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Introduction.

The purpose of this paper is to study a certain class of algebraic differential
equations which arises in conjunction with the study of elliptic surfaces. The
results utilize the general theory of elliptic surfaces due to Kodaira [11] and
[12].

Let $E$ be an elliptic surface over a base curve $X$. We denote by 5 and $G$

the functional and homological invariants of $E/X$. On a Zariski open subset
$X_{0}\subset X,$ $G$ can be viewed as either a locally constant $Z\oplus Z$ sheaf or as repre-
sentation $\pi_{1}(X_{0})\rightarrow SL_{2}(Z)$ . This representation corresponds to an algebraic vec-
tor bundle of rank two on $X$ together with an integrable algebraic connection
having regular singular points (Deligne [2], Griffiths [3]), which is known as
the Gauss-Manin connection (Katz and Oda [10]). It can also be expressed as
a second order algebraic differential equation on $X$ having regular singular
points. The aim of this research is to make explicit which algebraic differential
equations on $X$ arise from elliptic surfaces in this manner and to investigate
certain geometric and arithmetic properties of elliptic surfaces by making use
of the differential equations with their monodromy representations and conversely.
Central to this investigation is the determination of when two elliptic surfaces
over $X$ give rise to equivalent homological invariants (representations) $and/or$

when two of the differential equations have equivalent monodromy and there-
fore give rise to the same flat vector bundle on $X$.

In Part I we recall some of the notions that we will be dealing with and
by direct calculation obtain some information about the differential equations.
In Part II we change our viewpoint. Poincar\’e [16] posed the problem of deter-
mining the monodromy representation of a given algebraic differential equation
on a curve $X$. That problem remains unsolved. Instead we determine all dif-
ferential equations with $SL_{2}(Z)$-monodromy and positivity. This is done with-
out reference to elliptic surfaces, but we are able to see in Part III that these
equations are precisely those arising from elliptic surfaces. The remainder of
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Part III is devoted to the interplay between the differential equations and the
geometry and we are able to answer the questions mentioned above. In addi-
tion, we obtain a classification of elliptic surfaces and elliptic surfaces modulo
generic isogeny in terms of the differential equations. Also we develop some
relationships between the differential equation, with its monodromy representa-
tion, and division points on the generic fibre of $E/X$.

Part I. Generalities

\S 1. Elliptic surfaces.

We will make use of a number of notions due to Kodaira (Kodaira [11] and
[12]). However, our notation and usage differs in some respects from his; for
that reason, this brief section has been included.

Let $X$ denote a proper smooth connected curve over the field of complex

numbers $C$ with function field $K(X)$ , and let $E$ denote a proper smooth $surface/C$

which is an elliptic surface over $X$ via a projection $\pi$ : $E\rightarrow X$. It will always

be assumed that $E$ has no exceptional curves of the first kind in the fibres and
that $E$ is free of multiple singular fibres.

To any such elliptic surface we can associate two invariants (Kodaira [11]).

The functional invariant $\mathcal{J}$ is the rational function on $X$ whose value at “good”
$x\in X$ is the J-invariant (modular invariant) of the fibre $E_{x}$ at $x$ . It will be
assumed throughout this paper that $\mathcal{J}$ is non-constant. Next, let $S$ be the sup-
port of the singular fibres in $X$ and let $X_{0}=X-S$ . Denote by $G$ the sheaf
$R^{1}\pi_{*}(Z)|X_{0}$ which is a locally constant $Z\oplus Z$ sheaf on $X_{0}$ . $G$ has a natural
extension to a sheaf on all of $X$ (Kodaira [11]) with stalk $Z$ or $0$ depending on
whether the degeneracy is multiplicative or additive. $G$ on $X_{0}$ or $X$ is called
the homological invariant. We will also refer to the corresponding representa-
tion $\pi_{1}(X_{0})\rightarrow SL_{2}(Z)$ as the homological invariant.

An elliptic surface $ E\rightarrow X\pi$

will be called a basic elliptic surface if there exists
a global section $s:X\rightarrow E$ such that $\pi\circ s=1_{X}$ . This section corresponds to a
$K(X)$-rational point on the generic fibre $E^{gen}$ . Thus $E^{gen}$ becomes an elliptic
curve over $K(X)$ .

\S 2. Differential equations.

By an algebraic differential equation of second order on a complete smooth
connected curve $X$ over $C$ we shall mean an expression

(2.1) $\Lambda f=\frac{d^{2}f}{dx^{2}}+P\frac{df}{dx}+Qf=0$
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where $P,$ $Q,$ $x$ are in the function field of $X$ and $x\not\in C$. The function $x$ will
be called a parameter; it will furnish us with a local coordinate at all but a
finite set of points. Disregarding these points as well as any where $P,$ $Q$ fail
to be regular leaves us with a Zariski-open subset $X_{0}$ of $X$. For every $x\in X_{0}$

the equation has two independent holomorphic solutions $f_{1},$ $f_{2}$ which form a
basis for the space of solutions in a neighborhood of $x$ . If we pick $x_{0}\in X_{0}$ as
a base point and a basis $f_{1},$ $f_{2}$ for the space of solutions at $x_{0}$ , we can obtain

$\rho_{\Lambda}$

a representation $\pi_{1}(X_{0}, x_{0})\rightarrow GL_{2}(C)$ by analytic continuation. We will denote by

$\left(\begin{array}{l}f_{1}\\f_{2}\end{array}\right)\rightarrow\rho_{\Lambda}(\gamma)\left(\begin{array}{l}f_{1}\\f_{2}\end{array}\right)$

the analytic continuation of the basis $f_{1},$ $f_{2}$ around $\gamma\in\pi_{1}(X_{0}, x_{0})$ . Note that
another choice of basis at $x_{0}$ leads to an equivalent representation.

The spaces of local solutions at points in $X_{0}$ can be combined to give a
locally constant $C^{2}$ sheaf on $X_{0}$ which when tensored with the structure sheaf
$O_{X_{0}}$ of $X_{0}$ leads to a complex analytic vector bundle $V_{0}$ over $X_{0}$ . This bundle
admits a complex analytic connection $D_{0}$ with the flat sections corresponding to
the original locally constant sheaf. The pair $V_{0},$ $D_{0}$ is referred to as a flat vec-
tor bundle. The relation between representations, flat bundles, and differential
equations will be assumed familiar to the reader. One can consult Poincar\’e [16],
Deligne [2], or Griffiths [3]. We remark that any flat bundle on $X_{0}$ can be
given the structure of an algebraic vector bundle with flat algebraic connection
having regular singular points. The class of equations that will concern us,
namely K-equations, will be shown to have regular singular points.

\S 3. The differential equation associated to an elliptic surface.

Let
$E\rightarrow X\tau_{\vee}$

be an elliptic surface (subject to our usual assumptions). After
$\pi$

removing the singular fibres we are left with $E_{0}\rightarrow X_{0}$ where $\pi$ is now a proper
smooth morphism. Whenever such a situation occurs (and more generally) there
is a natural integrable connection on the relative algebraic DeRham cohomology
sheaf of $E_{0}/X_{0}$ : the Gauss-Manin connection (Katz and Oda [10]). Thus we
have

(3.1) $D_{0}$ ; $\mathcal{H}_{DR}^{1}(E_{0}/X_{0})\rightarrow\Omega_{x_{0}/c}^{1}\otimes_{\mathcal{O}x_{0}/c}\mathcal{H}_{DR}^{1}(E_{0}/X_{0})$

where $\mathcal{H}_{DR}^{1}$ is the first hyperderived functor of the direct image applied to
$\Omega_{E_{0}/X_{0}}$ , the relative algebraic DeRham complex, that is

$\mathcal{H}_{DR}^{1}(E_{0}/X_{0})=R^{1}\pi_{*}(\Omega_{E_{0}/x_{0}})$ .

The stalk of $\mathcal{H}_{DR}^{1}(E_{0}/X_{0})$ is easily seen to be $H^{1}(E_{x}, \Omega_{E_{x}/C})$ where $H$ indicates
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the hypercohomology of the algebraic DeRham complex $\Omega_{E_{x}/C}$ . This is known
to be canonically isomorphic to the ordinary complex cohomology of the fibre
$H^{1}(E_{x}, C)$ (Katz [9] or Hartshorne [7]). Thus $\mathcal{H}_{DR}^{1}(E_{0}/X_{0})$ is nothing more
than $R^{1}\pi_{*}(C)$ , and we have a flat vector bundle of rank two over $X_{0}$ .

The purpose of the rest of this section is to calculate an explicit second
order algebraic equation which describes this bundle (such an equation is not
unique). In this way we will be able to relate certain properties of these dif-
ferential equations and representations to elliptic surfaces and conversely. We
remark that it is enough to work only with basic elliptic surfaces because the

$\pi$

flat bundle associated to $E\rightarrow X$ is isomorphic to the one associated to the unique
basic surface with the same functional and homological invariant. We there-
fore restrict our attention to basic surfaces.

Let $U$ be the unit u-disc and suppose we are given a family of elliptic
curves $E$ over $U$ described by

(3.2) $y^{2}=4_{X^{3}}-g_{2}(u)x-g_{3}(u)$

where $g_{2}(u),$ $g_{3}(u)$ are holomorphic on $U$ with $g_{2}^{3}(u)-27g_{3}^{2}(u)$ never zero. This
family has an obvious global section over $U$. For $u_{0}\in U$ the cohomology of the
fibre $H^{1}(E_{u_{0}}, C)$ can be identified with the space of differentials of the first
and second kind on $E_{u_{0}}$ modulo the exact differentials. This space has as basis
$dx/y$ and $xdx/y$ . The natural differentiation with respect to $u$ can be extended
to this space of differentials by regarding $dx/y$ and $xdx/y$ as dependent on $u$

and setting $D_{u}(x)=0$ . The result is the well-known system of differential equa-
tions

(3.3) $\frac{d}{du}\left(\begin{array}{l}f_{1}\\f_{2}\end{array}\right)=[\frac{-1}{12}\frac{dDdu}{D}\frac{-g_{2}\delta}{8D}\frac$ $\frac{1}{12}\frac{3\delta}{2D}\frac\frac{dD}{du,D})\left(\begin{array}{l}f_{1}\\f_{2}\end{array}\right)$

where
$D=g_{2}^{3}(u)-27g_{3}^{2}(u)$

and

$\delta=3g_{3}(u)\frac{dg_{2}(u)}{du}2g_{2}(u)\frac{dg_{3}(u)}{du}$ .

Since our family is topologically trivial, we can select some fixed cycle $\gamma$ on
each fibre. One solution of (3.3) then is

$f_{1}(u)=\int_{\gamma}\frac{dx}{y}$ , $f_{2}(u)=\int_{\gamma}\frac{xdx}{y}$ .
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Suppose now that
$ E\rightarrow X\pi$ is a basic elliptic surface. Let $X_{0}=X$ minus the

support of the singular fibres and any point where the functional invariant $\mathcal{J}$

takes value $0,1,$ $\infty$ or ord $d\mathcal{J}\neq 0$ . Let $x_{0}\in X_{0}$ be a base point. As our family

is basic, we can locally (near $x_{0}$) represent it as

(3.4) $y^{2}=4x^{3}-g(t)x-g(t)$

where

$g(t)=\frac{27\mathcal{J}(t)}{\mathcal{J}(t)-1}$

is holomorphic non-vanishing and further $g^{3}-27g^{2}$ is never zero. Here $t=$

$x-x(x_{0})$ where $x\in K(X)$ is a fixed parameter at every point in $X_{0}$ (shrink $X_{0}$

if necessary).

