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\S 1. Introduction.

Let $G$ and $L$ be topological groups. A group-homomorphism $f:G\rightarrow L$ is
said to be an immersion if $f$ is one-one and continuous. When the image $f(G)$

is dense in $L$ the immersion $f$ is called dense, and if $f$ is a homeomorphism to
$f(G)$ we shall call $f$ an imbedding.

In this paper we are mainly interested in the case when $G$ is an analytic
group ($=connected$ Lie group). First suppose that $L$ is also a Lie group.
Immersions of this kind have been studied extensively since Yosida [19], 1937,
in which he proved that any (finite-dimensional) irreducible faithful representa-
tion of an analytic group is an imbedding. In particular, A. Malcev in [14],
1945, proved the following theorem.

THEOREM A. Let $G$ and $L$ be analytic groups, and let $f:G\rightarrow L$ be a dense
immersion. Then there exists $a$ one-parameter subgroup( $=analytic$ subgroup of
dimension one) $A$ of $G$ such that

$L=\overline{f(A})f(G)$ .
Theorem A was also obtained in Goto [4], and related subjects to this

theorem have been discussed in Hochschild [11], Djokovi\v{c} [2] and others.
Next in [17], 1951, van Est defined an analytic group $G$ to be a $(CA)$-group

if the group $Ad(G)$ of all inner automorphisms of $G$ is closed in the group
$Aut(G)$ composed of all bicontinuous automorphisms of $G$ , and proved the
following theorem among other things:

THEOREM B. Let $G$ be a $(CA)$-group with center $Z$ , and let $L$ be a Lie
group. If $f:G\rightarrow L$ is an immersion, then

(i) $\overline{\sim f(G)}=\overline{f(Z}$)$f(G)$ .
(ii) If $f|Z$ is an imbedding, then $f$ is an imbedding.
It is easy to see that (i) implies (ii), which extends some results in Yosida

[20] and Goto [4]. Immersions into a more general topological group have
been studied by Goto, Gleason-Palais, Lee-Wu, Omori, Zerling and so on. In
particular, Omori in [16], 1966, generalized some part of Theorem $B$ , and the
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result was supplemented by the author in [6] as follows:
THEOREM C. For an analytic group $G$ , the following conditions are all

equivalent.
1) $G$ is a $(CA)$-group with compact center.
2) Every immersion of $G$ into a top0l0gical group is an imbedding.
3) Every immersion of $G$ into a Lie group is an imbedding.
4) For every immersion $f$ of $G$ , the image $f(G)$ is closed.
We shall call $G$ absolutely closed if the equivalent conditions in Theorem $C$

are satisfied.
The main purpose of this paper is to extend Theorem A for an arbitrary

topological group $L$ , by developing the theory of immersions in a systematic
manner. The first step to our goal is to establish the following theorem, which
was first given by Yosida in [20] for a Lie group $L$ .

THEOREM 1. Let $G$ be an analytic group, $L$ a topolOgical group, and let
$f:G\rightarrow L$ be a dense immersion.

(i) If $N$ is a normal analytic subgroup of $G$ , then $f(N)$ is a normal sub-
grouP of $L$ .

(ii) We put $\gamma(a)x=f^{-1}(af(x)a^{-1})$ for $a\in L,$ $x\in G$ .
Then $\gamma(a)\in Aut(G)$ , and the homomorphism

$L\ni a-r(a)\in Aut(G)$

is continuous.
Let $\mathcal{G}$ be the Lie algebra of $G$ . Then $Aut(G)$ can be identified with a

closed subgroup of the general linear group $GL(\mathcal{G})$ . Hence we shall call $\gamma$ the
canonical representation of $L$ (with respect to the immersion $f$). The canonical
representation $\gamma$ extends the adjoint representation of $G$ , and the kernel of $\gamma$

coincides with the center of $L$ .
Next, in case $L\subset GL(n, R)$ in Theorem $A$ , the result was strongly sharpened

by the author in [7], 1973. Here we shall improve it further as follows:
THEOREM 2. Let $G$ be an analytic group, and let $f:G\rightarrow GL(n, R)$ be an

immersion. Then we can find a closed subgroup $V\cong R^{r}$ of $G$ and a closed $7lormal$

subgroup $N$ of $G$ such that $G$ is a semi-direct product

$G=L^{7}N$ , $V\cap\lambda^{\tau}=\{e\}$ ,

$\overline{f(V})$ is a torus, $f(N)$ is closed, and $\overline{f(G)}$ is a semi-direct producf of $\overline{f(V}$) and
$f(N)$ :

$\overline{f(G)}=\overline{f(V})f(N)$ , $\overline{f(V}$) $\cap f(N)=\{1\}$ .

Roughly speaking, Theorem 2 insists that we can decompose $f(G)$ completely
into a closed part and a non-closed part. Changing the notation, let $G$ be an
arbitrary analytic group. We shall explain an excellent idea of Zerling in [21]
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to find a semi-direct product decomposition of $G$ , by applying Theorem 2 to the
adjoint group $Ad(\mathcal{G})$ .

Since $Ad(\mathcal{G})$ is an analytic subgroup of $GL(\mathcal{G})$ , we get a semi-direct product
decomposition in Theorem 2:

$Ad(\mathcal{G})=V^{\prime}N^{\prime}$ , $V^{\prime}\cap N^{\prime}=\{1\}$ .

Denoting the adjoint representation by $\alpha$ , we put $\alpha^{-1}(N^{\prime})=N$. Then we can
find a suitable subgroup $V$ such that

$G=VN$ , $V\cap N=\{e\}$ , $\alpha(V)=V^{\prime}$

Let us call the decomposition a Z-decomposition of $G$ .
Notice that in order to prove Theorem A it suffices to find an abelian

analytic subgroup $B$ such that $L=\overline{f(B)}f(G)$ . Indeed, then there is a one-param-
eter subgroup A of $B$ with $\overline{f(B)}=\overline{f(A}$)$f(B)$ . Also the statement of Theorem A
is not true for $G=R^{2}$ and for some compact group $L$ , see Goto [5]. The
author tried to find a “ non-closed part “ of $G,$ $i$ . $e$ . an abelian analytic subgroup
$B$ with the property $\overline{f(G)}=\overline{f(B}$)$f(G)$ for all immersions $f$ of $G$ , and a solution
was obtained as follows.

Let $T^{\prime}$ be a maximal torus in $\overline{Ad(\mathcal{G})}$ . We call the subgroup $H=$

$\alpha^{-1}(T^{\prime}\cap Ad(\mathcal{G}))$ a gm-toru $s$ (generalized maximal torus) of $G$ . It turns out that
$H$ is a closed connected abelian subgroup containing the center $Z$, a maximal
torus $T$ of $G$ , and $V$ in a suitable Z-decomposition of $G$ . Furthermore all
gm-tori are conjugated to each other with respect to inner automorphisms. For
a gm-torus $H$ and the unique maximal torus $T$ in $H$, we take a vector part
$v(H)$ :

$H=Tv(H)$ , $T\cap v(H)=\{e\}$ , $v(H)\cong R^{s}$ .

THEOREM 3. Let $G$ be an analytic grouP, $H$ a gm-torus of $G$ , and let $v(H)$

be a vector part of $H$.
(i) If $L$ is a toPological grouP, and $f:G\rightarrow L$ is a dense immersion, then

$L=\overline{f(H})f(G)=\overline{f(v(H}))f(G)$ .
(ii) For an immersion $f:G\rightarrow L$ , if $f|v(H)$ is an imbedding, then so is $f|H$

and $f$ is an imbedding.
(iii) If $W\neq v(H)$ is an analytic subgroup of $v(H)$ , then there exists a non-

trivial dense immersion $f$ from $G$ into a suitable analytic group such that $f|W$

is an imbedding.
We shall see that Theorem 3 extends not only Theorem A but also Theo-

rem B. First notice that if $G$ is a $(CA)$-group then $H/Z$ is compact (and

conversely), by definition of gm-torus. This implies easily that $\overline{f(H)}=\overline{f(Z)}f(H)$

and if $f|Z$ is an imbedding then $f|H$ is also an imbedding. Thus for a $(CA)-$
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group $G$ it is equivalent to replace $H$ in Theorem 3 (i) and (ii) by $Z$, see (4.1).

Now it is easy to see that Theorem $C$ is an extreme case of Theorem 3.
Indeed, that $G$ is $(CA)$ and $Z$ is compact implies that a gm-torus is a maximal
torus and conversely.

As applications of Theorem 3, we give three theorems in the end of the
paper.

Let $G$ be an analytic group, and let $L$ be a topological group. Let $f:G\rightarrow L$

be a dense immersion.
I. Let $ G=G^{1}\supset G^{2}\supset G^{3}\supset\cdots$ and $ L=L^{1}\supset L^{2}\supset L^{3}\supset\cdots$ be descending central

series of the groups $G$ and $L$ , respectively. Then $G^{k}=L^{k}$ for $k=2,3,$ $\cdots$ .
II. If $\overline{J^{-}(v(H}$)) is locally compact, then so is $L$ .
III. lf $\overline{f(v(H}$)) is an analytic group, then so is $L$ .
Some special case of II was discussed in Omori [16].

PROBLEMS. We shall list problems along the line.
Pl. Characterize an abelian topological group (say with complete metric)

which contains a dense one-parameter subgroup.
P2. Let $G$ be an analytic group. Describe the set of all dense immersions

of $G$ into analytic groups in terms of fixed gm-torus $H$ of $G$ .
P3. Let $G$ be an analytic group and $W$ an abelian analytic subgroup of $G$ ,

and suppose that for any immersion $f$ of $G,\overline{f(G)}=\overline{f(W}$)$f(G),$ $i$ . $e$ . $W$ is a “ non-
closed part “ of $G$ . Does $W$ contain some $v(H)$ ?

In concluding the introduction, the author is pleased to acknowledge his
gratitude to D. Zerling for all valuable suggestions and discussions during the
preparation of the present paper.

