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Introduction.

Several authors have been concerned with a problem:
Does there globally exist a non-homothetic conformal diffeomorphism between

complete Product Riemannian manifolds of dimension $n\geqq 3$ ?
Since there are conformally flat product Riemannian manifolds in the local,

cf. M. Kurita [1], it is assured that a conformal diffeomorphism locally exists
between two of such manifolds. On the other hand, N. Tanaka [4], T. Nagano
[2], Y. Tashiro and K. Miyashita [8] showed the non-existence of such global
diffeomorphism between complete Riemannian manifolds with parallel Ricci ten-
sor, and the non-existence of infinitesimal conformal transformation generating
a global l-parameter group in a product Riemannian manifold was shown by S.
Tachibana [3] in the case of compact manifold and by Y. Tashiro and K. Miya-
shita [7] in the case of complete manifold.

Let $M$ and $M^{*}$ be product Riemannian manifolds of dimension $n\geqq 3$ , and
denote the structures by $(M, g, F)$ and $(M^{*}, g^{*}, G)$ respectively. Under a dif-
feomorphism $f$ of $M$ to $M^{*}$ , the image of a quantity on $M^{*}$ to $M$ by the induced
map $f^{*}$ of $f$ will be denoted by the same letter as the original one. For ex-
ample, we write $g^{*}$ for $f^{*}g^{*}$ and $G$ for $f^{*}G$ on $M$. If $FG=GF$ at a point
$P\in M$, then we say that the structures $F$ and $G$ are commutative at $P$ with one
another under $f$.

A purpose of the present paper is to establish the following
THEOREM. There is no global conformal diffeomorphism between complete

prOduct Riemannian manifolds $M$ and $M^{*}$ such that the prOduct structures $F$

and $G$ are not commutative under it in a dense subset of $M$.
Another purpose is to give an affirmative example of a global conformal

diffeomorphism making the product structures commutative.
By virtue of the well known de Rham decomposition theorem, the product-

ness of manifolds in the theorem can be replaced by reducibility of manifolds
by considering the universal covering spaces of them.

After preliminaries on product structures and conformal diffeomorphisms in
This research was partially supported by Grant-in-Aid for Scientific Research (No.

334001), Ministry of Education.
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Paragraph 1, we shall obtain lemmas concerning the commutativity of structures
and the scalar field $\rho$ associated with a conformal diffeomorphism in Paragraph
2. In the three paragraphs following, we shall derive various equations on the
field $\rho$ . Paragraph 6 is devoted to a proof of the theorem. In the seventh and
last paragraph, we shall give an example of a global conformal diffeomorphism
between Riemannian manifolds constructed on a 3-dimensional torus.

1. Product Riemannian structures and conformal diffeomorphism.

Throughout this paper, we assume that manifolds are connected, the dimen-
sion $n$ is $\geqq 3$ and the differentiability is of class $C^{\infty}$ . For indicating components
of tensors, Greek indices run on the range 1 to $n$ .

Let $M$ and $M^{*}$ be n-dimensional product Riemannian manifolds $M=M_{1}XM_{2}$

and $M^{*}=M_{1}^{*}\times M_{2}^{*}$ with structure $(M, g, F)$ and $(M^{*}, g^{*}, G)$ , where $g$ and $g^{*}$

are the metric tensors and $F$ and $G$ the product structures of $M$ and $M^{*}$ respec-
tively. The product structures $F$ and $G$ are by definition $(1, 1)$-tensor fields
$(F_{\lambda^{\kappa}})$ and $(G_{\lambda^{\kappa}})$ different from the unit tensor $I=(\delta_{\lambda}^{\kappa})$ and satisfying $F^{2}=I$ and
$G^{2}=I$ . The dimensions $n_{1}$ and $n_{2}(n_{1}+n_{2}=n)$ of the parts $M_{1}$ and $M_{2}$ may be
different from those of $M_{1}^{*}$ and $M_{2}^{*}$ . The covariant differentiations in $M$ and
$M^{*}$ will be denoted by $\nabla$ and $\nabla^{*}$ respectively.

Conditions for the structures $(M, g, F)$ and $(M^{*}, g^{*}, G)$ to be almost product
Riemannian are

(1.1) $g_{\nu\mu}F_{\lambda^{\nu}}F_{\kappa}^{\mu}=g_{\lambda\kappa}$ , $g_{\nu\mu}^{*}G_{\lambda^{\nu}}G_{\kappa}^{\mu}=g_{\lambda\kappa}^{*}$ ,

and integrability conditions for them to be product Riemannian are

(1.2) $\nabla_{\mu}F_{\lambda^{\kappa}}=0$ , $\nabla_{\mu}^{*}G_{\lambda^{K}}=0$ .
The covariant tensors $F_{\mu\lambda}$ and $G_{u\lambda}^{*}$ defined by $F_{\mu\lambda}=F_{\mu^{\kappa}}g_{\grave{A}\kappa}$ and $G_{\mu\lambda}^{*}=G_{\alpha,}^{\kappa}g_{\lambda\kappa}^{*}$ are
symmetric and the conditions (1.2) are equivalent to

(1.3) $\nabla_{\mu}F_{\lambda\kappa}=0$ , $\nabla_{\mu}^{*}G_{\lambda\kappa}^{*}=0$ .
If there is given a diffeomorphism $f$ of $M$ to $M^{*}$ and the product structures

$F$ and $G$ are commutative under $f$, then we have the equation $FGF=G$ or
$F_{\nu}^{\mu}G_{\mu^{\lambda}}F_{\lambda^{\kappa}}=G_{\nu}^{\kappa}$ ,

which is equivalent to the purity of the tensor $G$ with respect to the product
structure $F$.

A conformal diffeomorphism $f$ of $M$ to $\Lambda f^{*}$ is characterized by the change

(1.4) $g_{\mu\lambda}^{*}=\frac{1}{\rho^{2}}g_{\mu\lambda}$
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of the metric tensors, where $\rho$ is a positive valued scalar field and said to be
associated with the conformal diffeomorphism $f$. The definition adopted here of
associated scalar field is the reciprocal of usual one, but it is of more con-
venience. We shall put $\rho_{\lambda}=\nabla_{\lambda}\rho$ and denote by $Y$ the gradient vector field
$(\rho^{\kappa})$ of $\rho$ Then the Christoffel symbol is transformed by the formula

(1.5) $\left\{\begin{array}{l}\kappa\\\mu\lambda\end{array}\right\}=\left\{\begin{array}{l}\kappa\\\mu\lambda\end{array}\right\}-\frac{1}{\rho}(\delta_{\mu}^{\kappa}\rho_{\lambda}+\delta_{\lambda}^{\kappa}\rho_{\mu}-g_{\mu\lambda}\rho^{\kappa})$ .

If the associated scalar field $\rho$ satisfies the equation

(1.6) $\nabla_{\mu}\rho_{\lambda}=\phi g_{\mu\lambda}$ ,

$\phi$ being a scalar field, then $f$ carries Riemannian circles in $M$ to those in $M^{*}$

and is called a concircular diffeomorphism of $M$ to $M^{*}$ . More generally a scalar
Peld $\rho$ satisfying the equation of the form (1.6) will be called a concircular
scalar field, and a special concircular one if the equation (1.6) is reduced to a
special form

$\nabla_{\mu}\rho_{\lambda}=(k\rho+b)g_{\mu\lambda}$ ,

$k$ and $b$ being constants. As to properties of concircular scalar fields, refer to
[5] or [6].

Under a conformal diffeomorphism $f$ of $M$ to $M^{*}$ , we have the equations

(1.7) $G_{\mu^{\lambda}}G_{\lambda^{\kappa}}=\delta_{\mu}^{\kappa}$ , $g_{\nu\mu}G_{\lambda^{\nu}}G_{\kappa}^{\mu}=g_{\lambda\kappa}$ ,

which mean that the induced tensor $G$ constitutes an almost product Riemannian
structure together with the metric $g$ on $M$ but not necessarily integrable. The
covariant tensor $G_{\mu\lambda}$ defined by $G_{\mu\lambda}=G_{\mu^{\kappa}}g_{\lambda\kappa}$ is symmetric. Substituting $G_{\mu\lambda}^{*}=$

$G_{\mu\lambda}/\rho^{2}$ into the second equation of (1.3) and using the transformation formula
(1.5), we can obtain the differential equation

(1.8) $\nabla_{\mu}G_{\lambda\kappa}=-\frac{1}{\rho}(G_{\mu\lambda}\rho_{\kappa}+G_{\mu\kappa}\rho_{\lambda}-g_{\mu\lambda}G_{\kappa\omega}\rho^{\omega}-g_{\mu\kappa}G_{\lambda\omega}\rho^{\omega})$ .