THEOREM I.3.1. Near $x_{0}$ a differential equation derived from the system
(3.3) and (3.4) is

(3.5) $\Lambda f=\frac{d^{2}f}{dx^{2}}+\frac{(\frac{d\mathcal{J}}{dx})^{2}-\mathcal{J}(\frac{d^{2}\mathcal{J}}{dx^{2}})}{\mathcal{J}\frac{d\mathcal{J}}{dx}}(\frac{df}{dx})+\frac{(\frac{d\mathcal{J}}{dx})^{2}(\frac{31}{144}\mathcal{J}_{36}^{-)}1}{\mathcal{J}^{2}(\mathcal{J}-1)^{2}}f=0$

where $f$ is unknown and $x\in K(X)$ is a fixed Parameter.
PROOF. A suitable holomorphic change of frame in (3.3) is made–followed

by a calculation.
Now although this calculation is only local, the result is clearly a global

second order algebraic differential equation on $X$.
THEOREM I.3.2. This differential equation (3.5) has regular singular points.
PROOF. Just check.
Unfortunately, this global equation may not be the one we want for $E/X$.

This is because the local model (3.4) may not be a global model for $E/X$ (or

rather over $X_{0}$). We must see how the local models differ on an overlap. There
are only two ways: on each fibre either $x\rightarrow x,$ $y\rightarrow y$ the identity, or $x\rightarrow x,$ $y\rightarrow-y$

the involution. This is because the general fibre does not admit complex multi-
plication and the section must be preserved. We thereby obtain a l-cocycle on
$X_{0}$ with $Z_{2}$ coefficients which gives an element of $H^{1}(X_{0}, Z_{2})$ or a map $\pi_{1}(X_{0})$

$\rightarrow Z_{2}$ . It is easily seen that the differential equation of Theorem I.3.1 yields a
representation projectively equivalent (conjugate in $PSL_{2}(Z)$) to that of $E/X$.

DEFINITION I.3.3. Two elliptic surfaces will be called projectively equivalent
if their associated representations are projectively equivalent (on some Zariski
open subset of $X$ ), that is, conjugate in $PSL_{2}(Z)$ .

THEOREM I.3.4. Every represpntatiOn associated to an elliptic surface is, $up$

to prOjective equivalence, given by the monodromy representatiOn of a differential
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equation of the type(3.5).

\S 4. A simple example.

In $P_{c}^{1}\times P_{c}^{2}$ with homogeneous coordinates $(u:v)$ and $(x:y:z)$ respectively,
we consider the variety $W$ described by

(4.1) $(u-v)y^{2}z-4x^{3}(u-v)+27uxz^{2}+27uz^{3}=0$ .
In affine coordinates $(u:1),$ $(x:y:1)$ , assuming we avoid $u=0$ or 1, this becomes

(4.2) $y^{2}=4x^{3}-\frac{27u}{u-1}x-\frac{27u}{u-1}$ .

Thus $W\rightarrow P_{c}^{1}$ is a family of elliptic curves over $P_{c}-\{0,1, \infty\}$ . This family is
smooth except over 1 in the u-plane, where the surface has a singularity at
$(0:1:0)$ . We resolve this to get a smooth surface $E/P_{c}^{1}$ which is taken to
have no exceptional curves of the first kind in the fibres. Now clearly there is
a section over $P_{c}^{1}-\{1\}$ , and this section extends over all $P_{c}^{1}$ . Therefore $E$ is
basic. The functional invariant is $\mathcal{J}=u$ (on the u-sphere). The differential
equation is

(4.3) $\frac{d^{2}f}{du^{2}}+\frac{1}{u}\frac{df}{du}+\frac{(31/144)u-1/36}{u^{2}(u-1)^{2}}f=0$

which is hypergeometric. Further the singular fibres are:

Type $I_{1}$ at $\infty$ $\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$

Type II at $0$ $\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$

Type III* at 1 $\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$

(see Kodaira [11] for terminology). The last can be arrived at by explicit
resolution. The matrix at the right is the local $SL_{2}(Z)$ matrix around such a
singularity. This can be determined from the monodromy representation of the
differential equation (4.3), which we compute in Part II, section 2. We will
make use of this simple example in a construction in Part III.

Part II. $K$-equations

\S 1. $K$-equations.

Let $X$ be a complete smooth connected algebraic curve over $C$ with func-
tion field denoted by $K(X)$ . After fixing a parameter $x\in K(X)$ , consider an
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algebraic differential equation on $X$

(1.1) $\Lambda f=\frac{d^{2}f}{dx^{2}}+P\frac{df}{dx}+Qf=0$

with $P$ and $Q$ in $K(X)$ and $f$ an unknown function.
DEFINITION II.I.I. $\Lambda f=0$ is called a K-equation if it possesses two solutions,

$\omega_{1}$ and $\omega_{2}$ , which are holomorphic non-vanishing multivalued functions on some
Zariski open subset $X_{0}$ of $X$, satisfying:

(i) $\omega_{1}$ and $\omega_{2}$ form a basis of solutions,

(ii) for every closed path $\gamma\in\pi_{1}(X_{0})$ the analytic continuation of $\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$ around

$\gamma$ is $M_{\gamma}\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$ with $M_{\gamma}\in SL_{2}(Z)$ (the monodromy representation),

(iii) ${\rm Im}(\omega_{1}/\omega_{2})>0$ on $X_{0}$ (positivity).

Such a pair of solutions is called a K-basis. In addition, since the monodromy

is in $SL_{2}(Z)$ , the Wronskian $W=e^{-\int Pdx}$ is single-valued. We assume as part

of our definition:
(iv) $W\in K(X)$ .
Let $\Lambda f=0$ be a K-equation with K-basis $\omega_{1}$ and $\omega_{2}$ . Consider the function

$\mathcal{J}=I^{0\omega_{1}}/\omega_{2}$,
$X_{0}\rightarrow^{\omega_{1}/\omega_{2}}\mathfrak{H}\rightarrow^{J}C$

where $J$ is the elliptic modular function on the upper half plane $\mathfrak{H}$ . This $\mathcal{J}$ is
a single-valued holomorphic function on $X_{0}\subset X$.

PROPOSITION II.1.2. $\mathcal{J}\in K(X)$ .
PROOF. This is an application of a result which aPpears in Kodaira [11] as

Theorem 7.3. We remark that the proof shows that where $\mathcal{J}$ has a $b^{th}$ order

pole, $b>0$ the local monodromy is conjugate in $SL_{2}(Z)$ to $\pm\left(\begin{array}{ll}1 & b\\0 & 1\end{array}\right)$ .

Thus to every K-equation $\Lambda f=0$ and K-basis $\omega_{1},$ $\omega_{2}$ we associate a rational
function $\mathcal{J}$ in $K(X)$ , which is necessarily non-constant. Notice that another

basis of solutions $\left(\begin{array}{l}\tilde{\omega}_{1}\\\tilde{\omega}_{2}\end{array}\right)=M\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$ with $M\in SL_{2}(Z)$ gives a K-basis yielding the

same $\mathcal{J}$ and equivalent monodromy representation, where $\left(\begin{array}{l}\tilde{\omega}_{1}\\\tilde{\omega}_{2}\end{array}\right)\rightarrow MM_{\gamma}M^{-1}\left(\begin{array}{l}\tilde{\omega}_{1}\\\tilde{\omega}_{2}\end{array}\right)$

under continuation around $\gamma\in\pi_{1}(X_{0})$ , with $M_{\gamma}$ being the monodromy of $\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$

around $\gamma$ . Likewise, multiplication by a scalar $\left(\begin{array}{ll}a & 0\\0 & a\end{array}\right)a\in C$ changes neither $\mathcal{J}$

nor the representation.
DEFINITION II.1.3. Two K-bases of a fixed K-equation, $\Lambda f=0$ , will be called

Z-equivalent if they differ, as above, by a matrix $M$ which is in $SL_{2}(Z)$ , scalar,
or a product thereof. This is the same as requiring that they give the same $\mathcal{J}$ .
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REMARK. If $\omega_{1},$ $\omega_{2}$ is a K-basis of the K-equation $\Lambda f=0$, then to each point
$x$ in some Zariski open subset $X_{0}$ of $X$ we can assign the lattice $L_{x}=\{m\omega_{1}(x)$

$+n\omega_{2}(x)$ with $m,$ $n\in Z$ } $\subset C$. This lattice is well-defined at $x\in X_{0}$ independent
of the analytic continuation of $\omega_{1},$ $\omega_{2}$–continuation giving rise only to automor-
phisms of $L_{x}$ . Further, Z-equivalence at most adjusts $L_{x}$ be a constant factor
of homothety. We can then construct an analytic family of elliptic curves over
$X_{0}$ with global section, functional invariant $\mathcal{J}=J(\omega_{1}/\omega_{2})$ , and homological invariant
$G$ isomorphic to the locally constant $Z\oplus Z$ sheaf associated to the monodromy
representation of $\Lambda$ given by $\omega_{1},$ $\omega_{2}$ . This family can be uniquely compactified
to a basic elliptic surface over $X$ (see Part III and also Neron [14] or Kodaira
[11]). The construction will depend only on $\Lambda$ and the Z-equivalence class of
the K-basis selected.

\S 2. Classification of $K$-equations and regularity.

Let $X$ be any base curve and $\mathcal{J}\in K(X)$ any non-constant rational function
on $X$. The problem is to produce a K-equation $\Lambda f=0$ with a K-basis $\omega_{1}$ and $\omega_{2}$

having $\mathcal{J}=J(\omega_{1}/\omega_{2})$ .
Consider first the $z$-sphere $P_{c}^{1}$ and the hypergeometric differential equation

(2.1) $\frac{d^{2}f}{dz^{2}}+\frac{1}{z}\frac{df}{dz}+\frac{31/144_{Z}-1/36}{z^{2}(z-1)^{2}}f=0$

The solution in terms of Riemann’s P-function is

$P\left\{\begin{array}{lll}0 & \infty & 1\\-1/6 & 0 & 1/4\\1/6 & 0 & 3/4\end{array}\right\}=z^{-1/6}(z-1)^{1/4}P\left\{\begin{array}{lll}0 & \infty & 1\\0 & 1/12 & 0\\1/3 & 1/12 & 1/2\end{array}\right\}$

which is seen to be a hypergeometric function. Thus at $z=0$ we have two

solutions

$\eta_{1}=z^{-1/6}(z-1)_{2}^{1/4}F_{1}(\frac{1}{12},$ $\frac{1}{12};\frac{2}{3}$ ; $z)$

$\eta_{2}=z^{1/6}(z-1)_{2}^{1/4}F_{1}(\frac{5}{12},$ $\frac{5}{12};\frac{4}{3}$ ; $z)$

which form a basis. We now let

$c=(2-\sqrt{3)}[\frac{\Gamma(11/12)}{\Gamma(7/12)}]^{2}\frac{\Gamma(2/3)}{\Gamma(4/3)}$

( $\Gamma$ the gamma function), and consider another basis of solutions at $z=0$
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$\Phi_{1}=e^{2\pi i/3}\eta_{1}+c\eta_{2}$

(2.2)
$\Phi_{2}=\eta_{1}-ce^{-\pi i/3}\eta_{2}$ .