$NoTATIOA\nwarrow\uparrow$ and TERMINOLOGY.
If $f$ is a map defined on $A$ and $B$ is a subset of $A$ , then $f|B$ denotes the

restriction of $f$ into $B$ .
For a subset $C$ of a topological space, $\overline{C}$ denotes the closure of $C$ .
A topological space is called $\sigma$ -comPact if it is a countable union of compact

subsets.
Let $L$ be a topological group. By an automorphism of $L$ we shall mean an

imbedding from $L$ onto $L$ . The group of all automorphisms of $L$ is denoted
by $Aut(L)$ . We adopt the notation $Ad(L)$ for the subgroup of $Aut(L)$ composed
of all inner automorphisms.

The identity element in a general linear group, or an automorphism group
will be denoted by 1. Otherwise, we let $e$ denote the identity element of the
group in question, unless specified otherwise.

For a subset $D$ containing $e$ of a topological group, the identity component
($=connected$ component containing e) of $D$ will be denoted by $D^{0}$ .

A subset $P$ of a topological group is said to be symmetric if $P=P^{-1}=$
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$\{p^{-1} ; p\in P\}$ .
If there is an imbedding from a topological group $L$ onto a topological

group $L^{*}$ , we adopt the notation $L\cong L^{*}$ .
Unless specified otherwise, an analytic group and its Lie algebra shall be

denoted by the same capital Roman and capital script letters, respectively.
Let $Z$ denote the additive group of all integers with discrete topology. For

$n=0,1,2,$ $\cdots$ , an analytic group $\cong R^{n}$ (or $(R/Z)^{n}$ ) is called a vector group (or

a toru3.), respectively. For a connected, locally compact abelian group $Q$ , a
maximal vector group in $Q$ is called a vector part of $Q$ , and is denoted by
$v(Q)$ .

By a Lie algebra we shall always mean a Lie algebra of finite dimension
over $R$ . For a Lie algebra $\mathcal{G}$ , we denote the group of all automorphisms of $\mathcal{G}$

by $Aut(\backslash \mathcal{G})$ . For $X$ in $\mathcal{G}$ , we adopt the notation $(adX)Y=[X, 1^{\nearrow}]$ for $Y\in \mathcal{G}$ , and
let $Ad(\mathcal{G})$ denote the analytic subgroup of the Lie group $Aut(\mathcal{G})$ corresponding
to the Lie algebra $ad(\mathcal{G})=\{adX;X\in \mathcal{G}\}$ . Let $G$ be an analytic group, and $\mathcal{G}$ its
Lie algebra. We identify $Aut(G)$ with a subgroup of $Aut(\mathcal{G})$ , and $Ad(G)$ with
$Ad(\mathcal{G})$ whenever it is convenient, see \S 3. The adjoint representation $G\rightarrow Ad(G)$

$=Ad(\mathcal{G})$ will be denoted by $\alpha$ .

\S 2. Lemmas on locally compact groups.

Many of the results in this section are more or less known. For the sake
of convenience we shall give proofs for most of them.

(2.1) Let $L$ be a topolOgical group and let $H$ be a subgroup of L. If $H$ is
locally compact (with respect to the topOlOgy as a subsPace of $L$), then $H$ is
closed in $L$ .

PROOF. The closure $\overline{H}$ of $H$ is also a subgroup. Because $H$ is locally
compact, $H$ is an open subset of $\overline{H}$. On the other hand, an open subgroup of
a topological group is closed. Hence $H$ is closed in $\overline{H},$ $i$ . $e$ . $H=\overline{H}$. Q. E. D.

(2.2) If a topological group $L$ has a closed subgroup $H$ such that both $H$

and the factor space $L/H$ are locally compact, then $L$ is also locally compact.
See Montgomery-Zippin [15], pp. 52-53.
(2.3) Let $G$ be a locally comPact, locally connected group $G^{*}$ a topOlOgical

grouP, and let $f:G\rightarrow G^{*}$ be a surjective immersion. Let $\mathcal{V}$ be a base of
neighborhoods of the identity $e^{*}$ of $G^{*}$ . Then $\{(f^{-1}(V))^{0} ; V\in \mathcal{V}\}$ is a base of
neighborhoods of the identity $e$ in $G$ .

PROOF. Let $K$ be a compact neighborhood of $e$ , and $B$ the boundary of $K$.
Since the underlying space of any topological group is regular, the set
{V; $V\in \mathcal{V}$ } is also a base. Then $\{\Gamma^{1}(\overline{V})\cap B;V\in \mathcal{V}\}$ is a family of closed
sets in the compact space $B$ , and



732 M. $c_{oTO}$

$\bigcap_{V\in \mathcal{V}}(f^{-1}(\overline{V})\cap B)=(\bigcap_{V\in\wp}f^{-1}(\overline{V}))\cap B=\{e\}\cap B=\emptyset$ .

Hence there exists a finite subset $\{V_{1}, V_{2}, \cdots , V_{m}\}$ of $\mathcal{V}$ such that $\bigcap_{i}f^{-}‘(V_{\ell})\cap B$

$=\emptyset$ . Picking $V_{0}\in \mathcal{V}$ with $V_{0}\subset V_{1}\cap\cdots\cap V_{m}$ , we have $ f^{-1}(V_{0})\cap B=\emptyset$ and
$(f^{-1}(V_{0}))^{0}\subset K-B$ . Q. E. D.

(2.4) CATEGORY THEOREM. Let $G_{1}$ and $G_{2}$ be locally comPact, $\sigma$ -compact
groups, and $G^{*}$ a toPological group $\cdot$ If $f_{1}$ : $G_{1}\rightarrow G^{*}$ and $f_{2}$ : $G_{2}\rightarrow G^{*}$ are surjec-
tive immersions, then $f_{2}^{-1}\circ f_{1}$ is an imbedding.

PROOF. Let $U$ be a neighborhood of the identity in $G_{1}$ . There exists a
compact symmetric neighborhood $K$ with $K^{2}\subset U$. Since $G_{1}$ is $\sigma$ -compact, there
is a countable subset $\{a_{1}, a_{2}, \cdots\}$ in $G_{1}$ such that $a_{1}K\cup a_{2}K\cup\cdots=G_{1}$ . Because
$K$ is compact, so is $f_{1}(K)$ , and $\varphi(K)$ is closed, where $\varphi=f_{2}^{-1}\circ f_{1}$ . Hence each
$\varphi(a_{i}K)$ is closed, and $G_{2}$ is a union of these closed sets. Then by the category
argument, some of $\varphi(a_{i}K)$ contains an interior point, and so does $\varphi(K)$ . Since
$K$ is symmetric, $\varphi(K)^{2}$ is a neighborhood of the identity in $G_{2}$ . This proves
that the map $\varphi=f_{2}^{-1}\circ f_{1}$ is open. In a similar way, $f_{1}^{-1}\circ f_{2}$ is open, and $f_{A}^{-1_{Q}}$

) $f_{1}$ is
a homeomorphism. Q. E. D.

The category theorem (2.4) is due to Goto [5]. The following (2.5) has
been known before (2.4).

(2.5) Let $G$ be a locally compact $\sigma$ -compact group, and $G^{*}$ a locally compact
group. Any surjective immersion $f:G\rightarrow G^{*}$ is an imbedding.

PROOF. By the assumption, $G^{*}$ is also a-compact. Put $f_{2}=the$ identity
map in (2.4). Q. E. D.

(2.6) Let $G$ be a locally compact, $\sigma$ -compact group, and $G^{*}$ a top0logical
group. Let $f:G\rightarrow G^{*}$ be a surjective immersion. If $\psi$ is an automorphism of
$C^{*}$ , then $f^{-1_{Q}}\psi\circ f$ is an automorphism of G. That is $Aut(G^{*})$ is naturally
isomorphic with a subgroup of $Aut(G)$ .

PROOF. Both $\psi\circ f$ and $f$ are immersions from $G$ onto $G^{*}$ , and we can
apply (2.4). Q. E. D.

(2.7) Let $G$ be a locally compact, $\sigma$ -compact group, $L$ a topol0gical group,
and let $f:G\rightarrow L$ be an immersion. If $K$ is a subgroup of $G$ such that $f(K)$ is
(locally) compact, then $K$ is (locally) compact.

PROOF. $K=f^{-1}(f(K))$ is a closed subgroup of $G$ , by (2.1), and is locally
compact and a-compact. By (2.5) then, $f|K$ is an imbedding. Q. E. D.

A closed subgroup $A$ of a topological group $B$ is called uniform if the
factor space $B/A$ is compact.

(2.8) Let $G$ be a locally compact, a-compact group and let $A$ be a uniform
subgroup of G. Let $L$ be a topological group. If $f:G\rightarrow L$ is an immersion
and if $f|A$ is an imbedding, then $f$ is an imbedding.

PROOF. As a closed subgroup of $G$ , the group $A$ is locally compact and so
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is $f(A)$ . Hence $J\sim(A)$ is a closed subgroup of $L$ . The map $ G\ni x-,f(x)f(A)\in$

$f(G)/f(A)$ is continuous and induces a continuous one-one map $\xi$ from $G/A$

onto $f(G)/f(A)$ . Since $G/A$ is compact, $\xi$ is a homeomorphism, and $f(G)/f(A)$

is compact. Then by (2.2), $f(G)$ is locally compact, and by (2.5), $f$ is an
imbedding. Q. E. D.

(2.9) Let $N$ be a locally compact, $\sigma$ -comPact group, $M$ a locally compact
group, and let $L$ be a topOlOgical group. Let $f:N\rightarrow L$ be a dense immersion,
and let $\gamma:L\rightarrow M$ be a continuous homomorphism with $\gamma(f(N))=M$. Let $Z$ be
the kernel of $\gamma\circ f$. Then the kernel of $\gamma$ is $\overline{f(Z}$) and

$L/\overline{f(Z)}\cong N/Z\cong f(N)/f(Z)\cong M$ .
PROOF. Let $K$ denote the kernel of $\gamma$ . By $\gamma(f(N))=M$, we have $L=f(N)K$.

