is a Hermitian symmetric space of compact type the answer is affirmative for each L (Corollary of Main Theorem). We give also a sufficient condition for a general kählerian C-space in order that the question is affirmative (Main Theorem).

For a compact projective manifold M and a very ample holomorphic line bundle L on M, Mumford [7] has given a cohomological condition in order that the homogeneous ideal of $j_L(M)$ is generated by quadrics. Our basic formulation in section 1 is due to Mumford [7], while our condition for kählerian C-spaces is not for the cohomologies of L but for the Chern class of L.

After having finished this work, the authors learned that our Corollary to

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Main Theorem follows from the standard monomial theory [6] developed recently by Lakshmibai, Musili and Seshadri. They use the cellular decomposition of M effectively in studying the relations on $j_L(M)$ between monomials of homogeneous coordinates of $P(\Gamma(L))$, while our proof depends on the representation theory of semi-simple Lie algebra.

1. Preliminaries.

In this section we recall the basic formulation due to Mumford [7]. Let M be a compact complex manifold and L a holomorphic line bundle on M. We denote by $\Gamma(L)$ the vector space of all holomorphic sections of L. The base points of $\Gamma(L)$ are the points $x \in M$ such that s(x) = 0 for all $s \in \Gamma(L)$. If $\Gamma(L)$ has no base points, L defines a canonical holomorphic map j_L of M into a projective space in the following way; For a complex vector space V, let P(V) denote the projective space of hyperplanes of V. We define a holomorphic map $j_L: M \to P(\Gamma(L))$ by $j_L(x) = \{s \in \Gamma(L) | s(x) = 0\}$ for $x \in M$.

A holomorphic line bundle L on M is called $very\ ample$ if $\Gamma(L)$ has no base points and $j_L: M \to P(\Gamma(L))$ is an imbedding. Note that the vector space $\Gamma(L)$ is canonically isomorphic to the space of homogeneous coordinate functions on the projective space $P(\Gamma(L))$. The k^{th} symmetric power of $\Gamma(L)$, which we denote by $S^k\Gamma(L)$, is canonically isomorphic to the space of homogeneous polynomials of degree k in the homogeneous coordinates of $P(\Gamma(L))$. Thus if L is very ample the vector space of homogeneous polynomials of degree k which vanish on $j_L(M)$ is nothing but the kernel of the canonical map

$$S^k \Gamma(L) \longrightarrow \Gamma(L^k)$$
.

Now our problem is whether the homogeneous ideal of $j_L(M)$ is generated by quadrics or not. This is the same as asking whether the canonical map

$$(1.1) S^{k-2}\Gamma(L) \otimes \operatorname{Ker} (S^2\Gamma(L) \longrightarrow \Gamma(L^2)) \longrightarrow \operatorname{Ker} (S^k\Gamma(L) \longrightarrow \Gamma(L^k))$$
 is surjective for all $k \ge 2$.

Let L, N be holomorphic line bundles on M and $\varphi: \Gamma(L) \otimes \Gamma(N) \to \Gamma(L \otimes N)$ the canonical map. Let $\mathcal{R}(L, N)$, $\mathcal{S}(L, N)$ denote the kernel and the cokernel of φ respectively.

Let L be a very ample holomorphic line bundle on M. Then L is said to be normally generated if the canonical map

$$\varphi: \varGamma(L)^{\otimes\, \mathtt{k}} \!=\! \varGamma(\underbrace{L) \! \otimes \cdots \otimes \! \varGamma(L)}_{\mathtt{k}}) \longrightarrow \varGamma(L^{\,\mathtt{k}})$$

is surjective for every $k \ge 1$. Note that L is normally generated if and only if $\mathcal{S}(L^i, L^j) = (0)$ for all $i, j \ge 1$. Note also that if L is normally generated, so is L^p for $p \ge 1$. In fact, via the surjection $S^p\Gamma(L) \to \Gamma(L^p)$ we can identify $P(\Gamma(L^p))$

canonically with a linear subspace of $P(S^p\Gamma(L))$. Then we get a commutative diagram

where S_p denotes the p^{th} Veronese imbedding. Thus L^p is also very ample. This together with $S(L^{pi}, L^{pj})=(0)$ for $i, j \ge 1$ implies the normal generation of L^p .

LEMMA 1.1. (Mumford [7], p. 39) Let L be a normally generated holomorphic line bundle on M. Then the canonical map (1.1) is surjective for every $k \ge 2$, that is, the homogeneous ideal of $j_L(M)$ is generated by quadrics, if and only if the canonical map

(1.2)
$$\operatorname{id} \otimes \varphi : \mathcal{R}(L^{i}, L^{j}) \otimes \Gamma(L^{k}) \longrightarrow \mathcal{R}(L^{i}, L^{j+k})$$

is surjective for every $i, j, k \ge 1$.