Applying Ricci’s formula to this equation and by straightforward computations,
we have the equation

$\rho(K_{\nu\mu\lambda^{\omega}}G_{\omega\kappa}+K_{\nu\mu\kappa}^{\omega}G_{\lambda\omega})$

$=G_{\mu\lambda}\nabla_{\nu}\rho_{\kappa}+G_{\mu\kappa}\nabla_{\nu}\rho_{\lambda}-G_{\nu\lambda}\nabla_{\mu}\rho_{\kappa}-G_{\nu\kappa}\nabla_{\mu}\rho_{\lambda}$

(1.9) $-g_{\mu\lambda}[(\nabla_{\nu}\rho^{\omega})G_{\kappa\omega}-\frac{\Phi}{\rho}c_{\nu\kappa}]-g_{\mu\kappa}[(\nabla_{\nu}\rho^{\omega})G_{\lambda\omega}-\frac{\Phi}{\rho}c_{\nu\lambda}]$

$+g_{\nu\lambda}[(\nabla_{\mu}\rho^{\omega})G_{\kappa\omega}-\frac{\Phi}{\rho}c_{\mu\kappa}]+g_{\nu\kappa}[(\nabla_{\mu}\rho^{\omega})G_{\lambda\omega}-\frac{\Phi}{\rho}c_{\mu\lambda}]$ ,
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where $K_{\nu\mu\lambda^{\kappa}}$ is the curvature tensor of $M$ and $\Phi$ the square of the length of
the gradient vector field $Y=(\rho^{\kappa})$ :

(1.10) $\Phi=|Y|^{2}=\rho_{\kappa}\rho^{\kappa}$ .

The equation (1.8) is equivalent to the integrability condition of $G$ in $\perp M^{*}$ , the
equation (1.9) to the purity of the curvature tensor $K_{\nu\mu\lambda\kappa}^{*}$ of $M^{*}$ with respect
to the product structure $G$ , and these equations play important roles in our dis-
cussions.

2. Separate coordinate system and lemmas.

In the following, Latin indices run on the ranges

$h,$ $i,$ $j,$ $k=1,2,$ $\cdots,$ $n_{1}$ ;

$p,$ $q,$ $r,$ $s=n_{1}+1,$ $\cdots\prime n$ ,

respectively. Summation convention is also adopted to repeated Latin indices
over their own range unless otherwise is stated.

In the product Riemannian manifold $M=M_{1}\times_{\lrcorner}M_{2}$ , there is a local coordinate
system $(x^{\hslash}, x^{p})$ , called a separate coordinate system, such that the metric form
of $M$ is expressed as

$ds^{2}=g_{ji}(x^{h})dx^{j}dx^{i}+g_{rq}(x^{p})dx^{r}dx^{q}$ ,

where $(x^{h})$ and $(x^{p})$ are local coordinate systems in the parts $M_{1}$ and $MI_{2}$ and
$g_{ji}$ and $g_{rq}$ are components of the metric tensors $g_{1}$ and $g_{2}$ of $M_{1}$ and $\lrcorner\eta l_{2}$

respectively. The product structure $F$ has components

$\left(\begin{array}{ll}\delta_{i}^{h} & 0\\0 & -\delta_{q}^{p}\end{array}\right)$

with respect to such a coordinate system, to within the signature. The Chris-

toffel symbol $\left\{\begin{array}{l}\kappa\\\mu\lambda\end{array}\right\}$ and the curvature tensor $K_{\kappa\mu\lambda^{\kappa}}$ of $M$ have pure components

only. The covariant differentiations $\nabla_{i}$ along $M_{1}$ and $\nabla_{q}$ along $M_{2}$ are commuta-
tive with one another.

We shall show the following lemma in the local:
LEMMA 1. A confonnal diffeomorphjsm $f$ of a Product Riemannian manifold

$(M, g, F)$ to $(M^{*}, g^{*}, G)$ is a homothety if and only if the induced tensor $G$ con-
stitutes a prOduct Riemannian structure together with $g$ on $M$, that is,

(2.1) $\nabla_{\mu}G_{\lambda\kappa}=0$ .
Then the structures $F$ and $G$ are commutative under $f$.
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PROOF. If $f$ is a homothety, then $\rho$ is a constant and we have the equa-
tion (2.1) from (1.8). Conversely, if the equation (2.1) is satisfied, then the equa-
tion (1.8) contracted with $\rho^{\kappa}$ gives

$\Phi G_{\mu\lambda}-g_{\mu\lambda}G_{\kappa\omega}\rho^{\kappa}\rho^{\omega}=\rho_{\mu}G_{\lambda\omega}\rho^{\omega}-\rho_{\lambda}G_{\mu\omega}\rho^{\omega}$

Since the left hand side is symmetric in the indices $\lambda$ and $\mu$ and the right hand
side anti-symmetric, both of the sides are equal to $0$ and we can see that $\rho_{\lambda}=0$

and $\rho$ is a constant by account of $G\neq\pm I$.
Then we decompose $\lrcorner ff$ into the product of a number of irreducible parts.

Taking account of the equation (2.1) on each part and the property $G^{2}=I$, we
can see that the product structure $G$ is a diagonal matrix having $\pm 1$ as diagonal
components with respect to a suitable separate coordinate system in $M$. Hence
we have $FG=GF$. Q. E. D.

We shall denote by $Y_{1}$ and $Y_{2}$ the parts $(\rho^{h})$ and $(\rho^{p})$ of the gradient vector
field $Y=(\rho^{\kappa})$ belonging to $M_{1}$ and $M_{2}$ respectively. The associated scalar field
$\rho$ may be a function depending on one or both of the parts. If $\rho$ is independent
of points of $M_{2}$ , then $Y_{2}=(\rho^{\kappa})$ vanishes identically.

As many equations referred to the parts $M_{1}$ and $M_{2}$ will appear as pairs,
we shall sometimes derive one of a pair and state the other without repeating
similar arguments. When we refer an equation to a separate coordinate system

and restrict indices to the parts, for example, $\kappa=\lambda=i,$ $\mu=j,$ $\nu=p$ in the equation
\langle 1.9), we indicate $(\kappa, \lambda, \mu, \nu)=(i, i, j, p)$ .

LEMMA 2. If the prOduct structures $F$ and $G$ are commutative under a non-
homothetic conformal diffeomorPhism $f$, then the associated scalar field $\rho$ is a
function on either of the Parts $M_{1}$ or $M_{2}$ only.

PROOF. Since the structure $G$ is pure with respect to the structure $F$, the
hybrid components $G_{pi}$ of $G$ in a separate coordinate system in $M$ all vanish.
Putting the indices $(\kappa, \lambda, \mu, \nu)=(i, i, j, p)$ in (1.9), we have

$G_{ji}\nabla_{p}\rho_{i}=g_{ji}(\nabla_{p}\rho^{h})G_{ih}$ (not summed in $i$).

If there would be a component $\nabla_{p}\rho_{i}\neq 0$ for fixed indices $i$ and $p$ , then we may
put

$G_{ji}=\gamma_{i}g_{ji}$ (not summed in i)

for any index $j$ . If in addition $\nabla_{q}\rho_{h}\neq 0$ for fixed $h$ and $q$ , then we may put

$G_{jh}=\gamma_{h}g_{jh}$ (not summed in h)

for any $j$ , and the comparison of this expression with the above yields $\gamma_{i}=\gamma_{h}$

provided $g_{ih}\neq 0$ . If $g_{ih}=0$ , then $G_{i\hslash}=0$ , we put $(\kappa, \lambda, \mu, \nu)=(h, i, i, q)$ in (1.9)

and obtain the relations
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$G_{ii}\nabla_{q}\rho_{h}=g_{ii}(\nabla_{q}\rho^{l})G_{lh}$ (not summed in i)

or
$\gamma_{i}g_{ii}\nabla_{q}\rho_{h}=\gamma_{h}g_{ii}\nabla_{q}\rho_{h}$ (not summed in $h$ and $i$),

from which we again see $\gamma_{i}=\gamma_{h}$ . If $\nabla_{q}\rho_{h}=0$ for fixed $h$ and any $q$ , we put
$(\kappa, \lambda, \mu, \nu)=(h, h, h, q)$ in (1.9) and have

$(\nabla_{q}\rho^{l})G_{lh}=0$ .

Moreover, putting $(\kappa, \lambda, \mu, \nu)=(h, i, j, p)$ in (1.9), we have

$G_{jh}\nabla_{p}\rho_{i}=\gamma_{i}g_{jh}(\nabla_{p}\rho_{i})$ (not summed in i)

$a^{\wedge}d$ see $\gamma_{i}=\gamma_{h}$ . Thus we may put

$G_{ji}=\gamma_{1}g_{ji}$ , $G_{qp}=\gamma_{2}g_{qp}$

or
$G_{j}^{h}=\gamma_{1}\delta_{j}^{h}$ , $G_{q^{p}}=\gamma_{2}\delta_{q}^{p}$ .

By means of the property $G^{2}=I$ , we see that $\gamma_{1}=\gamma_{2}=\pm 1$ or $\gamma_{1}=-\gamma_{2}=\pm 1$ , and
consequently the structure $G$ is identical with $\pm I$ or $\pm F$, and $f$ would be homo-
thetic by means of Lemma 1. This is a contradiction. Therefore $\rho$ should
satisfy $\nabla_{q}\rho_{i}=0$ for all indices $i$ and $q$ and be decomposable in $M$.

Putting $(\kappa, \lambda, \mu)=(i, j, q)$ and $(p, q, j)$ in (1.8), we have

$\nabla_{q}G_{ji}=0$ , $\nabla_{j}G_{qp}=0$ ,

which means that, in a separate coordinate system, the components $G_{ji}$ belong-
ing to $M_{1}$ are independent of $(x^{p})$ and $G_{qp}$ belonging to $M_{2}$ independent of $(x^{\hslash})$ .
Putting $(\kappa, \lambda, \mu)=(h, i, j)$ in (1.8), we have

$\rho\nabla_{j}G_{ih}=-(G_{ji}\rho_{h}+G_{jh}\rho_{i}-g_{ji}G_{hk}\rho^{k}-g_{jh}G_{ik}\rho^{k})$ .
Since the right hand side is independent of $(x^{p})$ , so is $\rho$ if $\nabla_{j}G_{ih}\neq 0$ . If in
addition $\nabla_{r}G_{qp}\neq 0$ , then we see that $\rho$ is independent of $(x^{h})$ and consequently
$\rho$ is a constant. This contradicts the non-homothety of $f$. Therefore $\rho$ should
depend on one part, say $M_{1}$ , only and we have $\nabla_{j}G_{ih}\neq 0$ and $\nabla_{r}G_{qp}=0$ . Q.E.D.