The quotient of these solution $\Phi(z)=\Phi_{1}(z)/\Phi_{2}(z)$ can be regarded as a multivalued
function

$\Phi$

$P_{c}^{1}-\{0,1, \infty\}\rightarrow P_{c}^{1}$ .
However, $\Phi$ is an inverse of the elliptic modular function $J$ (Bateman [1]), that
is, $\tau=\Phi(J(\tau))$ for $\tau\in \mathfrak{H}$ the upper half plane. Hence $\Phi$ maps $P_{c}^{1}-\{0,1, \infty\}$ to

$\mathfrak{H}$ and $\Phi_{1},$ $\Phi_{2}$ form a K-basis of solutions for (2.1) which is then a K-equation.
REMARK. The monodromy representation of (2.1) is easily computed. Slit

the z-sphere from $\infty$ to $0$ along the negative real axis and then slit from $0$ to
1. A single-valued branch of the quotient of solutions on this slit sphere can
be selected to take values in the usual fundamental domain {$\tau\in \mathfrak{H}$ such that
$-1/2<{\rm Re}\tau<1/2,$ $|\tau|>1$ }. Continuation across these slits in the directions indi-
cated leads to the monodromy transformations shown (up to sign):

$-\uparrow-\cdot--\uparrow--\pm\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)\pm\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$

Taking $\gamma_{0},$ $\gamma_{1},$ $\gamma_{\infty}$

$Z_{0}$

$\infty$

as generators for $\pi_{1}(P_{c}^{1}-\{0,1, \infty\}, z_{0})$ , we have:

$\gamma_{\infty}\rightarrow\pm\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$

$\gamma_{0}\rightarrow\pm\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$

$\gamma_{1}\rightarrow\pm\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ .

However at $\infty$ the exponents of (2.1) are $0,0$ so the trace is $+2$ and at $0$ the
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exponents are $-1/6,1/6$ so the trace is 1. Thus

$\gamma_{\infty}\rightarrow\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$

$\gamma_{0}\rightarrow\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)$

$\gamma_{1}\rightarrow\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ .

The last because we must have

$\left(\begin{array}{ll}1 & 1\\-1 & 0\end{array}\right)\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ .

We return to the problem posed at the beginning of this section. $X$ will
be our base curve, $\mathcal{J}\in K(X)$ a non-constant rational function, and $x\in K(X)$ a
fixed parameter. We regard $\mathcal{J}$ as a map $\mathcal{J}:X\rightarrow P_{c}^{1}$ onto the sphere. Consider
the compositions $\Phi_{1}(\mathcal{J}),$ $\Phi_{2}(\mathcal{J})$ as multivalued holomorphic non-vanishing func-
tions on some appropriate Zariski open subset $X_{0}$ of $X$. They satisfy a differ-
ential equation easily computed to be:

(2.3) $\frac{d^{2}f}{dx^{2}}+\frac{(\frac{d\mathcal{J}}{dx})^{2}-\mathcal{J}\frac{d^{2}\mathcal{J}}{dx^{2}}df}{\mathcal{J}\frac{d\mathcal{J}}{dx}dx}+\frac{(\frac{d\mathcal{J}}{dx})^{2}(\frac{31}{144}\mathcal{J}-\frac{1}{36})}{\mathcal{J}^{2}(\mathcal{J}-1)^{2}}f=0$

which is precisely that of Part I ! Clearly

${\rm Im}\frac{\Phi_{1}(\mathcal{J})}{\Phi_{2}(\mathcal{J})}>0$ , $J(\frac{\Phi_{1}(\mathcal{J})}{\Phi_{2}(\mathcal{J})})=\mathcal{J}$

and

$\left(\begin{array}{l}\Phi_{1}(\mathcal{J})\\\Phi_{2}(\mathcal{J})\end{array}\right)-M_{\gamma}\left(\begin{array}{l}\Phi_{1}(\mathcal{J})\\\Phi_{2}(\mathcal{J})\end{array}\right)$

$M_{\gamma}\in SL_{2}(Z)$ under analytic continuation around $\gamma\in\pi_{1}(X_{0})$ . Note also that

$\frac{(\frac{d\mathcal{J}}{dx})^{2}-\mathcal{J}\frac{d^{2}\mathcal{J}}{dx^{2}}}{\mathcal{J}\frac{d\mathcal{J}}{dx}}=-\frac{d}{dx}\log\frac\frac{d\mathcal{J}}{dx,\mathcal{J}}$

so the Wronskian

$W=e^{-\int()dx}=-a_{\overline{x}}^{d}1_{t}g^{d^{\frac{f}{\ovalbox{\tt\small REJECT}^{x_{-}}}}}d\frac{d\mathcal{J}}{\frac{dx}{\mathcal{J}}}$ .
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$d/dx$

As $d/dx$ is a derivation $K(X)\rightarrow K(X)$ and $\mathcal{J}\in K(X)$ non-constant, we have
$W\in K(X)$ . Therefore (2.3) is a K-equation and:

THEOREM II.2.1. Let $X$ be any base curve and $\mathcal{J}\in K(X)$ non-constant. Then
there exists a K-equation $\Lambda f=0$ and a K-basis $\omega_{1},$ $\omega_{2}$ of its solutions such that

$J(\omega_{1}/\omega_{2})=\mathcal{J}$ . Those constructed above will be referred to as SK-equations, and
denoted by $\Lambda=\Lambda_{(g,1)}$ .

COROLLARY II.2.2. The monodromy rePresentation of any K-equation with
respect to a fixed K-basis of solutions is projectively equivalent (in $PSL_{2}(Z)$) to
that of the differential equation (2.3) above with apprOpriate $\mathcal{J}$ .

PROOF. It is obvious that $\mathcal{J}$ determines the projective monodromy in $PSL_{2}(Z)$

up to conjugation in $PSL_{2}(Z)$ .
COROLLARY II.2.3. The monodromy group $\Gamma\subset SL_{2}(Z)$ of a K-equation with

respect to a fixed K-basis of solutions has finite index in $SL_{2}(Z)$ .
PROOF. Obvious.
COROLLARY II.2.4. The homological invariant $G$ of an elliptic surface $E^{\pi}\rightarrow X$

thought of as a map $\pi_{1}(X_{0})\rightarrow SL_{2}(Z)$ has image of finite index in $SL_{2}(Z)$ .
PROOF. Follows from the results in Part I.
We will now determine all K-equations. Fix a K-equation $\Lambda f=0$ on $X$ with

K-basis $\omega_{1},$ $\omega_{2}$ such that $\mathcal{J}=J(\omega_{1}/\omega_{2})$ . Say

(2.4) $\Lambda f=\frac{d^{2}f}{dx^{2}}+P\frac{df}{dx}+Qf=0$ .

We also consider the SK-equation $\tilde{\Lambda}=\tilde{\Lambda}_{(g,1)}$

(2.5) $1f=\frac{d^{2}f}{dx^{2}}+\tilde{P}\frac{df}{dx}+\tilde{Q}f=0$

with solutions $\Phi_{1}(\mathcal{J}),$ $\Phi_{2}(\mathcal{J})$ . Let $X_{0}\subset X$ be a Zariski open set on which both
bases $\Phi_{1}(\mathcal{J}),$ $\Phi_{2}(\mathcal{J})$ and $\omega_{1},$ $\omega_{2}$ are holomorphic non-vanishing multivalued func-
tions. Select a base point $x_{0}\in X_{0}$ . By Corollary II.2.2 the monodromy repre-
sentations in $SL_{2}(Z)$ of $\Lambda,\tilde{\Lambda}$ with respect to the chosen K-bases are projectively
equivalent, that is, conjugate in $PSL_{2}(Z)$ . Altering $\omega_{1},$ $\omega_{2}$ to a Z-equivalent
basis if necessary, we can assume the projective representations $\pi_{1}(X_{0}, x_{0})\rightarrow$

$PSL_{2}(Z)$ are equal.
THEOREM II.2.5. There exists an algebraic function $\lambda$ on $X$ with $\lambda^{2}\in K(X)$

such that $\lambda\Phi_{1}(\mathcal{J})=\omega_{1}$ and $\lambda\Phi_{2}(\mathcal{J})=\omega_{2}$ , and therefore $\Lambda f=0$ is determined:

$P=\tilde{P}-\frac{d}{dx}$ log $\lambda^{2}\in K(X)$

(2.6)

$Q=\tilde{Q}-\tilde{P}\frac{d}{dx}$ log
$\lambda-\frac\frac{d^{2}\lambda}{dx^{2},\lambda}+2(\frac{}{\lambda}\frac{d\lambda}{dx})^{2}\in K(X)$

.
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PROOF. For every point $x$ near $x_{0}$ , the lattices $\tilde{L}_{x}=Z\Phi_{1}(\mathcal{J}(x))+Z\Phi_{2}(\mathcal{J}(x))$

and $L_{x}=Z\omega_{1}(x)+Z\omega_{2}(x)$ in $C$ are homothetic. So locally there is a function
$\lambda(x)$ holomorphic non-vanishing such that $\lambda(x)\tilde{L}_{x}=L_{x}$ . Suppose near $x_{0}$

$\lambda\Phi_{1}(\mathcal{J})=a\omega_{1}+b\omega_{2}$

(2.7)
$\lambda\Phi_{1}(\mathcal{J})=c\omega_{1}+d\omega_{2}$

with $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL_{2}(Z)$ . Now analytically continue around $\gamma\in\pi_{1}(X_{0}, x_{0})$ . If $\tilde{\lambda}$

denotes the continuation of $\lambda$, we have:

$\left(\begin{array}{ll}\tilde{\lambda} & 0\\0 & \tilde{\lambda}\end{array}\right)M_{\gamma}\left(\begin{array}{l}\Phi_{1}\\\Phi_{2}\end{array}\right)=\pm\left(\begin{array}{ll}a & b\\c & d\end{array}\right)M_{\gamma}\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$

where $\pm M_{\gamma}$ is the monodromy of $\Lambda,\tilde{\Lambda}$ (assumed projectively equal). Therefore

$\pm\left(\begin{array}{ll}a & b\\c & d\end{array}\right)M_{\overline{\gamma}}^{1}\left(\begin{array}{ll}a & b\\c & d\end{array}\right)M_{\gamma}\left(\begin{array}{ll}\tilde{\lambda} & 0\\0 & \tilde{\lambda}\end{array}\right)\left(\begin{array}{l}\Phi_{1}\\\Phi_{2}\end{array}\right)=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$

or by (2.7)

$\pm\left(\begin{array}{ll}a & b\\c & d\end{array}\right)M_{\overline{\gamma}}^{1}\left(\begin{array}{ll}a & b\\c & d\end{array}\right)M_{\gamma}\left(\begin{array}{l}\Phi_{1}\\\Phi_{2}\end{array}\right)=\left(\begin{array}{ll}\lambda/\tilde{\lambda} & 0\\0 & \lambda/\tilde{\lambda}\end{array}\right)\left(\begin{array}{l}\Phi_{1}\\\Phi_{2}\end{array}\right)$ .

This implies, as

$\pm\left(\begin{array}{ll}a & b\\c & d\end{array}\right)M_{\overline{\gamma}}^{1}(ca$ $db)^{-1}M_{\gamma}\in SL_{2}(Z)$ ,

that $\lambda/\tilde{\lambda}$ is a complex multiplication of $L_{x}$ for all $x$ near $x_{0}$ . But since $\mathcal{J}$ is
necessarily non-constant, the general fibre does not admit non-trivial complex

multiplication. So $\lambda/\tilde{\lambda}$ is identically $\pm 1$ , and in fact this requires $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)=\pm 1$ .
Therefore $\lambda^{2}$ is single-valued on $X_{0}$ .

One can compute that $\omega_{1}=\lambda\Phi_{1}(\mathcal{J})$ and $\omega_{2}=\lambda\Phi_{2}(\mathcal{J})$ then satisfy a differential
equation with $P$ and $Q$ as in (2.6). Computing the Wronskian gives $e^{-\int Pdx}=$

$e^{-\int\tilde{P}dx}\cdot\lambda^{2}$ up to a constant multiple. However, $e^{-\int Pdx}$ is the Wronskian $W$ of
$\Lambda$ and $ e^{-\int Pdx}=\frac{d\mathcal{J}/dx}{\mathcal{J}}\sim$ . Since we assumed $W\in K(X)$ , we have $\lambda^{2}\in K(X)$ .