PROPOSITION 1.2. (Mumford [7], p. 49) Let L, N, F be holomorphic line bundles on M. If

(a) the linear map

$$\phi: \Re(N, L) \otimes \Gamma(F) \longrightarrow \Re(N \otimes F, L)$$

defined by $\psi((\sum a_i \otimes b_i) \otimes c) = \sum (a_i c) \otimes b_i$ $(a_i \in \Gamma(N), b_i \in \Gamma(L), c \in \Gamma(F))$ is surjective, and

$$\mathcal{S}(N, L) = (0),$$

then the linear map

$$\phi': \mathfrak{R}(N, F) \otimes \Gamma(L) \longrightarrow \mathfrak{R}(N \otimes L, F)$$

defined by $\phi'((\sum a_i \otimes c_i) \otimes b) = \sum (a_i b) \otimes c_i$ ($a_i \in \Gamma(N)$, $b \in \Gamma(L)$, $c_i \in \Gamma(F)$) is surjective. LEMMA 1.3. Let L be a normally generated holomorphic line bundle on M and let $p \ge 1$. If the linear map

$$(1.3) \qquad \psi: \ \mathcal{R}(L^i, \ L) \otimes \Gamma(L) \longrightarrow \mathcal{R}(L^{i+1}, \ L)$$

defined by $\psi((\sum a_j \otimes b_j) \otimes c) = \sum (a_j c) \otimes b_j$ $(a_j \in \Gamma(L^i), b_j, c \in \Gamma(L))$ is surjective for every $i \geq p$, then the map (1.2) is surjective for every $i, j, k \geq p$, and hence (by Lemma 1.1) the homogeneous ideal of $j_{L^p}(M)$ is generated by quadrics.

PROOF. (cf. Mumford [7], p. 51) Interating, we see that

$$\Re(L^i, L) \otimes \Gamma(L^j) \longrightarrow \Re(L^{i+j}, L)$$

is surjective for every $i \ge p$, $j \ge 1$. Since $S(L^i, L) = (0)$ for every $i \ge 1$,

$$\mathcal{R}(L^i, L^j) \otimes \Gamma(L) \longrightarrow \mathcal{R}(L^{i+1}, L^j)$$

is surjective for every $i \ge p$, $j \ge 1$ by Proposition 1.2. Interating again, we find that

$$\Re(L^i, L^j) \otimes \Gamma(L^k) \longrightarrow \Re(L^{i+k}, L^j)$$

is surjective for every $i \ge p$ and j, $k \ge 1$. Thus we get the required assertion. q. e. d.

2. Kählerian C-spaces.

A compact simply connected homogeneous complex manifold is called a *C-space*. A *C-*space is said to be *kählerian* if it carries a Kähler metric. In this section we summarize some known results on kählerian *C-*spaces and holomorphic line bundles on these manifolds (cf. Borel-Hirzebruch [1], Bott [3], Sakane-Takeuchi [8], Takeuchi [9]).

We recall first the basic construction of kählerian C-spaces. Let $\mathfrak g$ be a complex semi-simple Lie algebra. Take a Cartan subalgebra $\mathfrak h$ of $\mathfrak g$ and denote the real part of $\mathfrak h$ by $\mathfrak h_R$. A weight of a $\mathfrak g$ -module relative to $\mathfrak h$ will be identified with an element of $\mathfrak h_R$ by means of the duality defined by the Killing form (,) of $\mathfrak g$. In particular, the root system Σ of $\mathfrak g$ relative to $\mathfrak h$ is a subset of $\mathfrak h_R$. Choose a lexicographic order on $\mathfrak h_R$ and let Π denote the fundamental root system of Σ . Take a subsystem Π_1 of Π and set $\Sigma_1 = \Sigma \cap \mathbb Z \Pi_1$. We define a subalgebra $\mathfrak u$ of $\mathfrak g$ by

$$\mathfrak{u} = \mathfrak{h} + \sum_{\alpha \in \Sigma_1 \cup \Sigma_+} \mathfrak{g}_{\alpha}$$
,

where \mathfrak{g}_{α} is the root space for α and Σ^+ is the set of positive roots. Now let G be the simply connected complex Lie group with the Lie algebra \mathfrak{g} and U the (closed) connected complex Lie subgroup of G generated by \mathfrak{u} . Then the quotient complex manifold

$$M=G/U$$

is a kählerian C-space. Conversely any kählerian C-space M is obtained in this way.

It is known that the group Z of weights of \mathfrak{g} -modules is given by

$$Z = \left\{ \Lambda \in \mathfrak{h}_{R} \middle| \frac{2(\Lambda, \alpha)}{(\alpha, \alpha)} \in \mathbf{Z} \text{ for each } \alpha \in \Sigma \right\}.$$

It is a lattice of \mathfrak{h}_R generated by the fundamental weights $\{\Lambda_{\alpha} | \alpha \in \Pi\}$ corresponding to Π . We put

$$Z_1 = \{ \Lambda \in \mathbb{Z} | (\Lambda, \Pi_1) = (0) \},$$

which is a subgroup of Z generated by $\{\Lambda_{\alpha} | \alpha \in \Pi - \Pi_1\}$. We define further

$$Z_1^+ = \{ \Lambda \in Z_1 | (\Lambda, \alpha) > 0 \text{ for each } \alpha \in \Pi - \Pi_1 \}.$$

