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1. Introduction.

Let S be a Sylow 2-subgroup of a finite group G. A subgroup T of S is
said to be weakly closed in S with respect to G if T has the following pro-
perty ; “Whenever TS S, g&G, and TS S, then T¥=T.” Let ¢ be the natural
homomorphism from G onto G/O(G). Then we set Z*G)=¢ (Z(G/O(G))).
The object of this paper is to prove the following results.

THEOREM I. Let S be a Sylow 2-subgroup of a finite group G. Suppose a
dihedral subgroup T of S is weakly closed in S (with respect to G). Then one
of the following holds;

(1) TEZ(T,

(ii) Z(TsZXG),

(iii) |T|=4, and Sylow 2-subgroups of <T¢) are T or dihedral of order 8
or {T%/OKT%)=Uy4),

(iv) |T|=8, and Sylow 2-subgroups of <T¢> are dihedral or semi-dihedral,

(v) |T|=16,and Sylow 2-subgroups of <Z(T)®> are dihedral or semi-dihedral
or are wreath products.

THEOREM II. Let S be a Sylow 2-subgroup of a finite group G. Suppose a
generalized quaternion subgroup Q of S is weakly closed in S. Let <{z2>=Z(Q).
Then one of the following holds;

(i) QELE®,

(ii) zeZ*G),

(iii) <=2%/0Kz%) is My, My, Mm, Li(q), Us(q), Goq), or *Dy(q), q odd.

THEOREM III. Let S be a Sylow 2-subgroup of a finite group G. Suppose a
semi-dihedral subgroup D of S is weakly closed in S. Then Z(D)SZX¥G) or
Sylow 2-subgroups of <Z(D)®> are dihedral or semi-dihedral.

2. Preliminaries.

LEMMA 2.1. Suppose a subgroup A of a Sylow p-subgroup P of G 1is con-

jugate to a normal subgroup B of P in G. Then there exists an element g=G
such that A*=B and N(A)*ZP.
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PROOF. See in [3].

LEMMA 2.2. Let S be a Sylow 2-subgroup of a finite group G. Suppose
there exist an involution z and a subgroup S, of S such that {x><S, x*=z,
|S:S,1 =2, and {z°} N\Soy=1{2}. Then z€Z*(G) or Sylow 2-subgroups of {z%> are
dihedral or semi-dihedral.

Proor. See [3].

LEMMA 23. Let S be a Sylow 2-subgroup of a finite group G. Suppose a
cyclic subgroup X of S is weakly closed in S. Then 2,(X)SZ*G) or Sylow 2-
subgroups of <Q.(X)¢> are dihedral or semi-dihedral.

ProoF. See [3].

LEMMA 24. Let V be the transfer of G to H/K and let a be an involution
in H. Then V(a)EI;[ag, modulo K where g ranges over a set of coset repre-

sentatives for the cosets gH of H in G fixed by a.

PrROOF. See Lemma 14.4.1 in [9].

LEMMA 25, Let T be a 2-group acting on G with TNG=1 and let S be a
Sylow 2-subgroup of TG containing T. If T is weakly closed in S with respect

to TG, then [T, G]1SO(G).

PROOF. See in [1].

LEMMA 2.6. Let G be a finite simple group and let S be a Sylow 2-subgroup
of G. Let z be an involution in S and let K be a normal subgroup of Cg(z)
such that a Sylow 2-subgroup of K is a generalized quaternion subgroup QZS.
Assume Q is weakly closed in S with respect to G. Then G is My, My, Li(q),
U3(Q): Gz(‘]): or 3D4(Q)7 q odd.

PrROOF. See Theorem 6 in [2].

LEMMA 2.7. Let T be a subgroup of a Sylow 2-subgroup S of G. Assume T
1s a four-group and T is weakly closed in S. Then one of the following holds;

(i) T is a Sylow 2-subgroup of {T%,

(ii) <T%/0KT®) is Us4),

(iii) Sylow 2-subgroups of <T%> are dihedral of order 8.

PrOOF. See Theorem 3.2 in [8].