REMARK. If we drop the assumption that $W$ is rational, we have then
classified all differential equations with the properties of $SL_{2}(Z)$ monodromy and
positivity, ${\rm Im}(\omega_{1}/\omega_{2})>0$ .

THEOREM II.2.6. Let $\Lambda f=0$ be a K-equation. Then $\Lambda$ has regular singular
points and essentially unipotent local monodromy.

PROOF. This may be checked directly from the expression (2.6) for $\Lambda$ .
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Alternatively, since we will show that the equation comes from geometry, we
could apply the Monodromy Theorem and the Regularity Theorem (Deligne [2])
to reach our conclusions.

Part III. Elliptic surfaces and $K$-equations

\S 1. Basic surfaces associated to a $K$-equation.

We fix a base curve $X$ and let $\Lambda f=0$ be a K-equation on $X$ with $\omega_{1},$ $\omega_{2}$ a
fixed K-basis for $\Lambda$ . We will associate to the triple $(\Lambda, \omega_{1}, \omega_{2})$ a unique basic
elliptic surface over $X$ with functional invariant $\mathcal{J}=J(\omega_{1}/\omega_{2})$ and homological
invariant $G$ equal to the monodromy representation for $\omega_{1},$ $\omega_{2}$ .

We begin with a number of observations and definitions. Suppose $\mathcal{J}\in K(X)$

is any non-constant function on $X$, and let $S$ be a finite set of points including
everywhere $\mathcal{J}=0,1,$ $\infty$ . We denote by $X_{0}$ the set $X-S$ . The function $\mathcal{J}$

naturally determines a projective representation $\pi_{1}(X_{0})\rightarrow PSL_{2}(Z)$ (see Corollary
II.2.2). Let $G$ be any $SL_{2}(Z)$ representation of $\pi_{1}(X_{0})$ projectively equivalent to
the above (conjugation by elements of $PSL_{2}(Z)$ ). Because of the preferred
choice of sign given by the representation of the SK-equation, $\Lambda_{(\mathcal{J}.1)}$ , we can
reduce $G$ to the data included in a map $\pi_{1}(X_{0})\rightarrow Z_{2}$ .

Let $\mathcal{F}(\mathcal{J}, G)$ denote the family of all elliptic surfaces (not necessarily alge-
braic) without exceptional curves of the first kind in the Pbres and free of
multiple singular fibres, having functional invariant $\mathcal{J}\in K(X)$ (assumed non-
constant) and homological invariant $G$ (see Part I, Section 1).

Now given $\mathcal{J}$ and a compatible $G$ , Kodaira (Kodaira [11]) constructs a uni-
que basic surface in $\mathcal{F}(\mathcal{J}, G)$ . We would like to perform such a construction,
given the triple $(\Lambda, \omega_{1}, \omega_{2})$ , within our framework of differential equations and
show that we obtain all basic surfaces from K-equations in this manner.

SuPpose given the triple $(\Lambda, \omega_{1}, \omega_{2})$ . Let $X_{0}\subset X$ be a Zariski open set on
which $\omega_{1},$ $\omega_{2}$ are holomorphic, non-vanishing. It is easy to construct an analytic
family of elliptic curves $E_{0}$ over $X_{0}$ (see Theorem III.2.6 for details) with a sec-
tion over $X_{0},$ $\mathcal{J}=J(\omega_{1}/\omega_{2})$ , and $G$ equal to the monodromy representation asso-
ciated to $\omega_{1},$ $\omega_{2}$ .

THEOREM III.1.3. $E_{0}$ over $X_{0}$ is algebraic. In fact, there is a unique basic
elliptic surface $E/X$ such that the diagram

$E$

section $(\downarrow X$

$0-E$
$\pi$ $\pi\{$

$0-X$
$)$ section
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commutes and preserves the section. $E/X$ will be the unique basic surface in the
family $\mathcal{F}(\mathcal{J}, G)$ where $\mathcal{J}$ is $J(\omega_{1}/\omega_{2})$ and $G$ is equal to the monodromy of $\omega_{1},$ $\omega_{2}$

over $X_{0}$ .
PROOF. Suppose that we can find a smooth algebraic compactification of

$E_{0}$ , that is, a complete smooth surface $E$ algebraic over $C$ so that the diagram

(1.1) section $(\downarrow EX$

$0-E$
$ 0\rightarrow X\downarrow$

$\pi^{-1}(X_{0})=E_{0}$$\pi$

commutes. We can assume $E$ has no exceptional curves of the first kind in the
fibres by blowing down. It is clear that the section extends to one from $X\rightarrow E$ ,

and that therefore $E$ has no multiple fibres and is the unique basic surface in
$\mathcal{F}(\mathcal{J}, G)$ .

In the event we find a complete but singular compactification $E$ as above
(1.1), we can apply resolution of singularities and arrive back in the smooth
case.

Thus given $(\Lambda, \omega_{1}, \omega_{2})$ it suffices to find some compactification of $E_{0}/X_{0}$ .
We remark that if $g\in K(X)$ then the differential equation $\Lambda_{g}$ satisfied by $g\omega_{1}$ ,
$g\omega_{2}$ is also a K-equation and $g\omega_{1},$ $g\omega_{2}$ is a K-basis for it with the same $\mathcal{J}$ and
same representation. Thus the triple $(\Lambda_{g}, g\omega_{1}, g\omega_{2})$ yields the same surface as
$(\Lambda, \omega_{1}, \omega_{2})$ a pri0ri over a possibly smaller set. $g$ is simply a harmless factor
of homothety on some open subset of $X_{0}$ .

By Theorem II.2.5 there is a $\lambda,$ $\lambda^{2}\in K(X)$ , so that $\Lambda$ is given by $\mathcal{J},$
$\lambda$ as in

that theorem. We indicate this by writing $\Lambda=\Lambda_{(ff,\lambda)}$ . Suppose $\lambda\in K(X)$ , then
by our remark above we can assume without loss of generality that $\lambda=1$ and
we are in the SK-case. Recall the family of elliptic curves over $P_{c}^{1}$ , which we
denote $E^{s}$ , as constructed in Part I, Section 4. We regard $\mathcal{J}=J(\omega_{1}/\omega_{2})$ as a map
$X\rightarrow P_{c}^{1}\mathcal{J}$ . We have

$E\rightarrow E^{s}$

$ XP\downarrow\underline{\mathcal{J}}\downarrow$

$c^{I}$

where $E=X\times E^{s}$ . $E$ may have singularities, but clearly over a suitable Zariski

open set of
$P_{CX}^{1}$

both $E$ and $E_{0}$ agree. We now resolve singularities and blow
down as per our remarks.

If $\lambda\not\in K(X)$ , then as $\lambda^{2}\in K(X),$ $\lambda$ determines a cover of $X$, call it $W$, of de-
gree two. Lifting $\Lambda$ back to $W$ yields a K-equation on $W$ which now differs
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from an SK-equation on $W$ by $\lambda\in K(W)$ . Thus we find ourselves in the fir $st$

case considered and we construct a basic elliptic surface $E_{W}$ over $W$. Now the
$\sigma$

involution $\sigma$ of $W$ over $X$ induces a map $E_{W}\rightarrow E_{W}$ also denoted $\sigma$ . We com-
pose this map with the natural involution on $E_{W}$ over $W$. Thus we have

(1.2)

Let $W_{0}$ be a Zariski open subset of $W$ and $X_{0}$ be a Zariski open subset of $X$

both chosen small enough so that $W_{0}=\pi^{-1}(X_{0})$ is \’etale over $X_{0}$ , and so that on
$X_{0},$

$\omega_{1},$ $\omega_{2}$ are holomorphic non-vanishing multi-valued. Let $w_{0}\in W_{0}$ and $t$ in the
fibre of $E_{W}$ over $w_{0}$ . The map $-1\circ\sigma$ sends $(w_{0}, t)$ to $(\sigma w_{0}, -t)$ where we
identify the fibres over $W_{0}$ and $\sigma w_{0}$ by $\sigma$ on $E_{W}$ and then involute. Thus we
see that the quotient of $E_{W}$ by this automorphism is a possibly singular surface
over $X$ which over $X_{0}$ is a family of elliptic curves with a section (as -lo $\sigma$

preserves the section of $E_{W}$ ), with functional invariant $\mathcal{J}$ , and with $G$ equal the
monodromy representation of $\omega_{1},$ $\omega_{2}$ . (The effect of involution is to account for
the effect of $\lambda.$ ) We now desingularize and blow down as per our remarks.

Thus to $(\Lambda, \omega_{1}, \omega_{2})$ we associate a unique basic surface. Obviously, if we
pass to a Z-equivalent basis we obtain the same surface. Further as pointed
out in the proof the triple $(\Lambda_{g}, g\omega_{1}, g\omega_{2}),$ $g\in K(X)$ gives the same surface.
(See Definition III.1.5 below).

Finally it remains to show that every basic surface arises in this manner.
Fixing $\mathcal{J}$ we have, as mentioned, a natural choice for lifting our projective

$(PSL_{2}(Z))$ representation to an $SL_{2}(Z)$ representation by using the SK-equation
with solutions $\Phi_{1}(\mathcal{J}),$ $\Phi_{2}(\mathcal{J})$ (see Chapter II, Section 2). The factor $\lambda$ allows us
to pass to a projectively equivalent representation. We must show that every
such representation arises via a $\lambda$ .

LEMMA III.1.4. Let $X_{0}\subset X$ be any Zariski open subset and let $\pi_{1}(X_{0})\rightarrow Z_{2}\rho$

be given. Then there exists an algebraic function with $\lambda^{2}$ rational whose mono-
dromy is the representation $\rho$ .

PROOF. We omit the proof–it is straightforward.
Thus as we run through all pairs $\mathcal{J},$

$\lambda$ we pick up all pairs $\mathcal{J},$ $G$ . There-
fore:

THEOREM III.1.5. Every basic surface arises from a K-equation.
PROOF. The pair $\mathcal{J},$ $G$ determines a representation of $\pi_{1}(X_{0})\rightarrow SL_{2}(Z)$ for
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a suitable Zariski open subset $X_{0}\subset X$. This representation must be projectively
equivalent to the monodromy representation of the SK-equation $\Lambda_{(\ovalbox{\tt\small REJECT}.1)}$ with solu-
tions $\Phi_{1}(\mathcal{J}),$ $\Phi_{2}(\mathcal{J})$ . The difference in signs can be adjusted for using the $\lambda$ of
the lemma. Thus the K-equation $\Lambda=\Lambda_{(ff.\lambda)}$ with K-basis $\omega_{1}=\lambda\Phi_{1}(\mathcal{J}),$ $\omega_{2}=\lambda\Phi_{2}(\mathcal{J})$

gives a triple $(\Lambda, \omega_{1}, \omega_{2})$ with $\mathcal{J}=J(\omega_{1}/\omega_{2})$ and monodromy representation $G$ .
We can then construct the basic elliptic surface via the method of Theorem III.1.3.

DEFINITION III.1.5. Two triples $(\Lambda, \omega_{1}, \omega_{2})$ and $(\tilde{\Lambda},\tilde{\omega}_{1},\tilde{\omega}_{2})$ will be called Z-
trivially equivalent if there exists a $g\in K(X)$ so that $\tilde{\Lambda}=\Lambda_{g}$ and $\tilde{\omega}_{1},\tilde{\omega}_{2}$ is Z-
equivalent to $g\omega_{1},$ $g\omega_{2}$ . This is an equivalence relation.

Theorem III.1.3 and Theorem III.1.5 enable us to construct a surjective map:

(1.3) triples $(\Lambda, \omega_{1}, \omega_{2})/Z$-trivial $equivalence\rightarrow^{\chi}$ basic surfaces.

THEOREM III.1.6. The map $\chi$ is injective and is therefore $a$ 1-1 correspOnd-
ence between the set of basic elliptic surfaces on $X$ (with $\mathcal{J}$ non-constant) and
the set of triples $(\Lambda, \omega_{1}, \omega_{2})$ modulo Z-trivial equivalence.

PROOF. Say (1, $(D_{1}, (i)_{2})$ and $(\Lambda, \omega_{1}, \omega_{2})$ give the same surface $E/X$. Then
$\mathcal{J}=J(\omega_{1}/\omega_{2})=J(\tilde{\omega}_{1}/\tilde{\omega}_{2})$ . So without loss of generality we may assume $\tilde{\omega}=\tilde{\omega}_{1}/\tilde{\omega}_{2}$

$=\omega_{1}/\omega_{2}=\omega$ . This insures the representations for $\omega_{1},$ $\omega_{2}$ and $\tilde{\omega}_{1},\tilde{\omega}_{2}$ are projec-
tively equal. Therefore, at least locally, there is a function $\lambda$ such that $\lambda\tilde{\omega}_{1}=\omega_{1}$

and $\lambda\tilde{\omega}_{2}=\omega_{2}$ . Comparing the Wronskians $W,\tilde{W}$ of $\Lambda,\tilde{\Lambda}$ respectively gives $\lambda^{2}\tilde{W}$

$=W$. It follows that $\lambda^{2}$ is rational. Alternatively since the monodromy repre-
sentations of $\tilde{\omega}_{1},\tilde{\omega}_{2}$ and $\omega_{1},$ $\omega_{2}$ are projectively equal, we must have

$\pm\left(\begin{array}{ll}\tilde{\lambda} & 0\\0 & \tilde{\lambda}\end{array}\right)\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\left(\begin{array}{l}(i)_{1}\\a_{2}\end{array}\right)=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$

after analytic $continuation-here\tilde{\lambda}$ is the continuation of $\lambda$ . Thus

$\pm\left(\begin{array}{ll}\tilde{\lambda} & 0\\0 & \tilde{\lambda}\end{array}\right)\left(\begin{array}{l}i)_{1}\\(i)_{2}\end{array}\right)=\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)=\left(\begin{array}{ll}\lambda & 0\\0 & \lambda\end{array}\right)\left(\begin{array}{l}(i)_{1}\\(i)_{2}\end{array}\right)$ .

Hence $\tilde{\lambda}=\pm\lambda$ , and $\lambda^{2}$ is therefore single-valued. The fa $ct$ that it is rational
then follows from the fact that $\Lambda,\tilde{\Lambda}$ have regular singular points, so that $\omega_{1},$ $\omega_{2}$

and $a_{1},$ $a_{2}$ satisfy appropriate growth estimates near the singular points. We
claim $\lambda\in K(X)$ . To show this, let $\rho,\tilde{\rho}$ be the $re$presentations $\pi_{1}(X_{0}, x_{0})\rightarrow SL_{2}(Z)$

associated to $\omega_{1},$ $\omega_{2}$ and $\tilde{\omega}_{1},$ $\Phi_{2}$ respectively. Since they give isomorphic locally
constant $Z\oplus Z$ sheaves on $X_{0}$ (namely $G$ ), they are conjugate by an element in
$Aut_{Z}(Z\oplus Z)=GL_{2}(Z)$ . One can show that this forces $\rho$ actually equal to $\tilde{\rho}$ and
it follows that $\lambda\in K(X)$ . This means $(\Lambda, \omega_{1}, \omega_{2})$ and $\tilde{\Lambda}(, a_{1}, ae_{2})$ are Z-trivially
equivalent.
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\S 2. $K$-equations and geometry.

In Part II we defined the notion of K-equation by requiring the existence
of a special basis of solutions. Of course many such bases exist in general; for
example Z-equivalent bases. In this section we will analyze all K-bases
of a fixed K-equation, and we will see that there may exist non-Z-equiv-
alent ones. This will allow us to determine when two elliptic surfaces $/X$

define the same flat vector bundle, or what is the same, when two elliptic sur-
faces give rise to equivalent $representations-equivalence$ being the usual equiv-
alence of two-dimensional complex representations.

Let $X$ be our base curve and $\Lambda f=0$ a K-equation on $X$ with K-basis $w_{1},$ $\omega_{2}$ .
We have $\mathcal{J}=J(\omega_{1}/\omega_{2})\in K(X)$ . Suppose that $\Lambda f=0$ has another K-basis of solu-
tions $\tilde{\omega}_{1},\tilde{\omega}_{2}$ with $\mathcal{J}=J(\tilde{\omega}_{1}/\tilde{\omega}_{2})\in K(X)$ . Fix a Zariski open subset $X_{0}$ of $X$ on
which both bases are holomorphic nonvanishing and fix a base point $x_{0}\in X_{0}$ .
We know that

(2.1) $M\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)=\left(\begin{array}{l}\tilde{\omega}_{1}\\\tilde{\omega}_{2}\end{array}\right)$

for some $M\in GL_{2}(C)$ , but due to the special conditions imposed on a K-basis,

additional conditions are imposed on $M$.
We first observe:
PROPOSITION III.2.1. The image of the multivalued map $\omega=\omega_{1}/\omega_{2}$ : $X_{0}\rightarrow \mathfrak{H}$ is

dense in $\mathfrak{H}$, the uPper half Plane.
PROOF. Clear.

We will feel free to pass from $\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$ or $\left(\begin{array}{l}\tilde{\omega}_{1}\\\tilde{\omega}_{2}\end{array}\right)$ to any Z-equivalent basis. This

is perfectly harmless, changing neither $\mathcal{J},\tilde{\mathcal{J}}$ nor the associated basic surfaces $E$ ,
$\tilde{E}$ over $X$ (see Part III, Section 1). The effect of such $a$ change will be to
allow arbitrary multiplication of $M$ on the left or right by scalars, elements of
$SL_{2}(Z)$ , or products thereof. So if $\Omega$ is the subgroup of $GL_{2}(C)$ generated by
scalars and $SL_{2}(Z)$ , we will be interested only in the equivalence class of $M$

modulo the double coset action of $\Omega$ on $GL_{2}(C)$ .
PROPOSITION III.2.2. $M$ has a representative in $SL_{2}(R)$ .
PROOF. As a linear fractional transformation $M$ must send the values of

$\omega=\omega_{1}/\omega_{2}$ which have positive imaginary part to the values of $\tilde{\omega}^{=}\delta_{1}/\delta_{2}$ which
also do. Further, as we approach a logarithmic singularity of $\Lambda$ in a sector
both $\omega$ and ( $\emptyset$ tend to a cusp’ on $R\cap\{\infty\}$ . It is clear then, using Proposition
III.2.1 and the fact the monodromy groups have finite index in $SL_{2}(Z)$ (Corollary

II.2.3), that $M\in PSL_{2}(R)$ . Thus $M\in SL_{2}(R)$ up to scalars.
There is one further condition on $M$, namely if $\Gamma$ is the image of $\sim_{c_{1}}4(X_{0}, x_{0})$
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in $SL_{2}(Z)$ corresponding to the representation for $\omega_{1},$ $\omega_{2}$ (the monodromy group),

then we must have

(2.2) $M\Gamma M^{-1}\subset SL_{2}(Z)$ .

This is because $M\Gamma M^{-1}$ should be the monodromy group fi for $\tilde{\omega}_{1},\tilde{\omega}_{2}$ . Of course
this holds if $ M\in\Omega$ , being nothing more than Z-equivalence.

We wish to extract more information about $M$ from condition (2.2). We

take $M\in SL_{2}(R)$ . Since $\Gamma\subset SL_{2}(Z)$ has Pnite index, the cosets $\Gamma\left(\begin{array}{ll}1 & h\\0 & 1\end{array}\right),$ $h\in Z$

cannot all be distinct. Thus $\left(\begin{array}{ll}1 & b\\0 & 1\end{array}\right)\in\Gamma$ for some $b>0,$ $b\in Z$ . If $M=\left(\begin{array}{ll}w & x\\y & z\end{array}\right)$ we
have:

$\left(\begin{array}{ll}w & X\\y & z\end{array}\right)\left(\begin{array}{ll}1 & b\\0 & 1\end{array}\right)\left(\begin{array}{ll}z & -x\\-y & w\end{array}\right)=\left(\begin{array}{ll}1-byw & bw^{2}\\-by^{2} & 1+byw\end{array}\right)\in SL_{2}(Z)$ .

Thus $w=r_{w}\sqrt{m_{w}}$ where $r_{w}\in Q$ and $m_{w}\in Z,$ $m_{w}>0$ and square free. Likewise
$y=r_{y}\sqrt{m_{y}}$ . If one of $w$ or $y$ is zero we may assume $m_{w}=m_{y}$ by taking $r_{w}$ or
$r_{y}=0$ . If $wy\neq 0$ , then $\sqrt{m_{w}}\sqrt{m_{y}}\in Q$ since $1-byw\in Z$, but both $m_{w}$ and $m_{y}$ are

positive square free, forcing $m_{w}=m_{y}=m$ . Now consider the cosets $\left(\begin{array}{ll}1 & 0\\h & 1\end{array}\right),$ $h\in Z$.
As above we have $z=r_{z}\sqrt{m^{\prime}}$ and $x=r_{x}\sqrt{m^{\prime}},$

$r_{z},$ $r_{x}\in Q$ and $m^{\prime}\in Z$ positive square
free. Thus

$M=\left\{\begin{array}{ll}r_{w}\sqrt{m} & r_{x}\sqrt{m^{\prime}}\\r_{y}\sqrt{m} & r_{z}\sqrt{m’}\end{array}\right\}$

but det $M=1$ by assumption, so $(r_{w}r_{z}-r_{y}r_{x})\sqrt{m}\sqrt{m^{\prime}}=1$ . Again it follows $m=$

$m^{\prime}$ , hence

(2.3) $M=(0\sqrt{m}\sqrt{m}0)\left(\begin{array}{ll}r_{w} & r_{x}\\r_{y} & r_{z}\end{array}\right)$

where

$\left(\begin{array}{ll}r_{w} & r_{x}\\r_{y} & r_{z}\end{array}\right)\in GL_{2}^{+}(Q)$ .

THEOREM III.2.3. $M$ has a representative in $GL_{2}^{+}(Q)$ , or after scalar adjust-
ment, in $M_{n}(Z)$ with the gcd of the entries being one, that is, a primitive integer
matrix of determinant $n$ .

So after passing to Z-equivalent bases

(2.4) $M\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)=\left(\begin{array}{l}\tilde{\omega}_{1}\\\tilde{\omega}_{2}\end{array}\right)$

with $M\in M_{n}(Z)$ . If $L_{x}$ is the lattice $\{m\omega_{1}(x)+n\omega_{2}(x), m, n\in Z\}\subset C$ and $L_{x}$ the
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similar lattice for $\tilde{\omega}_{1},\tilde{\omega}_{2}$ then
$\tilde{L}_{x}\subset L_{x}\subset C$ , $x\in X_{0}$ .

This means the fibres $E_{x}$ and $E_{x}$ are isogeneous, $C/\tilde{L}_{x}\rightarrow C/L_{x}$ , of degree $n$ .
Before investigating this phenomenon more closely we make several comments.

First if $M\in M_{n}(Z)$ but $M\not\in SL_{2}(Z)$ then clearly $\mathcal{J}\neq\tilde{\mathcal{J}}$. On the other hand
by Theorem II.2.5 there exist functions $\lambda,\tilde{\lambda}$ with $\lambda^{2},\tilde{\lambda}^{2}\in K(X)$ such that $\mathcal{J},$

$\lambda$

and $\tilde{\mathcal{J}},\tilde{\lambda}$ both express $\Lambda f=0$ using the formula of that result !
PROPOSITION III.2.4. If $\Gamma=SL_{2}(Z)$ then any two K-bases are Z-equivalent

and the associated $\mathcal{J}$ (and therefore $\lambda^{2}$ ) is unique.

PROOF. The proof is quite similar to that of Theorem III.2.3 using $\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$

and $\left(\begin{array}{ll}1 & 0\\1 & 1\end{array}\right)$ . The proposition being equivalent to the statement that the only

matrices $M\in SL_{2}(R)$ with $MSL_{2}(Z)M^{-1}\subset SL_{2}(Z)$ are already in $SL_{2}(Z)$ .
DEFINITION III.2.5. We will refer to the relation between K-bases discussed

above as Q-equivalence since the representations into $SL_{2}(Z)$ are conjugate by
an element of $GL_{2}^{+}(Q)$ . C-equivalence or just equivalence will be the usual
equivalence of two-dimensional complex representations.

We now wish to prove:
THEOREM III.2.6. Let $\Lambda f=0$ be a K-equation on $X$ with two K-bases $\omega_{1},$ $\omega_{2}$

and $a_{1},$ $a_{2}$ related by $M\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)=\left(\begin{array}{l}(i)_{1}\\(i)_{2}\end{array}\right)$ with $M\in M_{n}(Z)$ and primitive. Then there

is a rational map $\phi$ of degree $n$ from the basic elliptic surface $\tilde{E}$ associated to
$(_{A}I, (i)_{1},$ $(i)_{2})$ to the basic elliptic surface $E$ associated to $(\Lambda, \omega_{1}, \omega_{2})$ which over
some Zariski open subset $X_{0}\subset X$ is a fibre by fibre isogeny. Hence the diagrams

$\tilde{E}\underline{\phi}E$ $\tilde{E}_{0}\rightarrow^{\phi}E_{0}$

(2.5) $\tilde{\pi}\searrow\int_{\pi}$

and
$\tilde{\pi}\backslash $

$\int_{\pi}$

X $X_{0}$

where $\tilde{E}_{0}=\tilde{\pi}^{-1}(X_{0}),$ $E_{0}=\pi^{-1}(X_{0})$ and $\phi$ is regular on $\tilde{E}_{0}$ . Thus $\phi$ gives an isogeny
of the generic fibres over $K(X)$ of degree $n$ .

PROOF. By passage to Z-equivalent bases, we may take $M=\left(\begin{array}{ll}n & 0\\0 & 1\end{array}\right)$ (see

Lang [13] p. 51). Let $X_{0}\subset X$ be a Zariski open subset on which both bases are
holomorphic non-vanishing. Let $U_{0}$ be the universal cover of $X_{0}$ and $\pi_{1}(X_{0})$ the
fundamental group acting as a group of covering translations, $\gamma(\tau(u))=(\gamma\tau)(u)$ ,
$u\in U_{0}$ and $\gamma,$ $\tau\in\pi_{1}(X_{0})$ . Also $\pi_{1}(X_{6})$ acts on $\omega(u)=\omega_{1}(u)/\omega_{2}(u)$ by

$\omega(u)\rightarrow M_{\gamma}\omega(u)=\frac{a_{\gamma}\omega(u)+b_{\gamma}}{c_{\gamma}\omega(u)+d_{\gamma}}$
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where $\gamma\in\pi_{1}(X_{0})$ and $M_{\gamma}$ is the monodromy matrix. Let $f_{\gamma}(u)=(c_{\gamma}\omega(u)+d_{\gamma})^{-1}$

then $f_{\gamma\beta}(u)=f_{\gamma}(\beta u)f_{\beta}(u),$ $\gamma,$ $\beta\in\pi_{1}(X_{0})$ . For every triple $(\gamma, n_{1}, n_{2}),$ $\gamma\in\pi_{1}(X_{0})$,
$n_{1},$ $n_{2}\in Z$ define an automorphism $g(\gamma, n_{1}, n_{2})$ of $U_{0}\times C$ by

$g(\gamma, n_{1}, n_{2})$

$(u, t)\rightarrow(\gamma u, f_{\gamma}(u)(t+n_{1}\omega(u)+n_{2}))$ .
We have $g(\gamma, n_{1}, n_{2})g(\beta, m_{1}, m_{2})(u, t)=g(\gamma\beta, a_{\beta}n_{1}+c_{\beta}n_{2}+m_{1}, b_{\beta}n_{1}+d_{\beta}n_{2}+m_{2})$

where

$M_{\beta}=\left(\begin{array}{ll}a_{\beta} & b_{\beta}\\c_{\beta} & d_{\beta}\end{array}\right)$

is the monodromy matrix around $\beta$ . The energetic reader can check that this
set of automorphisms is actually $a$ group $\mathcal{G}$ with this composition law. Its ac-
tion is proper discontinuous fixed point free, so that the quotient $U_{0}\times C/\mathcal{G}$ is a
compl$ex$ manifold which is clearly a family of elliptic curves over $X_{0}$ locally
given by the lattice $\omega(u),$ $1$ or $w_{1}(u),$ $\omega_{2}(u)$ .

Let $\gamma\in\pi_{1}(X_{0})$ then under continuation $u\rightarrow\gamma u,$ $w(u)\rightarrow M_{\gamma}\omega(u),$ $1\rightarrow 1$ , but the
fibre at $u$ is identified with the fibre at $\gamma u$ via the factor of homothety
$(c_{\gamma}\omega(u)+d_{\gamma})^{-1}$ . Thus $M_{\gamma}\omega(u)$ identifies with $a_{\gamma}\omega(u)+b_{\gamma}$ and 1 identiPes with
$c_{\gamma}\omega(u)+d_{\gamma}$ so that $M_{\gamma}$ is the monodromy representation $and/or$ homological in-
variant about $\gamma$ of this family of elliptic curves over $X_{0}$ . It is clear that this

$\pi$

family is $E_{0}/X_{0}$ where $E\rightarrow X$ is the basic surface associated to $(\Lambda, \omega_{1}, \omega_{2})$ and
$E_{0}=\pi^{-1}(X_{0})$ . Similarly we construct $\tilde{E}_{0}$ over $X_{0}$ . The above construction is
well-known (Kodaira [11]).

We now define $\phi$ . Consider the identity map $U_{0}\times C\rightarrow U_{0}\times C$. We will show
that this map yields a well-defined analytic map $\phi:\tilde{E}_{0}\rightarrow E_{0}$ . Let $\tilde{g}(\gamma, n_{1}, n_{2})$ be
one of the automorphisms used above in constructing $\tilde{E}_{0}$ . We have

$(u, t)\in U_{0}\times C$ $(u, t)\in U_{0}\times C$

$(\gamma u, f_{\gamma}(u)(t+n_{1}\tilde{\omega}(u)+n_{2}))\in U_{0}\times C\downarrow-(\gamma u,\tilde{f}_{\gamma}(u)(t+n_{1}\tilde{\omega}(u)+n_{2}))\in U_{0}\times C$

.

It suffices to find $g(\gamma, m_{1}, m_{2})$ such that

$g(\gamma, m_{1}, m_{2})(u. t)=(\gamma u,\tilde{f}_{\gamma}(u)(t+n_{1}\tilde{\omega}(u)+n_{2}))$ .

Now let $m_{1}=n_{1}n$ and $m_{2}=n_{2}(M=\left(\begin{array}{ll}n & 0\\0 & 1\end{array}\right))$ . We are reduced to checking:

$(\gamma u, f_{\gamma}(u)(t+n_{1}n\omega(u)+n_{2}))=(\gamma u, f_{\gamma}(u)(t+n_{1}\tilde{\omega}(u)+n_{2}))$ .
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But $\left(\begin{array}{ll}n & 0\\0 & 1\end{array}\right)\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)=\left(\begin{array}{l}\tilde{\omega}_{1}\\\tilde{\omega}_{2}\end{array}\right)$ so $n\omega(u)=\tilde{\omega}(u)$ . Thus it remains to check $f_{\gamma}(u)=\tilde{f}_{\gamma}(u)$ .
Let

$M_{\gamma}=\left(\begin{array}{ll}a_{\gamma} & b_{\gamma}\\c_{\gamma} & d_{\gamma}\end{array}\right)$

be the monodromy around $\gamma$ for $\omega_{1},$ $W_{2}$ , then

$MM_{\gamma}M^{-1}=\left(\begin{array}{lll} & a_{\gamma} & bn_{\gamma}\\\frac{1}{n} & c_{\gamma} & d_{\gamma}\end{array}\right)=\left(\begin{array}{ll}a_{\gamma} & 5_{\gamma}\\\delta_{\gamma} & d_{\gamma}\end{array}\right)$

is the monodromy of $\tilde{\omega}_{1},\tilde{\omega}_{2}$ . Finally, we see that $f_{\gamma}(u)=(c_{\gamma}\omega(u)+d_{\gamma})^{-1}=$

$((c_{\gamma}/n)n\omega(u)+d_{\gamma})^{-1}=\tilde{f}_{\gamma}(u)$ . Hence we have an analytic map

which is an isogeny of degree $n$ fibre by fibre.
Let $\tilde{K}_{0}\subset\tilde{E}_{0}$ be the “kernel” of $\phi$ , that is, if $s$ denotes the section $s:X_{0}\rightarrow E_{0}$ ,

$\tilde{K}_{0}=\phi^{-1}(s(X_{0}))$ . It consists of exactly $n$ points in each fibre of $\tilde{E}_{0}$ over $X_{0}$ .
Now $\tilde{K}_{0}$ is a closed algebraic subvariety of $\tilde{E}_{0}$ because $\tilde{K}_{0}=\tilde{E}_{0}\cap\tilde{K}$ where $\tilde{K}$ is
the union of the closure of $\tilde{K}_{0}$ in $\tilde{E}$ and all the fibres of $\tilde{E}$ over the points in
$X-X_{0}$ . $\tilde{K}$ is obviously closed in $\tilde{E}$ which is a complete smooth surface (hence

projective) and so by Chow’s Theorem $\tilde{K}$ is algebraic. Also $\tilde{E}_{0}\subset\tilde{E}$ is Zariski
open, so that $\tilde{K}_{0}=\tilde{E}_{0}\cap\tilde{K}$ is algebraic.

Clearly $\tilde{K}_{0}$ is an \’etale cover of $X_{0}$ (not necessarily connected). The generic
fibre $\tilde{K}_{0}^{gen}$ ,

$\tilde{K}_{0}^{gen}\rightarrow\tilde{K}_{0}$

$\acute{e}tale\downarrow$ $\downarrow\acute{e}tale$

Spec $K(X)\rightarrow X_{0}$

is therefore isomorphic to Spec $(\bigoplus_{i=1}^{r}K_{i})$ where each $K_{i}$ is $a$ finite separable field

extension of $K(X)$ with $\sum_{i=1}^{r}[K_{i} : K(X)]=n$ . We also have the diagram
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\langle 2.6)

$\tilde{\pi}$

where $Eg^{e}$“ is the generic fibre of $\tilde{E}_{0}\rightarrow X_{0}$ which is an elliptic curve over
$K(X)$ , the section furnish a $K(X)$-rational point. (It is of course just $\tilde{E}_{0}^{gen}.$ ) By
the universal property of Pbre products in the category of schemes the diagram
(2.6) can be completed with a map $\psi$ so that the top square is a Pbre product.
Thus $\tilde{K}_{0}$ cuts out a divisor on the generic curve $\tilde{E}_{0}^{gen}$ over $K(X)$, geo-
metrically (that is, over an algebraic closure of $K(X)$ ) consisting of $n$ points
each taken with multiplicity one. Moreover $\psi$ is a closed immersion over
Spec $K(X)$ , so it exhibits $\tilde{K}_{0}^{gen}$ as a closed subscheme (reduced) of $\tilde{E}_{0}^{gen}$ rational
over $K(X)$ . In addition, $\tilde{K}_{0}$ can be regarded as a group scheme over $X_{0}$ . This
is because $\tilde{E}_{0}$ is a group scheme over $X_{0}$ and

$\tilde{s}:X_{0}-\tilde{K}_{0}\subset\tilde{E}_{0}$

$\tilde{E}_{0^{\times}X_{0},\uparrow}\tilde{E}_{0}\rightarrow\tilde{E_{0}\uparrow}$

$\tilde{K}_{0X_{0}}\times\tilde{K}_{0}^{----\yen}\tilde{K}_{0}$

the section, multiplication, and inverse all descend to $\tilde{K}_{0}$ since they do analytically.
We finally conclude that this divisor on $\tilde{E}_{0}^{gen}$ which we identify with $\tilde{K}_{0}^{gen}$

is a closed algebraic subgroup of $\tilde{E}_{0}^{gen}$ rational over $K(X)$ . We now apply the
following result (Weil [24]): If $G$ is an algebraic group defined over a field $K$

and $H$ is a closed normal subgroup also defined over $K$ then $G/H$ can be given

the structure of an algebraic group over $K$ and the quotient map $ G\rightarrow G/H\phi$

will

be defined over $K$. It now follows that our map
$\tilde{E}_{0}\rightarrow E_{0}\phi$ over $X_{0}$ is algebraic.

To elaborate further on this result, let $G,\tilde{G}$ be the homological invariants
of $E,\tilde{E}$ respectively. They are locally constant $Z\oplus Z$ sheaves over $X_{0}$ . Let

$\mathfrak{f},$ $\sim \mathfrak{f}$ be the normal bundles of the sections $s(X),$ $s\sim(X)$ in $E,\tilde{E}$ viewed as line
bundles on $X$ restricted to $X_{0}$ (Kodaira [12]). We have the diagram
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$ 0-\tilde{G}-|\sim$

$ M’\downarrow$ $\downarrow\cong$

$0-G\rightarrow f$

$M\in M_{n}(Z)$ induces $M$ ’

of sheaves of abelian groups over $X_{0}$ . Note that $G,\tilde{G}$ when tensored with $C$

(actually $Q$) become isomorphic. This is because over $C$ they are the sheaf of
flat sections of $\Lambda$ . The isomorphism $\sim|\cong f$ being induced by $\phi$ which is an etale
morphism of $\tilde{E}_{0}$ to $E_{0}$ mapping section to section. Taking kernels and cokernels
yields

$0$ $0$ $A$

$0-\tilde{G}\downarrow\rightarrow\sim\downarrow f\rightarrow\tilde{E}_{0}\downarrow\rightarrow 0$

$ M’\downarrow$ $\downarrow\cong$ $\downarrow\phi$

$0\rightarrow G\rightarrow T-E_{0}-0$

$\downarrow$ $|$ $\downarrow$

A $0$ $0$

where $A$ is a locally constant $Z/nZ$ sheaf over $X_{0}$ . This diagram can actually
$M$’

be used to construct $\phi$ . The map $\tilde{G}\rightarrow G$ induces $\tilde{G}\otimes_{Z}R\rightarrow G\otimes_{Z}R$ which is an
isomorphism $\sim \mathfrak{s}\rightarrow \mathfrak{s}$ as rank two real analytic bundles, however locally it is C-
analytic ( $\phi$ exists locally). Taking cokernels as families of Lie groups yields $\phi$ .

Without going into detail, we will show how to find an example of a K-
equation with two K-bases which are not Z-equivalent. Consider the principal
congruence subgroup

$\Gamma(2)=\{M\in SL_{2}(Z),$ $M\equiv\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ mod $2\}$

and the group

$\Gamma_{0}(4)=\{M\in SL_{2}(Z),$ $M=\left(\begin{array}{ll}a & b\\c & d\end{array}\right),$ $c\equiv 0$ mod $4\}$ .

Let $M=\left(\begin{array}{ll}2 & 0\\0 & 1\end{array}\right)$ then

$\left(\begin{array}{ll}1/2 & 0\\0 & 1\end{array}\right)\Gamma(2)\left(\begin{array}{ll}2 & 0\\0 & 1\end{array}\right)=\Gamma_{0}(4)$ .

It will then be enough to produce a K-equation with some K-basis having mono-
dromy group $\Gamma(2)$ . Such equations can be found. (Stiller [22]).

REMARK. In general the rational map $\phi$ of Theorem III.2.6 does not extend
to a regular map on all of $\tilde{E}$ . Also, this result gives a great deal of informa-
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tion about the torsion points on the generic elliptic curve. For example if the
monodromy is $SL_{2}(Z)$ , then using Proposition III.2.4, we see that there are no
such torsion points.

DEFINITION III.2.7. Two K-equations $\Lambda$ and $\tilde{\Lambda}$ will be called trivially-
equivalent if there exists $g\in K(X)$ such that the solutions of $\tilde{\Lambda}$ are $g$ times
those of $\Lambda$ .

Recall the map $\chi$ of Chapter III, Section 1. We have

$\frac{trip1es(\Lambda,\omega_{1},\omega_{2})}{Z- trivia_{I}1equiva1ence,surjective}$

$\rightarrow^{1-1\chi}$ basic

$surfaces\downarrow surjective$

K-equations $\Lambda$

$-------\rightarrow\tilde{\chi}\underline{basic}$surfaces

trivial equivalence generic isogeny

The results of this section yield the map $\tilde{\chi}$ which is surjective.

\S 3. More on $K$-equations and geometry.

In the previous section we defined a map $\tilde{\chi}$ from the set of K-equations,

$\Lambda f=\frac{d^{2}f}{dx^{2}}+P\frac{df}{dx}+Qf=0$ ,

modulo trivial equivalence to the set of basic elliptic surfaces over $X$ modulo
generic isogeny. We have shown that $\tilde{\chi}$ is surjective and will show it is injec-
tive !

Suppose $\Lambda,\tilde{\Lambda}$ are two K-equations which give generically isogeneous basic
elliptic surfaces. This makes sense since possible choices of K-bases for $\Lambda,\tilde{\Lambda}$

lead only to generically isogeneous surfaces. We therefore choose K-bases and
get basic surfaces $E,\tilde{E}$ and a rational map

$\tilde{E}\frac{\phi}{\backslash \tilde{\pi}\int}E\pi$

$X$

which is a regular fibre by fibre isogeny over some Zariski open subset $X_{0}$ of
X. Now $\phi$ induces an injection $H_{1}(\tilde{E}_{x}, Z)\rightarrow H_{1}(E_{x}, Z)$ of the homology of the
fibres $\tilde{E}_{x},$

$E_{x}$ over $x\in X_{0}$ . The result is an inclusion $\tilde{G}\rightarrow G$ of homological

invariants over $X_{0}$ as sheaves of abelian groups. After tensoring with $Q$ (or

$C)$ the representations become equal. Thus:
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THEOREM III.3.1. Two K-equations which give generically isogeneous surfaces
have the same $monodromy/C$ (or $Q$) and give the same flat vector bundle over
some Zariski open subset of $X$.

Now suPpose we are given two K-equations $\Lambda,\tilde{\Lambda}$ with the same monodromy
over $C$, that is, over some Zariski open subset $X_{0}$ of $X$ both $\Lambda$ and $\tilde{\Lambda}$ determine
the same flat vector bundle. Since these are K-equations we get $re$presentations

$\rho:\pi_{1}(X_{0}, x_{0})\rightarrow SL_{2}(Z)$

(3.1)
$\tilde{\rho}$ : $\pi_{1}(X_{0}, x_{0})\rightarrow SL_{2}(Z)$

$x_{0}\in X_{0}$ a base point, with global groups $\Gamma,\tilde{\Gamma}\subset SL_{2}(Z)$ respectively. Because
these representations are equivalent there is an $M\in GL_{2}(C)$ such that $M\rho(\gamma)M^{-1}$

$=\tilde{\rho}(\gamma)$ for every $\gamma\in\pi_{1}(X_{0}, x_{0})$ . We can take $M$ in $SL_{2}(C)$ , and we must have
$M\Gamma M^{-1}\subset SL_{2}(Z)$ .

LEMMA III.3.2. We can find $M\in GL_{2}^{+}(Q)$ which conjugates $\rho$ into $\tilde{\rho}$ .
PROOF. Tbe first part of this argument is virtually identical to that of

Theorem III.2.3 where we assumed $M\in SL_{2}(R)$ . Allowing $M\in SL_{2}(C)$ leads to

$M=(0\sqrt{m}\sqrt{m}0)\left(\begin{array}{ll}r_{w} & r_{x}\\r_{y} & r_{z}\end{array}\right)$

with $m$ a square free integer positive or negative and

$\left(\begin{array}{ll}r_{w} & r_{x}\\r_{y} & r_{z}\end{array}\right)\in GL_{2}(Q)$

with determinant $1/m$ . We will show that the case $m<0$ really cannot occur
for the representations we have considered. Some caution is in order: given a
K-basis $\omega_{1},$ $\omega_{2}$ we obtain a specific map $\rho:\pi_{1}(X_{0}, x_{0})\rightarrow SL_{2}(Z)$ once a base point

$x_{0}\in X_{0}$ and branches $\omega_{1},$ $\omega_{2}$ are selected. Now obviously conjugation by $\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$

yields another map $\eta:\pi_{1}(X_{0}, x_{0})\rightarrow SL_{2}(Z)$ . Over $C,$
$\rho$ and $\eta$ are viewed as

equivalent. But clearly $\eta$ does not arise from a K-basis since ${\rm Im}(w_{2}/\omega_{1})<0$ not
$>0$ . Since in our situation both $\rho$ and $\tilde{\rho}$ arise from K-bases, this positivity
will save us. Namely, without loss of generality, we can assume that around

some point $\tilde{\rho}$ gives $\pm\left(\begin{array}{ll}1 & b\\0 & 1\end{array}\right),$ $b>0$ , see Proposition II.1.2. (Note $\left(\begin{array}{ll}1 & b\\0 & 1\end{array}\right)$ occurs

for fibre type $I_{b}$ and $\left(\begin{array}{ll}-1 & -b\\0 & -1\end{array}\right)$ occurs for fibre type $I_{b}^{*}$ , see Kodaira [11]). The

main point here is that $b$ is positive, being the order of the pole of $\tilde{\mathcal{J}}$ . If $m<0$

then let

$N=\left(\begin{array}{ll}r_{w} & r_{x}\\r_{y} & r_{z}\end{array}\right)\in GL_{2}^{-}(Q)$ .



228 P. F. STILLER

We have
$N\rho(\gamma)N^{-1}=\tilde{\rho}(\gamma)$ .

Let $N^{*}=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)N\in GL_{2}^{+}(Q)$ . We now pass to a Q-equivalent basis for $\rho$ , that

is, if $\omega_{1},$ $\omega_{2}$ is the K-basis of $\Lambda$ giving $\rho$ take the basis $N^{*}\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)$ , which is

another K-basis of $\Lambda$ , corresponding to a generically isogeneous surface, by the
results of Section 2 above. Note we have $SL_{2}(Z)$ monodromy as

$\rho^{n_{\sim}^{z}w}(\gamma)=N^{*}\rho(\gamma)N^{*-1}=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)\tilde{\rho}\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)\in SL_{2}(Z)$ .

Our assumption on $\tilde{\rho}$ means that around some point we have:

$\rho^{new}(\gamma)=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)\left(\begin{array}{ll}\pm 1 & \pm b\\0 & \pm 1\end{array}\right)\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)=\pm\left(\begin{array}{ll}1 & 0\\b & 1\end{array}\right)$ , $b>0$ .

We conjugate by $\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ to see what sort of translation this is

$\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)\left(\begin{array}{ll}\pm 1 & 0\\\pm b & \pm 1\end{array}\right)\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)=\pm\left(\begin{array}{ll}1 & -b\\0 & 1\end{array}\right)$ .

However $\rho^{new}$ is given by a K-basis. This contradicts the proof of Proposition
II.1.2 where it is shown that at $a$ parabolic point the local matrix is a positive
translation.

We again take two K-equations $\Lambda,\tilde{\Lambda}$ with K-bases $\omega_{1},$ $\omega_{2}$ and $\tilde{\omega}_{1},\tilde{\omega}_{2}$ deter-
mining basic surfaces $E,\tilde{E}$ and maps $\rho,\tilde{\rho}$ : $\pi_{1}(X_{0}, x_{0})\rightarrow SL_{2}(Z)$ which we assume
yield equivalent representations over $C$ and hence over $Q$ (by an element of
$GL_{2}^{+}(Q))$ as the lemma shows.

We wish to prove:
THEOREM III.3.3. Two K-equations $\Lambda,$ ff have the same monodromy over $C$

(or $Q$) if and only if they corresPond to generically isogeneous basic surfaces.
PROOF. If the equations correspond to generically isogeneous basic surfaces,

then by Theorem III.3.1 they have the same monodromy. SuPpose conversely
that they have the same monodromy. Without loss of generality, using Lemma
III.3.2, we can choose K-bases of $\Lambda,\tilde{\Lambda}$ , call them $\omega_{1},$ $\omega_{2}$ and $\tilde{\omega}_{1},\tilde{\omega}_{2}$ respectively,
so that the maps $\rho,\tilde{\rho}$ : $\pi_{1}(X_{0}, x_{0})\rightarrow SL_{2}(Z)$ are equal. Lemma III.3.4 below then
shows that $\omega_{1}/\omega_{2}=\tilde{\omega}_{1}/\tilde{\omega}_{2}$ , hence $\mathcal{J}=J\circ\omega_{1}/\omega_{2}$ and $\tilde{\mathcal{J}}=I^{\circ_{\tilde{\omega}_{1}}}/\tilde{\omega}_{2}$ are equal. Now if
$\lambda$ were not in $K(X)$ then for some path $\gamma\in\pi_{1}(X_{0}, x_{0})$ we would have $\lambda$ continu-
ing to $-\lambda$ . This would force $\rho(\gamma)=-\tilde{\rho}(\gamma)$ a contradiction. This means that
$\lambda\in K(X)$ and the results of Part III, Section 1 show that the surfaces are iso-
morphic over $X$.
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LEMMA III.3.4. Let $X$ be any complete smooth curve $/C$ and $suPPose$ we are
given two multivalued holomorphic non-constant functions $\omega,$

$(i);X_{0}\rightarrow \mathfrak{H}$ where
$X_{0}\subset X$ is some Zariski open set and $\mathfrak{H}$ is the upper half Plane. We assume that
a base Point $x_{0}\in X_{0}$ and branches of $\omega,$

$(i)$ have been chosen so that analytic $con-$

tinuation leads to maPs $\rho,\tilde{\rho}$ : $\pi_{1}(X_{0}, x_{0})\rightarrow PSL_{2}(Z)$ which are equal. Then $\omega=\tilde{\omega}$ .
PROOF. Clearly $\omega,\tilde{\omega}$ are the quotient of solutions (K-bases) of some K-

equations $\Lambda,\tilde{\Lambda}$ . We assume first that the monodromy group fi which is the
image of $\pi_{1}(X_{0}, x_{0})$ in $PSL(Z)$ , has no elliptic elements. Thus $\omega,\tilde{\omega}$ have only
parabolic local monodromy. Since they have the same monodromy we can
choose $X_{0}$ to be $X$ minus these points with parabolic monodromy. Let $\Pi\subset$

$PSL_{2}(R)$ serve to uniformize $X_{0}$ .

$(Note\#(X-X_{0})\geqq\{13$ $otherwiseifX=P_{c}^{1}.)$

We have

where the vertical maps are covering maps and $\sigma,\tilde{a}$ are maps from $X_{0}$ to the
modular curve $C=\mathfrak{H}/F$. Note that $\sigma,\tilde{\sigma}$ extend to maps from $X$ to $C$ the com-
pactification of $C_{0}$ . The missing points $X-X_{0}$ are precisely the points mapping
to the cusps of $C$ under either $\sigma$ or $\tilde{\sigma}$ . Thus $\sigma,\tilde{\sigma}$ are Proper surjective and it
is easy to see that $\omega,\tilde{\omega}$ are also surjective as maps $\mathfrak{H}\rightarrow \mathfrak{H}$ . Now let $\gamma\in\pi_{1}(X_{0}, x_{0})$

lifting to $a$ path $\phi$ from $h_{0}$ to $h_{1}$ on $\mathfrak{H}$ the universal cover. Consider the paths
$\omega(\phi)$ and $\tilde{\omega}(\phi)$

from $\omega(h_{0})$ to $p(\gamma)\omega(h_{0})$ and $\tilde{\omega}(h_{0})$ to $\rho(\gamma)_{\tilde{\omega}}(h_{0})$ (as $\rho=\tilde{\rho}$ ) respectively. Let $\alpha$ be
a path from $\omega(h_{0})$ to $\tilde{\omega}(h_{0})$ and $\rho(\gamma)\alpha$ its translate by $\rho(\gamma)$ from $\rho t\gamma$ ) $\omega(h_{0})$ to
$\rho(\gamma)a(h_{0})$ . Using $\alpha$ projected to $C_{0}$ we have
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where $c_{0}=\sigma(x_{0})$ and $\tilde{c}_{0}=\tilde{\sigma}(x_{0})$ . It follows that

commutes and that $\sigma,\tilde{\sigma}$ : $X\rightarrow C$ are homotopic. They thus induce the same map
on homology

$H_{1}(X, Z)\rightarrow H_{1}\sigma_{*},\tilde{a}_{*}(C, Z)$ .
Let $\Omega$ be any differential of the first kind on $C$, then $\sigma^{*}(\Omega)=\tilde{\sigma}^{*}(\Omega)$ since for
any class $\gamma\in H_{1}(X, Z)$

$\int_{\gamma}\sigma^{*}(\Omega)=\int_{\sigma_{*}(\gamma)}\Omega=\int_{\sigma_{X}(\gamma)}\sim\Omega=\int_{\gamma}\tilde{\sigma}^{*}(\Omega)$ .

We consider four cases:
Case 1. $g\geqq 2$ and $C$ not hyperelliptic then using the canonical embedding

of $C$ shows that $a=\tilde{\sigma}$ .
Case 2. $g\geqq 2$ , and $C$ hyperelliptic then using the canonical embedding shows

$\sigma,\tilde{a}$ differ at most by the involution of $C$ which is not possible since they
agree on homology $and/or$ pull-backs of regular l-forms.

Case 3. $g=1$ then using the universal mapping property of Jacobians and
the fact that Jac $(C)\cong C$, we see that $\sigma$ , $\tilde{\sigma}$ differ by an automorphism of $C$ .
However that map must fix the cusps of which there is at least one. Thus the
automorphism is a complex multiplication as opposed to a translation. However
this forces $\sigma=\tilde{\sigma}$ since any complex multiplication other than the identity gives
a non-trivial map on homology.

Case 4. $g=0$ then $a,\tilde{\sigma}$ are rational functions on $X$. Normalizing three of
the cusps to $0,1,$ $\infty$ we see that $\sigma,\overline{\sigma}$ have the same zeros, poles, and ones and
therefore are equal.
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To complete the proof we must allow elliptic elements in $F$. However look
at $\overline{\Gamma(2)}\cap F$ which determines some finite cover of $X$ via $\rho^{-1}$ Lifting to this
cover puts us in the case of no elliptic elements, and the result easily follows.

One can also prove the theorem by showing that the equivalent representa-
tions lead to equivalent l-adic representations of the generic fibres and then
applying the global isogeny theorem of Deligne, Lang, and Serre to get generi-
cally isogeneous surfaces. We can now give this isogeny theorem as a corollary.

COROLLARY III.3.5 (See Lang [13]). Let $K$ be a function field in one vari-
able over the comPlex numbers. Let $E,\tilde{E}$ be elliPtic curves over $K$, with invari-
ants $ j,j\sim$ transcendental over C. Assume $V_{l}(E)$ and $V_{l}(\tilde{E})$ , the extended Tate-
modules, are Gal $(\overline{K}/K)$ isomorphic( $\overline{K}$ an algebraic closu $re$ of $K$). Then $E,\tilde{E}$

are isogeneous over $K$

PROOF. One can easily show that if the l-adic representations are the same
then the usual representations associated to the basic surfaces given by $E,\tilde{E}$

are the same.
COROLLARY III.3.6. If two basic surfaces have the same homological invari-

ant $/Z$ then they are isomorphic. That is the homological invariant $/Z$, as
oPposed to $/C$ or $Q$ , actually determines the functional invariant.

Now we would like to prove:
THEOREM III.3.7. $\tilde{\chi}$ is injective, that is, two K-equations $\Lambda$ , A which yield

generically isogeneous basic elliptic surfaces are trivially equivalent.
PROOF. Fibre by fibre over some Zariski open set $X_{0}$ of $X$ we have iso-

genies. Let $x_{0}\in X_{0}$ and near $x_{0}$ choose K-bases $\omega_{1},$ $w_{2}$ and $\tilde{\omega}_{1},\tilde{\omega}_{2}$ . Because of
the isogeny there exists a function $\lambda(x)$ locally such that

$\lambda(x)(Z\tilde{\omega}_{1}(x)+Z\tilde{\omega}_{2}(x))\subset Z\omega_{1}(x)+Z\omega_{2}(x)$ .
Thus locally

$\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)=\left(\begin{array}{ll}\lambda & 0\\0 & \lambda\end{array}\right)\left(\begin{array}{l}(\delta_{1}\\(D_{2}\end{array}\right)$ ,

$\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in M^{+}(Z)$ . The usual calculation gives $\lambda^{2}$ rational (see page 22 the proof

of Theorem III.1.6.). The only additional point one needs to observe is that
$a\omega_{1}+b\omega_{2},$ $c\omega_{1}+d\omega_{2}$ also form a basis for the solutions of $\Lambda$ so the Wronskian

can be computed from them. Without loss of generality we can assume $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$

$=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ by a change of K-basis. Now projectively our representations are
equal. If $\lambda\not\in K(X)$ , then around some path $\omega_{1},$ $\omega_{2}$ and $(i)_{1}\delta_{2}$ give matrices dif-
fering by a sign. However as we have proved, isogeneous surfaces have equiv-
alent representations over $Q$ by an element in $GL_{2}^{+}(Q)$ . One can easily see
this yields a contradiction. Thus $\lambda\in K(X)$ and the K-equations are trivially
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equivalent.
Finally we state:
THEOREM III.3.8. Two K-equations have the same monodromy if and only if

they are trivially equivalent (if and only if they correspOnd to generically $iso-$

geneous basic elliPtic surfaces).

PROOF. Follows from Theorem III.3.3 and Theorem III.3.7.
Thus we know when two K-equations yield the same flat bundle on some

$X_{0}\subset X$.
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