Then we have

$$Z_1^+ = \sum_{lpha \in \Pi - \Pi_1} Z^+ \Lambda_lpha$$
 ,

where Z^+ denotes the set of positive integers. For each $\Lambda \in Z_1$, there exists a unique holomorphic character χ_{Λ} of U such that $\chi_{\Lambda}(\exp H) = \exp(\Lambda, H)$ for each $H \in \mathfrak{h}$. Let L_{Λ} denote the holomorphic line bundle on M associated to the principal bundle $U \rightarrow G \rightarrow M$ by χ_{Λ} . The correspondence $\Lambda \mapsto L_{\Lambda}$ induces a homomorphism of Z_1 to the group $H^1(M, \mathcal{O}^*)$ of isomorphism classes of holomorphic line bundles on M.

(I) The above homomorphism $Z_1 \rightarrow H^1(M, \mathcal{O}^*)$ is an isomorphism. In particular, under this isomorphism the subset $-Z_1^+$ corresponds to the set of isomorphism classes of very ample holomorphic line bundles on M.

Thus the group G acts on each holomorphic line bundle L on M, and hence $\Gamma(L)$ is a G-module in the canonical way. In particular, if L is very ample the canonical imbedding $j_L: M \rightarrow P(\Gamma(L))$ is G-equivariant.

(II) For each $\Lambda \in \mathbb{Z}_1^+$, $\Gamma(L_{-\Lambda})$ is an irreducible G-module with the lowest weight $-\Lambda$, that is, the G-module $\Gamma(L_{-\Lambda})$ is contragredient to an irreducible G-module with the highest weight Λ .

LEMMA 2.1. Let L be a very ample holomorphic line bundle on a kählerian C-space M. Then L is normally generated.

PROOF. We may assume by (I) that M=G/U and $L=L_{-A}$ for some $A\in Z_1^+$. Since the canonical map $\varphi: \Gamma(L_{-A})^{\otimes k} \to \Gamma(L_{-A}^k)$ $(k\geq 1)$ is a G-homomorphism and $\Gamma(L_{-A}^k)=\Gamma(L_{-kA})$ is an irreducible G-module by (II), it is enough to show that φ is not trivial. We claim that $\varphi(s\otimes \cdots \otimes s)\neq 0$ for $s\in \Gamma(L_{-A})$, $s\neq 0$. Suppose that $\varphi(s\otimes \cdots \otimes s)=0$, then the homogeneous polynomial $s^k\in S^k\Gamma(L_{-A})$ vanishes on $j_{L_{-A}}(M)$ and hence s vanishes on $j_{L_{-A}}(M)$. This is a contradiction.

 $a \in A$

3. The decomposition of tensor products of irreducible modules.

Let g be a complex semi-simple Lie algebra and let Π be the fundamental root system of g as in section 2. Take a subsystem Π_1 of Π . Let W be the Weyl group for Π and W_1 the subgroup of W generated by reflections relative to the roots of Π_1 . We put

$$D = \{ \lambda \in \mathbb{Z} | (\lambda, \alpha) \ge 0 \text{ for each } \alpha \in \Pi \}$$

and

$$D_1 = \{ \lambda \in \mathbb{Z} | (\lambda, \alpha) \ge 0 \text{ for each } \alpha \in \Pi_1 \}.$$

Note that the set Z_1^+ defined in section 2 for Π_1 is a subset of D. We define a subset W^1 of W by

$$W^1 = \{ w \in W \mid wD \subset D_1 \}$$
.

LEMMA 3.1. (Borel-Hirzebruch [1]) Every element $w \in W$ can be uniquely written as $w = w_1 w^1$ where $w_1 \in W_1$ and $w^1 \in W^1$.

We put

$$\rho = \frac{1}{2} \sum_{\gamma \in \Sigma^+} \gamma$$
.

LEMMA 3.2. For $\alpha \in \Pi - \Pi_1$ and $w_1 \in W_1$,

$$(w_1 \rho - \rho, \alpha) \ge 0$$
.

PROOF. Put

$$\rho_1 = \frac{1}{2} \sum_{\gamma \in \Sigma_1 \cap \Sigma^+} \gamma, \quad \rho_2 = \frac{1}{2} \sum_{\gamma \in \Sigma^+ - \Sigma_1} \gamma,$$

so that $\rho = \rho_1 + \rho_2$. Since $w_1 \rho_2 = \rho_2$ for $w_1 \in W_1$, $w_1 \rho - \rho = w_1 \rho_1 - \rho_1$. On the other hand, $w_1 \rho_1 - \rho_1 = -\sum_{\alpha \in \Pi_1} n_\alpha \alpha$ $(n_\alpha \in \mathbb{Z}, n_\alpha \ge 0)$ and $(\alpha, \beta) \le 0$ for $\alpha \in \Pi_1$, $\beta \in \Pi - \Pi_1$.