3. Proof of Theorem I.

Let G be a mininimal counterexample to [Theorem 1. By Lemma 2.7, we
may assume |7T|=8.

LeMMA 3.1. G s simple.

PrROOF. We may assume O(G)=1. Let {(z>)=Z(T). Suppose z& E(G). Then
[T, E(G)]=1 by Hence zeCo(F*(G))S 0,(G). Since G is a coun-
terexample, TS<z%, so TS0,(G). Then TG since T is weakly closed in S.
Hence z€Z(G), this is a contradiction. Hence z=E(G). Since <{z%) S E(G),
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TS E(G). By a Frattini argument, G=N {(SNE(G))E(G). Since Ng{SNE(G))
ENG(TECy(2), (z¢>=<(zF®>, Hence we may assume G=FE(G). We set G=
E.E,--- E,, where E; is a component of G for i=1, ---, n. Assume z& E, for
i=1, ---, n, then [T, E;]J=1 by Lemma 25, hence [T, E(G)]=1. Then T <S0,(G),
this implies ze Z((), a contradiction. Hence we may assume z< E,. Furthermore
we may assume G=F, since <z)S FE,, TS E,, and <{z°>=<zf1>. Suppose Z(G)
#1. We set G=G/Z(G), then G is simple. By induction, G is M,;, Li(q), Us(q),
Liq), g odd, or A,. If G is My, Ly(q), Us(q), g odd, then Z(G)=1 since Schur
multiplier of G is trivial, a contradiction. If G is A, or Ly(q), ¢ odd, then G
is A, or SL(2, ¢). Hence z=Z(G), a contradiction. Hence Z(G)=1, which
proves Lemma 31.

Next we consider the case of |T|=16. We set T={t, x|xt=x"1, | x| =27,
[ t]1=2), 2:(x0)=<y2, ¥.*=y:, ¥:*=2, and CZCG(Z)/<Z>-

LEMMA 3.2. {3—}16} NCs(F)=1{7}.

ProOF. Let k€ {7,°} NCs(J,) and let k£ be an element in an inverse image
of £ such that k*=z. Since £=Cs(¥,), x*=x or xz. By Lemma 2.1, there exists
an element h=C4(2) such that "=y, and Ng(Kk))*SS. Since [k, x]E<z)S<k),
x€ Ng((k)), hence x*=S. Hence x"* acts on (x>. Consider the automorphisms
of (x>, then we have [y,", x]J=1. We set y,"=b. Since beS, b acts on T.
Let t°=tx% then t=t"=tx?, hence x'e{(z). Therefore T Ns(<{b>) since
[b, T1S<z)S<by. On the other hand, there exists an element g& G such that
b>¢=<y,> and Ng(<b))*<S by Lemma 2.J. Hence T4SS. Then T#=T since
T is weakly closed in S, this implies <b>=<y;>. Since y,"=b, he N;(Ky).
This yields that <k>=(y,>. Hence we have £=3,, which proves [Lemma 3.2

By Lemma 2.9, 3.Z*(C) or Sylow 2-subgroups of <¥,°y are dihedral or
semi-dihedral. We consider the case of 5,€Z*(C). Then <{y,>0(C)<C.

LEMMA 3.3. TO(C)C.

PrOOF. We set L=Ngz((»,>), and L=L/<y,>. As in the proof of
3.2, we can prove that {yzi}m§:{y2}. By Z*-theorem, <{y,>O(L)<1L. Since
(ypOC)<C, C=0(C)Ngz(Ky,>) by a Frattini argument. Similarly we have L=
O(L)Ng({ys>). Hence (y,>)O(C)<C. If we repeat this method, we have TO(C)<C,
this proves

LEMMA 34. Let D be a non-abelian subgroup of T. Whenever D¥SS, geG,
then D¢CST.

