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We consider the classification of certain classes of singularities. They
include in particular those of Kuiper, Whitney and Zeeman. The kite singular-
ities, such as $y^{2}=t^{2}x^{3}+x^{5}$ in $R^{3}$ , which arise from the Ratio Test $((4))$ , are
also considered.

While facing a classification problem, it is often very difficult, and yet most
interesting, to decide which equivalence relation is the best. It should be as
strong as possible, whilst keeping the number of classes to a minimum.

A typical situation is reflected in the Whitney example

$W(x, y;t)=y(y-x)(y-2x)(y-tx)$ , $ 2<t<\infty$ .

This is considered as a t-parameter family of function germs in $R^{2}$ . Since the
contour maps of $W$, for fixed values of $t$ , have the “ same type “, these function
germs should be put in one equivalence class.

It is easy to see that there exists a t-level preserving homeomorphism
$h:R^{2}\times I\rightarrow R^{2}\times I,$ $h(O, t)=(O, t),$ $I=[a, b]\subset(2, \infty)$ , for which $W\circ h$ is independent
of $t$ . We then ask whether it is possible to find an $h$ which is $C^{r}- diffeomor-$

phic, or even bianalytic.
Accordingly, we call: $homeo\rightarrow C^{1}- diffeo\rightarrow\cdots\rightarrow C^{\infty}- diffeo\rightarrow bianaly$ the canoni-

cal route of advance. An equivalence relation by a homeomorphism preserves
only the topology, it is too weak for analysis; that by a $C^{r}$-diffeomorphism
preserves some formality of analysis, but not computability. A bianalytic equiv-
alence, whilst desirable, rarely exists.

In 1965, Whitney pointed out that for his example, no local $C^{1}- diffeomor-$

phism could exist ! Thus one can not edge forward at all along the canonical
route.

We introduce the notion of modified analytic trivialization (MAT). The
associated equivalence relation preserves computability, but is slightly weaker
than bianalyticity; it is independent of $C^{r}$-diffeomorphism $(1\leqq r\leqq\infty)$ , and much
stronger than homeomorphism. This yields an alternative route of advance.

The General Theorem in \S 3 establishes MAT for a class of singularities in
$R^{n}$ . Trivializations for the Kuiper, Whitney and Zeeman singularities are speciaI
cases (Theorems 1 to 3). On the other hand, in \S 4, we find that the kite
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singularities do not admit MAT, as one expects. It is interesting to note,
however, that all kite singularities are Whitney regular $((4))$ . Some satisfy
Verdier’s w-regularity condition $((7))(e. g. y^{4}=t^{2}x^{5}+x^{7}, $(6) $)$ . Thus MAT seems
to be a better notion.

One of the main features of MAT is its special character of being only
over $R$. Serious difficulties can hardly be overcome when one attempts a
generalization to $C$. These are clearly exposed in the constructive proof of
Theorem 5. We like to thank J. M. Mack for discovering this proof for us.
Thanks are also due M. J. Field, R. Thom, D. Trotman and J. N. Ward for
many inspiring communications.

This paper is written up in response to some queries raised by E. C. Zeeman.

\S 1. The fundamental notion: modified analytic trivialization
(abbreviated to MAT).

We begin with the elementary case. Let $\mathcal{M}_{2}$ be the M\"obius strip, consider-
ed as the analytic submanifold of $RP^{1}\times R^{2}$ consisting of all points $([\xi, \eta]$ ,
$(x, y))$ satisfying the equation $\xi y=\eta x$ . The projection map restricted to $\mathcal{M}_{2}$ ,

$\pi$ : $\mathcal{M}_{2}\rightarrow R^{}$.

is onto and $\pi^{-1}(0)=RP^{1}\times\{0\}$ . Call $\pi$ the blowing-up of $R^{2}$ at $0$ . Note that in
the complement of $\pi^{-1}(0),$ $\pi$ is bianalytic.