Thus we get our assertion.

a. e. d.

For $\lambda \in D$ let $[\lambda]$ denote the character of an irreducible \mathfrak{g} -module with the highest weight λ . Now take elements λ , $\mu \in D$. Suppose that in the character ring of \mathfrak{g} we have

$$[\mu][\lambda] = \sum_{\nu \in D} M_{\mu, \lambda}(\nu)[\nu]$$
,

where $M_{\mu,\lambda}(\nu)$ are non-negative integers with $M_{\mu,\lambda}(\mu+\lambda)=1$. Let $\Delta(\lambda)$ denote the set of all weights of an irreducible g-module with the highest weight λ and $m(\tau)$ the multiplicity of a weight $\tau \in \Delta(\lambda)$.

LEMMA 3.3. (Brauer-Weyl) For $\nu \in D$,

$$M_{\mu, \lambda}(\nu) = \sum_{w \in W} \det(w) m(\nu + \rho - w(\mu + \rho))$$
.

PROOF. See the proof of [2], Ch. VIII, § 9, Proposition 2. For $\lambda \in D$ we define non-negative integers $k_{\alpha}(\lambda)$ ($\alpha \in \Pi$) by

$$k_{\alpha}(\lambda) = \operatorname{Max} \left\{ -\frac{2(\tau, \alpha)}{(\alpha, \alpha)} \middle| \tau \in \Delta(\lambda) \right\}.$$

THEOREM 3.4. Let $\mu \in \mathbb{Z}_1^+$, $\lambda \in D$ and suppose that

$$[\mu][\lambda] = \sum_{\nu \in D} M_{\mu, \lambda}(\nu)[\nu]$$
.

If $\mu \in Z_1^+$ satisfies the inequalities

(3.1)
$$\frac{2(\mu, \alpha)}{(\alpha, \alpha)} \ge k_{\alpha}(\lambda)$$

for all $\alpha \in \Pi - \Pi_1$, then

$$[\mu + \Lambda_{\alpha'}][\lambda] = \sum_{\nu \in D} M_{\mu, \lambda}(\nu)[\nu + \Lambda_{\alpha'}]$$

for $\alpha' \in \Pi - \Pi_1$.

PROOF. At first we claim that if $\nu \in D$ satisfies $M_{\mu, \lambda}(\nu) \neq 0$ then

(3.2)
$$M_{\mu, \lambda}(\nu) = \sum_{w_1 \in W_1} \det(w_1) m(\nu - \mu + \rho - w_1 \rho).$$

Since $M_{\mu,\lambda}(\nu)\neq 0$, we have $m(\nu+\rho-w(\mu+\rho))\neq 0$ for some $w\in W$ by Lemma 3.3. We put $\tau=\nu+\rho-w(\mu+\rho)\in \Delta(\lambda)$. Decomposing $w^{-1}=w_1w^1$ as in Lemma 3.1, we get

$$w^{1}(\nu+\rho)=w_{1}^{-1}(\mu+\rho)+w_{1}^{-1}w^{-1}\tau$$
.

Since $\mu \in Z_1^+$, $w_1^{-1}\mu = \mu$ and thus

$$w^{1}(\nu+\rho)=\mu+w_{1}^{-1}\rho+w_{1}^{-1}w^{-1}\tau$$
.

Note that $w^1(\nu+\rho) \in D_1$ since $\nu+\rho \in D$. For $\alpha \in \Pi-\Pi_1$

$$\frac{2(w^{1}(\nu+\rho), \alpha)}{(\alpha, \alpha)} = \frac{2(\mu+w_{1}^{-1}\rho+w_{1}^{-1}w^{-1}\tau, \alpha)}{(\alpha, \alpha)}$$

$$= \frac{2(\mu,\,\alpha)}{(\alpha,\,\alpha)} + \frac{2(w_{\scriptscriptstyle \perp}^{\scriptscriptstyle -1}w^{\scriptscriptstyle -1}\tau,\,\alpha)}{(\alpha,\,\alpha)} + \frac{2(w_{\scriptscriptstyle \perp}^{\scriptscriptstyle -1}\rho - \rho,\,\alpha)}{(\alpha,\,\alpha)} + \frac{2(\rho,\,\alpha)}{(\alpha,\,\alpha)}\;.$$

Since $2(\rho, \alpha)/(\alpha, \alpha)=1$, we have by Lemma 3.2 and (3.1)

$$\frac{2(w^{1}(\nu+\rho), \alpha)}{(\alpha, \alpha)} \ge 1 + \frac{2(\mu, \alpha)}{(\alpha, \alpha)} + \frac{2(w_{1}^{-1}w^{-1}\tau, \alpha)}{(\alpha, \alpha)} \ge 1.$$

Hence $w^1(\nu+\rho) \in D$. Because $\nu+\rho$ is regular, that is, $(\nu+\rho, \alpha) \neq 0$ for all $\alpha \in \Pi$, we have $w^1 = \mathrm{id}$ and we get our assertion.