Proor. Suppose false. So there exists a non-abelian subgroup D of T
such that D is conjugate to a subgroup D; of S not contained in 7. Choose
D maximal with respect to inclusion, subject to the condition that D does not
satisfy Then there exist a subgroup H of S and an element
ke Ngz(H) such that D*=D, and DS H. By the choice of D, D=TNH, hence
D and D, are normal in H. If Dn\D;#1, then Z(D)=Z(D,), hence k=Cqx(z).
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Since TO(Cg(2))<1C4(2), Dy=D*STO(Cs(z))\S=T, this is a contradiction.
Therefore D,N\D=1, this implies [D, D,]J=DND,=1. We set {z,p=Z(D,).
Since [ D}, x]=1, [z, x]=1. Since z, is conjugate to z and T is weakly closed
in S, we have z;=z by this is a contradiction. Hence
is proved.

LEMMA 3.5. There is a contradiction.

ProoF. By Lemma 23, we may assume that <{x> is not weakly closed in
S. Therefore there exist a subgroup H of S and an element geNgz(H) such
that x€H and {x>+#<{x%. If {xpN{x®>+1, then geCy(z), hence x4 =T O(Cy(2))
NS=T, this implies {x>=<{x%), a contradiction. Then [x, x¢]S{x>N{(x®>=1.
Let y=x2. If [y?""!, T]=1, then [2% T]=1. Since T is weakly closed in S,
z8=z by [Lemma 2.1, this is a contradiction. Hence [y*"™*, T]#1. So we may
assume that tY=tx"?, x¥=x. Then [T, xy?]=1. Now we consider the transfer
of G to S/Cs(x). Suppose Sx,, -, Sx, are the distinct left cosets of S in G.
By V($)=TI x;tx7*, modulo Cs(x) where Sx; is fixed by ¢.
Furthermore V($)=II x;tx3!, modulo Cg(x), where Sx,; is fixed by ¢ and xy?%
since [xy?, t]=1. Let 2,Kx>)=<y>. Since Sx;y:t=Sx;tzy,;=Sx;y;, ¥, induces
permutation on the set of left cosets of S which is fixed by <¢, xy®. Then
V(O=TIxstx7* Tx;tx5%(x;y0)t(x;5)7Y, modulo Cs(x), where Sx; is fixed by
{t, xy?, vy, and Sx; is fixed by <¢, xy*, and Sx; is not fixed by y,. Since?
is an involution and y,ty7'=tz, x;tx7:(x;y:)t(x;y:1) *=x;tzx7* Since x;(xy?)x;*
S and (xj(xyz)xyl)zn'1=szx}1, x;z2x7'=1, modulo Cs(x) by cosidering the auto-
morphisms of <x>. Hence V{(¢)=Ilx;tx7*, modulo Cs(x), where Sx; is fixed by
{t, x¥%, y». By <t, y>*'SS implies {ty,»*i' ST, hence t*i =t,
modulo Cg(x). Since the number of the cosets of S which is fixed by <{, xv?%, y»
is odd, V(¢t)=t, modulo Cg(x). Hence V(t)#1. This contradicts Cemma 3.1l

Next we consider the case of 7,& Z*(C).

LEMMA 3.6. There exists a normal subgroup L of Cg(z) such that Sylow 2-
subgroups of L are generalized quaternion. Moreover, x*< L.

Proor. By [Lemma 22, Sylow 2-subgroups of <{j7,°) are dihedral or semi-
dihedral. Since ¥, Z*(C), there exists an element % such that <) is conjugate
to {y in Ce(z) and <k>#<{y,>. By Lemma 32, x*=x"* or x'z. Hence k=
x72k or x~?zk. Since k(3,%), ¥2€(F,°>. Let (> be a maximal cyclic subgroup
of §m<3715>, and let j be an element of inverse image of j. Since (&% ng
(3.%, ¥2€<¢j>. Hence x*c<{j). Since (x2)*=x"2, j*=j! or j'z. Hence Sylow
2-subgroups of <7,°) are dihedral. Let L=<5,°>, and let L be an inverse image
of L. If Sylow 2-subgroups of L are four-group, then {k, x2 is a Sylow 2-
subgroup of L, so Sylow 2-subgroups of L are quaternion. Thus we may as-
sume that Sylow 2-subgroups of L are not four-group. Since Sylow 2-subgroups
of L are dihedral, one of the following holds;
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(i) L/O(L)is a dihedral 2-group,

(ii) PSL(2, = L/O(L)SPGL(, q), q odd,

(iii) L/0(L)=A..

If (i) occurs, then 7,&2%(C), since Sylow 2-subgroups of L are non-abelian
dihedral 2-subgroups, this is a contradiction. If (ii) or (iii) occurs, then we
have that Sylow 2-subgroups of L are generalized quaternion. This completes
the proof of

LEMMA 3.7. A contradiction.

Proor. Let @) be a Sylow 2-subgroup of L which is contained in S. Then
we shall prove that @ is weakly closed in S with respect to G. Suppose false.
Then there exist a subgroup H of S and an element g€ Ng(H) such that Q€ H
and Q¢+#Q. If QNQ2+1, then g=Cy(2z), hence Q*SSN\L=(Q, a contradiction.
Therefore [Q, Q*1SQNQ*=1. Let Q,=Q%, and let Q=<(a, b|a’=a"*, a*" =02,
|b]=4), Qo={c, d|c?=c", ¢*" *=d? |d|=4). Let 2,(<a>)=<v), then <v)=02,(<x))
since x’€Q and |x%*| =4, in particular v*=z. Let 2,(Kc>)=<w) and w?=z,.
Since [Q}, x1=1, [z, x]=1. Let t¢=tx’, then t¥*=1¢x% or tx%*z since [d, v]=1
and (W)=2,((x>). On the other hand ¢%=t%=tz. Hence x*{(2), so x'c
2,{x>)=<v)>. Therefore we may assume t%=tv. Similarly we have t¥*=tv"%
Then t?*=(tv)*=¢. Since (dw)*=z,, [2,, T]=1. Since z, is conjugate to z
and T is weakly closed in S, we have z,=z by a contradiction.
Hence Q is weakly closed in S with respect to G.

By G is M., Gy(q), or 2D,(q), q odd, since G is simple and coun-
terexample to [Theorem I. Then Cg(2) has a subgroup K*K, of index 2 such
that K; is SL(2, ¢y), ¢; odd, for 1=1, 2, where we shall write K,*K, for a cen-
tral product of K; and K,. Let Q;,=SN\K;. Then we may assume x*=0Q,.

Suppose first |Q,|=8. If x=Q,*Q,, then |x|<4, so |T|<8, which is a
contradiction by the choice of T. Hence x& Q*Q,. Let C=Cg(2)/K,, then T
is weakly closed in S with respect to C and |T|<4. By one of
the following holds;

(i) T is a Sylow 2-subgroup of <7~‘5>,

(ii) Sylow 2-subgroups of <7°¢> are dihedral of order 8,

(i) <T%/0(T®)=ULW).

If (ii) or (iii) occurs, then 2= ®(8), which is a contradiction. Hence we may
assume that (i) holds. Suppose <7~“C~> is solvable, then [x, K,]S TK,NK,, which
contradicts to the structure of C4(2) since TK,N\K, is a 2-group. Hence (TES
is non-solvable, then <’1~“5>g}~(2, 80 x=Q*Q,, this contradicts to the choice of
x. Next we suppose |Q,|=16. Then K; is non-solvable for i=1, 2. By a Frat-
tini argument, Cg(2)=K,Ng(Q,). Since |Q;]=16 and |x*|=4, Ng(Q,)S Ne(<x2),
hence Cg(2)=K;Ns(<x%). We now repeat the argument of Lemma 3.3 to con-
clude that TO(Ng(<x®)<INs(<x%). Since O(C)=1, we have T'<C. Hence
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(7, [@]%ﬁzm T'=1, this contradicts to the structure of Cs(2). Therefore Lemina
3.7 is proved.
Next we consider the case of |T|=8.
LEMMA 3.8. TO(Cg(2))<dCs(2).
ProOOF. Let C=C4(2)/<z>. Then T is weakly closed in S with respect to
By one of the following holds;
(i) To(C)«C,
(ii) elements of T# are conjugate in C,
(iii) Sylow 2-subgroups of <(T°> are dihedral of order 8.
If (i) holds, then TO(Cy(2))<1Cs(z). If (ii) holds, then there exists an
element g=C such that {#=ZX, this is a contradiction. Assume (iii) holds. Let
W=S~C, then W is dihedral of order 8. Let <h> be a normal subgroup of W
of order 4. Then h*=%, since x=Z(W). Let h be an element of inverse image
of & such that A*>=x and <h><1S. Let ue {z°} "Cs(x). Then there exists an
element <G such that u*=z and Cs(u)*SS. Since [x, u]=1, x*<S. Hence
[z%, h]=1. Let z;==z*, then there exists an element =G such that z,"=z and
Cs(z)"SS. Since [z,, h]=1, h"eS. Since |h|=8, [z", T]=1. Since T is weakly
closed in S, 27=z by Lemma 2.1. Hence z,=2z, so u=z. Thus we have {z N
Cs(x)={z}. By we have a contradiction. Hence is
proved.
LEMMA 3.9. O¥G)#G.
ProOF. If we repeat the argument of we have that O*G)+#G.
Since G is simple, we have a final contradiction. This completes the proof
of I.

o

4. Proof of Theorem II.

Let G be a minimal counterexample to the II. Let Z(Q)=<z>.

LEMMA 4.1. G is simple.

ProOF. Suppose false. If we repeat the argument of Cemma 3.1, we have
G is quasisimple and O(G)=1. Let G=G/Z(G). Then G is My, My, Ly(q), U(q),
G(q), or *Dy(q), ¢ odd, by induction. If G+ M,, then Schur multiplier of G is
odd, this is a contradiction. Hence G=M,,. Then G=M,,. This contradicts
to the choice of G.

Suppose first |@|=16.

LEMMA 4.2. There exists a normal subgroup L of Cg(z) such that Sylow 2-
subgroups of L are generalized quaternion.

PrROOF. If we repeat the argument of 3.3, 3.6, we may prove
the

Let Q* be a Sylow 2-subgroup of L which is contained in S. Then likewise
in Cemma 3.7, we may prove that Q* is weakly closed in S with respect to G.
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By we have a contradiction.

Next we consider the case of |Q]=8.

LEMMA 4.3. There exists a normal subgroup K of Cg(z) such that Q is a
Sylow 2-subgroup of K.

ProoF. Let C=C4(z)/<z>. By Lemma 2.7, one of the following holds;

(i) Q@ is a Sylow 2-subgroup of <Q%,

(ii) Sylow 2-subgroups of <Q¢> are dihedral of order 8,

(iii) <Q%/0(KQ%)=U ).

Suppose (i) holds. Let K be an inverse image of <Q°), then K<C4(z) and
Q is a Sylow 2-subgroup of K. Assume (ii) holds, then likewise in
we have a contradiction. Hence (iii) holds. Then we have a contradiction
since Schur multiplier of U,(4) is trivial. This proves

Since Q is weakly closed in S, we have a contradiction by
This completes the proof of 1L

5. Proof of Theorem III.

Let G be a minimal counterexample to the III. Let D=(s, y|
Y =y 5| =2, | y|=2™, m=3) and let Z(D)=<z), 2,(Ky>)=<(¥,)>. Let ue
{z6} N\Cs(y;). Then by Lemma 21 there exists an element g€G such that
uf=z and Cs(u)*<SS. Since [u, y,]=1, y*=y or yz, this implies [u, y*]=L1.
Hence (v¥)¢=Cgs(u)¢=S. Since <y><S and (»?)¢<S, we have [z%, y]=1. Let
v=z% Then by Lemma 2.1 there exists an element #<G such that v*=z and
Cs()*<SS. Since [v, y]=1, y*€Cs)*SS. As y*=S and DS, y* acts on D.
Then [z*, D]=1 by considering the automorphisms of D. Let z*=w. Then
by there exists an element A€ G such that w”=z and Cs(w)*<S.
Since [w, D]=1, D*<Cgq(w)*<S. Since D is weakly closed in S, D*=D, hence
we have z"=z. Then w=z, so v=z, hence u=z. This implies {2} NCs(y)=
{z}. Since |S:Cs(v,)| =2, we have a conclusion by This completes
the proof of the I
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