Then the homomorphism
$N\ni x\leftrightarrow f(x)K\in L/K$

is continuous and surjective, and induces a surjective immersion $f:N/Z\rightarrow L/K_{-}$

Also $r:L\rightarrow M$ induces a surjective immersion $\tilde{\gamma}$ : $L/K\rightarrow M$. Hence $\tilde{\gamma}\circ\tilde{f}$ is an
immersion from $N$ onto $M$ and is an imbedding by (2.5). Hence $\tilde{\gamma}$ and $f$ are
imbeddings. Next applying the result obtained to $L=f(N)$ , we have

$N/Z\cong f(N)/f(Z)\cong M$ .
Now it suffices to prove that $K=\overline{f(Z)}$ . Let $W$ be a neighborhood of $e$ in

$L$ . Then $V=W\cap f(N)$ is a neighborhood of $e$ in $f(N)$ , and $\gamma(V)$ is a neighbor-
hood of the identity in $M$. Hence we can find a neighborhood $W^{\prime}$ of $e$ in $L$

such that $\gamma(W^{\prime})\subset\gamma(V)$ and $W^{\prime}\subset W$. Let $a$ be in $K$. We pick $x\in aW^{\prime}\cap f(N)$ .
Then $\gamma(x)\in\gamma(aW^{\prime})=\gamma(W^{\prime})\subset\gamma(V)$ . Hence $x\in f(Z)V\subset f(Z)W$ and $ f(Z)W\cap aW\neq\emptyset$ .
Hence $a\in\overline{f(Z}$). Q. E. D.

\S 3. Automorphism groups.

Let $G$ be a locally compact group.
borhood $U$ of $e$ in $G$ , we put

For a compact subset $K$ and a neigh-

$[K, U]=$ {$\varphi\in Aut(G);k^{-1}\varphi(k)\in U$ for all $k\in K$}.

(3.1) If $K$ is a compact connected subset of $G$ containing $e$ , then for any
neighborhood $U$ of $e$ , we have

$[K, U]=[K, U^{0}]$ .

PROOF. For a fixed $\varphi$ in $Aut(G)$ , the set $K^{\varphi- 1}=\{k^{-1}\varphi(k);k\in K\}$ is con-
nected and contains $e$ . Hence if $K^{\varphi-1}\subset U$ then $K^{\varphi- 1}\subset U^{0}$ . Q. E. D.

(3.2) Let $G$ be a connected, locally compact group. We can introduce a
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toPology in $Aut(G)$ such that $Aut(G)$ becomes a foPological group, and for any
comPact neighborhood $K$ of $e$ , the totality of $[K, U]$ where $U$ runs through a
base of neighborhoods of $e$ becomes a base of neighborhoods of 1 in $Aut(G)$ .

See $e$ . $g$ . Goto-Kimura [9]. After this, we assume that $Aut(G)$ is a topo-
logical group with this topology.

(3.3) Let $G$ be a connected, locally comPact, locally connected group, $L$ a
topOlOgical group, and let $f:G\rightarrow L$ be an immersion. SuppOse that $f(G)$ is a
normal subgroup of L. Then defining

$\gamma(a)x=f^{-1}(af(x)a^{-1})$ for $a\in L,$ $x\in G$ ,

we have that $\gamma(a)\in Aut(G)$ and the homomorPhism
$r:L\rightarrow Aut(G)$

is continuous.
PROOF. For $a$ in $L$ , the map $f(G)\ni y-aya^{-1}$ is an automorphism of the

topological group $f(G)$ . Since a connected, locally compact group is $\sigma$ -compact,
by (2.6), $\gamma(a)$ is an automorphism of $G$ .

Next, in order to prove the continuity of $\gamma$ , let us fix a compact connected
neighborhood $K$ of $e$ in $G$ . Let $U$ be a neighborhood of $e$ in $G$ . By (2.3),

there is a neighborhood $V$ of the identity $e^{*}$ in $f(G)$ such that $(f^{-1}(V))^{0}\subset U$.
Let us define a map $g:K\times L\rightarrow f(G)$ by

$g(k, a)=f(k)^{-1}af(k)a^{-1}$ for $k\in K,$ $a\in L$ .

Then $g$ is continuous and $g(k, e^{*})=e^{*}$ for all $k\in K$. Because $K$ is compact we
can find a neighborhood $W$ of $e^{*}$ in $L$ such that $g(K, W)\subset V$. Then for $a$ in
$W,$ $K^{\gamma(a)-1}=\{k^{-1}\gamma(a)k;k\in K\}$ is a connected set containing $e$ and $K^{\gamma(a)-1}=$

$f^{-1}(g(K, a))\subset f^{-1}(g(K, W))\subset f^{-1}(V)$ . Hence we have $K^{\gamma(a)-1}\subset U$, and we get that
$7(W)\subset[K, U]$ . Q. E. D.

Next, let $G$ be an analytic group. Then the group $Aut(\mathcal{G})$ of all auto-
morphisms of the Lie algebra $\mathcal{G}$ is a closed subgroup of the general linear
group $GL(\mathcal{G})$ and is a Lie group. For any $\varphi$ in $Aut(G)$ , there corresponds a
unique $ d\varphi$ in $Aut(\mathcal{G})$ such that

$\varphi(\exp X)=\exp(d\varphi X)$ for $X\in G$ ,

and the map $\varphi\rightarrow d\varphi$ is an imbedding from $Aut(G)$ onto a closed subgroup in
$Aut(\mathcal{G})$ . In particular, $Aut(G)$ is a Lie group. For $X$ and $Y$ in $\mathcal{G}$ , we adopt
the notation

(ad $X$ ) $Y=[X, Y]$ .
Then {ad $X;X\in \mathcal{G}$} forms a subalgebra of the Lie algebra of $Aut(\mathcal{G})$ , and the
corresponding analytic subgroup is called the adjoint group of $G$ (or $\mathcal{G}$), and is
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denoted by $Ad(\mathcal{G})$ . Then $Ad(\mathcal{G})$ is the image of $Ad(G)$ in the imbedding $\varphi\rightarrow d\varphi$ .
About $Aut(G)$ the reader may refer Chevalley [1] and Hochschild [10].

(3.4) Let $G$ be an analytic group, and let $K$ be a comPact neighborhood of
$p$ . Let $\{\varphi_{1}, \varphi_{2}, \cdots\}$ be a sequence in $Aut(G)$ . If for any neighborhood $U$ of $e$ ,

there exists a natural number $n(U)$ such that

$\varphi_{l}^{-1}\varphi_{m}\in[K, U]$ for $l\geqq n(U)$ and $m\geqq n(U)$ ,

then the sequence $\{\varphi_{n}\}$ converges to a suitable $\varphi_{0}\in Aut(G)$ .
PROOF. First we shall see that $Aut(G)$ has a complete left-invariant metric.

Notice that $Aut(G)$ can be identified with a closed subgroup of $GL(r, C)$ where
$ r=\dim$ G. $GL(r, C)$ is an analytic group, and in any analytic group, a left-
invariant Riemannian metric gives rise to a complete metric. Let $d$ be a
complete, left-invariant metric in $Aut(G)$ , and for $\epsilon>0$ let $B(\epsilon)$ denote the open
ball of radius $\epsilon$ about 1 with respect to $d$ .

For a given $\epsilon>0$ , there exists a neighborhood $U$ of $e$ such that $[K, U]\subset$

$B(\epsilon)$ . Then for 1, $m\geqq n(U)$ we have $\varphi_{l}^{-1}\varphi_{m}\in B(\epsilon),$
$i$ . $e$ . $ d(\varphi_{l}, \varphi_{m})=d(1, \varphi_{l}^{-1}\varphi_{m})<\epsilon$ .

Hence $t\varphi_{n}$ } is a Cauchy sequence. Q. E. D.

\S 4. Canonical representations.

THEOREM 1. Let $G$ be an analytic group, $L$ a topological group, and let
$f:G\rightarrow L$ be a dense immersion.

(i) If $N$ is a normal analytic subgroup of $G$ , then $f(N)$ is a normal sub-
grouP of $L$ .

(ii) We Put $\gamma(a)x=f^{-1}(af(x)a^{-1})$ for $a\in L,$ $x\in G$ . Then $\gamma(a)\in Aut(G)$ , and
the homomorphism

$L\ni a\rightarrow\gamma(a)\in Aut(G)$

is continuous.
PROOF. Let $\mathcal{U}$ and $\mathcal{W}$ denote the set of all open neighborhoods of the

identity in the analytic group $N$ and the topological group $L$ , respectively.
Then $\mathcal{V}=\{W\cap f(N);W\in \mathcal{W}\}$ is the set of all open neighborhoods of the
identity in the topological group $f(N)$ . For the sake of simpleness, after this
in the proof, we identify $G$ with the image $f(G)$ by the map $f$. Then in
particular $\mathcal{V}\subset \mathcal{U}$ .

We pick a countable base $ U_{1}\supset U_{2}\supset\cdots$ in $\mathcal{U}$ . For each $n=1,2,$ $\cdots$ , by (2.3),

we can pick $V_{n}\in \mathcal{V}$ such that $V_{n}^{0}\subset U_{n}$ , where $V_{n}^{0}$ is the identity component of
$V_{n}$ in the analytic group $N$. We take $W_{n}^{f}\in \mathcal{W}$ with $W_{n}^{\prime}\cap N=V_{n}$ .

Next, we fix a compact connected neighborhood $K$ of $e$ in the analytic
group $N$. Then $K$ is a compact connected subset of $L$ . Let us define a con-
tinuous map $g:K\times L\rightarrow L$ by
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$g(k, a)=k^{-1}aka^{-1}$ for $k\in K,$ $a\in L$ .