Now we shall show that if $\nu' \in D$ satisfies $M_{\mu+\Lambda_{\alpha'},\lambda}(\nu') \neq 0$ then $\nu' = \nu + \Lambda_{\alpha'}$ for some $\nu \in D$. Since $\mu' = \mu + \Lambda_{\alpha'}$ also satisfies (3.1), by (3.2) we have

$$M_{\mu+\Lambda_{\alpha'},\lambda}(\nu') = \sum_{w_1 \in W_1} \det(w_1) m(\nu' - \mu - \Lambda_{\alpha'} + \rho - w_1 \rho)$$
.

Thus $\tau' = \nu' - \mu - \Lambda_{\alpha'} + \rho - w_1 \rho \in \mathcal{A}(\lambda)$ for some $w_1 \in W_1$. Obviously $(\nu' - \Lambda_{\alpha'}, \alpha) = (\nu', \alpha) \ge 0$ for $\alpha \in \Pi_1$. For $\alpha \in \Pi - \Pi_1$ we have

$$\frac{2(\nu' - \Lambda_{\alpha'}, \alpha)}{(\alpha, \alpha)} = \frac{2(\mu + w_1 \rho - \rho + \tau', \alpha)}{(\alpha, \alpha)}$$

$$\geq \frac{2(\mu, \alpha)}{(\alpha, \alpha)} + \frac{2(\tau', \alpha)}{(\alpha, \alpha)} \geq 0$$

by Lemma 3.2 and (3.1). Therefore $\nu' - \Lambda_{\alpha'} \in D$. Now we see that

$$\begin{split} M_{\mu+\Lambda_{\alpha'},\lambda}(\nu') &= M_{\mu+\Lambda_{\alpha'},\lambda}(\nu+\Lambda_{\alpha'}) \\ &= \sum_{w_1 \in W_1} \det \left(w_1 \right) m(\nu+\Lambda_{\alpha'} - \mu - \Lambda_{\alpha'} + \rho - w_1 \rho) \\ &= \sum_{w_1 \in W_1} \det \left(w_1 \right) m(\nu-\mu+\rho - w_1 \rho) \\ &= M_{\mu,\lambda}(\nu) \,. \end{split}$$
 q. e. d.

COROLLARY 3.5. Let $\lambda \in \mathbb{Z}_1^+$, $l \in \mathbb{Z}^+$ and suppose that

$$[l\lambda][\lambda] = \sum_{\nu \in D} M_{l\lambda,\lambda}(\nu)[\nu].$$

If the integer l satisfies the inequalities

$$(3.3) l \ge k_{\alpha}(\lambda) / \frac{2(\lambda, \alpha)}{(\alpha, \alpha)}$$

for all $\alpha \in \Pi - \Pi_1$, then

$$[(l+1)\lambda][\lambda] = \sum_{\nu \in D} M_{l\lambda,\lambda}(\nu)[\nu+\lambda].$$

PROOF. Since $\lambda = \sum_{\alpha \in \Pi - \Pi_1} n_\alpha \Lambda_\alpha (n_\alpha \in \mathbf{Z}^+)$, our assertion follows from Theorem 3.4. q. e. d.

For $\alpha \in \Pi$ let α_* be the unique element in $W\alpha \cap D$. we define an involutive automorphism π of Π by $\pi = -w_0$, where $w_0 \in W$ is the unique element in W such that $w_0D = -D$. We set $\alpha^* = \pi(\alpha_*) \in D$.

LEMMA 3.6. For $\lambda \in D$ and $\alpha \in \Pi$,

$$k_{\alpha}(\lambda) = \frac{2(\lambda, \alpha^*)}{(\alpha^*, \alpha^*)}.$$

PROOF. Take $\tau \in \Delta(\lambda)$. Then $w\tau \in -D$ for some $w \in W$. Since $w\alpha = \alpha_* - \sum_{\beta \in \Pi} n_\beta \beta$ $(Z \ni n_\beta \ge 0)$, we have

$$-\frac{2(\tau, \alpha)}{(\alpha, \alpha)} = -\frac{2(w\tau, w\alpha)}{(\alpha, \alpha)} = -\frac{2(w\tau, \alpha_*)}{(\alpha, \alpha)} + \sum n_{\beta} \frac{2(w\tau, \beta)}{(\alpha, \alpha)}$$
$$\leq -\frac{2(w\tau, \alpha_*)}{(\alpha, \alpha)} = -\frac{2(w\tau, \alpha_*)}{(\alpha_*, \alpha_*)}.$$

Since $w_0\lambda$ is the lowest weight in $\Delta(\lambda)$, we have $w\tau = w_0\lambda + \sum_{\beta \in \Pi} m_\beta\beta$ ($\mathbf{Z} \ni m_\beta \ge 0$). Thus we get

$$-\frac{2(\tau, \alpha)}{(\alpha, \alpha)} \leq -\frac{2(w_0\lambda, \alpha_*)}{(\alpha_*, \alpha_*)} = \frac{2(\pi(\lambda), \alpha_*)}{(\alpha_*, \alpha_*)} = \frac{2(\lambda, \alpha^*)}{(\alpha^*, \alpha^*)}.$$