Let $I=[a, b]$ be an interval, and $\tau^{*}$ a homeomorphism between two neigh-
borhoods of $\pi^{-1}(0)\times I$ in $\mathcal{M}_{2}\times I$ , with the following properties:
(1.1) $\tau^{*}$ is t-level preserving, $t\in I$ ;
(1.2) It is bianalytic;
\langle 1.3) It leaves $\pi^{-1}(0)\times I$ invariant.
In this case, $\tau^{*}$ induces a t-level preserving homeomorphism $\tau$ between two
neighborhoods of $\{O\}\times I$ in $R^{2}\times I$ ; and $\tau$ leaves $\{O\}\times I$ pointwise fixed. We
then call $\tau$ a modified analytic twisting of $R^{2}\times I$ along $I$ . It should be noticed
that although $\tau$ is in general not analytic, it “ lifts “ to the bianalytic map $\tau^{*}$ .
Thus $\tau$ is essentially analytic in some sense.

Let $F(x, y;t)$ be a real-valued function defined and analytic in $U\times I$ ,
$F(O, 0;t)=0$ , where $U$ is a neighborhood of $0$ . We say $F(x, y;t)$ admits a
MAT along I if there exists a modified analytic twisting $\tau$ such that $ Fo\tau$ is
indePendent of $t$ . (This says that the f-parameter family of singularities is
“ trivialized “ by $\tau.$ )

A straightforward generalization of this notion to $R^{n}$ is as follows. Let

$\pi$ ; $\mathcal{M}_{n}\rightarrow R^{n}$

be the blowing-up of $R^{n}$ at $0$ , where $\pi^{-1}(0)=RP^{n-1}\times\{0\}$ is a copy of the real
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projective $(n-1)$-space. Here $\mathcal{M}_{n}$ is the analytic submanifold of $RP^{n- 1}\times R^{n}$

whose points $([\xi_{1}, \cdots , \xi_{n}], (x_{1}, \cdots , x_{n}))$ satisfy the equations $\xi_{i}x_{j}=\xi_{j}x_{i}$ , for all
$i,$ $j$ . Let $I=[a_{1}, b_{1}]\times\cdots\times[a_{m}, b_{m}]$ be a cube in $R^{m}$ , and $\tau^{*}$ a bianalytic map
between two neighborhoods of $\pi^{-1}(0)\times I$ in $\mathcal{M}_{n}\times I$ . Suppose $\tau^{*}$ is t-level pre-
serving and leaves $\pi^{-1}(0)\times I$ invariant. The induced homeomorphism $\tau$ between
two neighborhoods of $\{O\}\times I$ leaves $\{O\}\times I$ pointwise fixed. We call $\tau$ a modified
analytic twisting of $R^{n}\times I$ along $I$ . For a function $F(x;t),$ $F(O;t)=0$ , defined
and analytic in $U\times I,$ $U$ an open neighborhood of $0$ , suppose there exists a $\tau$ so
that $ F\circ\tau$ is independent of $t$ , then we say $F(x;t)$ admits a MAT along $I$ .

In this case, it is easy to see that $F(x;t)$ admits a semi-analytic fibration
in the sense of Whitney ([8], p. 230). We shall not consider this notion here.

A general theorem about MAT is stated in \S 3. We first state some special
cases that might interest experts.

\S 2. MAT for the singularities of Kuiper, Whitney and Zeeman.

THEOREM 1. The Kuiper jet $((2))$

$K(x, y;t)=x^{5}+y^{5}+tx^{3}y^{3}$

admits $a$ MAT along any $I=[a, b]$ .
THEOREM 2. The Whitney function

$W(x, y;t)=y(y-x)(y-2x)(y-tx)$ , $t\in R$

admits $a$ MAT along any I not containing $0,1$ or 2.
THEOREM 3. The Zeeman double cusp

$Z(x, y;t)=x^{4}+y^{4}+tx^{2}y^{2}$ , $t\in R$

admits $a$ MAT along any I not containing $-2$ .

\S 3. The General Theorem.

We can write
$ F(x ; t)=H_{k}(x ; t)+H_{k+1}(x ; t)+\cdots$ , $H_{k}\not\equiv 0$ ,

where $H_{j}(x, t)=\sum a_{a}(t)x^{\alpha},$ $|\alpha|=j$ , represents a homogenous j-form in $x$ , with
coefficients in $t$ . We say $H_{j}(x;t)$ is non-degenerate in $x$ for $t\in I$ if, for each
fixed $t,$ $0$ is the only point in $R^{n}$ at which

$\frac{\partial H_{j}}{\partial x_{1}}=$ $=\frac{\partial H_{j}}{\partial x_{n}}=0$ .