A converse to Lemma 2 is the following
LEMMA 3. If the associated scalarfield $\rho$ depends on one part, say $M_{1}$ , only

but not a constant, then the structure $G$ is commutative with $F$ under $f$, or the
field $\rho$ is a special concircular one satisfying the equation

(2.2) $\nabla_{j}\rho_{i}=c^{2}\rho g_{ji}$

on $M_{1}$ , where $c$ is a positive constant.
PROOF. By the assumption, $\rho_{p}=0$ and $\nabla_{p}\rho_{\lambda}=0$ . We suppose that $G$ is not

commutative with $F$, and a hybrid component $G_{qi}$ does not vanish. Putting
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$(\kappa, \lambda, \mu, \nu)=(i, i, j, q)$ in (1.9), we have

$G_{qi}(\nabla_{f}\rho_{i}-\frac{\Phi}{\rho}g_{ji})=0$

and hence

(not summed in i)

\langle 2.3) $\nabla_{j}\rho_{i}=\frac{\Phi}{\rho}g_{jl}$

for a Pxed $i$ and any $j$ . Putting again $(\kappa, \lambda, \mu, \nu)=(h, i, j, q)$ , we can see the
equation (2.3) is valid for any pair of indices $i$ and $i$ . By contracting the equa-
tion (2.3) with $2\rho^{i}$ and integrating, we have

\langle 2.4) $\Phi=\rho_{i}\rho^{i}=c^{2}\rho^{2}$ ,

because $\rho^{2}>0,$ $\Phi\geqq 0$ and $\Phi(P)>0$ at some point P. Substituting (2.4) into (2.3),

we obtain the equation (2.2). Q. E. D.
We put the subsets

$N_{1}=\{P|Y_{1}(P)=0\}$ ,

$1V_{2}=\{P|Y_{2}(P)=0\}$ ,

$U=\{P|Y_{1}(P)\neq 0, Y_{2}(P)\neq 0\}$ ,

$V=$ {$P|FG\neq GF$ at $P$}

in $M$. The subsets $N_{1}$ and $N_{2}$ are closed, $U$ and $V$ are open, and the inclusions
$U=M-N_{1}\cup N_{2}\subset V\subset M-N_{1}\cap N_{2}$ are obvious by means of Lemmas 1 and 2.

3. Equations in the subset $U$.
We suppose that the open subset $U$ is not empty. As we first deal with

equations in a connected component of $U$, we suppose that $U$ itself is connected.
The structures $F$ and $G$ are not commutative under $f$ in $U$ by virtue of Lemma
2. Hence $G$ is not pure in $U$ and the covariant tensor $G_{\mu\lambda}$ has non-vanishing
hybrid components $G_{pi}$ with respect to a separate coordinate system in $U$. We
denote by $G^{\prime}$ the block of hybrid components $G_{pi}$ of the matrix $(G_{\mu\lambda})$ .

Putting $(\kappa, \lambda, \mu, \nu)=(i, i, p, q)$ and $(P, p, i, j)$ in (1.9), we have the relations

\langle 3.1) $\left\{\begin{array}{l}G_{pi}\nabla_{q}\rho_{i}=G_{qi}\nabla_{p}\rho_{i}\\G_{ip}\nabla_{j}\rho_{p}=G_{jp}\nabla_{t}\rho_{p}\end{array}\right.$ $(not(notsummedsummedininp)i),$

.
If a component $G_{pi}$ for fixed indices $i$ and $p$ does not vanish, then it follows
from the equation (3.1) that we may put
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(3.2) $\left\{\begin{array}{ll}\nabla_{q}\rho_{i}=\psi_{pi}G_{qi} & (not summed in i),\\\nabla_{j}\rho_{p}=\psi_{pi}G_{pi} & (not summed in p)\end{array}\right.$

for any $q$ and any $j$ . Moreover, if there are non-zero components $G_{qi}$ in the
i-th row or $G_{pj}$ in the p-th column of $G^{\prime}$ , then the proportional factor $\psi_{pi}$ is
common with the q-th column or the j-th row. By rearrangement of rows and
columns of the matrix $G^{\prime}$ by this property, $G^{\prime}$ is divided into blocks such as

$G^{\prime}=\left\{\begin{array}{lll}G_{1}^{\prime} & 0 & 0\\0 & G_{2}^{\prime} & 0\\\cdots & \cdots & \cdots\\ 0 & 0 & 0\end{array}\right\}$

and the equations (3.2) are rewritten in the form

$\nabla_{q}\rho_{i}=\psi_{t}G_{qi}$ , $\nabla_{p}\rho_{j}=\psi_{t}G_{pj}$

for the indices $i$ and $p$ belonging to the t-th block except the last null block.
Consider, for example, the first and second blocks, and suppose that components
$G_{pi}$ in $G_{1}^{\prime}$ and $G_{qj}$ in $G_{2}^{\prime}$ are not equal to zero. Then, putting $(\kappa, \lambda, \mu, \nu)=(j,$ $i$ ,
$p,$ $q$) in (1.9), we have

$G_{pi}\nabla_{q}\rho_{j}-G_{qj}\nabla_{p}\rho_{i}=(\psi_{2}-\psi_{1})G_{pi}G_{qj}=0$

and hence $\psi_{1}=\psi_{2}$ . If $G_{qj}$ is a component in the last null block, then we have
similarly

$G_{pi}\nabla_{q}\rho_{j}=0$ or $\nabla_{q}\rho_{j}=0$ .
Therefore we may put

(3.3) $\nabla_{p}\rho_{i}=\psi G_{pi}$

with a Proportional factor $\psi$ for all rows and columns of the block $G^{\prime}$ .
Putting $(\kappa, \lambda, \mu, \nu)=(i, i, j, q)$ in (1.9), we have

$G_{ji}\nabla_{q}\rho_{i}-G_{qi}\nabla_{j}\rho_{i}=g_{ji}[(\nabla_{q}\rho^{\omega})G_{\omega i}-\frac{\Phi}{\rho}c_{qi}]$

(not summed in i),

or, taking account of (3.3),

(3.4) $G_{qi}(\psi G_{ji}-\nabla_{j}\rho_{i}+\frac{\Phi}{\rho}g_{ji})=g_{fi}(\nabla_{q}\rho_{\omega})G^{\omega_{i}}$

(not summed in $i$).

If the i-th row of $G^{\prime}$ contains a non-zero component $G_{qi}$ , then we may put
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(3.5) $\nabla_{j}\rho_{i}=\phi_{1}g_{ji}+\psi G_{ji}$ ,

where $\phi_{1}$ is a function satisfying the relation

(3.6) $c_{qi}(-\phi_{1}+\frac{\Phi}{\rho})=(\nabla_{q}\rho^{\omega})G_{\omega i}$ .

If a row, say the h-th, in the block $G^{\prime}$ has all zero components, then $\nabla_{q}\rho_{h}=0$ .
Putting $(\kappa, \lambda, \mu, \nu)=(h, i, j, q)$ in (1.9), we have

$G_{jh}\nabla_{q}\rho_{i}-G_{qi}\nabla_{j}\rho_{h}-g_{ji}(\nabla_{q}\rho^{k})G_{kh}-g_{jh}[(\nabla_{q}\rho^{\omega})G_{\omega i}-\frac{\Phi}{\rho}c_{qi}]=0$ .

Substituting (3.3) and (3.6) into this equation, we can see the expression (3.5)

also valid for the h-th row. Applying similar arguments to $\nabla_{q}\rho_{p}$ and gathering
the equations (3.3) and (3.5), we have the system of differential equations

(3.7) $\left\{\begin{array}{ll}\nabla_{j}\rho_{i}=\phi_{1}g_{ji} & \psi G_{ji},\\\nabla_{q}\rho_{i}= & \psi G_{qt},\\\nabla_{q}\rho_{p}=\phi_{2}g_{qp} & \psi G_{qp}\end{array}\right.$

on the associated scalar field $\rho$ . We shall indicate the quotation of an equation
of a system by a number following comma, $e$ . $g.,$ $(3.7,1)$ for the first of the
equations (3.7).

Substituting the equations (3.7) into (3.4), we have

$G_{qi}(-\phi_{1}+\frac{\Phi}{\rho})g_{ji}=g_{ji}[\psi G_{qh}G_{i}^{h}+(\phi_{2}g_{qp}+\psi G_{qp})G_{i}^{p}]$

$=g_{ji}[\psi G_{q\omega}G^{\omega_{i}}+\phi_{2}g_{qp}G_{i}^{p}]$

$=\phi_{2}g_{ji}G_{qi}$ (not summed in i)

because of $G_{q\omega}G^{\omega_{i}}=g_{qi}=0$ , and consequently the factors $\phi_{1}$ and $\phi_{2}$ satisfy the
relation

(3.8) $\phi_{1}+\phi_{2}=\frac{\Phi}{\rho}=\frac{1}{\rho}\rho_{\omega}\rho^{\omega}$ .

By means of (3.7, 2) and (1.8), the covariant derivative $\nabla_{q}\nabla_{j}\rho_{i}$ is equal to

$\nabla_{j}\nabla_{q}\rho_{i}=(\nabla_{j}\psi)G_{qt}+\psi\nabla_{j}G_{qi}$

(3.9)
$=(\nabla_{j}\psi)G_{qi}-\frac{\psi}{\rho}(G_{ji}\rho_{q}+G_{jq}\rho_{i}-g_{ji}G_{q\omega}\rho^{\omega})$ .

Since $\nabla_{q}\nabla_{j}p_{i}$ is symmetric in $i$ and $j$ , we have

$(\rho\nabla_{j}\psi+\psi\rho_{j})G_{qi}=(\rho\nabla_{i}\psi+\psi\rho_{i})G_{qj}$
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and this is rewritten as

\langle 3.10) $\left\{\begin{array}{l}\tau_{j}G_{qi}=\tau_{i}G_{qj},\\\tau_{q}G_{pi}=\tau_{p}G_{qi},\end{array}\right.$

where we have put

\langle 3.11) $\tau_{\lambda}=\nabla_{\lambda}\rho\psi$ .
On the other hand, deriving the equation (3.7, 1) in $x^{q}$ and using (1.8), we

obtain the expression

$\nabla_{q}\nabla_{j}\rho_{i}=(\nabla_{q}\phi_{1})g_{ji}+(\nabla_{q}\psi)G_{ji}-\frac{\psi}{\rho}(G_{qj}p_{i}+G_{qi}p_{j})$ .

Equating this to (3.9), we have the relations

(3.12) $\left\{\begin{array}{l}\tau_{j}G_{qi}-\tau_{q}G_{ji}=(\rho\nabla_{q}\phi_{1}-\psi G_{q\omega}\rho^{\omega})g_{ji},\\\tau_{q}G_{jp}-\tau_{j}G_{qp}=(\rho\nabla_{j}\psi_{2}-\psi G_{f\omega}\rho^{\omega})g_{qp}.\end{array}\right.$

4. The vanishing of the vector field $\tau$ .

The gradient vector field $(\tau^{\kappa})$ in $U$ will be denoted by $\tau$ and the parts $(\tau^{h})$

and $(\tau^{p})$ belonging to $M_{1}$ and $M_{2}$ by $\tau_{1}$ and $\tau_{2}$ respectively. The aim of this
paragraph is to show the following

LEMMA 4. The gradient vector field $\tau$ identically vanishes in the subset $U$.
PROOF. We suppose that the field $\tau$ would not vanish in an open subset

$U^{\prime}$ in $U$. First consider the case where $\tau_{2}=0$ identically but $\tau_{1}\neq 0$ in $U^{\prime}$ . Then,
by means of (3.10, 1), we may put

$G_{qi}=\mu_{q}\tau_{i}$ ,

$\mu_{q}$ being proportional factors. From the equation (3.12, 1) follows the equation

$\mu_{q}\tau_{j}\tau_{i}=(\rho\nabla_{q}\phi_{1}-\psi G_{q\omega}\rho^{\omega})g_{ji}$ .
Taking account of the rank of the metric tensor $g_{1}$ , we have $\mu_{q}=0$ and $G_{qi}=0$

unless $n_{1}=1$ . This contradicts our assumption. If $n_{1}=1$ , then $n_{2}\geqq 2$ and the
metric tensor $g$ is of the form

$\left(\begin{array}{ll}1 & 0\\0 & g_{qp}\end{array}\right)$ .

From (3.12, 2) substituted with $\tau_{q}=0$ , we may put $G_{qp}=\gamma_{2}g_{qp}$ . The product
structure $G$ is then given by

$G=\left(\begin{array}{ll}G_{1}^{1} & G_{q}^{1}\\G_{1}^{p} & \gamma_{2}\delta_{q}^{p}\end{array}\right)$ .
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Substituting these components into (1.7, 1), we can see that $G_{q^{1}}=0$ , conrradicting
the non-purity of $G$ in $U$. Thus it does not rise that either the part $\tau_{1}$ or $\tau_{2}$

of $\tau$ vanishes.
Consequently, by means of the equation (3.10), we may put

\langle 4.1) $G_{qi}=\lambda\tau_{q}\tau_{i}$ ,

$\lambda$ being a non-zero proportional factor. Contracting the equations (3.12, 1) with
$\tau^{q}$ and (3.12, 2) with $\tau^{j}$ , we may put

\langle 4.2) $\left\{\begin{array}{l}G_{ji}=\gamma_{1}g_{fi}+\lambda\tau_{j}\tau_{i},\\G_{qp}=\gamma_{2}g_{qp}+\lambda\tau_{q}\tau_{p},\end{array}\right.$

$\gamma_{1}$ and $\gamma_{2}$ being proportional factors. Then the components of the product struc-
ture $G$ are given by

(4.3) $\left(\begin{array}{lll}G_{i}^{\hslash} & G_{q} & h\\G_{i}^{p} & G_{q} & p\end{array}\right)=\left(\begin{array}{lll}\gamma_{1}\delta_{\iota}^{\hslash}+\lambda\tau_{i}\tau^{h} & & \lambda\tau_{q}\tau^{h}\\\lambda\tau_{i}\tau^{p} & \gamma_{2}\delta_{q}^{p} & +\lambda\tau_{q}\tau^{p}\end{array}\right)$ .

Substituting these components into the equation (1.7, 1), we have

$\left\{\begin{array}{l}\gamma_{1}^{2}\delta_{j}^{h}+(2\gamma_{1}\lambda+\lambda^{2}|\tau|^{2})\tau_{j}\tau^{h}=\delta_{j}^{h},\\(\gamma_{1}+\gamma_{2}+\lambda|\tau|^{2})\tau_{j}\tau^{p}=0,\\\gamma_{2}^{2}\delta_{q}^{p}+(2\gamma_{2}\lambda+\lambda^{2}|\tau|^{2})\tau_{q}\tau^{p}=\delta_{q}^{p},\end{array}\right.$

where $|\tau|$ is the length of the gradient vector $\tau,$
$i$ . $e.,$ $|\tau|^{2}=\tau_{\omega}\tau^{\omega}$ . From these

equations we see
$\gamma_{1}=\gamma_{2}=\pm 1$ , $\lambda=\mp 2/|\tau|^{2}$

with double signs in same order.
If we take the unit vector field $v=(v^{\kappa})$ in the direction of $\tau$ , the components

$G_{\mu\lambda}$ are equal to

\langle 4.4) $\left\{\begin{array}{l}G_{ji}=g_{ji}-2v_{j}v_{i},\\G_{qi}= -2v_{q}v_{i},\\G_{qp}=g_{qp}-2v_{q}v_{p},\end{array}\right.$

to within signature, or we obtain the tensor equation

(4.5) $G_{\mu\lambda}=g_{\mu\lambda}-2v_{\mu}v_{\lambda}$ .
Therefore the product structure $G$ is of the form

\langle 4.6) $G_{\lambda^{\kappa}}=\delta 7-2v_{\lambda}v^{\iota}$ .

A vector field $\xi=(\xi^{\kappa})$ defined by
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$\xi^{\kappa}=\rho v^{\kappa}$

is unit with respect to the metric $g^{*}$ of $M^{*}$ . Denoting the covariant components
of $\xi$ with respect to the metrics $g$ and $g^{*}$ by $\xi_{\lambda}$ and $\xi_{\lambda}^{*}$ respectively, we have
the relations

$\xi_{\lambda}=\rho v_{\lambda}$ , $\xi f=gf_{\kappa}\xi^{\kappa}=\frac{1}{p}v_{\lambda}$ ,

and the product structure $G$ is written in the form

$G_{\lambda^{\iota}}=\delta_{\lambda}^{\kappa}-2\xi_{\lambda}^{*}\xi^{K}$ .

The integrability condition (1.2, 2) of $G$ in $M^{*}$ is equivalent to

$\nabla_{\mu}^{*}\xi^{\kappa}=0$ .
Substituting the transformation formula (1.5) into this equation, we obtain the
equation

$\nabla_{\mu}\xi^{\kappa}=\frac{1}{p}(\delta_{\mu}^{\kappa}p_{\lambda}\xi^{\lambda}+\rho_{\mu}\xi^{\kappa}-\xi_{\mu}\rho^{\kappa})$

or

(4.7) $\nabla_{\mu}\xi_{\lambda}=p_{\mu}v_{\lambda}-v_{\mu}\rho_{\lambda}+v^{\omega}p_{\omega}g_{\mu\lambda}$ .
It follows from this equation that

(4.8) $\nabla_{\mu}\xi_{\lambda}+\nabla_{\lambda}\xi_{\mu}=2\sigma g_{\alpha_{\wedge^{\backslash }}}$ ,

where we have put

(4.9) $\sigma=v^{\omega}p_{\omega}$

Hence the vector field $\xi$ is an infinitesimal conformal transformation of the
metric $g$ in $U^{\prime}$ . It follows also from (4.7) that

(4.10) $\nabla_{\mu}v_{\lambda}=\frac{1}{\rho}(\sigma g_{\mu\lambda}-v_{\mu}\rho_{\lambda})$ .

Substituting (4.4) into (3.7), we have the equations

(4.11) $\left\{\begin{array}{ll}\nabla_{j}\rho_{i}=(\phi_{1}+\psi)g_{ji} & -2\psi v_{j}v_{i},\\\nabla_{q}\rho_{i}= & -2\psi v_{q}v_{t},\\\nabla_{q}\rho_{p}=(\phi_{2}+\psi)g_{q} & -2\psi v_{q}v_{p}.\end{array}\right.$

Contraction of these equations with $2p^{i}$ yields

(4.12) $\left\{\begin{array}{l}\nabla_{j}\Phi=2(\phi_{1}+\psi)p_{j}-4\sigma\psi v_{j},\\\nabla_{q}\Phi=2(\phi_{2}+\psi)\rho_{q}-4\sigma\psi v_{q\prime}\end{array}\right.$
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By use of (3.8), (4.10) and (4.11), the derivatives $\sigma_{\lambda}=\nabla_{\lambda}\sigma$ of $\sigma$ given by (4.9)

are equal to

(4.13) $\left\{\begin{array}{l}\sigma_{j}=\frac{\sigma}{\rho}p_{j}-(\phi_{2}+\psi)v_{j},\\\sigma_{q}=\frac{\sigma}{p}\rho_{q}-(\phi_{1}+\psi)v_{q},\end{array}\right.$

and they are rewritten as

(4.14) $\left\{\begin{array}{l}\nabla_{j}\frac{\sigma}{\rho}=-\frac{1}{p}(\phi_{2}+\psi)v_{j},\\\nabla_{q}\frac{\sigma}{\rho}=-\frac{1}{p}(\phi_{1}+\psi)v_{q}.\end{array}\right.$

Covariantly differentiating the equations (4.11, 1) in $x^{q}$ and (4.11, 2) in $x^{J}$

and putting $\psi_{\lambda}=\nabla_{\lambda}\psi$ , we have

$\nabla_{q}\nabla_{j}p_{i}=\nabla_{q}(\phi_{1}+\psi)g_{ji}-2\psi_{q}v_{j}v_{i}+\frac{2\psi}{\rho}v_{q}(\rho_{j}v_{i}+v_{j}\rho_{i})$ ,

$\nabla_{j}\nabla_{q}\rho_{i}=-2\psi_{j}v_{q}v_{i}+\frac{2\psi}{\rho}v_{j}\rho_{q}v_{i}-\frac{2\psi}{\rho}v_{q}(\sigma g_{ji}-v_{j}\rho_{i})$

by means of (4.10). Since these expressions are equal to one another, we see

$[\nabla_{q}(\phi_{1}+\psi)+\frac{2\psi\sigma}{\rho}v_{q}]g_{ji}=\frac{2}{\rho}(p\psi_{q}v_{j}+\psi p_{q}v_{j}-\rho\psi_{j}v_{q}-\psi\rho_{j}v_{q})v_{i}$

$=\frac{2}{p}(\tau_{q}v_{j}-\tau_{j}v_{q})v_{i}=0$

because of the parallelism of $\tau=(\tau^{\kappa})$ to $v$ . By putting the expression in the
brackets equal to zero, we have

(4.15) $\left\{\begin{array}{l}\nabla_{j}(\phi_{2}+\psi)=-\underline{2}\frac{\psi\sigma}{\rho}v_{j},\\\nabla_{q}(\phi_{1}+\psi)=-\frac{2\psi\sigma}{\rho}v_{q}.\end{array}\right.$

Covariantly differentiating (4.13) and using themselves, (4.11), (4.15) and
(4.10), we obtain the equations

(4.16) $\left\{\begin{array}{l}\nabla_{j}\sigma_{i}=\frac{\sigma}{\rho}(\phi_{1}-\phi_{2})g_{ji},\\\nabla_{q}\sigma_{p}=\frac{\sigma}{\rho}(\phi_{z}-\phi_{1})g_{qp}.\end{array}\right.$

Putting
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$\Psi=\frac{\sigma}{\rho}(\phi_{1}-\phi_{2})$ and $\Psi_{\lambda}=\nabla_{\lambda}\Psi$

and applying Ricci’s formula to the equation (4.16, 1), we have the equation

$-K_{kji^{h}}\sigma_{h}=\Psi_{k}g_{ji}-\Psi_{j}g_{ki}$ .

If $\sigma_{i}\neq 0$ and $n_{1}\geqq 2$ , then, contracting this equation with $\sigma^{i}$ , we see that $\Psi_{j}$ is
proportional to $\sigma_{\dot{j}},$

$i$ . $e.$ ,

(4.17) $\Psi_{j}=\alpha\sigma_{j}$ ,

a being a factor, and obtain

(4.18) $-K_{kji^{h}}\sigma_{h}=\alpha(\sigma_{k}g_{ji}-\sigma_{j}g_{ki})$ .

On the other hand, applying Ricci’s formula to the equation (4.10) for $(\kappa, \lambda)=$

\langle $i,$ $j$), we have

(4.19) $-K_{kji^{h}}v_{h}=\frac{1}{\rho}(\phi_{1}-\phi_{2})(v_{k}g_{ji}-v_{j}g_{ki})$ .

The equation (4.18) contracted with $v^{i}$ has opposite signature to the equation
\langle 4.19) contracted with $\sigma^{i}$ , and we see that

\langle 4.20) $\alpha=\frac{1}{\rho}(\phi_{1}-\phi_{2})$ and $\Psi=\alpha\sigma$ ,

whether $v_{j}$ is proportional to $\sigma_{j}$ or not. Comparing the derivative of (4.20, 2)

with (4.17), we see that $\nabla_{j}\alpha=0$ and the proportional factor $\alpha$ is independent of
\langle $x^{h}$ ) in $U^{\prime}$ . If in addition $n_{2}\geqq 2$ , then $\alpha$ is also independent of $(x^{p})$ in $U^{\prime}$ , and
hence a constant in $U^{\prime}$ . If $n_{2}=1$ , then let $P$ and $Q$ be two arbitrary points in

$U^{\prime}$ on the same part $M_{8}$ . The equation (4.18) is valid at the points $P$ and $Q$ ,
and the components $g_{ji}$ and $K_{kji^{h}}$ are independent of $P$ and Q. By contraction
of the equation at $P$ with $\sigma^{i}(Q)$ and the equation at $Q$ with $\sigma^{i}(P)$ , we see that
$\alpha(P)=\alpha(Q)$ whether $\sigma^{h}(P)$ is proportional to $\sigma^{\hslash}(Q)$ or not, that is, $\alpha$ is inde-
pendent of points of $M_{g}$ . Thus the factor $\alpha$ is a constant, say $h$ , and the equa-
tions (4.16) turn to

(4.21) $\left\{\begin{array}{ll}\nabla_{j}\sigma_{i}= & h\sigma g_{ji},\\\nabla_{q}\sigma_{p}= & h\sigma g_{qp}\end{array}\right.$

in $U^{\prime}$ . If $\sigma$ is independent of points of $M_{1}$ , then we have $h=0$ .
From (4.20) follows the relation

(4.22) $\phi_{1}-\phi_{2}=h\rho$

Comparing this with (3.8), we see that
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(4.23) $\left\{\begin{array}{l}\phi_{1}=\frac{1}{2\rho}(\Phi+h\rho^{2}),\\\phi_{2}=\frac{1}{2\rho}(\Phi-h\rho^{2}).\end{array}\right.$

Differentiating the second equation in $x^{i}$ and using (3.8), (4.12) and (4.21), we
have

$\nabla_{i}\phi_{2}=\frac{1}{2\rho}[2(\phi_{1}+\psi)\rho_{i}-4\sigma\psi v_{\ell}-\frac{\Phi}{\rho}\rho_{i}-h\rho\rho_{i}]$

$=\frac{1}{2\rho}[2\psi\rho_{i}+(\phi_{1}-\phi_{2})\rho_{i}-4\sigma\psi v_{i}-h\rho\rho_{i}]$

$=\frac{1}{\rho}(\psi p_{t}-2\sigma\psi v_{i})$

that is

(4.24) $\left\{\begin{array}{l}\nabla_{\ell}\phi_{2}=\frac{1}{\rho}(\psi\rho_{\ell}-2\sigma\psi v_{i}),\\\nabla_{p}\phi_{1}=\frac{1}{\rho}(\psi\rho_{p}-2\sigma\psi v_{p}).\end{array}\right.$

It follows from the equations (4.15) and (4.24) that

$\left\{\begin{array}{l}\rho\nabla_{i}\psi+\psi\rho_{i}=\nabla_{i}(\rho\psi)=0,\\\rho\nabla_{p}\psi+\psi\rho_{p}=\nabla_{p}(\rho\psi)=0,\end{array}\right.$

or
$\tau_{\lambda}=\nabla_{\lambda}(p\psi)=0$ .

Thus the vector field $\tau$ identically vanishes in $U^{\prime}$ . This contradicts the assump-
tion $\tau\neq 0$ in $U^{\prime}$ . Therefore the vector field $\tau$ identically vanishes in $U$. Q.E.D..

5. Further equation in the subset $U$.
By means of Lemma 4, we may put $\rho\psi=C$ in $U$, or

(5.1) $\psi=\frac{C}{p}$ ,

$C$ being a constant. Then the equations (3.7) turn to

(5.2) $\left\{\begin{array}{ll}\nabla_{j}\rho_{i}=\phi_{1}g_{ji} & \frac{C}{p}G_{ji},\\\nabla_{q}\rho_{i}= & \frac{C}{\rho}G_{qi},\\\nabla_{q}\rho_{p}=\phi_{2}g_{qp} & \frac{C}{\rho}G_{qp}.\end{array}\right.$
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It follows from (3.12) with $\tau=0$ that we have

\langle 5.3) $\left\{\begin{array}{l}C\\\nabla_{j}\phi_{2}=p^{2}G_{j\omega}\rho^{\omega},\\\nabla_{q}\phi_{1}=\frac{C}{p^{2}}G_{q\omega}\rho^{\omega}.\end{array}\right.$

Applying Ricci’s formula to the equations (5.2, 1) and (5.2, 3) and substituting
\langle 1.8), we have the equation

$-K_{kji^{h}}\rho_{h}=(\nabla_{k}\phi_{1}-\rho^{2}CG_{k\omega}\rho^{\omega})g_{jt}-(\nabla_{j}\phi_{1}-\rho^{2}CG_{f\omega}\rho^{\omega})g_{ki}$ .
Contracting this equation with $\rho^{i}$ , we may put

(5.4) $\left\{\begin{array}{l}C\\\nabla_{j}\phi_{1}=\rho^{2}G_{j\omega}\rho^{\omega}+\alpha_{1}\rho_{j},\\C\\\nabla_{q}\phi_{2}=p^{2}G_{q\omega}\rho^{\omega}+\alpha_{2}\rho_{q},\end{array}\right.$

$\alpha_{1}$ and $\alpha_{2}$ being proportional factors. Differentiating the relation (3.8) and sub-
stituting (5.3) and (5.4), we have the relation

$\alpha_{1}=-\alpha_{2}=\frac{1}{\rho}(\phi_{1}-\phi_{2})$ .

The differences of the equations (5.3) and (5.4) make all together the tensor
equation

$\nabla_{\mu}(\phi_{1}-\phi_{2})=\frac{1}{\rho}(\phi_{1}-\phi_{2})\rho_{\mu}$ ,

hence we may put

\langle 5.5) $\phi_{1}-\phi_{2}=k\rho$ ,

$k$ being a constant. Comparing this relation with (3.8), we obtain again

(5.6) $\left\{\begin{array}{l}\phi_{1}=\frac{1}{2\rho}(\Phi+kp^{2}),\\1\\\phi_{2}=2\overline{\rho}(\Phi-k\rho^{2}),\end{array}\right.$

and the equations (5.2) turn to

\langle 5.7) $\left\{\begin{array}{l}\nabla_{j}\rho_{i}=\frac{1}{2\rho}(\Phi+kp^{2})g_{ji}+\frac{C}{\rho}G_{ji},\\\nabla_{q}\rho_{i}= \frac{C}{p}G_{qi},\\\nabla_{q}\rho_{p}=\frac{1}{2\rho}(\Phi-k\rho^{2})g_{qp}+\frac{C}{\rho}G_{qp}.\end{array}\right.$
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Now the derivatives of $\Phi=\rho_{\omega}p^{\omega}$ are equal to

(5.8) $\left\{\begin{array}{l}\nabla_{i}\Phi=\frac{1}{p}[(\Phi+k\rho^{2})p_{i}+2CG_{i\omega}p^{\omega}],\\\nabla_{p}\Phi=\frac{1}{\rho}[(\Phi-k\rho^{2})\rho_{p}+2CG_{p\omega}\rho^{\omega}].\end{array}\right.$

Covariantly differentiating the first equation in $x^{q}$ and using the second, (1.8)

and (5.2), we have

$\nabla_{q}\nabla_{i}\Phi=\frac{1}{\rho}[\{(\Phi-k\rho^{2})\rho_{q}+2C\rho G_{q\omega}p^{\omega}-\Phi\rho_{q}+k\rho^{2}p_{q}\}\rho_{i}$

(5.9) $+(\Phi+k\rho^{2})CG_{qi}-2C\rho_{q}G_{i\omega}\rho^{\omega}$

$-2C(G_{qi}\rho_{\kappa}+G_{q\kappa}\rho_{i}-g_{q\kappa}G_{i\omega}\rho^{\omega})\rho^{\kappa}$

$+CG_{i\omega}\{(\Phi-kp^{2})\delta_{q}^{\omega}+2CG_{q}^{\omega}\}]=0$ .
Therefore the squared length $\Phi$ is decomposable in $U$, that is, it is the sum

\langle 5.10) $\Phi=\rho_{\omega}\rho^{\omega}=\Phi_{1}+\Phi_{2}$

of functions $\Phi_{1}$ of $(x^{h})$ and $\Phi_{2}$ of $(x^{p})$ . By similar computations, we have also
the equations

(5.11) $\left\{\begin{array}{l}\nabla_{j}\nabla_{i}\Phi=2k(\rho_{j}\rho_{i}+CG_{ji})+\rho^{2}2[\frac{1}{4}(\Phi+k\rho^{2})^{2}+CG_{\lambda\kappa}p^{\lambda}\rho^{\kappa}+c^{2}]g_{ji},\\\nabla_{q}\nabla_{p}\Phi=-2k(\rho_{q}\rho_{p}+CG_{qp})+\rho^{2}2[\frac{1}{4}(\Phi-k\rho^{2})^{2}+CG_{\lambda\kappa}\rho^{\lambda}\rho^{\kappa}+c^{2}]g_{qp}.\end{array}\right.$

Moreover, by use of (5.7), we have

\langle 5.12) $\left\{\begin{array}{ll}\nabla_{j}\nabla_{i}\rho^{2}=(\Phi+k\rho^{2})g_{ji} & 2CG_{ji}+2\rho_{j}\rho_{i},\\\nabla_{q}\nabla_{i}\rho^{2}= & 2CG_{qi}+2\rho_{q}p_{i},\\\nabla_{q}\nabla_{p}\rho^{2}=(\Phi-k\rho^{2})g_{qp} & 2CG_{qp}+2\rho_{q}\rho_{p},\end{array}\right.$

and therefore

(5.13) $\left\{\begin{array}{l}\nabla_{j}\nabla_{i}(\Phi-kp^{2})=\Omega g_{ji},\\\nabla_{q}\nabla_{p}(\Phi+k\rho^{2})=\Omega g_{qp},\end{array}\right.$

where we have put

(5.14) $\Omega=-\frac{1}{\rho^{2}}(\Phi^{2}-k^{2}\rho^{4}+4CG_{\lambda\kappa}\rho^{\lambda}\rho^{\kappa}+4C^{2})2$

By use of (1.8), (5.8) and (5.10), the derivative of the equation (5.12, 1) in $x^{p}$ is
equal to
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$\nabla_{p}\nabla_{j}\nabla_{i}\rho^{2}=\frac{1}{\rho}[(\Phi+k\rho^{2})\rho_{p}+2CG_{p\omega}p^{\omega}]g_{ji}$

$=(\nabla_{p}\Phi+2k\rho\rho_{p})g_{ji}$

$=\nabla_{p}(\Phi+k\rho^{2})g_{ji}$ ,
thus we have

(5.15) $\left\{\begin{array}{l}\nabla_{p}\nabla_{j}\nabla_{i}\rho^{2}=\nabla_{p}(\Phi_{2}+kp^{2})g_{ji},\\\nabla_{i}\nabla_{q}\nabla_{p}\rho^{2}=\nabla_{t}(\Phi_{1}-k\rho^{2})g_{qp}.\end{array}\right.$

On the other hand, by taking account of the decomposability (5.9) of $\Phi$ , the
derivatives of (5.13) are given by

(5.16) $\left\{\begin{array}{l}-k\nabla_{p}\nabla_{j}\nabla_{i}\rho^{2}=(\nabla_{p}\Omega)g_{fi},\\k\nabla_{i}\nabla_{q}\nabla_{p}\rho^{2}=(\nabla_{i}\Omega)g_{qp}.\end{array}\right.$

Comparing the equations ( $ 5.15\rangle$ with (5.16), we have

$\left\{\begin{array}{ll}\nabla_{i}\Omega= & k\nabla_{i}(\Phi_{1}-k\rho^{2}),\\\nabla_{p}\Omega= & k\nabla_{p}(\Phi_{2}+k\rho^{2}),\end{array}\right.$

and consequently the function $\Omega$ is equal to

(5.17) $\Omega=k(\Phi_{1}-\Phi_{2}-k\rho^{2})+b$ ,

$b$ being a constant. Then the equations (5.13) turn to

(5.18) $\left\{\begin{array}{l}\nabla_{j}\nabla_{i}(\Phi_{1}-kp^{2})=[k(\Phi_{1}-\Phi_{2}-k\rho^{2})+b]g_{ft},\\\nabla_{q}\nabla_{p}(\Phi_{2}+k\rho^{2})=[k(\Phi_{1}-\Phi_{2}-k\rho^{2})+b]g_{pq}.\end{array}\right.$

Covariantly differentiating the equation (5.12, 1) and using (1.8), (5.8) and (5.10),

we have the equation

$\nabla_{k}\nabla_{j}\nabla_{i}\rho^{2}=(\nabla_{k}\Phi_{1}+k\nabla_{k}\rho^{2})g_{ji}$

$-\frac{2C}{\rho}(G_{kj}p_{i}+G_{ki}\rho_{j}-g_{kj}G_{i\omega}\rho^{\omega}-g_{ki}G_{j\omega}p^{\omega})$

$+\frac{1}{\rho}[(\Phi+k\rho^{2})g_{kj}+2CG_{kj}]\rho_{i}$

$+\frac{1}{\rho}[(\Phi+k\rho^{2})g_{ki}+2CG_{ki}]\rho_{j}$

$=(\nabla_{k}\Phi_{1}+k\nabla_{k}p^{2})g_{ji}+g_{kj}\nabla_{i}\Phi+g_{ki}\nabla_{j}\Phi$

$=(\nabla_{k}\Phi_{1}+k\nabla_{k}\rho^{2})g_{ji}+g_{kj}\nabla_{i}\Phi_{1}+g_{ki}\nabla_{j}\Phi_{1}|$
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Adding $k$ times of this expression to the covariant derivative of the equation
(5.18, 1), we obtain the equations

(5.19) $\left\{\begin{array}{ll}\nabla_{k}\nabla_{j}\nabla_{i}\Phi_{1}= & k(2g_{ji}\nabla_{k}\Phi_{1}+g_{kj}\nabla_{i}\Phi_{1}+g_{ki}\nabla_{j}\Phi_{1}),\\\nabla_{r}\nabla_{q}\nabla_{p}\Phi_{2}= & k(2g_{qp}\nabla_{r}\Phi_{2}+g_{rq}\nabla_{p}\Phi_{2}+g_{rp}\nabla_{q}\Phi_{2})\end{array}\right.$

in $U$ . The functions $\Phi_{1}$ and $\Phi_{2}$ in the equations (5.15) and (5.19) can be replaced
with the function $\Phi=|Y|^{2}$ and these equations are extended on the closure $\overline{U}$

of a connected component $U$ because $\rho$ is differentiable in $M$ from the outset.

6. Proof of the theorem.

The following lemma is a combination of Lemmas 2 and 3 in [8] and wilI
be used.

LEMMA 5. Let $(M, g)$ and $(M^{*}, g^{*})$ be comPlete Riemannian manifolds and
$f$ a diffeomorphism of $M$ onto $M^{*}$ . If the length of a differentiable curve $\Gamma$ in
$M$ is bounded, then so is the length of the image $f(\Gamma)$ in $M^{*}$ .

The assumption that the open subset $V$ is dense in $M$ implies that the com-
plement $M-V$ is a border set. As is noticed at the end of Paragraph2, $M-$

$N_{1}\cap N_{2}\supset V$ and hence the closed subset $N_{1}\cap N_{2}$ is a border set too.
Case (1). First we consider the case where $U$ is empty. Then $M=N_{1}\cup N_{2r}$

$(M-N_{1})\cap(M-N_{2})=\emptyset$ and no point of one of $M-N_{1}$ and $M-N_{2}$ is on the
boundary of the other. The intersection $(M-N_{1})\cap V$ is dense in $M-N_{1}$ and so
is $(M-N_{2})\cap V$ in $M-N_{2}$ . By means of Lemma 3, we have an equation of type
(2.2) in first in each connected component of $M-N_{1}$ and $M-N_{2}$ and secondly
in the closure of the component. The coefficient $c^{2}$ might be different from
one of components to another.

Suppose that $M-N_{1}$ is not empty and let $W$ be its connected component.
Denote the part $M_{1}$ through a point $P\in W$ by $M_{1}(P)$ and put $M_{1}(W)=UM_{1}(P)P\in W$

Since the stationary point of a concircular scalar field $\rho$ satisfying (2.2) is at
most one, the boundary of the set $M_{1}(P)\cap(M-N_{1})$ should consist of at most one
point. Hence the equation (2.2) is valid in the whole part $M_{1}(P)$ through any
point $P\in W$, and so over the open subset $M_{1}(W)$ .

Since the manifold $M$ is complete, so are the parts $M_{1}$ and $M_{2}$ . Any geo-
desic in a complete manifold is extendabIe to the infinity. Let $\Gamma$ be a geodesic
curve lying in $M_{1}(P)$ through $P\in W$ and $s$ the arc length of $\Gamma$ The ordinary
derivatives in $s$ will be denoted by prime. The equation (2.2) is reduced to the
ordinary differential equation

$ p^{\prime\prime}(s)=c^{2}\rho$

along $\Gamma$ and the general solution is given in the form
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(6.1) $\rho(s)=Ae^{cs}+Be^{-cs}$

$A$ and $B$ being arbitrary constants.
The integral curves, called $\rho$-curves, of the gradient vector field $Y$ of a

concircular scalar field $\rho$ are defined by differential equations

$\frac{dx^{\kappa}}{dt}=\rho^{\kappa}$

with respect to the canonical parameter $t$ , or

$\frac{dx^{\kappa}}{ds}=\frac{1}{|Y|}\rho^{\kappa}$

with respect to the arc length $s$ . The $\rho$ -curves are geodesic. In the present
case, the $\rho$-curve passing through $P$ lies in the part $M_{1}(P)$ . It follows from the
equation (2.4) that we have the ordinary differential equation

(6.2) $\rho^{\prime}(s)=p_{i}\frac{dx^{i}}{ds}=\frac{1}{|Y|}\rho_{i}\rho^{i}=c\rho$

along a $\rho$-curve. The general solution is given by

$\rho(s)=Ae^{cs}$ ,

$A$ being a positive constant.
Let $\Gamma^{*}$ be the image $f(\Gamma)$ of a p-curve $\Gamma$ by the conformal diffeomorphism,

and $s^{*}$ the arc length of $\Gamma^{*}$ such as $s^{*}=0$ corresponding to $s=0$ . Then they

are related by the ordinary differential equation

$\frac{ds^{*}}{ds}=\frac{1}{\rho}=\frac{1}{A}e^{-cs}$

or, by integration, by the equation

$s^{*}=\frac{1}{Ac}(1-e^{-cs})<\frac{1}{Ac}$ .

Therefore the length of the image $\Gamma^{*}$ is bounded as $s$ tends to the infinity
along the $\rho$-curve $\Gamma$ This contradicts the completeness of $M^{*}$ by virtue of
Lemma 5. Thus there is no global conformal diffeomorphism in this case.

We notice that $M=N_{2},$ $i$ . $e.$ , there is no point such that $Y_{2}\neq 0$ in this case.
If there would be a point $Q$ such that $Y_{2}(Q)=0$ , then there would be an open
subset $W^{\prime}$ in $M-N_{2}$ like $W$ in $M-N_{1}$ and the vector field $Y_{2}$ would not identi-
cally vanish in $M_{2}(W^{\prime})$ , and hence $U$ would not be empty, in contradiction to
the assumption.

Case (2). Next we consider the case where the subset $U$ is not empty and
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the constant $k$ in (5.5) is equal to zero in every component of $U$. Now the
equations (5.7), (5.8) and (5.12) turn to the tensor equations

\langle 6.3) $\nabla_{\mu}\rho_{\lambda}=\frac{1}{2\rho}(\Phi g_{\mu\lambda}+2CG_{\mu\lambda})$ ,

(6.4) $\nabla_{\lambda}\Phi=\frac{1}{\rho}(\Phi\rho_{\lambda}+2CG_{\lambda\kappa}\rho^{\kappa})$

and

(6.5) $\nabla_{\mu}\nabla_{\lambda}\rho^{2}=\Phi g_{\mu\lambda}+2CG_{\mu\lambda}+p_{\mu}\rho_{\lambda}$

in $\overline{U}$ , respectively. Covariant differentiating (6.5), substituting (1.8) and (6.3) and
taking account of (6.4), we obtain the equation

(6.6) $\nabla_{\nu}\nabla_{\mu}\nabla_{\lambda}p^{2}=g_{\nu\mu}\nabla_{\lambda}\Phi+g_{\nu\lambda}\nabla_{\mu}\Phi+g_{\mu\lambda}\nabla_{\nu}\Phi$ .

It follows also from (5.17) that $\Omega=b$ and the equations (5.9) and (5.11) turn
to

(6.7) $\nabla_{q}\nabla_{i}\Phi=0$

and

\langle 6.8) $\left\{\begin{array}{l}\nabla_{j}\nabla_{i}\Phi=\nabla_{j}\nabla_{i}\Phi_{1}=bg_{ji},\\\nabla_{q}\nabla_{p}\Phi=\nabla_{q}\nabla_{p}\Phi_{2}=bg_{qp},\end{array}\right.$

respectively, and altogether to the tensor equation

\langle 6.9) $\nabla_{\mu}\nabla_{\lambda}\Phi=bg_{\mu\lambda}$

in $\overline{U}$. It is noticed that the constant $b$ might be different from a component of
$U$ to another.

If the closed subset $N_{\mathfrak{g}}$ contains inner points and contacts with the closure
of a component of $U$ at a point $O$ , then $\Phi=\rho_{i}\rho^{i}$ is dependent of $(x^{h})$ only in
$N_{2}$ and we have the equation (2.2) and consequently

$\nabla_{j}\nabla_{i}\Phi=2(c^{4}\rho^{2}g_{ji}+c^{2}\rho_{j}\rho_{i})$

in $N_{2}$ . Comparing this with the equations (6.8) at $0$ , we see first $b=0$ and then
we have the equation

$c^{2}(c^{2}\rho^{2}g_{ji}+\rho_{j}p_{i})=0$

and, by contraction with $g^{ji}$ ,
$c^{2}(n_{1}c^{2}p^{2}+\Phi)=0$

at $0$ . Since the expression in the parentheses is positive, the coefficient $c$ should
be equal to zero. This contradicts the positiveness of $c$ in Lemma 3. There-
fore the subset $N_{2}$ is a border set in $M$ and similarly so is the subset $N_{1}$ in
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this case, even if they exist.
If the closures of two components of $U$ contact with one another at a point

$O$ of $N_{1}\cup N_{2}$ , then we compare the equations of type (6.9) in the closures at $O$

and see that the constant $b$ is common with all components of $U$ . Therefore
the equations from (6.3) to (6.9) are valid on the whole manifold $M$.

If the length $|Y|$ of $Y$ is constant, say $|Y|=B$ , then we have

$\nabla_{\lambda}\Phi=2\rho^{\mu}\nabla_{\mu}\rho_{\lambda}=0$ ,

which means that the integral curves of the gradient vector field $Y=(p^{\kappa})$ are
geodesic. Let $\Gamma$ be one of the integral curves. Along $\Gamma$ we have

$\rho^{\prime}(s)=B$

by a similar way to (6.2), and the solution is given in the form

(6.10) $p=Bs+C$ ,

$C$ being a constant. Then $\rho$ has negative values on a half infinite interval of
$s$ . This does not occur.

If $\Phi$ is not constant, then the gradient vector field, denoted by $Z=(\Phi^{\kappa})$ , of
$\Phi$ is parallel or concurrent according as $b$ is equal to zero or not. The integrar
curves of the field $Z$ are geodesic. Let $\Gamma$ be one of the integral curves. The
equations (6.6) and (6.9) are reduced to

(6.11) $(\rho^{2}(s))^{\prime\prime\prime}=3\Phi^{\prime}(s)$

and

(6.12) $\Phi^{\prime}(s)=b$

along $\Gamma$

Provided $b=0$ , the solution of (6.12) is given in the form

(6.13) $\Phi=|Y|^{2}=as+c$

$a$ and $c$ being constant and $a>0$ . Then the squared length $\Phi$ of $Y$ has nega-
tive values in a half infinite interval of $s$ . This is a contradiction.

Provided $b\neq 0$ , the squared length $\Phi$ has one stationary point, say $O$ , and
any integral curve $\Gamma$ of $Z$ issues from the point O. We choose the arc length $s$

of $\Gamma$ such as $s=0$ at O. Then we have

$\Phi^{\prime}(s)=bs$

and the general solution of the equation (6.11) $is_{A}^{v}$given in theTform

(6.14) $\rho^{2}=\frac{1}{8}bs^{4}+As^{2}+Bs+C$ ,
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$A,$ $B$ and $C$ being arbitrary constants. Since $\rho$ is positive for any value of $s$ ,
the constant $b$ should be positive and we put $b=16a^{2},$ $a>0$ . Take a value $s_{0}$

so large that the inequality
$\rho>as^{2}$

holds for $s>s_{0}$ . The arc length $s^{*}$ of the image $\Gamma^{*}=f(\Gamma)$ is related to $s$ by
the differential equation

$\frac{ds^{*}}{ds}=\frac{1}{\rho}<\frac{1}{as^{2}}$ .

Integrating this equation and denoting by $s_{0}^{*}$ the value of $s$ corresponding to $s_{0}$ ,

we obtain the inequality

$s^{*}-s_{0}^{*}<\frac{1}{a}(\frac{1}{s_{0}}-\frac{1}{s})<\frac{1}{as_{0}}$ .

Hence the length of the curve $\tau*$ is bounded as $s$ tends to the infinity. This
leads to a contradiction to Lemma 5.

Case (3). We finally consider the case where the subset $U$ is not empty and
the constant $k$ appearing in (5.5) is not equal to zero at least in one connected
component, say $U_{0}$ , of $U$. Let $\Gamma$ be a geodesic curve lying in the part $M_{1}(P)$

passing through a point $P\in U_{0}$ . Along the arc of $\Gamma$ contained in $\overline{U}_{0}$ , the equa-
tions (5.18, 1) and (5.19, 1) are reduced to the ordinary differential equations

\langle 6.15) $(\Phi_{1}(s)-k\rho^{2}(s))^{\prime}=k(\Phi_{1}-k\rho^{2})+b-k\Phi_{2}(P)$

and

(6.16) $\Phi_{1}^{\prime\prime\prime}(s)=4k\Phi_{1}^{\prime}(s)$

respectively. We put $k=c^{2}$ or $k=-c^{2}$ according as $k>0$ or $k<0$ . Then the
general solution of (6.16) is written in the form

(6.17) $\Phi_{1}=\left\{\begin{array}{ll}Ae^{2CS}+Be^{-2C\theta}+C & (k=c^{2}),\\A cos 2cs+B sin 2cs+C & (k=-c^{2}) ,\end{array}\right.$

and consequently, by means of the equations (6.15), $\rho^{2}$ is given in the form

\langle 6.18) $\rho^{2}=\left\{\begin{array}{l}\frac{1}{c^{2}}(Ae^{2cs}+Be^{-2CS})+A_{1}e^{cs}+B_{1}e^{-CS}+C_{1},\\\frac{1}{c^{2}} (A cos 2cs+B sin 2cs) +A_{1} cos cs+B_{1} sin cs+C_{1}\end{array}\right.$

respectively, where the coefficients $A,$ $B,$ $C$ and so on are arbitrary constants.
Without loss of generality, we may suppose $k>0$ in the component $U_{0}$ and

let $\Gamma$ be the geodesic curve tangent to $Y_{1}(P)$ at the point P. Crossing the
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boundary of $U_{0}$ at a point $O$ , the geodesic curve $\Gamma$ enters another connected
component of $U$ or the subset $N_{1}\cup N_{2}$ .

If $\Gamma$ enters another component of $U$, then $\rho^{2}$ is given by one of the expres-
sions (6.18) on the arc of $\Gamma$ contained in the component. Since $\rho^{2}$ is differentia-
ble on the geodesic curve $\Gamma$, we compare the derivatives of $p^{2}$ in $s$ at $O$ in the
two components, and see that the constant $k$ is common with the components
and $\rho^{2}$ has the expression (6.18, 1) along the whole curve $\Gamma$

If $\Gamma$ enters the closed subset $N_{2}$ , then $p^{2}$ has the expression (6.1) on the
arc of $\Gamma$ contained in $N_{2}$ and this is a special one of (6.18, 1). If $\Gamma$ enters the
closed subset $N_{1}$ , then $\rho^{2}$ is constant on the arc and this does not happen by
comparison with the expression (6.18, 1). Therefore we have the expression
(6.18, 1) of $\rho^{2}$ on the whole geodesic curve $\Gamma$

At least one of the coefficients $A,$ $B,$ $A_{1}$ and $B_{1}$ of the expression (6.18, 1)

is different from zero. If, for example, $A\neq 0$ , then $A$ should be positive and we
put $A=a^{2},$ $a>0$ . Take a value $s_{0}$ so large that the inequality

$\rho>\frac{a}{2c}e^{cs}$

holds for $s>s_{0}$ . Let $\Gamma^{*}$ be the image $f(\Gamma),$ $s^{*}$ the arc length of $r*$ and $s_{0}^{*}$ the
value corresponding to $s_{0}$ . Then $s^{*}$ is related to $s$ by the differential equation

$\frac{ds^{*}}{ds}=\frac{1}{p}<\frac{2c}{a}e^{-cs}$ ,

and, by integration, we have the inequality

$s^{*}-s_{0}^{*}<\frac{2}{a}e^{-cs_{0}}$ .

Hence the length of the curve $\Gamma^{*}$ is bounded as $s$ tends to the inPnity. By
virtue of Lemma 5, this is a contradiction. Thus we have completed the proof
of the theorem.

7. An example of conformal diffeomorphism.

Let $S$ be a unit circle and $T^{3}$ a 3-dimensional torus, the product $S\times S\times S$

of three copies of $S$ . Denote by $x,$ $y,$ $z$ the arc lengths modulo $ 2\pi$ of the copies.
Take a positive valued function $\rho(y)$ of $y$ with period $ 2\pi$ , for example, $p=$

sin $y+2$ . Consider two Riemannian manifolds $M$ and $M^{*}$ on the same underly-
ing manifold $T^{3}$ having the metrics

$ds^{2}=\{\rho(y)\}^{2}dx^{2}+dy^{2}+dz^{2}$ ,
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1
$ds^{*2}=dx^{2}+$ $-$ $(dy^{2}+dz^{2})$

$\{p(y)\}^{8}$

respectively. These are conformally related with $\rho(y)$ as associated scalar field.
The first manifold $M$ is the product $M_{1}\times M_{2}$ of a 2-dimensional manifold $M_{1}$

with metric $\rho^{2}dx^{2}+dy^{2}$ on $T^{2}$ and a circle $M_{2}=S$ . The second $M^{*}$ is the pro-
duct $M_{1}^{*}\times_{A}4f_{2}^{*}$ of a circle $M_{1}^{*}=S$ and a 2-dimensional manifold $M_{2}^{*}$ with metric
$(dy^{2}+dz^{2})/p^{2}$ on $T^{2}$ . These manifolds $M$ and $M^{*}$ are compact and consequently
complete. The product structures $F$ and $G$ are given by

$F=\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & -1\end{array}\right)$ , $G=\left(\begin{array}{lll}-1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$

respectively, and are commutative with one another. This is a desired example.
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