On the other hand, since $\alpha_* = w'\alpha$ for some $w' \in W$, we have

$$\frac{2(\lambda, \alpha^*)}{(\alpha^*, \alpha^*)} = -\frac{2(w_0\lambda, \alpha_*)}{(\alpha_*, \alpha_*)} = -\frac{2(w'^{-1}w_0\lambda, \alpha)}{(\alpha, \alpha)},$$

where $w'^{-1}w_0\lambda \in \Delta(\lambda)$. Hence $k_\alpha(\lambda)=2(\lambda, \alpha^*)/(\alpha^*, \alpha^*)$. q. e. d. COROLLARY 3.7. For $\alpha \in \Pi$ and $\lambda, \mu \in D$,

$$k_{\alpha}(\lambda+\mu)=k_{\alpha}(\lambda)+k_{\alpha}(\mu)$$
.

REMARK. Note that if Π is irreducible and $\alpha \in \Pi$ has the same length as the highest root α_0 of Σ , which is the same as that α has the largest length in Π , then $\alpha^* = \alpha_0$. In particular, in this case the integer $k_{\alpha}(\Lambda_{\alpha})$ for the corresponding fundamental weight Λ_{α} is given as follows; Let $\alpha_0 = \sum_{\alpha \in \Pi} a_{\alpha} \alpha$ $(a_{\alpha} \in \mathbb{Z}^+)$.

If α has the same length as the highest root α_0 , then $k_{\alpha}(\Lambda_{\alpha})=a_{\alpha}$.

We give here the table of the integers $k_{\alpha}(\Lambda_{\alpha})$ $(\alpha \in \Pi)$ for each irreducible Dynkin diagram Π .

Table 1.

$$A_{l}$$
 ($l \ge 1$) $\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{l-1} & \alpha_{l} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$
 B_{l} ($l \ge 2$) $\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{l-1} & \alpha_{l} \\ 1 & 2 & 2 & \cdots & 2 & 1 \end{pmatrix}$
 C_{l} ($l \ge 3$) $\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{l-1} & \alpha_{l} \\ 1 & 2 & 2 & \cdots & 2 & 1 \end{pmatrix}$
 D_{l} ($l \ge 4$) $\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{l-1} & \alpha_{l} \\ 1 & 2 & 2 & \cdots & 2 & 1 \end{pmatrix}$
 E_{6} $\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} \\ 1 & 2 & 3 & 4 & 3 & 2 & 1 \end{pmatrix}$
 E_{7} $\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} \\ 2 & 3 & 4 & 3 & 2 & 1 \end{pmatrix}$
 E_{8} $\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} & \alpha_{7} \\ 2 & 3 & 4 & 3 & 2 & 1 \end{pmatrix}$
 E_{8} $\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} & \alpha_{7} \\ 2 & 4 & 6 & 5 & 4 & 3 & 2 \end{pmatrix}$

In the table the integer attached to $\alpha_i \in \Pi$ denotes $k_{\alpha_i}(\Lambda_{\alpha_i})$ for the corresponding fundamental weight Λ_{α_i} .

4. Main theorem.

MAIN THEOREM. Let $L_{-\Lambda}(\Lambda \in Z_1^+)$ be a very ample line bundle on a kählerian C-space M = G/U. If a positive integer l satisfies the inequalities

$$(4.1) l \ge k_{\alpha}(\Lambda) / \frac{2(\Lambda, \alpha)}{(\alpha, \alpha)}$$

for all $\alpha \in \Pi - \Pi_1$, then the homogeneous ideal of $j_{L-\Lambda}(M)$ is generated by quadrics.

PROOF. We shall show that the linear map

$$\phi: \mathcal{R}(L_{-\Lambda}^i, L_{-\Lambda}) \otimes \Gamma(L_{-\Lambda}) \longrightarrow \mathcal{R}(L_{-\Lambda}^{i+1}, L_{-\Lambda})$$

in Lemma 1.3 is surjective for all $i \ge l$. Then our assertion will follow from Lemmas 1.3 and 2.1.

Note that the canonical map

$$\varphi: \Gamma(L_{-\Lambda}^i) \otimes \Gamma(L_{-\Lambda}) \longrightarrow \Gamma(L_{-\Lambda}^{i+1})$$

is a G-homomorphism so that the kernel $\mathfrak{R}(L_{-A}^i, L_{-A})$ of φ is a G-module and φ is a G-homomorphism. By the same argument as in the proof of Lemma 2.1, we see that φ is surjective. In general, for a \mathfrak{g} -module V, the character of V is denoted by [V], and for a character \mathfrak{X} of \mathfrak{g} , the character contragredient to \mathfrak{X} is denoted by \mathfrak{X}^* . Suppose that

$$[i\Lambda][\Lambda] = \sum_{\nu \in D} M_{i\Lambda, \Lambda}(\nu)[\nu]$$
,

so that

$$[i\Lambda]^*[\Lambda]^* = \sum_{\nu \in D} M_{i\Lambda,\Lambda}(\nu)[\nu]^*$$
.