THE GENERAL THEOREM. SuPpose the initial form $H_{k}(x;t)$ of $F(x;t)$ is
non-degenerate in $x$ for $t\in I$ . Then $F(x;t)$ admits $a$ MAT along $I$.
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\S 4. Non-existence of MAT for the kite singularities.

For integers $k,$ $1,$ $m,$ $1\leqq k<l<m$ , put

$K_{k,l.m}(x, y;t)=y^{2k}-t^{2}x^{2l+1}-x^{2m+1}$ .
The variety $K_{k,l.m}=0$ looks like a kite, for a picture of $K_{1.2,3}$ , see (5), p. 123.

THEOREM 4. There is no MAT for the kite singularity $K_{k,l.m}$ along any
$I=[-\epsilon, \epsilon]$ .

\S 5. An illustration via $Z(x,y;t)$ .

We give a complete proof of Theorem 3. The proof of the General Theo-
rem is more or less a straightforward generalization of the argument given
here.

We only consider the case $I=[a, b]\subset(-2, \infty)$ . The argument for
$I\subset(-\infty, -2)$ is similar. For $t>-2$ , note that

(5.1) $Z_{x}^{2}+Z_{y}^{2}\neq 0$ , for $(x, y)\neq(O, 0)$ , $(x, y)$ near $0$ .

Let us consider the vector field

(5.2) $v(x, y ; t)=-\frac{Z_{t}Z_{x}}{Z_{x}^{2}+Z_{y}^{2}}\partial x\partial_{-}-\frac{Z_{t}Z_{y}}{Z_{x}^{2}+Z_{y}^{2}}\partial y\partial+\frac{\partial}{\partial t}$ , $(x, y)\neq(0,0)$ ,

(5.3) $v(0,0;t)=\frac{\partial}{\partial t}$ .

The construction of $v$ , first appeared in (3), is as follows. At an arbitrary
point $P$ off the t-axis, let the level surface $Z(x, y;t)=const$ . that passes through
$P$ be denoted by $\mathcal{L}_{P}$ , and the tangent plane by $T(\mathcal{L}_{P}, P)$ . By (5.1), $T(\mathcal{L}_{P}, P)$

is not perpendicular to $\partial/\partial t$ . Hence $\partial/\partial t$ has a non-zero projection there.
Normalizing the t-component of the projection to 1, we find (5.2).

We shall see later that the flow of $v$ yields the desired trivialization $\tau$ for
$Z(x, y;t)$ . We Prst make some preliminary observations. Let $\phi(t;P)$ denote
the trajectory of $v$ satisfying the initial condition $\phi(0;P)=P$ . Then $\phi(t;P)$

lies entirely on $\mathcal{L}_{P}$ , and hence $Z$ is constant along $\phi$ . Moreover, since $v$ has
t-component 1, $\tau$ is t-level preserving.

However, $v$ is not in general analytic on $\{O\}\times I$ . (We do not yet know it
is continuous !) The essential observation is that in a neighborhood of $\{O\}\times I$,
$v$ can be lifted to a vector field $v^{*}$ which is defined and analytic throughout a
neighborhood of $\pi^{-1}(0)\times I$ . (This implies, in particular, that $v$ is continuous.)

Recall that $RP^{1}$ can be covered by two compact coordinate neighborhoods,
$\{\theta_{1}, \theta_{2}\}$ , and then $D_{i}=\theta_{i}\times R,$ $i=1,2$ , cover $\mathcal{M}_{2}$ . The projections $\pi(D_{1})$ and $\pi(D_{2})$

are sectors around the x-axis and y-axis respectively.
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Let us consider $\pi(D_{1})$ first. A coordinate system {X, $Y$ } can be chosen in
$D_{1}$ , expressing $\pi$ as

$\pi(X, Y)=(X, XY)$ ,

or $x=X$ , $y=XY$ .
In the interior of $\pi(D_{1})$ , the inverse map $\pi^{-1}$ then induces

$d\pi^{-1}(\frac{\partial}{\partial x})=\frac{\partial}{\partial X}-\frac{Y}{X}\frac{\partial}{\partial Y}$

$d\pi^{-1}\left(\begin{array}{l}\partial\\--\\\partial y\end{array}\right)=\frac{1}{X}\frac{\partial}{\partial Y}$ ,

and so

(5.4) $d(\pi^{-1}\times id_{I})(v)=-\frac{Z_{t}Z_{x}}{Z_{x}^{2}+Z_{y}^{2}}\frac{\partial}{\partial X}+\frac{YZ_{t}Z_{x}-Z_{t}Z_{y}}{X(Z_{x}^{2}+Z_{y}^{2})}\frac{\partial}{\partial Y}+\frac{\partial}{\partial t}$ .

Let $v^{*}$ denote this last vector field. So far it is defined only for $X\neq 0$ . Now
observe:

$Z_{x}^{2}+Z_{y}^{2}=X^{6}U(X, Y;t)$

where $U$ is defined and analytic in a neighborhood of $X=0$ ; and $U$ is strictly
positive. Moreover, the numerators in (5.4) are divisible by $X^{7}$ . Hence $v^{*}$ can
be extended analytically across $\theta_{1}\times I$ and expressed in the form

(5.5) $v^{*}=XV_{1}(X, Y;t)\frac{\partial}{\partial X}+V_{2}(X, Y;t)\frac{\partial}{\partial Y}+\frac{\partial}{\partial t}$

where $V_{1},$ $V_{2}$ are analytic throughout a neighborhood of $\theta_{1}\times I$ in $D_{1}\times I$ .
This extension is obviously the unique continuous extension of $v^{*}$ of (5.4).

Since the coefficient of $\partial/\partial X$ in (5.5) vanishes for $X=0$ ,

(5.6) $d(\pi\times id_{I})(v^{*})=\frac{\partial}{\partial t}=v(O, 0;t)$ on $\theta_{1}\times I$ .

Now consider $\pi(D_{2})$ . In the same way $v$ is lifted into an analytic vector
field in a neighborhood of $\theta_{2}\times I$ .

Recall that in the complement of $\pi^{-1}(0)\times I,$ $\pi\times id_{I}$ is bianalytic, hence the
lifting is unique and independent of the coordinate systems. Thus the above
two liftings, together with their extensions, must patch up automatically. The
properties of the resulting field $v^{*}$ can be summarized as follows:

(5.7) $v^{*}$ is defined and analytic throughout a neighborhood of $\pi^{-1}(0)\times I$ .
(5.8) $d(\pi\times id_{I})(v^{*}(\mu, t))=v(\pi(\mu), t)$ for all $\mu$ in a neighborhood of $\pi^{-1}(0)$ .

The rest of the argument is standard. Let $\phi^{*}(t;\mu_{0}, t_{0})$ denote the trajectory

of $v^{*}$ with $\phi^{*}(0;\mu_{0}, t_{0})=(\mu_{0}, t_{0})$ , and define
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$\tau^{*}(\mu, t)=\phi^{*}(t-a;\mu, a)$ .
Since $v^{*}$ is analytic, $\tau^{*}$ is analytic in $(\mu, t)$ ((1) p. 119). Hence $\tau^{*}$ yields the
desired modified analytic twisting $\tau$ for $Z(x, y;t)$ .

The functions $W(x, y;t)$ and $K(x, y;t)$ can be considered in exactly the
same way.

\S 6. Proof of the General Theorem.

For each $j,$ $1\leqq j\leqq m$ , we shall define a continuous vector Peld $v_{j}$ with the
following properties.

(6.1) On $\{O\}\times I$ , $v_{j}=\frac{\partial}{\partial t_{j}}$ .

$’(6.2)$ At any $P\not\in\{O\}\times I,$ $v_{j}\in T(\mathcal{L}_{P}, P)$ .

(6.3) The I-component of $v_{j}$ is $\frac{\partial}{\partial t_{j}}$

($(6.4)$ $v_{j}$ lifts to a vector field $v_{j}^{*}$ which is analytic throughout a neighborhood of
$\pi^{-1}(0)\times I$ in $\mathcal{M}_{n}\times I$ .

Assuming $v_{j}$ and $v_{j}^{*}$ , $1\leqq j\leqq m$ , have been found, the rest of the proof
proceeds as follows. Let $\phi_{1}^{*}(t_{1} ; \mu, c)$ denote the trajectory of $v_{1}^{*}$ with $\phi_{1}^{*}(0;\mu, c)$

$=(\mu, c);\phi_{1}^{*}$ is analytic in its variables. Let $\phi_{2}^{*}$ denote the trajectory of $v_{2}^{*}$ ,
then $\phi_{2}^{*}(t_{2} ; \phi_{1}^{*}(t_{1} ; \mu, c))$ is analytic in $(t_{1}, t_{2}, \mu, c)$ . Intuitively, we let $(\mu, c)$

$4$ ‘ flow “ along $v_{1}^{*}$ , obtaining an analytic ” stream line ”
$\phi_{1}^{*};$ we then let the

stream line $\phi_{1}^{*}$ flow along $v_{2}^{*}$ , getting an analytic surface $\phi_{2}^{*}(t_{2} ; \phi_{1}^{*})$ , etc. Con-
tinue in this way until $\phi_{m}^{*}$ , we then define

$\tau^{*}(\mu, t)=\phi_{m}^{*}(t_{m}-a_{m} ; \phi_{m-1}^{*}(\cdots ; \phi_{1}^{*}(t_{1}-a_{1} ; \mu, a)))$ ,

where $t=(t_{1}, \cdots , t_{m})\in I,$ $a=(a_{1}, \cdots , a_{m})$ .
Thus $\tau^{*}$ is a bianalytic map between two neighborhoods of $\pi^{-1}(0)\times I$ . By

the properties (6.1) to (6.4), $\tau$ is the desired trivialization for $F(x;t)$ . (Note that
the Frobenius integrability conditions may not be satisfied in our case; but we
are not concerned.)

It remains to construct $v_{j}$ and $v_{j}^{*}$ . For simplicity of notation, we only
construct $v_{1}$ and $v_{1}^{*}$ . By assumption, $H_{k}(x;t)$ is non-degenerate in $x$ , hence
the gradient vector with respect to $x$ ,

$\nabla_{x}F(x;t)=\frac{\partial F}{\partial x_{1}}\frac{\partial}{\partial x_{1}}+\cdots+\frac{\partial F}{\partial x_{n}}\frac{\partial}{\partial x_{n}}$

is non-vanishing for $x\neq 0$ ; in fact, we have

$|\nabla_{x}F|=u(x, t)|x|^{k-1}$
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where $u(x, t)$ is a unit. Now we define

$v_{1}(x, t)=-|\nabla_{x}F|^{-2}\frac{\partial F}{\partial t_{1}}\nabla_{x}F+\frac{\partial}{\partial t_{1}}$ , $x\neq 0$ ,

$v_{1}(0, t)=\frac{\partial}{\partial t_{1}}$ .

Let us construct $v_{1}^{*}$ . The projective space $\pi^{-1}(0)=RP^{n-1}$ can be covered by
$n$ compact coordinate neighborhoods $\{\theta_{1}, \cdots , \theta_{n}\}$ . Let $D_{t}=\theta_{i}\times R$. Each $\pi(D_{s})$

is a solid cone in $R^{n}$ around the $x_{s}$-axis, having its vertex at $0,1\leqq s\leqq n$ .
Fixing an $s$ and consider $D_{s}$ . A coordinate system $\{X_{1}, \cdots , X_{n}\}$ can be

chosen in $D_{s}$ so that $\pi$ is expressed as
$x_{s}=X_{s}$ , $x_{j}=X_{s}X_{j}$ $j\neq s$ .

Then for $x_{s}\neq 0$ ,

$\frac{\partial}{\partial x_{s}}=\frac{\partial}{\partial X_{s}}-\sum_{j\neq s}\frac{X_{j}}{X_{s}}\partial X_{j}^{-;}\partial$ $\partial\overline{X}_{s}\frac{\partial}{X_{j}}=^{1}-\frac{\partial}{\partial X_{j}}$ $j\neq s$ .

Note that $\partial F/\partial t_{1}$ and $\partial F/\partial x_{i}(1\leqq i\leqq n)$ are of orders $k$ and $k-1$ in $x$ respec-
tively; they are therefore divisible by $X_{s}^{k}$ and $X_{s}^{k-1}$ respectively. Define

$v_{1}^{*}=d(\pi^{-1}\times id_{I})(v_{1})$ , $ 0<|X_{s}|\leqq\epsilon$

which can then be written as

$v_{1}^{*}=X_{s}U_{s}(X, t)\frac{\partial}{\partial X_{s}}+\sum_{j\neq s}U_{j}\frac{\partial}{\partial X_{j}}+\frac{\partial}{\partial t_{1}}$

where $U_{i},$ $1\leqq i\leqq n$ , are defined and analytic for $|X_{s}|\leqq\epsilon$ . Hence $v_{1}^{*}$ can be
extended uniquely across $\theta_{s}\times I$ . The coefficient of $\partial/\partial X_{s}$ vanishes when $X_{s}=0$ .

Now the liftings for $s=1,$ $\cdots$ , $n$ patch up automatically, yielding the desired
vector field $v_{1}^{*}$ in a neighborhood of $\pi^{-1}(0)\times I$ . This completes the proof.

\S 7. The kite singularities.

We prove Theorem 4.
Let 8 be a real analytic space, $a\in \mathcal{E}$ . By an analytic arc at $a$ , we mean

\langle the germ of) an analytic map
$\lambda:[0, \epsilon)\rightarrow \mathcal{E}$

with $\lambda(0)=a,$ $\lambda(s)\neq a,$ $s>0$ .
The set of all such arcs is denoted by $A(\mathcal{E}, a)$ .
More generally, if $\Sigma$ is a closed subset of $\mathcal{E}$ , call $\lambda$ an analytic arc at $\Sigma$ if

$\lambda(0)\in\Sigma,$ $\lambda(s)\not\in\Sigma,$ $s>0$ .
Let $\sim l(\mathcal{E}, \Sigma)$ denote all such arcs.
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In the following, we take $\Sigma=\pi^{-1}(0)$ , where $\pi$ : $\mathcal{M}_{n}\rightarrow R^{n}$ is the blowing-up
of $R^{n}$ at $0$ .

PROPOSITION 1. The map
$d(\pi)$ : $d(\mathcal{M}_{n}, \Sigma)\rightarrow d(R^{n}, 0)$

defined by $d(\pi)(\lambda^{*})=\pi\circ\lambda^{*}$ is a bijection.
For if $\lambda_{1}^{*}(0)\neq\lambda_{2}^{*}(0)$ , then $\pi\circ\lambda_{1}^{*}$ and $\pi\cdot\lambda_{2}^{*}$ have different tangents at $0$ . Sup-

pose $\lambda_{1}^{*}(0)=\lambda_{2}^{*}(0),$ $\lambda_{1}^{*}(s)\neq\lambda_{2}^{*}(s)$ , then $\pi(\lambda_{1}^{*}(s))\neq\pi(\lambda_{2}^{*}(s))$ , since $\pi$ is bianalytic off $\Sigma$ .
Hence $\mathcal{A}(\pi)$ is an injection.

Now let $\lambda\in \mathcal{A}(R^{n}, 0)$ . The tangent of $\lambda$ at $0$ is represented by a unique
point $ a^{*}\in\Sigma$ . Without loss of generality, we can assume that this tangent is
the $x_{1}$-axis. Then in the parametrization of $\lambda:x_{j}=x_{j}(s),$ $1\leqq j\leqq n$ , we must
have

$O(x_{1}(s))<O(x_{i}(s))$ , $2\leqq i\leqq n$ .
There is a coordinate system near $a^{*},$ $\{X_{1}, \cdots , X_{n}\}$ , with respect to which $ 7\Gamma$

is expressed as:
$x_{1}=X_{1}$ , $x_{i}=X_{1}X_{i}$ $2\leqq i\leqq n$ .

Now the arc

$\lambda^{*}:$ $X_{1}(s)=x_{1}(s)$ , $X_{i}(s)=\frac{x_{t}(s)}{x_{1}(s)}$ , $i\geqq 2$

is in $C\emptyset(\mathcal{M}_{n}, \Sigma)$ and $\pi\circ\lambda^{*}=\lambda$ . Hence .,4(z) is also surjective.
For $\lambda,$ $\mu\in d(\mathcal{E}, a)$ , define their order of contact, $O(\lambda, \mu)$ , as in Calculus.

Let $\tau$ be a modified analytic twisting of $R^{n}\times I$ along $I$ . For $t\in I,$ $\lambda\in d(R^{n}, 0)$,

define $\tau_{t}(\lambda)\in d(R^{n}, 0)$ by
$\tau_{t}(\lambda)(s)=\tau(\lambda(s), t)$ .

PROPOSITION 2. For $\lambda,$ $\mu\in d(R^{n}, 0)$ ,

$O(\tau_{t}(\lambda), \tau_{t}(\mu))=O(\lambda, \mu)$ , $t\in I$ .
Let $\tau^{*}$ be the bianalytic map which induces $\tau$ . Then

$O(\lambda, \mu)=O(\lambda^{*}, \mu^{*})+1$

$=O(\tau_{t}^{*}(\lambda^{*}), \tau_{t}^{*}(\mu^{*}))+1$ since $\tau^{*}$ is bianalytic

$=O(\tau_{t}(\lambda), \tau_{t}(\mu))$ .
We are now ready to prove Theorem 4. The variety

$K_{k.l.m}(x, y;0)=0$

gives rise to two arcs:
$\lambda_{1}$ : $x=s^{2k}$ , $y=s^{2m+1}$ $(s\geqq 0)$ ,

and
$\lambda_{2}$ : $x=s^{2k}$ , $y=-s^{2m+1}$ $(s\geqq 0)$ .
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Yet for $t\neq 0,$ $K_{k.l.m}(x, y;t)=0$ gives rise to

$\mu_{1}$ : $x=s^{2k}$ , $ y=|t|s^{2l+1}+\cdots$ ,

and
$\mu_{2}$ : $x=s^{2k}$ , $ y=-|t|s^{2l+1}+\cdots$

Since $m>l,$ $O(\lambda_{1}, \lambda_{2})\neq O(\mu_{1}, \mu_{2})$ .
Thus, by the above Proposition, $K_{k.l.m}$ can not admit MAT in $[-\epsilon, \epsilon]$ .

\S 8. Obstructions for generalizing MAT to complex spaces.

It is well-known that if a biholomorphic map of the Riemann sphere with
itself leaves three points fixed, then it must be the identity map.

Let us consider the Whitney function

$W(z_{1}, z_{2} ; t)=z_{2}(z_{2}-z_{1})(z_{2}-2z_{1})(z_{2}-tz_{1})$ ,

and blow-up $C^{2}$ at $0$ ,

$\pi$ ; $C\mathcal{M}_{2}\rightarrow C^{2}$ ,

where $\pi^{-1}(0)=CP^{1}$ , the Riemann sphere.
Consequently, any biholomorphism $\tau^{*}$ on $C\mathcal{M}_{2}\times I$ that could yield a triviali-

zation $\tau$ for $W$( $z_{1},$ $z_{2}$ ; t) would have to leave 3 points fixed on $CP^{1}$ while
deforming a fourth with $t$ . This is impossible.

The following theorem exposes one of the essential features in the case
over $R$.

THEOREM 5. For any given finite set $S=\{\theta_{1}, \cdots , \theta_{p}\}$ on the circle $S^{1}$ , there
is a (real) bianalytic map of $S^{1}$ with itself, whose fixed point set is $S$ .

The following constructive proof is due to J. M. Mack. Let

$\phi(\theta)=\theta+\frac{1}{p}gi=1\sin^{2}\frac{\theta-\theta_{i}}{2}$ .

Then $\phi^{\prime}(\theta)\geqq 1/2$ and $\phi$ is bianalytic.
Note that if $\theta$ is considered as a complex variable, then $\phi^{\prime}(\theta)$ is no more

non-vanishing, and $\phi$ is not biholomorphic.
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