Since $K$ is compact and $g(K, e)=e$ , for the above $W_{n}^{\prime}$ we can pick a symmetric
$W_{\eta}^{\prime}’\in \mathcal{W}$ such that $g(K, (W_{n}^{\prime\prime})^{2})\subset W_{n}^{\prime}$ . We put $W_{n}=W_{1}^{\prime\prime}\cap\cdots\cap W_{n}^{\prime\prime}$ . Then the
sequence $\{W_{n}\}$ in $\mathcal{W}$ is decreasing and

$W_{n}=W_{n}^{-1}$ , $g(K, W_{n}^{2})\subset W_{n}^{f}$ .

For $x$ in $G$ and $y$ in $N$, we put $\varphi(x)y=xyx^{-1}$ . Then $\varphi(x)$ is an automor-
phism of $N,$ $e$ . $g$ . by (3.3). Let $a$ be in $L$ . For each $n=1,2,$ $\cdots$ we pick
$x_{n}\in aiW_{n}\cap G$ . Then if $l\geqq n$ and $m\geqq n,$ $x_{\overline{\iota}^{1}}x_{m}\in W_{n}^{2}$ , and for $k\in K$

$k^{-1}\cdot\varphi(x_{l}^{-1})\varphi(x_{m})(k)=k^{-1}(x_{l}^{-1}x_{m})k(\chi_{l}^{-1}x_{m})^{-1}\in W_{n}^{\prime}\cap N=V_{n}$ .

By (3.1), $o(x_{l})_{f}^{-1}(x_{m})\in[K, V_{n}^{0}]\subset[K, U_{n}]$ . Then by (3.4), $\{\varphi(x_{n})\}$ converges to

a suitable $\varphi_{0}\in Aut(N)$ .
We shall prove that $\varphi_{0}$ is independent of the choice of $\{x_{n}\}$ . Indeed, if

$X_{n},$ $\chi_{n}^{\prime}\in aW_{n}\cap G$ then $x_{n}^{-1}x_{n}^{\prime}\in W_{n}^{2}$ and $\varphi(x_{n})^{-1}\varphi(x_{n}^{f})\in[K, U_{n}]$ , which implies
that $\lim\varphi(x_{n})=\lim\varphi(x_{n}^{f})$ .

Now in order to prove (i) it suffices to show that

$\varphi_{0}(k)=aka^{-1}$ for all $k\in K$ .

Let $W$ be in $\mathcal{W}$ . For each $n$ we pick $W_{n}^{*}\in \mathcal{W}$ such that

$W_{n}^{*}\subset W_{n}$ and $g(K, W_{n}^{*})\subset W_{n}^{\prime}\cap a^{-1}Wa$ ,

and take $x_{n}\in aW_{n}^{*}\cap G$ . Then $a^{-1}x_{n}\in W_{n}^{*}$ and

$g(k, a^{-1}x_{n})=k^{-1}(a^{-1}x_{n})k(a^{-1}x_{n})^{-1}\in a^{-1}Wa$ ,

$i$ . $e$ . $\varphi(x_{n})(k)\in aka^{-1}W$ for all $k\in K$. On the other hand $\lim\varphi(x_{n})(k)=\varphi_{0}(k)$ in
the analytic group $N$ and so in $L$ . Hence $\varphi(x_{n})(k)\in\varphi_{0}(k)W$ for a sufficiently
large $n$ , and we have $ aka^{-1}W\cap\varphi_{0}(k)W\neq\emptyset$ . This implies that $\varphi_{0}(k)=aka^{-1}$ .

By (i), in particular, $f(G)$ is a normal subgroup of $L$ , and (ii) follows
directly from (3.3). Q. E. D.

DEFINITION. We shall call $\gamma$ the canonical representation of $L$ (with respect
to the immersion $f:G\rightarrow L$).

The kernel of $\gamma$ coincides with the center $Z(L)$ of $L$ , and

$Ad(G)\subset\gamma(L)\subset\overline{Ad(G)}$ .

If in particular $G$ is a $(CA)$-group, $i$ . $e$ . $Ad(G)=\overline{Ad(G)}$ , then $\gamma(L)=\gamma(f(G))=Ad(G)$ ,
and we can apply (2.9) to this case. The result is the following extension of
Theorem B. We shall see later that (4.1) is a special case of the fundamental
Theorem 3.

(4.1) Let $G$ be a $(CA)$ -grouP with center $Z$, and let $L$ be a toPological grouP
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zuith center $Z(L)$ . If $f:G\rightarrow L$ is a dense immersion, then
(i) $L=\overline{f(Z}$)$f(G),\overline{f(Z)}=Z(L)$ .
(ii) If $f|Z$ is an imbedding, then $f$ is an imbedding.
PROOF. (2.9) implies (i), and also $f(G)/f(Z)\cong Ad(G)$ . Hence if $f(Z)$ is locally

compact, then so is $f(G)$ by (2.2), and $f$ is an imbedding by (2.5). Q. E. D.
Many of the theorems on an analytic group $G$ can be extended to those on

connected, locally compact $G$ . Here we shall give an example.
(4.2) Let $G$ be a connected, locally compact group, and $L$ a topOlOgicar

group $\cdot$ If $f:G\rightarrow L$ is a dense immersion, then $f(G)$ is a normal subgroup of $L$ .
PROOF. By Yamabe [18], $G$ contains a compact normal subgroup $C$ such

that the factor group $G/C$ is an analytic group. Then $f(C)$ is closed in $L$ , and
the normalizer of $f(C)$ is a closed subgroup containing $f(G)$ , that is $L$ . Hence
$f(C)$ is a normal subgroup of $L$ . In the factor group $L/f(C)$ the subgroup
$f(G)/f(C)$ is dense and the natural map $G/C\rightarrow f(G)/f(C)$ is an immersion. Hence
$f(G)/f(C)$ is a normal subgroup of $L/f(C)$ , and so is $f(G)$ in $L$ . Q. E. D.

\S 5. Proof of Theorem 2.

First we recall results in Iwasawa [12] on maximal compact subgroups of
an analytic group. Let $G$ be an analytic group. Any compact subgroup of $G$

is contained in a suitable maximal compact subgroup. Let $K$ be a maximal
compact subgroup of $G$ . Then $K$ is connected and there is a finite subset
$\{X_{1}, \cdots , X_{n}\}$ in $\mathcal{G}$ such that

$ K\times R^{n}\ni$ $(k, (t_{1}, \cdots , t_{n}))\leftrightarrow k$ exp $ t_{1}X_{1}\cdots$ exp $t_{n}X_{n}\in G$

is a surjective homeomorphism. All maximal compact subgroups of $G$ are
conjugated to each other with respect to inner automorphisms. If $N$ is a
closed connected normal subgroup of $G$ , then $K\cap N$ and $KN/N$ are maximal
compact subgroups of $N$ and $G/N$, respectively.

Next about maximal tori in a compact analytic group $K$ the following
theorems are known mainly by H. Weyl, see $e$ . $g$ . Hochschild [11], XIII and
Goto-Grosshans [8], Chapter 6. All maximal tori in $K$ are conjugated to each
other with respect to inner automorphisms. Any element in $K$ is contained in
some maximal torus. A maximal torus $T$ is a maximal abelian subgroup in $K$

and contains the center, in particular. Also the factor space $K/T$ is simply
connected.

Now we shall consider maximal tori in an analytic group $G$ .
(5.1) (i) All maximal tori in an analytic group $G$ are conjugated to each

other with respect to inner automorphisms.
Let $T$ be a maximal torus in $G$ .
(ii) $T$ is a maximal compact abelian subgroup of $G$ .
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(iii) The factor space $G/T$ is simply connected.
(iv) If $N$ is a closed connected normal subgroup of $G$ , then $T\cap N$ is a

maximal torus in $N$.
PROOF. (i), (ii) and (iii) are obvious. In order to prove (iv), we pick a

maximal torus $T_{N}$ in $N$. Then there is a maximal torus $T_{0}$ in $G$ such that
$T_{N}\subset T_{0}$ . Since $T_{0}\cap N$ is a compact abelian subgroup containing $T_{N}$ , we have
$T_{0}\cap N=T_{N}$ by (ii). We pick $x$ in $G$ with $xT_{0}x^{-1}=T$ . Then $T\cap N=xT_{N}x$”

is a maximal torus in $N$. Q. E. D.
(5.2) Let $L$ be an analytic group, and $N$ a closed connected normal subgroup

of L. If $L/N$ is $a$ to $ms$ , then there exists a torus $T_{1}$ in $L$ such that

$L=T_{1}N$ , $T_{1}\cap N=\{e\}$ .
PROOF. Let $K$ be a maximal compact subgroup of $L$ . Then $KN/N$ is a

maximal compact subgroup of $L/N$ and coincides with $L/N,$ $i$ . $e$ . $KN=L$ . Let
$T$ be a maximal torus in $K$, and let $[K, K]$ denote the commutator subgroup

of $K$. Since $G/N$ is abelian, $[K, K]$ is contained in $N$. Also we know that
$K=T[K, K]$ . Hence we have $L=KN=TN$. By (5.1) (iv), $T\cap N$ is a torus and
we can pick a complementary torus $T_{1}$ in $T$ such that $T=T_{1}(T\cap N)$ ,
$T_{1}\cap(T\cap N)=\{e\}$ . Then $L=T_{1}N$ and $T_{1}\cap N=\{e\}$ . Q. E. D.

REMARK. (5.2) extends Proposition 3.1 in A. Borel, Sous-groupes commu-
tatifs et torsion des groupes de Lie compact connexes, T\^ohoku Math. J., 13
(1961), pp. 216-240, and Lemma in [7].

We add one obvious lemma.
(5.3) Let $G$ and $L$ be abelian analytic groups, and let $f:G\rightarrow L$ be a dense

immersion. If the image $f(A)$ of each one-parameter subgroup $A\neq\{e\}$ is non-
closed in $L$ , then $G$ is a vector group and $L$ is $a$ to $ms$ .

PROOF. Notice that the closure of a non-closed one-parameter subgroup is
a torus. Q. E. D.

Now we are ready to prove the following theorem.
THEOREM 2. Let $G$ and $L$ be analytic groups, and let $f:G\rightarrow L$ be an

immersion. Supp0se that the commutator subgroup $f([G, G])$ of $f(G)$ is closed
in L. (This condition is satisfied for $L=GL(n,$ $R)$ , see Goto [4].) Then there is
a vector subgroup $V$ and a closed connected normal subgroup $N$, of $G$ , such that
$G$ is a semi-direct pr0duct

$G=VN$ , $V\cap N=\{e\}$ ,

$\overline{f(V})$ is a torus, $f(N)$ is closed and

$\overline{f(G)}=\overline{f(V})f(N)$ , $\overline{f(V}$) $\cap f(N)=\{e\}$ .

In particular, $f(G)$ is a topolOgical direct product of $f(V)$ and $N$ in a
natural way.
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PROOF. The commutator subgroup of $\overline{f(G)}$ coincides with the commutator
subgroup $f([G, G])$ of $f(G)$ , see Goto [4] and Hochschild [11], p. 190, also cf.
\S 10. Let $N$ be a maximal analytic subgroup of $G$ such that $[G, G]\subset N$ and
$f(N)$ is closed. Then the dense immersion

$G/N\ni xN->f(x)f(N)\in\overline{f(G})/f(N)$

satisfies the conditions in (5.3) and we have $G/N\cong R^{r}$ and $\overline{f(G)}/f(N)$ is a torus.
By (5.2), there is a torus $T_{1}$ in $\overline{f(G)}$ such that

$\overline{f(G)}=T_{1}f(N)$ , $T_{1}\cap f(N)=\{e\}$ .

Since $T_{1}\cap f(G)$ is a closed subgroup of $f(G)$ , and $f(G)=(T_{1}\cap f(G))f(N)$ , putting
$V=\beta^{-1}(T_{1}\cap f(G))$ we have that $V$ is closed in $G$ , and

$G=VN$ , $V\cap N=\{e\}$ . Q. E. D.

REMARK. In [7], the author gave Theorem 2 with a weaker conclusion
that $\overline{f(V}$ ) $\cap f(N)$ is a finite group.

\S 6. $Z$-decompositions of an analytic group.

First, we give a lemma.
(6.1) Let $W$ be an analytic group.
(i) If the adjoint group $Ad(\mathcal{W})$ is completely reducible, then the Lie algebra

$\mathcal{W}$ is a direct sum of a semisimple ideal and the center.
(ii) If $Ad(\mathcal{W})$ is completely reducible and abelian, then $W$ is abelian.
(iii) If $Ad(\mathcal{W})$ is compact, then $W$ is a direct prOduct of a compact group

and a vector group.
PROOF. (i) Let $\mathcal{J}$ be an ideal of $\mathcal{W}$ . Then $Ad(\mathcal{W})\mathcal{J}=\mathcal{J}$ , and there exists

a subspace $\mathcal{J}^{\perp}$ of $\mathcal{W}$ such that

$\mathcal{W}=\mathcal{J}+\mathcal{J}^{\perp}$ , $\mathcal{J}\cap \mathcal{J}^{\perp}=\{0\}$ ,

and $Ad(\mathcal{W})\mathcal{J}^{\perp}=\mathcal{J}^{\perp}$ , which implies that $\mathcal{J}^{\perp}$ is an ideal. Hence $\mathcal{W}$ is a direct
sum of simple ideals and one-dimensional ideals.

(ii) Let $Z(W)$ be the center of $W$. Then $W/Z(W)$ is abelian and $W$ is
nilpotent. Hence $\mathcal{W}$ cannot contain a simple ideal.

(iii) This follows easily from the known fact that the adjoint group of a
non-compact semisimple analytic group is non-compact. Q. E. D.

Let $G$ be an analytic group, and $Ad(\mathcal{G})$ the adjoint group of $G$ . Let $\alpha$

denote the adjoint representation $G\rightarrow Ad(\mathcal{G})$ . Let $Z$ be the center of $G$ . By
Theorem 2, the analytic group $Ad(\mathcal{G})\cong G/Z$ has a semi-direct product decom-
position
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$Ad(\mathcal{G})=V_{l}^{\prime}\iota^{\gamma}’$ , $V^{\prime}\cap N^{\prime}=\{1\}$ , $V^{\prime}\cong R^{r}$ ,

$N^{\prime}$ is a normal subgroup of $Ad(\mathcal{G})$ and is closed in $GL(\mathcal{G}),\overline{V}^{\prime}$ is a torus, and

$\overline{Ad(\mathcal{G})}=\overline{V}^{\prime}N^{\prime}$ , $\overline{V}^{\prime}\cap N^{\prime}=\{1\}$ .

We put $\alpha^{-1}(1\backslash 7’)=N$. Then $N$ is a closed normal subgroup of $G$ and

$G/N\cong Ad(\mathcal{G})/N^{\prime}\cong V^{\prime}$ ,

where we regard $Ad(\mathcal{G})$ as an analytic group, is simply connected. Hence $N$

is connected. Also because the kernel of $\alpha$ is $Z$, we have $Z\subset N$.
Next, let $W$ denote the identity component of $\alpha^{-1}(V^{\prime})$ . Then $Ad(\mathcal{W})=$

$\{\xi|\mathcal{W};\xi\in V^{\prime}\}$ . Since $V^{\prime}$ is completely reducible and abelian, so is $Ad(\mathcal{W})$ , and
$W$ is an abelian group, by (6.1) (ii). We pick a subspace $\mathcal{V}$ of $\mathcal{W}$ such that

$\mathcal{W}=\mathcal{V}+\mathcal{Z}$ , $\mathcal{V}\cap \mathcal{Z}=\{0\}$ .
Then

$\mathcal{G}=\mathcal{V}+\mathfrak{N}$ , $\mathcal{V}\cap \mathfrak{N}=\{0\}$ ,

and in particular $G=VN$.
Let us prove that $V\cap N=\{e\}$ and $V\cong R^{r}$ . Let $A$ be a non-trivial one-

parameter subgroup of $V$. By the isomorphism $G/N\cong V^{\prime}$ , we have $AN/N\cong R$,

and so $A\cong R$ and $A\cap N=\{e\}$ . Thus we have the following theorem due to
Zerling [21].

(6.2) Let $G$ be an analytic group with center $Z$ , and let

$Ad(\mathcal{G})=V^{f}N^{\prime}$ , $V^{\prime}\cap N^{\prime}=\{1\}$

be a decomposition of $Ad(\mathcal{G})$ as in Theorem 2. Then we can find a closed
subgroup $V$ and a closed normal subgroup $N$, in $G$ , such that

$G=VN$ , $V\cap N=\{e\}$ ,

$Z\subset N$ , $\alpha(N)=N^{f}$ and $\alpha(V)=V^{\prime}$ .
Let us call the above decomposition $G=VN$ a $Z$-decomposition of $G$ (com-

patible to the decomposition $Ad(\mathcal{G})=V^{f}N^{\prime})$ .

\S 7. Generalized maximal torus (gm-torus).

(7.1) Let $G$ and $G^{f}$ be analytic groups, and let $\beta$ be a continuous homomor-
phism from $G$ onto $G^{\prime}$ . Let $T^{\prime}$ be a maximal torus of $G^{\prime}$ , and $H^{\prime}$ a closed
connected subgroup of $G^{f}$ containing $T^{\prime}$ . (In fact any analytic subgroup containing
$T^{\prime}$ is closed.) Then $\beta^{-1}(H^{\prime})$ is a (closed) connected subgroup Of $G$ .

PROOF. First we shall prove that $\beta^{-1}(T^{\prime})$ is connected. Indeed, the factor
space $G/\beta^{-1}(T^{\prime})$ is homeomorphic to $G^{\prime}/T^{\prime}$ and is simply connected.
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Next, the factor space $\beta^{-1}(H^{\prime})/\beta^{-1}(T^{\prime})$ is homeomorphic to $H^{f}/T^{\prime}$ and is
connected. Since $\beta^{-1}(T^{\prime})$ is connected so is $\beta^{-1}(H^{\prime})$ . Q. E. D.

DEFINITION. Let $G$ be an analytic group, and let $\alpha$ : $G\rightarrow Ad(\mathcal{G})$ be the
adjoint representation. For a maximal torus $T^{\prime}$ in $\overline{Ad(\mathcal{G})}$ , the group
$\alpha^{-1}(T^{\prime}\cap Ad(\mathcal{G}))$ is called a generalized maximal torus (gm-torus) of $G$ .

We Px a Z-decomposition $G=VN$ compatible to $Ad(\mathcal{G})=V^{\prime}N^{\prime}$ .
Let $T^{\prime}$ be a maximal torus of $\overline{Ad(\mathcal{G})}$ with $V^{\prime}\subset T^{f}$ . By (5.1) (iv), $T_{N^{l}}=$

$T^{f}\cap N^{\prime}$ is a maximal torus in $N^{\prime}$ . Since $\overline{Ad(\mathcal{G})}=\overline{V}^{\prime}N^{\prime}$ and $T^{f}\supset\overline{V}^{\prime}$ , we have
$T^{\prime}=\overline{V}^{\prime}T_{N^{\prime}}$ , $\overline{V}^{\prime}\cap T_{N^{\prime}}=\{1\}$ ,

and
$H^{\prime}=T^{\prime}\cap Ad(\mathcal{G})=V^{\prime}T_{N^{\prime}}$ .

We put $H=\alpha^{-1}(H^{f})$ . Since $Ad(\mathcal{G})/N^{f}\cong R^{r}$ , the torus $T_{N^{\prime}}$ is maximal in
$Ad(\mathcal{G})$ , and by (7.1), $H$ is a closed connected subgroup of $G$ . Because $Ad(\mathcal{H})=$

$\{\varphi|\mathcal{H};\varphi\in H^{\prime}\}$ is completely reducible and abelian, $H$ is an abelian group by
(6.1) (ii). Since $V^{\prime}\subset H^{\prime}$ , we have $V\subset H$. Since the kernel of $\alpha$ is the center
$Z$, we have $Z\subset H$. Next, let $T$ be a maximal torus of $G$ . Then $\alpha(T)$ is a
torus, and there exists $\eta\in N^{\prime}$ such that $\eta\alpha(T)\eta^{-1}\subset T_{N^{\prime}}$ . Pick $y$ in $N$ with
$\alpha(y)=\eta$ . Then $yTy^{-1}\subset H$. Hence $H$ contains a maximal torus of $G$ .

Now the conjugacy of maximal tori in $\overline{Ad(\mathcal{G})}$ easily implies that all gm-tori
are conjugated to each other with respect to inner automorphisms.

Thus we have
(7.2) Let $G$ be an analytic group with center $Z$.
(i) A gm-torus $H$ of $G$ is a closed connected abelian subgroup of $G$ contain-

ing $Z$ and a maximal toras of $G$ .
(ii) All gm-tori are conjugated to each other with respect to inner auto-

morphisms.
(iii) Let $H$ be a gm-torus. Then for a suitable $Z$-decomPosition $G=VN$ we

have
$H=VH_{N}$ , $(H_{N}=H\cap N)$ , $V\cap H_{N}=\{e\}$ ,

where $\alpha(H_{N})$ is a maximal torus of $Ad(\mathcal{G})$ .
EXAMPLE 1. By $H/Z\cong H^{\prime}$ , we see that $G$ is $(CA)$ if and only if $Z$ is

uniform in $H$. Hence a gm-torus coincides with a maximal torus if and only
if $G$ is $(CA)$ and $Z$ is compact, $i$ . $e$ . $G$ is absolutely closed, by Theorem C.

EXAMPLE 2. When $G$ is nilpotent, or more generally when $Ad(\mathcal{G})$ is closed
and is homeomorphic to $R^{S}$ , a gm-torus coincides with the center $Z$.

Let $G$ be an analytic group, and let $A$ be a closed subgroup of G. $A$ is
said to be a fopological direct factor if there is a closed subset $B$ of $G$ such
that

$A\times B\ni(a, b)\vdash->ab\in G$
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is a surjective homeomorphism.
(7.3) Let $G$ be an analytic group and $H=VH_{N}$ a gm-torus of G. Then any

vector Part $v(H_{N})$ of $H_{N}$ is a topological direct factor in N. (It jollows that
$v(H)=Vv(H_{N})$ is a top0l0gical direct factor in $G.$ )

PROOF. Let $K^{\prime}$ be a maximal compact subgroup of $\lambda^{-\prime}$ containing $T_{N^{\prime}}$ .
We put $\alpha^{-1}(K^{\prime})=K$. Then $K$ is closed and connected by (7.1). Also $Ad(JC)=$

$\{\varphi|JC;\varphi\in K^{\prime}\}$ is compact, and by (6.1) (iii), $K$ contains a compact normal
subgroup $K_{0}$ and a closed central vector subgroup $U$ such that

$K=K_{0}U$ , $K_{0\cap}U=\{e\}$ .

Using the conjugacy of maximal compact subgroups, it is easy to see that $K_{0}$

is a maximal compact subgroup of $N$.
Next since $\alpha(U)$ is central in $K^{\prime}$ , and $T_{N^{r}}$ is a maximal torus in $K^{\prime}$ , we

have that $\alpha(U)\subset T_{N^{\prime}}$ and $U\subset\alpha^{-1}(T_{N^{\prime}})=H_{N}$ . Since $H_{N}\subset K$, and $U$ is a maximal
closed vector subgroup of $K$, we see that $U$ is a vector part of $H_{N}$ . It is now
obvious that any vector part of $H_{N}$ is a topological direct factor in $K$.

Now it suffices to prove that $K$ is a topological direct factor in $\Lambda^{\Gamma}$. On the
other hand, there is a finite subset {X’, $\cdot$ .. , $X_{p}^{\prime}$} of the Lie algebra of $N^{\prime}$ such
that

$ K^{f}\times R^{p}\ni$ $(\kappa, (t_{1}, \cdots , t_{p}))\leftrightarrow\kappa$ exp $ t_{1}X_{1}^{\prime}\cdots$ exp $t_{p}X_{p}^{\prime}\in N^{\prime}$

is a surjective homeomorphism, by Iwasawa [12]. We pick $X_{i}\in \mathfrak{N}$ with ad $X_{i}$

$=X_{i}^{f}$ for $i=1,2,$ $\cdots$ , $p$ . Then it is easy to see that

$ K\times R^{p}\ni$ $(k, (t_{1}, \cdots , t_{p}))\leftrightarrow k$ exp $ t_{1}X_{1}\cdots$ exp $t_{p}X_{p}\in A^{\gamma}$

is a surjective homeomorphism. Q. E. D.

\S 8. Linear spans of the center.

Let $G$ be an analytic group with center $Z$. By a linear span of the center
we shall mean a minimal analytic subgroup of $G$ containing $Z$ . Cf. Hochschild
[11], p. 187.

(8.1) Let $S$ be a linear sPan of $Z$.
(i) $S$ is closed and abelian.
(ii) $S/Z$ is a torus, and there is a gm-torus $H=VH_{N}$ such that $S\subset H_{N}$ .
(iii) A vector part $v(S)$ of $S$ is a vector part of $H_{N}$ , and so $Vv(S)$ is a

vector part of $H$.
PROOF. Let $J$ be a gm-torus of $S$ . Since $Z$ is in the center of $S$ , we have

$J\subset S$ and $J=S$ . Hence $S$ is abelian. We put $\mathcal{P}=\{X\in S;\exp RX\cap Z\neq\{e\}\}$ .
Then $\mathcal{P}$ spans $S$ . Hence there is a basis $X_{1},$ $\cdots$ , $X_{m}$ of $S$ such that exp $X_{i}\in Z$

for $i=1,$ $\cdots$ , $m$ . Then $\alpha(\exp RX_{i})=\{1\}$ or $\cong R/Z$, and $\alpha(S)=\alpha(\exp RX_{1})\cdots$
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$\alpha(\exp RX_{m})$ is a torus. Let $T^{\prime}$ be a maximal torus of $\overline{Ad(G}$) such that $\alpha(S)\subset T^{f}$ .
Then there is a decomposition $Ad(G)=V^{\prime}N^{\prime}$ such that

$H^{\prime}=T^{\prime}\cap Ad(G)=V^{f}T_{N^{l}}$ where $T_{N^{\prime}}\supset\alpha(S)$ .

Let $G=VN$ be a Z-decomposition compatible to $Ad(G)=V^{\prime}N^{\prime}$ . We put $H=$

$\alpha^{-1}(H^{\prime})=T^{I}H_{N}$ . Then $S\subset H_{N}$ . By $S=\alpha^{-1}(\alpha(S))$ we see that $S$ is closed, and
$H_{N}/S\cong T_{N^{\prime}}/\alpha(S)$ is a torus. Hence there exists a torus $U$ such that $H_{N}=SU$,
$S\cap U=\{e\}$ . This implies that any $v(S)$ is a vector part of $H_{N}$ . Q. E. D.

(8.2) Let $S$ be a linear span of $Z$, and let $T_{S}$ be the maximal torus in $S$ .
If dim $S-\dim T_{S}=l$ , then we can find a vector part $v_{0}(S)$ of $S$ and a uniform
subgroup $Z_{0}\cong Z^{l}$ of $Z$ such that $Z_{0}\subset v_{0}(S)$ .

PROOF. The identity component $Z^{0}$ of $Z$ is a divisible group and $Z/Z^{0}$ is
known to be finitely generated. Hence

$Z\cong R^{a}\times(R/Z)^{b}\chi Z^{c}\times F$ ,

where $a,$ $b,$ $c=0,1,2,$ $\cdots$ and $F$ is a finite group. Therefore we can find a
uniform subgroup $Z_{0}\cong Z^{a+c}$ of $Z$. Let $\psi$ denote the natural homomorphism
from $S$ onto $S/Z_{0}$ . Since $S/Z$ is a torus, so is $S/Z_{0}$ . Then $\psi(T_{s})$ is a torus in
$S/Z_{0}$ and there exists a torus $W$ such that

$S/Z_{0}=\psi(T_{S})W$ , $\psi(T_{s})\cap W=\{e_{0}\}$ ,

where $e_{0}$ denotes the identity in $S/Z_{0}$ . Then we have

$S=T_{S}\psi^{-1}(W)$ .
Let us prove that $T_{S}\cap\psi^{-1}(W)=\{e\}$ . If $x\in T_{S}$ and $\psi(x)\in W$, then $\psi(x)=e_{0}$

and $x\in Z_{0}$ . But $Z_{0}$ contains no compact subgroup except $\{e\}$ , and $x=e$ . Hence
$\psi^{-1}(W)$ is a vector part of $S,$ $\psi^{-1}(W)\supset Z_{0}$ and $\psi^{-1}(W)/Z_{0}$ is a torus. Hence in
particular $a+b=l$ . Q. $I$ . D.

\S 9. Proof of Theorem 3.

First we shall prove (i) and (ii) of Theorem 3.
THEOREM 3. Let $G$ be an analytic group, $H$ a gm-torus of $G$ , and let $v(H)$

be a vector Part of H. Let $G=VN$ be a $Z$-decompositiOn of G. If $L$ is a
topological group and $f:G\rightarrow L$ is a dense immersion, then

(i) $L=\overline{f(v(H)}$)$\beta(N)$ .
(ii) If $f|v(H)$ is an imbedding, then so is $f$.
PROOF. We fix a Z-decomposition $G=VN$ once and for all and take a

gm-torus $H=VH_{N}$ . (By the conjugacy of gm-tori if we take a different $H$ then
$V$ changes but we can use the same $N.$ ) Let $Z$ be the center of $G$ , and let $\gamma$
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be the canonical representation. Then $\gamma\circ f$ is the adjoint representation of $G$ .
We put

$\alpha(V)=V^{\prime}$ and $\alpha(N)=N^{\prime}$ .

We apply (2.9) to $N\rightarrow f(N)\rightarrow N^{\prime}$ and get

$\langle^{*})$ $f(N)/f(Z)\cong N^{\prime}$ .
(i) Let us adopt the convention to regard $G$ as a subgroup of $L$ . Then in

particular $\gamma(x)=\alpha(x)$ for $x\in G$ .
By $V^{\prime}N^{\prime}\subset\gamma(L)\subset\overline{V}^{\prime}N^{f}$ we have

$\gamma(L)=A^{\prime}N^{\prime}$ , $A^{\prime}\cap N^{\prime}=\{1\}$ where $A^{f}=\overline{V}^{\prime}\cap\gamma(L)$ .

We put $A=\gamma^{-1}(A$ ‘
$)$ . Then $A$ is a clpsed subgroup of $L$ .

Let $a$ be in $A$ , and let $W$ be a neighborhood of $e$ in $L$ . By the continuity
of $\gamma$ we can pick a sequence $x_{1},$ $x_{2},$

$\cdots$ in $aW\cap G$ such that $\lim\gamma(x_{n})=\gamma(a)$ .
We write $x_{n}=v_{n}y_{n}(v_{n}\in V, y_{n}\in N)$ uniquely. Then

$\lim\gamma(v_{n})=\gamma(a)$ and $\lim\gamma(y_{n})=1$ .

Since $y_{n}\in N$ and $\lim\gamma(y_{n})=1$ , using $(^{*})$ we have that $y_{n}\in ZW$ for a sufficiently
large $n$ , and then $x_{n}=v_{n}y_{n}\in VZW\subset HW$. Hence $ aW\cap HW\neq\emptyset$ and $a\in\overline{H}$. Thus
we have proved that $A\subset\overline{H}$.

Because $A$ contains the kernel of $\gamma$ , so does $\overline{H}$ and $\gamma(\overline{H}N)=- i^{\prime}N^{f}=\gamma(L)$ .
Hence $\overline{H}N=L$ .

Next for any vector part $v(H)$ of $H$, we have $H=Tv(H)$ , where $T$ is a
maximal torus of $G$ , and $\overline{H}=T\overline{v(H}$ ).

(ii) By (2.8), that $f|v(H)$ is an imbedding implies $f|H$ is an imbedding.
Because $Z\subset H$, we have $f(Z)$ is locally compact, and so is $f(N)$ , by $(^{*})$ and (2.2).

By (2.5), $f|N$ is an imbedding. Also by (i), $f$ is surjective. After this in this
proof, omitting $f$ we suppose that

$L=VN$ , $V\cap N=\{e\}$

and $V$ and $N$ are analytic groups.
Since $N$ is an analytic group and $N/Z\cong N^{\prime}$ , for a sufficiently small neigh-

borhood of 1 in $N^{\prime}$ we can find a cross-section. Therefore we assume that $N_{0}^{\prime}$

is a neighborhood of 1 in $N^{f},$ $\mu:N_{0}^{\prime}\rightarrow N$ is continuous, and $\gamma\circ\mu$ is the identity
map. We put $\mu(N_{0}^{\prime})=C$ and $L_{0}=\gamma^{-1}(V^{f}N_{0}^{\prime})=VZC$ . Then $L_{0}$ is a neighborhood
of $e$ in $L$ .

Now it suffices to prove that

$V\times Z\times C\ni(v, z, c)\rightarrow vzc\in L_{0}$

is a homeomorphism. For $x\in L_{0}$ we put
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$\gamma(x)=\xi(x)\eta(x)$ $(\xi(x)\in V^{\prime}, \eta(x)\in N_{0}^{\prime})$ .
Then $\xi$ and $\eta$ are continuous, and so is $ c=\mu\circ\eta$ . Since $\gamma(xc(x)^{-1})=\xi(x)\in V^{\prime}$ , we
have $xc(x)^{-1}\in VZ$. Hence $xc(x)^{-1}=v(x)z(x)(v(x)\in V, z(x)\in Z)$ , and $\iota\cdot(\lambda)$ and
$z(x)$ depend continuously on $x$ . Hence

$L_{0}\ni x-,(v(x), z(x),$ $c(x))\in V\times Z\times C$

is continuous. Q. E. D.
(iii) Let $W\neq v(H)$ be an analytic subgroup of $v(H)$ . Then there is an

analytic group $L$ and a dense immersion $f:G\rightarrow L$ such that $\beta(G)\neq L$ and $f|W$

is an imbedding.
PROOF. By (8.2), there is a linear span $S$ of $Z$ in $H$, such that a vector

part $v_{0}(S)$ contains a subgroup $Z_{0}$ of $Z$ as a (uniform) lattice. Then $\iota_{0}(H)=$

$Vv_{0}(S)$ is a vector ‘part of $H$.
Case 1. Let $W$ be an analytic subgroup of $v_{0}(H)$ , and suppose $W$ does not

contain $v_{0}(S)$ . Then $W$ does not contain $Z_{0}$ and there is $P=\exp RX\subset v_{0}(S)$ ,
$z=\exp X\in Z_{0}$ and $P\cap W=\{e\}$ . Then we can pick an analytic subgroup $Q$ of
codimension one in $v_{0}(H)$ such that

$v_{0}(S)=PQ$ , $P\cap Q=\{e\}$ , $Q\supset W$ .
By (7.3), $v_{0}(H)$ is a topological direct factor in $G$ , and we can find a set $R$

such that $G=PQR$ , where $P\times Q\times R\ni(p, q, r)-$, pqr is a surjective homeomor-
phism.

Let $\pi$ be an irrational number. Then in the direct product group $R_{/}^{\prime}Z\times G$ ,
the subgroup

$D=\{(\pi mmod. 1, z^{m});m\in Z\}$

is discrete and central. We denote $L=(R/Z\times G)/D$ . Then the map $\sim 7^{-};$ $G\ni x$

$\leftrightarrow D(O, x)\in L$ is a dense immersion. We see easily that $\overline{f(P}$) is the torus
$T=(R/Z\times P)/D,$ $T$ is a topological direct factor in $L:L=Tf(QR)$ , and $\beta|QR$

is a homeomorphism. Hence in particular $f|W$ is an imbedding.
Case 2. Suppose that $W\supset v_{0}(S)$ . Then we can find an analytic subgroup

$V_{1}$ of dimension one and an analytic subgroup $V_{2}$ of codimension one, in $V$,

such that
$V=V_{1}V_{2}$ , $V_{2}v_{0}(S)\supset W$ , $V_{1}\cap V_{2}=\{e\}$ .

We recall that $\alpha(V_{1})$ is a non-closed one-parameter subgroup in $Aut(G)$ . We
put $V_{2}N=N_{1}$ and $A=\{\xi|\mathfrak{N}_{1} ; \xi\in\overline{\alpha(V_{1})}\}$ . Then $\overline{\alpha(V_{1}}$) $\ni\xi->\xi|\mathfrak{N}_{1}\in A\subset Aut(\perp V_{1})$ is
an imbedding. Let $L$ be the semi-direct product of $A$ and $N_{1}$ . Then

$f\in G=V_{1}N_{1}\ni vy\rightarrow(\alpha(v)|\mathfrak{N}_{1}, y)=A\times N_{1}=L$

is a dense immersion, which is an imbedding on $\wedge T_{1}$ .
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Thus we have proved (iii) for $v_{0}(H)$ . Let $v(H)$ be a vector part of $H$, and
$W\neq v(H)$ an analytic subgroup of $v(H)$ . Then $TW\cap v_{0}(H)=W_{0}$ is an analytic
subgroup of $v_{0}(H)$ and $TW=TW_{0}$ . Hence there is a non-trivial immersion
$f:G\rightarrow L$ such that $f|W_{0}$ is an imbedding. Since $W_{0}$ is uniform in $TW$, by
(2.8), $\beta|TW$ is an imbedding. Q. E. D.

\S 10. Descending central series.

Let $A$ be a group, and let $B$ and $C$ be normal subgroups of $A$ . Let $[B, C]$

denote the subgroup of $A$ generated by $\{bcb^{-1}c^{-1} ; b\in B, c\in C\}$ . We put

$[A, A]=A^{2}$ , $[A, A^{2}]=A^{8},$ $\cdots$ , $[A, A^{j}]=A^{j+1},$ $\cdots$

The sequence $ A=A^{1}\supset A^{2}\supset A^{3}\supset\ldots$ of normal subgroups is called the descending
central series of $A$ . When $A^{j-1}\neq A^{j}=\{e\},$ $A$ is called nilpotent of degree $j$ .

When $G$ is an analytic group, the descending central series $\{G^{j}\}$ is com-
posed of analytic subgroups, and the Lie algebra $\mathcal{G}^{j}$ of $G^{j}$ is given by

$\mathcal{G}^{1}=\mathcal{G}$ , $\mathcal{G}^{2}=[\mathcal{G}, \mathcal{G}],$ $\cdots$ $[\mathcal{G}, \mathcal{G}^{j}]=\mathcal{G}^{j+1},$ $\cdots$

THEOREM 4. Let $G$ be an analytic group, and $L$ a top0l0gical group. If
$\beta:G\rightarrow L$ is a dense immersion, then

$\beta(G)^{j}=L^{j}$ for $j=2,3,$ $\cdots$

In particular, if $G$ is nilpotent of degree $j$ , then so is $L$ .
PROOF. We adopt the convention to regard $G$ as a subgroup of $L$ . Let $\gamma$

denote the canonical representation of $L$ . First we shall prove

(1) $(\gamma(a)-1)\mathcal{G}^{j}\subset \mathcal{G}^{j+1}$ for $a\in L,$ $j=1.2,$ $\cdots$

For $X\in-c$ and $Y\in \mathcal{G}^{j}$

$\alpha(\exp X)Y=\exp(adX)Y=\sum_{k=0}^{\infty}$ $($ad $X)^{k}/k$ ! $l^{-}$ ,

and $(\alpha(\exp X)-1)Y=[X, Y]+_{2!}^{1}-[X, [X, Y]]+\cdots\in \mathcal{G}^{j+1}$ . For a fixed $Y\in \mathcal{G}^{j}$ ,

$(\alpha(x)-1)\}^{-}$ is an analytic function of $x\in G$ , and for $x$ sufficiently close to $e$ ,
we have $(\alpha(x)-1)Y\in \mathcal{G}^{j+1}$ . Hence $(\alpha(x)-1)Y\in \mathcal{G}^{j+1}$ for all $x\in G$ . Next for
$a\in L$ , there is a sequence $\{x_{n}\}$ in $G$ , such that $\lim\alpha(x_{n})=\gamma(a)$ . Hence we
have (1).

(2) $[L, G^{j}]=G^{j+1}$ $(j=1,2, \cdots)$ .

Let $a$ be in $L$ . For $X$ in $\mathcal{G}^{j}$ , sufficiently close $to^{\pi}0A$
’ we can apply the

Campbell-Hausdorff formula to
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a $\exp Xa^{-1}\exp(-X)=\exp(\gamma(a)X)\exp(-X)$

$=\exp((\gamma(a)-1)X-\frac{1}{2}[\gamma(a)X, X]+ )$

$\in\exp \mathcal{G}^{J+1}$ ,

by (1), and a $\exp Xa^{-1}\exp(-X)\in G^{j+1}$ .
Then $G^{j}\ni x\rightarrow axa^{-1}x^{-1}\in G$ is an analytic map and for $x$ sufficiently close

to $e$ , we have $axa^{-1}x^{-1}\in G^{j+1}$ . Also $G^{j+1}$ is a maximal integral submanifold of
the distribution $\mathcal{G}^{j+1}$ . Hence we have $axa^{-1}x^{-1}\in G^{j+1}$ for all $x\in G^{j}$ . This
proves (2).

Now it suffices to prove that $G^{2}=L^{2}$ . Indeed, then by (2), $G^{3}=[L, G^{2}]=$

$[L, L^{2}]=L^{3},$ $\cdots$ . Since $G^{2}$ is a normal subgroup of $L$ , let us consider the factor
group $L/G^{2}$ , where $G^{2}$ is not closed in general and our discussion is purely
algebraic. Then $[L, G]=G^{2}$ implies that $G/G^{2}$ belongs to the center of $L/G^{2}$ .
On the other hand, by Theorem 2, $L=\overline{H}G$ and $\overline{H}$ is abelian. Hence $L/G^{2}=$

$\overline{H}G^{2}/G^{2}\cdot G/G^{2}$ is an abelian group, and $G^{2}\supset L^{2}$ . Q. $I$ . D.
Next, for a group $A$ , we define the derived series by $A^{(0)}=A,$ $A^{(1)}=A^{2}$ ,

$A^{(2)}=[A^{(1)}, A^{(1)}],$ $\cdots$ . Then $ A^{(0)}\supset A^{(1)}\supset A^{(2)}\supset\cdots$ , and when $A^{(j- 1)}\neq A^{(j)}=\{e\}$ ,

we call $A$ solvable of degree $j$ . The following corollary is obvious.
COROLLARY. Let $G$ be an analytic group, and $L$ a topological group. If

$f:G\rightarrow L$ is a dense immersion, then
$\beta(G)^{(j)}=L^{(j)}$ for $j=1,2,$ $\cdots$

In particular, if $G$ is solvable of degree $j$ , then so is $L$ .

\S 11. Locally compact closure.

Let $B$ be a connected, locally compact, abelian group. As in the case of
analytic groups, $B$ contains a unique maximal compact subgroup $K$ such that

$B=KV$ , $K\cap V=\{e\}$ , $V\cong R^{s}$ .
We call $V$ a vector part of $B$ and denote it by $v(B)$ . Let $A$ be a one-

parameter subgroup of $B$ . Then either $A$ is closed or $\overline{A}$ is compact. We
begin by a lemma.

(11.1) Let $A$ be an abelian analytic group, and $B$ a locally compact group.
If $\beta:A\rightarrow B$ is a dense immersion, then there exists a vector subgroup $C$ of $A$ ,
$C\cong\overline{C}\cong R^{m}$ , such that $f(C)$ is a vector part of $B$ .

PROOF. Let $T$ be a maximal torus of $A$ . Let $D$ be a maximal analytic
subgroup of $A$ such that $f(D)$ is closed. Then $D\supset T$ and in the factor group
$B/f(D)$ , no non-trivial one parameter subgroup of $f(A)/f(D)$ is closed. Then
$B/f(D)$ must be compact. Let $C$ be a vector part of $D$ . Then $f(C)$ is closed
and $f(D)/\beta(C)\cong D/C$ is a torus. Hence $B/f(C)$ is compact, and $f(C)$ is a vector
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part of $B$ . Q. E. D.
THEOREM 5. Let $G$ be an analytic group with a gm-to ru $s$ H. Let $L$ be a

topOlOgical group, and $f:G\rightarrow L$ an immersion. If $\overline{f(v(H)}$) is locally compact,

then $\overline{f(G}$) is locally compact.
PROOF. Let $T$ be the maximal torus of $G$ in $H$. Then $H=Tv(If)$ , and

$\overline{\beta(v(H))}$ is uniform in $\overline{f(H}$) $=\overline{f(v(H)}$)$f(T)$ . Hence $\overline{f(H}$) is locally compact. We
fix a Z-decomposition $G=VN$ with $H=VH_{N}$ once and for all.

Because $\gamma(\overline{f(N}))=N^{\prime}$ , we can apply (2.9) to the sequence $N\rightarrow\overline{f(N}$ ) $\rightarrow\perp\backslash \overline{1}^{\prime}$ and
get $\overline{f(N}$) $/\overline{\beta(Z}$) $\cong N^{\prime}$ , where $Z$ is the center of $G$ . Since $Z\subset H$, we have $\overline{J^{\wedge}(Z)}$ is
locally compact, and so is $\overline{f(N}$), by (2.2).

Let $K$ be the maximal compact subgroup in $\overline{\beta(H}$). Tben $P=\overline{\beta(H_{V})}K$ is a
closed connected subgroup of $\overline{f(H}$ ) containing $K$. Then by (11.1), there is a
vector subgroup $Q$ in $H$ such that $\overline{f(H}$) $=Pf(Q)$ , $P\cap\beta(Q)=\{e\}$ . We put
$QH_{N}\cap V=W$. Then $W$ is a vector subgroup of $V$ and $QH_{N}=WH_{VA}$ , and by

$\beta(H_{N})\subset P$ we have
$\overline{f(H)}=Pf(W)$ , $P\cap\beta(W)=\{e\}$ .

Then $P\times lV\ni(P, w)-p\beta(w)$ is an immersion from $P\times W$ onto $\overline{\beta(H}$), and is an
imbedding by (2.5). Hence $f(W)$ is a closed vector group.

We put $\downarrow I=f(W)\overline{\beta(N})$ . By (10.1), $L^{2}=f(G)^{2}\subset f(N)$ , and $M$ is a normal sub-
group of $L$ . First we shall prove that $\beta(W)\cap\overline{f(N})=\{e\}$ . Indeed, if $ x\in f(W)\cap$

$\overline{f(N})$ ; then $\gamma(x)\in V^{f}\cap N^{f}=\{1\}$ and $x\in\beta(W)\cap\gamma^{-1}(1)\subset f(G)\cap\gamma^{-1}(1)=\beta(Z)$ , but
$Z\cap W=\{e\}$ , and we have $x=e$ . Next, we shall see that the kernel of $\gamma|M$ is

$\overline{\beta(Z)}$ . For $\iota v\in f(W)$ and $y\in f(N),$ $\gamma(uy)=\gamma(w)\gamma(y)=1$ implies $w=e$ and $y$ is in
the kernel of $\gamma|\overline{f(N}$), $i$ . $e.\overline{f(Z)}$ .

Let $\mu_{0}$ : $N_{0}^{\prime}\rightarrow N$ be a local cross-section of the fibering $N/Z\cong N^{\prime},$ $i$ . $e$ . $N_{0}^{\prime}$ is
an open neighborhood of 1 in $N^{\prime},$

$\mu_{0}$ is continuous, and $\alpha\circ\mu_{0}$ is the identity

map. By $4V/Z\cong\overline{f(N}$) $\overline{/\beta(Z}$) $\cong N^{\prime}$ , the map $\beta\circ\mu_{0}=\mu$ is a cross-section of $\gamma:\overline{f(N}$)
$\rightarrow N^{\prime}$ . We put $M_{0}=\{x\in M;\gamma(x)\in\alpha(W)N_{0}^{\prime}\}$ . Then in a similar way as in the
proof of Theorem 3 (ii), we have that $M_{0}$ is homeomorphic with $\beta(7V)\times\overline{f(Z)}$

$\times N_{0}^{\prime}$ and is locally compact. Since $\Lambda M_{0}$ is an open set in $M$, we see that $M$ is
locally compact.

Next we have $\overline{f(G}$)$=f(K)M$ and $M$ is uniform in $\overline{f(G}$). Hence $\overline{J^{-}(G}$) is
locally compact. Q. $I$ . D.

The following theorem is due to Iwasawa and Kuranishi, see Iwasawa [12].
(11.2) Let $A$ be a topol0gical group, and let $B$ be a closed normal subgroup

of A. If both $B$ and $A/B$ are analytic groups, then $A$ is an analytic group.
Using (11.2), we can easily modify the proof of Theorem 5 to get

THEOREM 6. If $\overline{f(v(H)}$) is an analytic group, then so is $\overline{f(G)}$ .
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