Then it follows from section 2 (II) that

$$[\Gamma(L_{-\varLambda}^i) \otimes \Gamma(L_{-\varLambda})] = \sum_{\nu \in D} M_{i\varLambda, \varLambda}(\nu) [\nu]^*.$$

Recalling that $M_{iA,A}((i+1)A)=1$ and $[\Gamma(L_{-A}^{i+1})]=[(i+1)A]^*$ and the surjectivity of φ , we get

$$[\![\mathcal{R}(L_{-\varLambda}^i, \ L_{-\varLambda})] \!] \!=\! \sum_{\substack{\nu \in D \\ \nu \neq (i+1)\varLambda}} \!\! M_{i\varLambda, \varLambda}(\nu) [\![\nu]^* \,.$$

Let $s \in \mathcal{R}(L_{-A}^i, L_{-A})$ and $v_{-A} \neq 0$ the element of $\Gamma(L_{-A})$ corresponding to a lowest weight vector. We claim that if $\psi(s \otimes v_{-A}) = 0$ then s = 0. Taking a basis $\{b_j\}$ of $\Gamma(L_{-A})$, we can write $s = \sum a_j \otimes b_j$ $(a_j \in \Gamma(L_{-A}^i))$. Then $0 = \psi(s \otimes v_{-A}) = \sum (a_j v_{-A}) \otimes b_j$ and hence $a_j v_{-A} = 0$ in $\Gamma(L_{-A}^{i+1})$. Since the canonical map

$$\phi: S^i \Gamma(L_{-\Lambda}) \longrightarrow \Gamma(L^i_{-\Lambda})$$

is surjective by Lemma 2.1, there is an element $A_j \in S^i \Gamma(L_{-A})$ such that $\phi(A_j) = a_j$. Now $a_j v_{-A} = 0$ in $\Gamma(L_{-A}^{i+1})$ is the same as that the homogeneous polynomial $A_j v_{-A}$ vanishes on $j_{L-A}(M)$. Since $v_{-A} \neq 0$, the homogeneous polynomial A_j vanishes on $j_{L-A}(M)$. Therefore $a_j = 0$ in $\Gamma(L_{-A}^i)$ and we get s = 0.

Let $s_{\nu}^{1}, \dots, s_{\nu}^{M_{iA.A}(\nu)}$ be linearly independent lowest weight vectors with weight $-\nu$ in $\mathcal{R}(L_{-A}^{i}, L_{-A})$. It follows from the above that then $\phi(s_{\nu}^{1} \otimes v_{-A})$, \cdots , $\phi(s_{\nu}^{M_{iA.A}(\nu)} \otimes v_{-A})$ are linearly independent lowest weight vectors with weight $-(\nu+A)$ in $\mathcal{R}(L_{-A}^{i+1}, L_{-A})$. This implies that ϕ is surjective for $i \geq l$, because

for $i \ge l$ by Corollary 3.5.

q. e. d.

REMARK. By an explicit description (Borel-Hirzebruch [1]) of the Chern form of L_{Λ} ($\Lambda \in \mathbb{Z}_1$), we see that (4.1) is a condition for the Chern class of $L_{-\Lambda}$. Let Π be an irreducible Dynkin diagram and Π_1 a subset of Π such that

Let Π be an irreducible Dynkin diagram and Π_1 a subset of Π such that $\Pi - \Pi_1$ consists of only one root, say α , and that the highest root α_0 of the root system Σ with the fundamental root system Π has an expression as

$$lpha_0 = lpha + \sum\limits_{eta \in \Pi_1} a_{eta} eta$$
 , $a_{eta} \in Z^+$.

Such a pair (Π, Π_1) is called an *irreducible symmetric pair*. The root α is called a *distinguished root* of Π . Let now (Π, Π_1) be a general pair of Dynkin diagrams. Decompose Π into the sum of irreducible components:

$$\Pi = \Pi^1 \cup \cdots \cup \Pi^t$$

and put

$$\Pi_1^i = \Pi^i \cup \Pi_1$$
, $i=1, \dots, t$.

If each pair (Π^i, Π^i_1) is irreducible symmetric, the pair (Π, Π_1) is called a *symmetric pair*. It is known that the kählerian *C*-space corresponding to a symmetric pair is a Hermitian symmetric space of compact type. Conversely any Hermitian symmetric space of compact type is obtained in this way (cf. Take-uchi [9], § 4).

Now we give here the table of distinguished roots for each irreducible Dynkin diagram Π .

Table 2.
$$A_{l} \quad (l \geq 1) \qquad \alpha_{1}, \, \alpha_{2}, \, \cdots, \, \alpha_{l}$$

$$B_{l} \quad (l \geq 3) \qquad \alpha_{1}$$

$$C_{l} \quad (l \geq 3) \qquad \alpha_{l}$$

$$D_{l} \quad (l \geq 4) \qquad \alpha_{1}, \, \alpha_{l-1}, \, \alpha_{l}$$

$$E_{6} \qquad \alpha_{1}, \, \alpha_{5}$$

$$E_{7} \qquad \alpha_{6}$$

$$F_{4}, \, G_{2}, \, E_{8} \qquad \text{no distinguished roots}$$

In the table the numbering of Π is the same as that in Table 1.

COROLLARY OF MAIN THEOREM. Let L be a very ample holomorphic line bundle on a Hermitian symmetric space M of compact type. Then the homogeneous ideal of $j_L(M)$ is generated by quadrics.

PROOF. We may assume that M=G/U is associated to a symmetric pair (Π, Π_1) and $L=L_{-\Lambda}$ for some $\Lambda \in \mathbb{Z}_1^+$. Now we claim that

$$k_{\alpha}(\Lambda) = \frac{2(\Lambda, \alpha)}{(\alpha, \alpha)}$$

for all $\alpha \in \Pi - \Pi_1$. Decompose the Lie algebra g into the direct sum of complex simple Lie algebras:

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_t$$
.

Since then an irreducible g-module is the tensor product of irreducible g_i -modules $(i=1, \dots, t)$, we may assume that (Π, Π_1) is irreducible symmetric. Let α be the distinguished root for (Π, Π_1) . Then $\Lambda = p\Lambda_{\alpha}$ $(p \in \mathbb{Z}^+)$, and hence $2(\Lambda, \alpha)/(\alpha, \alpha) = p$ and $k_{\alpha}(\Lambda) = pk_{\alpha}(\Lambda_{\alpha})$ by Corollary 3.7. Thus it is enough to show that $k_{\alpha}(\Lambda_{\alpha}) = 1$. But this follows from Tables 1 and 2.

Hence we can take l=1 in Main Theorem. q. e.

REMARK. The same argument shows that if M is the kählerian C-space corresponding to (Π, Π_1) with

(a)
$$\Pi = B_l$$
, $\Pi - \Pi_1 = \{\alpha_l\}$, or

(b)
$$\Pi = C_l$$
, $\Pi - \Pi_1 = \{\alpha_1\}$,

then the same conclusion holds for M. But these kählerian C-spaces are also Hermitian symmetric spaces, so that these cases are included in our Corollary.

Example 1. Let Π be

 $\Pi - \Pi_1 = \{\alpha_1, \alpha_2\}$ and $\Lambda = \Lambda_{\alpha_1} + \Lambda_{\alpha_2}$. Then $M = P_{N_1}(C) \times P_{N_2}(C)$ and the imbedding $j_{L-A} : M \to P(\Gamma(L-A))$ is given by

$$[z_i]_{0 \le i \le N_1} \times [w_j]_{0 \le j \le N_2} \longmapsto [z_i w_j]_{\substack{0 \le i \le N_1 \\ 0 \le j \le N_2}}.$$

This imbedding is called the *Segre imbedding* and the homogeneous ideal of $j_{L-d}(M)$ is generated by quadrics (cf. Hodge-Pedoe [5], vol. 2, p. 98).

Example 2. Let Π be

$$\overset{\circ}{lpha_1} \overset{\circ}{lpha_2} \overset{\cdots}{lpha_n} \overset{\cdots}{lpha_N} \overset{\circ}{lpha_N}$$
 ,

 $\Pi - \Pi_1 = \{\alpha_n\}$ and $\Lambda = \Lambda_{\alpha_n}$. Then M is the complex Grassmann manifold of n-planes in C^{N+1} and the imbedding $j_{L-\Lambda} \colon M \to P(\Gamma(L_{-\Lambda}))$ is the Plücker imbedding. The homogeneous ideal of $j_{L-\Lambda}(M)$ is generated by quadrics and this is well known (cf. for example, Hodge-Pedoe [5], vol. 1, p. 315).

References

- [1] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538.
- [2] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 7 et 8, Hermann, Paris, 1975.
- [3] R. Bott, Homogeneous vector bundles, Ann. of Math., 66 (1957), 207-248.
- [4] E. Cartan, Sur la structure des groupes de transformations finis et continus, Oeuvres complètes, partie 1, 137-287.
- [5] W.V.D. Hodge and D. Pedoe, Methods of Algebraic Geometry, vol. 1 and 2, Cambridge Uuiv. Press, 1952.
- [6] V. Lakshmibai, C. Musili and C. S. Seshadri, Geometry of G/P, IV (Standard Monomial Theory for Classical Types), to appear.
- [7] D. Mumford, Varieties defined by quadratic equations, C.I.M.E., Questions on algebraic varieties, 1969, 30-94.
- [8] Y. Sakane and M. Takeuchi, Einstein hypersurfaces of kählerian C-spaces, Nagoya Math. J., 78 (1980), 153-175.
- [9] M. Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math., 4 (1978), 171-219.

Yusuke SAKANE
Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan

Masaru TAKEUCHI
Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan