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The purpose of this article is to describe various versions of the following
principle:

Let $A$ be an ample divisor on a manifold $M$. Then the structure of $M$ is
closely related to that of $A$ .

This was the philosophy of the study of Lefschetz on the hyPerplane sec-
tions. Recently Sommese [24] developed various techniques in the above spirit
and he found many examples of manifolds $A$ which cannot be ample divisors
in any manifold $M$ because the above ’relation’ implies so severe conditions
on $M$ that they cannot be compatible with each other. Here, inspired also by
the work [17] of Mori, we develop further the methods of Sommese, improve
some of his results, answer to questions and conjectures raised by him, and
give several new examples. We shall find the tools thus obtained to be very
powerful in the study of polarized varieties (see [5], [6]).

In this paper we work in the category of algebraic spaces defined over
an algebraically closed field $K$ of any characteristic (However, in the state-
ments indicated by $/C,$ $K$ is assumed to be the complex number field $C$. For
example, $K=C$ in \S 1, but (2.1) is valid in positive characteristic cases too.).

In \S 1 we review the classical Lefschetz theory. \S 2 is devoted to the study
of various types of extension theorems from $A$ to $M$, for cohomologies, line
bundles, linear systems, morphisms and so on. In \S 3 we consider the case in
which $A$ is isomorphic to a complete intersection in a projective space. In \S 4
we study the case in which $A$ is a fiber bundle over a manifold. \S 5 is for
the case where $A$ is a blowing up of another manifold. Two appendixes about
a couple of techniques in this paper are added for the convenience of the
reader.

Our results in the case char $K>0$ are far from satisfactory because of the
lack of a vanishing theorem of Kodaira type. However, the author expects
that our principle itself is of great importance in positive characteristic cases
too.

NOTATION, CONVENTION and TERMINOLOGY.
Variety means an irreducible reduced algebraic space which is assumed to

be proper over $K$ unless otherwise stated explicitly. Smooth means non-
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singular. Manifold means a smooth variety. Vector bundles are occasionally
confused with the locally free sheaves of their sections. Tensor products of
line bundles are indicated by additive notation.

We show examples of our notation which is similar to that in [8], [11],
[3], [4] etc. Abbreviated forms are sometimes used when there is no danger
of confusion.
Pic $(S)$ : The group of line bundles on an algebraic space $S$ .
$Pic_{0}(S)$ : The group scheme of line bundles on $S$ which are algebraically

equivalent to zero.
$I_{S}$ : The trivial line bundle on $S$ .
$O_{S}$ ; The structure sheaf of $S$ .
$h^{P}(S, \mathcal{F}):=\dim H^{p}(S, \mathcal{F})$ , where $\mathcal{F}$ is a coherent sheaf on $S$ .
$\chi(S, \mathcal{F}):=\Sigma_{p=0}^{\infty}(-1)^{p}h^{p}(S, \mathcal{F})$ .
$E^{}$ : The dual bundle of a vector bundle $E$ on $S$ .
$S^{k}E$ : The k-th symmetric product of $E$ .
det $E$ : The determinant line bundle of $E$ .
$c_{j}(E)$ : The j-th Chern class of $E$ .
$\mathcal{F}[E]:=\mathcal{F}\otimes_{0_{S}}\mathcal{E}$, where $\mathcal{E}$ is the locally free sheaf of sections of $E$ .
$P(E)$ : The projective space bundle $E^{\sqrt{}}-\{zerosection\}/K^{\times}$ over $S$ .
$H^{E}$ : The relatively ample tautological line bundle on $P(E)$ (see (4.6)).
$|L|$ : The complete linear system of effective Cartier divisors associated with

a line bundle $L$ .
$G(S, L)$ : The graded K-algebra $\oplus_{t=0}^{\infty}\Gamma(S, tL)$ .
$[\Lambda]$ : The line bundle defined by a linear system $\Lambda$ on $S$ .
$ Bs\Lambda$ : The intersection of all the members of $\Lambda$ .
$\rho_{\Lambda}$ : The rational mapping $ S\rightarrow P^{\dim}\Lambda$ induced by $\Lambda$ .
$L_{T},$ $\Lambda_{T}$ : The pull-backs of $L,$ $\Lambda$ by a given morphism $T\rightarrow S$ .
$O_{W}(1)$ : The invertible sheaf defined by hyperplane sections on $W\subset P^{N}$ .
{X} : The algebraic cycle represented by a subspace $X$.

$\omega_{V}$ : The dualizing sheaf of a locally Macaulay variety $V$.
$K^{M}$ : The canonical bundle of a manifold $M$.
$\Omega_{M}^{p}$ : The sheaf of holomorphic $P$-forms on $M$. Note that $\omega_{M}=\mathcal{O}_{M}[K^{M}]=\Omega_{M}^{\dim M}$.
$H^{p,q}(M, E):=H^{q}(M, \Omega_{M}^{p}[E])$ .
Alb $(M)$ : The Albanese variety of $M$.
$Q_{Z}(M)$ : The blowing up of $M$ with center $Z$.
$g(C)$ : The genus of a curve $C$ .
$\pi_{i}(Y)$ : The i-th homotopy group of an analytic space $Y$.
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\S 1. Lefschetz Theorem.

In this section we summarize various versions of Lefschetz Theorem.
$THEOREM/C$. Let $A$ be an amPle divisor on a manifold $M$ with dim $M=n$ .

Let $\iota$ be the embedding $A\subset M$. Then
$I_{i}$ : $\pi_{i}(\iota);\pi_{i}(A)\rightarrow\pi_{i}(M)$ is bijective for $i<n-1$ .

$I_{i}^{*}$ : $\pi_{i}(\iota)$ is surjective for $i=n-1$ .
$II_{i}$ : $H_{i}(\iota):H_{i}(A;Z)\rightarrow H_{i}(M;Z)$ is bijective for $i<n-1$ .
$II_{i}^{*}$ : $H_{i}(\iota)$ is surjective for $i=n-1$ .
$III_{i}$ : $H^{i}(\iota):H^{i}(M;Z)\rightarrow H^{i}(A;Z)$ is bijective for $i<n-1$ .
IIIY: $H^{i}(\iota)$ is injective and Coker $(H^{i}(\iota))$ is torsion free for $i=n-1$ .
$IV_{p,q}$ : $H^{p,q}(\iota):H^{q}(M, \Omega_{M}^{p})\rightarrow H^{q}(A, \Omega_{A}^{p})$ is bijective for $P+q<n-1$ if $A$ is smooth

$\dot{0}r$ if $P=0$ .
IV;,

$q$ : $H^{p,q}(\iota)$ is injective for $P+q=n-1$ if $A$ is smooth or if $p=0$ .
V: Pic $(\iota)$ : Pic $(M)\rightarrow Pic(A)$ is bijective for $n>3$ .
$V^{*}:$ Pic $(\iota)$ is injective and Coker (Pic $(c)$) is torsion free for $n=3$ .
In the following statements, $A$ is assumed to be smooth.
VI: $Pic_{0}(\iota):Pic_{0}(M)\rightarrow Pic_{0}(A)$ is an isomorphism for $n>2$ .
$VI^{*}:$ $Pic_{0}(\iota)$ is injective for $n=2$ .
VII: Alb $(\iota)$ : Alb $(A)\rightarrow Alb(M)$ is an isomorPhism for $n>2$ .
VII* : Alb $(\iota)$ is surjective and a general fiber of it is connected if $n=2$ .

PROOF. Using the Morse theory, we prove $I^{(*)}$ and $II^{(*)}$ (see [14]). Dualiz-
ing $II^{(*)}$ , we obtain $III(*)$ . Considering the Hodge decomposition for C-cohomo-
logy, we prove $IV_{p,q}^{(*)}$ if $A$ is smooth. $IV_{0,q}^{(*)}$ follows from the vanishing theorem
of Kodaira. V(*) follows from $III_{1},$ $III_{2}^{(*)},$ $IV_{0,1}$ and $IV_{0,2}(*)$ since we have the
following commutative diagram of exact sequences:

$H^{1}(M;Z)\downarrow\rightarrow H^{1}(M\downarrow’ \mathcal{O}_{M})-\rightarrow H^{1}(M, \mathcal{O}_{M}^{\times})\rightarrow H^{2}(M;Z)\rightarrow H^{2}(M|’ O_{M})$

$H^{1}(A ; Z)\rightarrow H^{1}(A, O_{A})\rightarrow H^{1}(A\downarrow, O_{A}^{\times})\rightarrow H^{2}(A\downarrow ; Z)\rightarrow H^{2}(A, O_{A})$

.

Similarly $VI^{(*)}$ (resp. $VII^{(*)}$ ) follows from $III_{1}^{(*)}$ and $IV_{0,1}^{(*)}$ (resp. $II_{1}^{(*)}$ and $IV_{1,0}^{(*)}$ ).

\S 2. Extension theorems.

(2.1) LEMMA (compare [24] Lemma I-B). Let $A$ be an ample divisor on a
scheme $S$ and let $\mathcal{F}$ be a coherent sheaf on S. SuppOse that Ker $(\mathcal{F}\rightarrow \mathcal{F}_{A})\cong \mathcal{F}[-A]$

and that the restriction $H^{i}(S, \mathcal{F}[tA])\rightarrow H^{\ell}(A, \mathcal{F}[tA]_{A})$ is surjective for a fixed $i$

and for any $t>0$ . Then $H^{i+1}(S, \mathcal{F})=0$ .
PROOF. We have a natural exact sequence $H^{i}(S, \mathcal{F}[tA])\rightarrow H^{i}(A, \mathcal{F}[tA]_{A})$

$\rightarrow H^{i+1}(S, \mathcal{F}[(t-1)A])\rightarrow H^{i+1}(S, \mathcal{F}[tA])$ . So the second assumption implies
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$h^{+1}(S, \mathcal{F}[(t-1)A])\leqq h^{i+1}(S, \mathcal{F}[tA])$ for any $t\geqq 1$ . On the other hand, $H^{i+1}(S$,
$\mathcal{F}[tA])=0$ for $t\gg O$ since $A$ is ample. Combining them, we infer that $h^{\ell+1}(S, \mathcal{F})$

$\leqq h^{i+1}(S, \mathcal{F}[tA])=0$ .
(2.2) LEMMA. Let $A$ be an amPle divisor on a variety $V$ and let $\mathcal{E}$ be a

iocally free sheaf on V. SuPpose that $H^{i}(A, \mathcal{E}[tA]_{A})=0$ for a fixed $i<\dim V$

and for every $t\leqq 0$ . Then $H^{i}(V, \mathcal{E})=0$ either a) if $V$ is locally Macaulay, $or$

b) if $i=1$ and $V$ is normal.
PROOF. In both cases a) and b) we have $H^{i}(V, \mathcal{E}[tA])=0$ for $t\ll O$ (see [23]).

So this lemma is proved by the same argument as in [24], Lemma I-B.
(2.3) PROPOSITION. Let $A$ be an ample divisor on a normal variety $V$ with

dim $V\geqq 2$ and let $F$ be a line bundle on V. SuppOse that $H^{1}(A, [F-tA]_{A})=0$ for
any $t>0$ . Then $\Gamma(V, F)\rightarrow\Gamma(A, F_{A})$ is surjective and $|F|_{A}=|F_{A}|$ .

PROOF. Put $\mathcal{E}=O_{V}(F-A)$ and apply (2.2) to obtain $H^{1}(V, F-A)=0$ . Our
assertion follows from this.

(2.4) COROLLARY. Let $A$ and $V$ be as above. Let $E$ be an effective divisor
on $A$ such that $H^{1}(A, [E-tA])=0$ for any $t>0$ . SuPpose that $[E]=F_{A}$ for some
$F\in Pic(V)$ . Then there exists an effective divisor $D\in|F|$ such that $D_{A}=E$ .

(2.5) COROLLARY. Let $A$ and $V$ be as above. Then Pic $(V)\rightarrow Pic(A)$ is in-
jective if $H^{1}(A, [-tA])=0$ for any $t>0$ .

PROOF. Suppose that $F_{A}=0$ for $F\in Pic(V)$ . Applying (2.4) to the trivial
divisor $\in|F_{A}|$ , we obtain an effective divisor $D\in|F|$ such that $ D\cap A=\emptyset$ . We
infer that $D=0$ since $A$ is ample. Consequently $F=0$ .

(2.6) $CoROLLARY/C$. Let $A$ be an ample divisor on a normal va riety $V$ with
$\dim V\geqq 3$ . Then Pic $(V)\rightarrow Pic(A)$ is injective if $A$ is normal.

For a proof, use the Theorem 2 in [18].

REMARK. Coker (Pic $(V)\rightarrow Pic(A)$) is not always torsion free if $V$ is not
smooth.

(2.7) PROPOSITION. Let $A$ be an ample divisor on a variety V. Let $\Lambda$ be a
linear system on $V$ such that $ Bs\Lambda_{A}=\emptyset$ and dim $\rho_{\Lambda}(A)<n-1=\dim$ A. Then $ Bs\Lambda$

$=\emptyset$ and $\rho_{\Lambda}$ is a $morPhism$ . Moreover, $\rho_{\Lambda}(V)=\rho_{\Lambda}(A)$ .
PROOF. Let $D_{1},$ $\cdots$ , $D_{n-1}$ be general members of $\Lambda$ . Put $B=\bigcap_{i=1}^{n-1}D_{i}$ .

Clearly codim $B\leqq n-1$ unless $ B=\emptyset$ . On the other hand, $ B\cap A=\emptyset$ since $ A\cap Bs\Lambda$

$=\emptyset$ and dim $\rho_{\Lambda}(A)<n-1$ . Hence dim $B\leqq 0$ since $A$ is ample. Consequently
$ B=\emptyset$ , which proves $ Bs\Lambda=\emptyset$ . In order to show $\rho_{\Lambda}(V)=\rho_{\Lambda}(A)$ , we put $[\Lambda]=L$ .
Recall that $\rho_{\Lambda}(V)$ (resp. $p_{\Lambda}(A)$) corresponds to the graded subalgebra of $G(V, L)$

$=\oplus_{t=0}^{\infty}\Gamma(V, tL)$ (resp. $G(A,$ $L_{A})$) generated by the linear subspace of $\Gamma(V, L)$

(resp. $\Gamma(A,$ $L_{A})$) defined by $\Lambda$ (resp. $\Lambda_{A}$). Therefore, it suffices to show that
$\Gamma(V, tL)\rightarrow\Gamma(A, tL)$ is injective for any $t>0$ . If this were not true, $|tL-A|$

would contain an effective divisor $E$ . For $r=\dim\rho_{\Lambda}(A)$ , we would have
$L_{-}^{\tau}4^{n-r-1}\{E\}=tL^{r+1}A^{n-r-1}\{V\}-L^{r}A^{n-r}\{V\}=tL_{A}^{r+1}A_{A}^{n-r-2}\{A\}-L_{A}^{r}A_{A}^{n-r-1}\{A\}<0$
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since $L_{A}^{r+1}=0$ . This would contradict Lemma B5 in Appendix.
(2.8) COROLLARY. Let $A$ be an ample divisor on a normal variety $V$ with

dim $V=n\geqq 3$ . Let $F$ be a line bundle on $V$ such that $Bs|F_{A}|=\emptyset,$ $F^{n-1}\{A\}=0$ and
$H^{1}(A, [F-tA]_{A})=0$ for any $t>0$ . Then $ Bs|F|=\emptyset$ and $\rho_{|F|}(V)=\rho_{|F_{A}|}(A)$ .

For a proof, combine (2.3) and (2.7).

(2.9) $CoROLLARY/C$. Let $A$ and $V$ be as in (2.8) and assume $A$ to be smooth.
Let $f:A\rightarrow S$ be a surjective morphism onto a projective scheme $S$ with dim $ S\leqq$

$n-3$ . SuppOse that $F_{A}=f^{*}H$ for some $F\in Pic(V)$ and an $amP[e$ line bundle $H$ on
S. Then $f$ can be extended to a morphism $g:V\rightarrow S$ .

PROOF. Taking a positive multiple if necessary, we may assume that $H$ is
very ample. Then $f$ is given by $\rho_{1f^{*}HI}$ . We apply Lemma A4 in Appendix to
obtain $H^{1}(A, [F-tA]_{A})=0$ for any $t>0$ . Now, from (2.8), we infer that $\rho_{1F1}$

gives the desired extension of $f$.
(2.10) $CoROLLARY/C$ (same as [24] Proposition III). Let $A$ be a smooth ample

divisor on a manifold $M$ with $ n=\dim$ M. Let $f:A\rightarrow S$ be a surjective morPhism
onto a Projective scheme $S$ with dim $S\leqq n-3$ . Then $f$ can be extended to a
morphism $g:M\rightarrow S$ .

PROOF. Clearly we may assume dim $S>0$ . So $n>3$ . Using Lefschetz
Theorem V, we find a line bundle $F$ on $M$ such that $F_{A}=f^{*}H$ for an ample
line bundle $H$ on $S$ . Hence (2.9) applies.

REMARK. If in addition $f$ is everywhere of maximal rank, then $g$ is of
maximal rank except at finite points.

\S 3. Defining equations.

(3.1) THEOREM. Let $L$ be a line bundle on a variety $V$ and let $A$ be the
divisor defined by a non-zero section $\delta\in\Gamma(V, aL)$ . Let $\xi_{1},$ $\cdots$ , $\xi_{k}$ be homogeneous
elements of the graded algebra $G(V, L)=\oplus_{t=0}^{\infty}\Gamma(V, tL)$ and supp0se that $\eta_{\alpha}=\xi_{a1A}$

( $\alpha=1,$ $\cdots$ , k) generate the graded algebra $G(A, L_{A})$ . Then $G(V, L)$ is generated
by $\delta,$ $\xi_{1},$ $\cdots$ $\xi_{k}$ .

(3.2) THEOREM. Let $V,$ $L,$ $A,$ $\delta,$ $\xi_{\alpha}$ and $\eta_{\alpha}$ be as above. Let $g_{1},$
$\cdots$ , $g_{r}$ be

homogeneous p0lynomials in $k$ variables $Y_{1},$ $\cdots$ , $Y_{k}$ with deg $Y_{\alpha}=\deg\eta_{\alpha}$ for any
$\alpha=1,$ $\cdots$ , $k$ such that all the relations among $\{\eta_{a}\}$ in $G(A, L_{A})$ are derived from
$g_{1}(\eta_{1}, \cdots , \eta_{k})=\cdots=g_{r}(\eta_{1}, \cdots , \eta_{k})=0$ . Then there exist $r$ homogeneous p0lyn0mials
$f_{1},$ $\cdots$ , $f_{r}$ in $(k+1)$ variables $X_{0},$ $X_{1},$ $\cdots$ , $X_{k}$ with deg $ X_{0}=a=\deg\delta$, deg $X_{\alpha}=\deg\xi_{\alpha}$

for $\alpha\geqq 1$ such that $f_{j}(0, Y_{1}, \cdots , Y_{k})=g_{j}$ for $1\leqq j\leqq r$ and that all the relations
among $\delta,$ $\xi_{1},$ $\cdots$ , $\xi_{k}$ in $G(V, L)$ is derived from $f_{1}(\delta, \xi_{1}, \xi_{k})=\cdots=f_{r}(\delta,$ $\xi_{1},$ $\cdots$ ,
$\xi_{k})=0$ .

These two theorems can be proved by a similar argument to that in [17].
One can refer also [4], \S 2. Roughly speaking, these theorems say that the
structure of $G(V, L)$ is not much more complicated than that of $G(A, L_{A})$
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provided that $G(V, L)\rightarrow G(A, L_{A})$ is surjective.
REMARK. $V$ need not be assumed to be a variety if the defining ideal of

$A$ is isomorphic to $O_{V}[-A]$ .
(3.3) DEFINITION. A polarized scheme $(S, L)$ with dim $S=n$ is called a

weighted comPlete intersection of type $(a_{1}, \cdots , a_{r})$ with weight $(d_{0}, \cdots d_{n+r})$ if the
graded algebra $G(S, L)$ has a generator system of homogeneous elements
$\xi_{0},$ $\xi_{1},$ $\cdots\xi_{n+r}$ with deg $\xi_{j}=d_{j}$ $(j=0, \cdots , n+r)$ such that the relation ideal among
$\{\xi_{j}\}$ in $G(S, L)$ is generated by $r$ homogeneous polynomials $f_{1},$ $\cdots$ , $f_{r}$ with
deg $f_{i}=a_{i}$ for any $i$ .

When there is no danger of confusion, we say that $S$ is a weighted com-
plete intersection if $(S, L)$ is so for an ample line bundle $L$ on $S$ . We denote
often $O_{S}[tL]$ by $O_{S}(t)$ .

(3.4) It is not difficult to see that the above definition is equivalent to that
of Mori [17]. Here we recall several results of him.

PROPOSITION. Let (V, $L$ ) be a weighted comPlete intersection of $tyPe(a_{1},$ $\cdots$ ,
$a_{r})$ with weight $(d_{0}, \cdots , d_{n+r})$ . Then
a) $H^{p}(V, tL)=0$ for any $t\in Z,$ $0<p<n$ .
b) $L^{n}\{\eta=a_{1}\cdots a_{r}/d_{0}\cdots d_{n+r}$ .
c) $\omega_{V}=O_{V}(a_{1}+\cdots+a_{r}-(d_{0}+\cdots+d_{n+r}))$ .
d) Pic (V) is generated by $L$ if $n\geqq 3$ .

(3.5) PROPOSITION. Let (V, $L$ ) be a normal polarized variety and let $A$ be a
member of $|dL|$ for some $d>0$ . SuPpose that $(A, L_{A})$ is a weighted complete
intersection of $tyPe$ $(a_{1}, \cdots , a_{r})$ with weight $(d_{1}, \cdots , d_{n+r})$ where $n=\dim V\geqq 3$ .
Then (V, $L$ ) is a weighted complete intersection of type $(a_{1}, \cdots , a_{r})$ with weight
$(d, d_{1}, \cdots d_{n+r})$ .

For a proof, combine (2.3) and (3.2). Details can be found in [17], Theorem
3.6.

(3.6) COROLLARY. Let $A$ be an ample divisor on a normal variety $V$ with
$n=\dim V>3$ . Supp0se that $(A, L_{A})$ is a weighted complete intersection for some
$L\in Pic(V)$ . Then (V, $L$ ) is a weighted complete intersection, too.

For a proof, use (2.5) and (3.4) d) to obtain that $[A]=dL$ for some positive
integer $d$ .

(3.7) $CoROLLARY/C$. Let $A$ be an ample divisor on a manifold $M$ with $n=$

$\dim M\geqq 4$ . If $A$ is a weighted comPlete intersection, then so is $M$.
For a proof, use Lefschetz Theorem V.
(3.8) Finally, we consider the case in which $A$ is a complete intersection

in $P^{n+r-1}$ .
PROPOSITION (compare [24], Proposition VI). Let $V,$ $L$ and $A$ be as in (3.5).

SuppOse further that $d_{1}=d_{2}=\ldots=d_{n+r}=1$ , or equivalently, $A$ is a complete in-
tersection in the usual sense. If $d=1$ , then $V$ is also a complete intersection of
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the same $tyPe$ . If $d>1$ , then the inclusion $A\subset P^{n+r-1}$ can be extended to a
morphsim $V\rightarrow P^{n+r-1}$ . Moreover $d$ divides one of $a_{1},$

$\cdots$ , $a_{r}$ .
PROOF. The first assertion is a special case of (3.5). So we consider the

case in which $d>1$ . Then we see easily that $\Gamma(V, tdL)\otimes\Gamma(V, L)\rightarrow\Gamma(V,$ $(td$

$+1)L)$ is surjective for any $t$ . Letting $t\gg O$, we infer Bsl $ L|\subset Bs|(td+1)L|=\emptyset$ .
Hence $\rho_{|L|}$ gives the desired extension $V\rightarrow P^{n+r-1}$ . In order to prove the final
assertion, we apply Theorem 3 in [19] p. 45 to infer that $(\Gamma(V, (td+1)L))^{\otimes d}\rightarrow$

$\Gamma(V, d(td+1)L)$ is surjective for $t\gg O$ . Therefore $\delta^{td+1}$ can be represented as
a polynomial of elements in $\Gamma(V, (td+1)L)$ , where $\delta$ is as in (3.2). This gives
rise to a relation among $(\delta, \xi_{1}, \cdots , \xi_{n+r})$ which is monic with respect to $\delta$ since
$\Gamma(V, L)\otimes\Gamma(V, tdL)\rightarrow\Gamma(V, (td+1)L)$ is surjective. This implies that one of
the fundamental relations $f_{1},$ $\cdots$ , $f_{r}$ among $(\delta, \xi_{1}, \cdots , \xi_{n+r})$ in $G(V, L)$ must be
monic with respect to $\delta$ . So $ d=\deg\delta$ divides one of $\{\deg f_{j}=a_{j}\}$ .

(3.9) COROLLARY. Let $A$ be an ample divisor on a normal variety $V$ with
dim $V\geqq 3$ . SuPpose that $(A, L_{A})\cong(P^{n-1}, O(1))$ for some $L\in Pic(V)$ . Then $V\cong P^{n}$

and $A$ is a hyPerplane on it.
PROOF. Put $[A]_{A}=O(d)$ . (2.5) proves $[A]=dL$ . So $L$ is ample on $V$ .

Hence (3.8) implies $d=1$ . Our assertion follows from this.
(3.10) $CoROLLARY/C$. Let $M$ be a manifold which contains $A\cong P^{n-1}(n\geqq 3)$

as an amPle divisor. Then $M\cong P^{n}$ and $A$ is a $hyPerplane$ on it.
For a proof, use Lefschetz Theorem $V^{(*)}$ .
(3.11) $ExAMPLE/C$ (compare[24], Conjecture IV-A). Let $G$ be the graded

algebra generated by $(\delta, \xi_{1}, \cdots , \xi_{n+1})$ with relation $\delta^{3}+\delta\sum_{j=1}^{n+1}\xi_{j}^{4}+\sum_{j=1}^{n+1}\xi_{J^{6}}=0$ ,
where deg $\delta=2$ and deg $\xi_{j}=1$ for $1\leqq j\leqq n+1$ . It is easy to see that $M=Proj(G)$

is a smooth weighted complete intersection. Let $A$ be the ample divisor on
$M$ defined by $\delta=0$ . Clearly $A$ is isomorphic to a smooth hypersurface of
degree six in $P^{n}$ . $M$ is a three-sheeted covering of $P^{n}$ , but is not cyclic.

(3.12) $ExAMPLE/C$. Consider the graded algebra $G$ generated by $(\delta,$ $\xi_{1},$ $\cdots$ ,
$\xi_{n+2})$ with relations $\delta^{2}+\sum_{j=1}^{n+2}\xi_{j^{4}}=\delta^{3}+\sum_{j=1}^{n+2}\xi_{j^{6}}=0$ , where deg $\delta=2$ and deg $\xi_{j}=1$ .
It is easy to see that $M=Proj(G)$ is a smooth weighted complete intersection
of type $(4, 6)$ with weight (2, 1, $\cdots$ , 1). Let $A$ be the ample divisor on $M$

defined by $\delta=0$ . Then $A$ is a smooth complete intersection of type $(4, 6)$ in
$P^{n+1}$ . $M$ is the normalization of the hypersurface defined by $(\sum_{j=1}^{n+2}\xi_{j^{4}})^{3}+$

$(\Sigma_{j=1}^{n+2}\xi_{j^{6}})^{2}=0$ in $P^{n+1}$ of degree 12, which has cusp singularities along $A$ .

\S 4. Fiber bundles and vector bundles.

(4.1) PROPOSITION. Let $f:V\rightarrow S$ be a fiber space and suppose that $H^{2}(S, O_{S}^{\times})$

$=0$ . Then $H^{1}(V, \mathcal{O}_{V}^{x})\rightarrow H^{0}(S, R^{1}f_{*}O_{V}^{\times})$ is surjective.
For a proof, aPply the theory of Leray spectral sequence and use the fact

$f_{*}o_{V}^{\times}=0_{s}^{\times}$ .
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(4.2) $REMARK/C$. $H^{2}(S, O_{S}^{x})=0$ if $H^{2}(S, O_{S})=H^{8}(S;Z)=0$ . In particular,
$H^{2}(C, O_{C}^{\times})=0$ for any curve $C$ .

(4.3) $REMARK/C$. When $f$ is a fiber bundle with fibers being isomorphic to
$F$, we have $R^{1}f_{*}o_{\gamma}^{x}\cong R^{2}f_{*}Z_{V}$ if $H^{1}(F, O_{F})=H^{2}(F, O_{F})=0$ , where $Z_{V}$ denotes the
constant sheaf on $V$ with each stalk $\cong Z$. In this case $H^{0}(S, R^{1}f_{*}o_{V}^{\times})=$

$H^{0}(S, R^{2}f_{*}Z_{V})$ is nothing other than the subgroup of $H^{2}(F;Z)$ consisting of
stabilized elements with respect to the monodromy action of $\pi_{1}(S)$ .

(4.4) $PROPOSITION/C$. Let $f:M\rightarrow S$ be a fiber bundle overa manifold $S$ with
$H^{2}(S, O_{S}^{\times})=0$ . $SuPPose$ that the fiber $F$ of $f$ is a weighted comPlete intersection
with dim $F\geqq 3$ . Then there exists $L\in Pic(M)$ such that $L_{F}=O_{F}(1)$ .

PROOF. We have $H^{1}(F, O)=H^{2}(F, O)=0$ (see (3.4), $a$)). Moreover (3.4), d)
implies that $c_{1}(O_{F}(1))$ is stabilized by the monodromy action. Hence our asser-
tion follows from (4.3) and (4.1).

(4.5) $PROPOSITION/C$. Let $f:M\rightarrow S$ be a $P^{n}$-bundle over a manifold $S$ with
$H^{2}(S, O_{S}^{\times})=0$ . Then there exists $L\in Pic(M)$ such that $L_{F}=o(1)$ for each fiber
$F\cong P^{n}$ of $f$.

PROOF. The above argument works also for $n=1,2$ .
(4.6) For any vector bundle $E$ on $S$ with rank $E=r=n+1$ , we consider the

$P^{n}$-bundle $\Pi$ : $P(E)=E^{}-\{0- section\}/K^{\times}\rightarrow S$ . Each point $y$ on $P(E)$ corresponds
to a vector subspace of $E_{\Pi(y)}^{\backslash /}$ of dimension one. Hence $\Pi^{*}E$ has a natural
quotient bundle of rank one on $P(E)$ , which shall be denoted by $H^{E}$ . We see
easily that $H_{F}^{E}=O(1)$ for each fiber $F\cong P^{n}$ of $\Pi$ . Moreover $\Pi_{*}(O_{P(E)}[H^{E}])=$

$O_{S}[E]$ . On the other hand, when $f:M\rightarrow S$ is a $P^{n}$-bundle and $L$ is a line
bundle on $M$ such that $L_{F}=O(1)$ for each fiber $F\cong P^{n}$ of $f$, then $f_{*}(O_{M}[L])$ is
locally free on $S$ . Moreover, letting $E$ be the corresponding vector bundle,
we have $(M, L)\cong(P(E), H^{E})$ . Thus, in many cases, the study of $P^{n}$-bundles
can be reduced to the study of vector bundles.

(4.7) DEFINITION. A vector bundle $E$ is said to be amPle if the line bundle
$H^{E}$ on $P(E)$ is so.

(4.8) REMARK. Let $0\rightarrow I\rightarrow E\rightarrow Q\rightarrow 0$ be an exact sequence of vector
bundles on $S$, where $I$ denotes the trivial line bundle. Then $P(Q)$ is a divisor
on $P(E)$ defined by $\delta\in\Gamma(P(E), H^{E})\cong\Gamma(S, E)$ which comes from $\Gamma(S, I)\cong K$.
Moreover $[P(Q)]=H^{E}$ and $H_{P(Q)}^{E}=H^{Q}$ . Conversely, let $D$ be a member of $|H^{E}|$

such that the fiber $D_{x}$ of $D$ over $x\in S$ is a hyperplane on $P(E)_{x}\cong P^{r-1}$ for
every $x\in S$ . Then, the exact sequence $0\rightarrow O_{P(E)}\rightarrow \mathcal{O}_{P(E)}[H^{E}]\rightarrow O_{D}[H^{E}]\rightarrow 0$ goes
down by $\Pi_{*}$ to the following exact sequence: $0\rightarrow O_{S}\rightarrow O_{S}[E]\rightarrow\Pi_{*}\mathcal{O}_{D}[H^{E}]\rightarrow 0$ .
Thus $D$ defines a trivial sub-line bundle of $E$ since $\Pi_{*}O_{D}[H^{E}]$ is locally free.

(4.9) PROPOSITION. Let $f:V\rightarrow X$ be a surjective morphism from a locally
Macaulay variety $V$ onto a manifold X. Let $A$ be an effective divisor on $V$

which is relatively amPle with resPect to $f$. SuPpose that $f$ makes $A$ a $P^{n-1_{-}}$
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bundle over X. Let $V_{x}$ and $A_{x}$ denote the fibers of $f$ and $f_{A}$ over $x\in X$ re-
spectively. Further assume that one of the following conditions: a) $[A]_{A_{x}}=O(1)$

on $A_{x}\cong P^{n-1}$ , or b) $n\geqq 3$ and $L_{A_{x}}=\mathcal{O}(1)$ for some $L\in Pic(V)$ . Then $f$ is a $P^{n}-$

-bundle over $X$ and $A_{x}$ is a $hyPerplane$ on $V_{x}\cong P^{n}$ for every $x$ .
PROOF. For every $x$ on $X,$ $V_{x}$ has only finite singular points since the

smooth divisor $A_{x}$ is ample on it. Hence $V_{x}$ is normal. So the sufficiency of
the condition a) follows from (3.8) and that of b) follows from (3.9).

(4.10) $PROPOSITION/C$. Let $\Pi;A\rightarrow S$ be a fiber bundle over a manifold $S$

with fiber being a smooth $hyPerquadricQ$ in $P^{r-1}$ . Then $A$ cannot be an ample
divisor in any manifold if $r>3$ .

PROOF. Assume that $A$ is an ample divisor on a manifold $M$. We will
derive a contradiction. Using (2.10), we extend $\Pi$ to a morphism $f:M\rightarrow S$ .
Taking general hyperplane sections on $S$ successively, we Pnd a smooth curve
$C$ on $S$ such that $f^{-1}(C)=M_{c}$ is smooth. The ample divisor $A_{M_{C}}$ on $M_{c}$ is a
fiber bundle over $C$ with fiber $Q$ . Therefore it suffices to consider the case in
which $S$ is a curve $C$ .

Let $M_{x}$ denote the fiber of $f$ over $x\in C$ . $A_{x}=M_{x}\cap A$ is an ample divisor on
$M_{x}$ and $A_{x}\cong Q$ . So $M_{x}$ has only finite singular points and hence $M_{x}$ is normal.
We claim that there exists $H\in Pic(M)$ such that $H_{A_{x}}=\mathcal{O}_{Q}(1)$ . Lefschetz Theo-
rem V says Pic $(M)\cong Pic(A)$ . So the claim follows from (4.4) directly if $r>4$ .
If $r=4$ , then $O_{Q}(1)\in Pic(Q)\cong H^{2}(Q;Z)$ is stabilized by the monodromy action
of $\pi_{1}(C)$ since $\omega_{Q}=\mathcal{O}_{Q}(-2)$ is stabilized. So (4.1) and (4.3) prove our claim.
Now we can apply (3.8) to infer that $M_{x}$ is $P^{r-1}$ or a hyperquadric in $P^{r}$ .

First we consider the case in which $M_{x}\cong P^{r-1}$ for some $x\in C$ . Using [3],

Corollary 5.4, we find a vector bundle $E$ on $C$ such that $(M, H)\cong(P(E), H^{E})$ .
We may put $[A]=2H-f^{*}F$ for some $F\in Pic(C)$ . Taking $f_{*}$ of the exact
sequence $0\rightarrow O_{M}[2H-A]\rightarrow O_{M}[2H]\rightarrow \mathcal{O}_{A}[2H]\rightarrow 0$ , we infer that $F$ is a sub-
bundle of $S^{2}E$ . At each point $y$ on $C,$ $F_{y}$ corresponds to the symmetric bilinear
form on $E_{y}^{\vee}$ which gives the defining equation of $A_{y}$ in $M_{y}$ . Taking the
determinant of the corresponding symmetric matrix at each point on $C$ , we
obtain a section of $2\det E-rF$ over $C$ , which has a zero at $y$ if and only if
$A_{y}$ is singular. So 2 det $E=rF$ since $\Pi$ is smooth. Now we have $[A]^{r}\{M\}=$

$(2H-f^{*}F)^{\tau}=2^{r}H^{r}-r2^{r-1}H^{r-1}F=2^{r}c_{1}(E)-r2^{r-1}$ deg $F=0$ . This contradicts the am-
pleness of $A$ .

Second, we consider the case in which $M_{x}$ is a hyperquadric in $P^{r}$ and $A_{x}$

is a hyperplane section on it. So we may assume $H=[A]$ . Let $E^{M}$ and $E^{A}$

be the vector bundles on $C$ which correspond to $f_{*}O_{M}[H]$ and $f_{*}O_{A}[H]$ re-
spectively. The exact sequence $0\rightarrow O_{M}\rightarrow O_{M}[H]\rightarrow \mathcal{O}_{A}[H]\rightarrow 0$ goes down by $f_{*}$

to an exact sequence $0\rightarrow I_{C}\rightarrow E^{M}\rightarrow E^{A}\rightarrow 0$ on $C$ . So det $E^{M}=\det E^{A}$ . $M$ and
$P^{A}=P(E^{A})$ are divisors on $P^{M}=P(E^{M})$ . $H$ and $H^{E^{A}}$ are restrictions of $[P^{A}]=$



162 T. $F_{UJITA}$

$H^{E^{M}}\in Pic(P^{M})$ , which is denoted by $H$ by abuse of notation. We put $[M]=$

$2H-F_{P^{M}}\in Pic(P^{M})$ , where $F\in Pic(C)$ . Taking the determinant of the symmetric
matrix defining $M_{x}$ at each point $x\in C$ as before, we obtain a non-zero section
of 2 det $E^{M}-(r+1)F$ over $C$ . Similarly we get 2 det $E^{A}=rF$ since $[A]=2H-F$
in Pic $(P^{A})$ . Combining them with det $E^{M}=\det E^{A}$, we infer that deg $F\leqq 0$ .
This contradicts $H^{r}\{M\}=(2H-F)H^{\tau}\{P^{M}\}=2c_{1}(E^{M})-\deg F=(r-1)\deg F$, since
$H=[A]$ is ample on $M$.

(4.11) $PROPOSITION/C$. Let $A$ be an amPle divisor on a manifold M. Let
$f:M\rightarrow X$ be a surjective morphism onto a manifold $X$ such that $f_{A}$ makes $A$ a

$fiber_{Foraproof,see}bundleoverX.$
$Then\dim M\geqq 2dimX$.
$[24],$ $Proposi\dot{t}ionV.$

(4.12) $CoROLLARY/C$. Let $E$ be an ample vector bundle on a manifold $M$.
If $E$ has a trivial sub-bundle of rank one, then rank $E>\dim M$.

For a proof, combine (4.7), (4.8) and (4.11).

(4.13) There are many ample vector bundles with rank $E>\dim M$ which
have a trivial sub-bundle of rank one.

EXAMPLE. Let $H_{0},$ $\cdots$ , $H_{n}$ be very ample line bundles on a manifold $M$

with dim $M=n$ . Let $\{\varphi_{j}\}$ ($j=0,$ $\cdots$ , n) be general members of $\Gamma(M, H_{j})$ . Then
$\bigcap_{j=0}^{\eta}\{x\in M|\varphi_{j}(x)=0\}=\emptyset$ . Therefore $\varphi=\oplus_{j=0}^{n}\varphi_{j}$ defines a trivial sub-bundle of
rank one of $E=\oplus_{j=0}^{n}H_{j}$ .

(4.14) EXAMPLE. Let $L$ be a very ample line bundle on a manifold $X$ with
dim $X=k$ . Let $Y=X\times P^{1}$ and let $H=L_{Y}+[1]_{Y}$, where [1] denotes the line
bundle on $P^{1}$ of degree one. Then $H$ is very ample on $Y$ and the direct sum
$E$ of $(k+2)$ copies of $H$ has a subbundle $I_{Y}$ by (4.13). Let $Q$ be the quotient
bundle $E/I_{Y}$ . Then $A=P(Q)$ is an ample divisor on $M=P(E)$ . We see easily
that every fiber $F_{x}$ of the natural morphism $A\rightarrow X$ over $x\in X$ is smooth.
Moreover, $F_{x}\cong P(Q_{x})$ where $Q_{x}$ is the restriction of $Q$ to the fiber $C_{x}\cong P^{1}$ of
$Y\rightarrow X$. We have an exact sequence $0\rightarrow O_{c_{x}}\rightarrow\oplus_{(k+2)copies}O(1)\rightarrow \mathcal{O}(Q_{x})\rightarrow 0$ induced
by $0\rightarrow I_{Y}\rightarrow E\rightarrow Q\rightarrow 0$ . Therefore $O(Q_{x})\cong \mathcal{O}(2)\oplus O(1)\oplus\cdots\oplus O(1)$ . Thus we infer
that every fiber $F_{x}$ is isomorphic to $P((1)\oplus(0)\oplus\cdots\oplus(0))$ , which is the blow-
ing uP of $P^{k+1}$ with center being a linear subspace of codimension two. So $A$

itself is a fiber bundle over $X$.
(4.15) The above example shows the best-possibility of the dimension con-

dition in the following
$PROPOSITION/C$. Let $A,$ $M,$ $f,$ $X$ and $f_{A}$ be as in (4.11). $SuPPose$ further

that dim $M\leqq 2$ dim $X+1$ . Then $H^{i}(F;Z)=0$ for odd $i$ and $\cong Z$ for even $i$, where
$F$ is the fiber of $f_{A}$ .

For a proof, see [24], Proposition V.
Now, in view of (4.10), we make the following
QUESTION. Is it possible that $F$ is not a projective space in the above
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situation?
(4.16) Now we study $P^{n}$-bundles over curves more precisely. First we will

prove the following
$PROPOSITION/C$. Let $0\rightarrow I\rightarrow E\rightarrow Q\rightarrow 0$ be a non-sPlitting exact sequence of

vector bundles over a curve $C$, where $I=I_{C}$ . Then $E$ is ample if so is $Q$ .
(4.17) $PROPOSITION/C$. Let $f:M\rightarrow N$ be a surjective morPhism between mani-

folds with dim $M=\dim N=n$ . Then the natural homomorPhism $H^{p.q}(f, E)$ :
$H^{p.q}(N, E)\rightarrow H^{p,q}(M, f^{*}E)$ is injective for any vector bundle $E$ on $N$.

PROOF. Take $0\neq\varphi\in H^{p.q}(N, E)$ . Using the Serre duality theory (see, for
example, [13]), we infer that $0\neq\varphi\wedge\psi\in H^{n}(N, \Omega_{N}^{n})$ for some $\psi\in H^{n-p.n-q}(N, E^{\vee})$ .
$H^{n.n}(f, I_{N})$ is injective since $f$ is surjective. Therefore $0\neq H^{n,n}(f, I)(\varphi\wedge\psi)=$

$H^{p.q}(f, E)(\varphi)\wedge H^{n-p,n-q}(f, E^{\sqrt{}})(\psi)$ . Hence $H^{p,q}(f, E)(\varphi)\neq 0$ . Thus $H^{p.q}(f, E)$ is
shown to be injective.

(4.18) $CoROLLARY/C$. Let $f:M\rightarrow N$ be as above. Let $0\rightarrow F\rightarrow E\rightarrow Q\rightarrow 0$ be
an exact sequence of vector bundles on N. This sequence splits if and only if
the pull-back of this sequence on $M$ splits.

This follows from the injectivity of $H^{0.1}(f, \mathcal{H}om(Q, F))$ .
(4.19) Now we prove Proposition (4.16). We will apply Theorem B6 in the

Appendix. Let $D$ be the divisor on $P=P(E)$ which corresponds to the sub-
bundle $I$ of $E$ (see (4.8)). Note that $[D]=H^{E}$ and $H_{D}^{E}=H^{Q}$ . Since $Q$ is ample,
it suffices to show $ Y\cap D\neq\emptyset$ for any subvariety $Y$ in $P$ with dim $Y>0$ . Assume
$ Y\cap D=\emptyset$ . Then the projection $P\rightarrow C$ gives a finite morphism $f:Y\rightarrow C$ . Let $\tilde{Y}$

be the normalization of $Y$ and consider the exact sequence $0\rightarrow I_{\tilde{Y}}\rightarrow E_{Y}^{\sim}\rightarrow Q_{Y}^{\sim}\rightarrow 0$ .
$P(E_{\tilde{Y}})=Px_{c}\tilde{Y}$ has a section $\sigma$ over $\tilde{Y}$ induced by the inclusion $Y\rightarrow P$. More-
over $\sigma(\tilde{Y})\cap D_{\tilde{Y}}=\emptyset$ since $ Y\cap D=\emptyset$ . Therefore the above exact sequence on $\tilde{Y}$

splits. This contradicts (4.18).

(4.20) $CoROLLARY/C$. Let $Q$ be any amPle vector bundle on a curve $C$ with
$g(C)>0$ . Then there is an exact sequence $0\rightarrow I\rightarrow E\rightarrow Q\rightarrow 0$ of vector bundles on
$C$ where $E$ is amPle.

PROOF. Using Riemann-Roch Theorem, we obtain $\chi(Q^{})=-$ deg $(\det Q)-$

$(g-1)$ rank $Q<0$ . So $H^{1}(C, Q^{\backslash /})\neq 0$ and there exists a non-splitting exact sequence
$0\rightarrow I\rightarrow E\rightarrow Q\rightarrow 0$ on $C$ . Hence (4.16) applies.

(4.21) $ExAMPLE/C$ (compare [24], Question III-A). Any $P^{n}$ -bundle $A$ over
a curve $C$ can be an ample divisor on a manifold.

PROOF. Take a vector bundle $Q$ on $C$ such that $A\cong P(Q)$ (use (4.2), (4.5)

and (4.6)). Replacing $Q$ by $Q\otimes F$ with $F$ being a sufficiently ample line bundle
on $C$ if necessary, we may assume that $Q$ is ample and $H^{1}(C, Q^{})\neq 0$ . Take a
non-splitting extension $0\rightarrow I\rightarrow E\rightarrow Q\rightarrow 0$ as in (4.20). Then $E$ is ample and
$P(Q)$ is an ample divisor on $P(E)$ (see (4.8)).

(4.22) $ExAMPLE/C$ (compare the Conjecture in [24], p. 63). For any $P^{n}-$
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bundle $A$ over a curve $C$ with $g(C)>0$ , there exists a chain $ A=A_{0}\subset A_{1}\subset\cdots$

$\subset A_{j}\subset\cdots$ of infinite number of manifolds $\{A_{j}\}$ such that 1) $A_{j}$ is $P^{n+j}$-bundle
over $C,$ $2$) $A_{j}$ is an ample divisor on $A_{j+1}$ and 3) $[A_{j}]_{A_{j}}=[A_{j-1}]$ in Pic $(A_{j})$ for
every $j$ .

For the construction, use (4.20) subsequently.
(4.23) In view of [2] and [12], we make the following
CONJECTURE. Let $\{(M_{j}, L_{j})\}_{j=0,1},\ldots$ be an infinite chain of polarized mani-

folds such that 1) $M_{j}$ is a divisor on $M_{j+1},2$) $[M_{j}]=L_{j+1}\in Pic(M_{j+1}),$ $3$) $L_{j+1}|_{M_{j}}$

$=L_{j}$ and 4) the restriction homomorphism $G(M_{j+1}, L_{j+1})\rightarrow G(M_{j}, L_{j})$ is surjective
for every $j$ . Then each $(M_{j}, L_{j})$ is a weighted complete intersection.

\S 5. Blowing down.

(5.1) In this section we consider the following
PROBLEM. Let $A$ be an ample divisor on a manifold $M$. Suppose that $A$

is the blowing up of a manifold $B$ with center $C$ , where $C$ is a submanifold
of $B$ . Then does there exist a manifold $N$ such that $B$ lies on $N$ as a divisor
and that $M$ is the blowing up of $N$ with center $C$ ?

(5.2) In order to find such a manifold $N$, it suffices to find a divisor $D$ on
$M$ which satisfies the following conditions (see [1], [16]).
1) $D_{A}=D\cap A$ is the exceptional divisor $E$ on $A$ over $C$ .
2) The natural projection $E\rightarrow C$ can be extended to a surjective morphism

$\Pi$ ; $D\rightarrow C$ .
3) $\Pi$ makes $D$ a $P^{r}$-bundle over $C$ , where $r=\dim B-$dim $C$ . Moreover, each

fiber $E_{x}$ of $E$ over $x\in C$ is a hyperplane on $D_{x}=\Pi^{-1}(x)\cong P^{r}$ .
4) $[D]_{D_{x}}$ is the dual of $O(1)$ .

(5.3) LEMMA. The above condition 4) follows from the other conditions 1), 2)
and 3).

PROOF. $[D]_{E_{x}}=[E]_{E_{x}}=\mathcal{O}_{E_{x}}(-1)$ on $E_{x}\cong P^{r-1}$ because $E$ is exceptional.
Hence $[D]_{D_{x}}=O_{D_{x}}(-1)$ on $D_{x}\cong P^{r}$ since $E_{x}$ is a hyperplane on $D_{x}$ .

(5.4) LEMMA. The condition 3) follows from the conditions 1) and 2) if one
of the following conditions are satisfied. ’

a) $[A]_{E_{x}}=O(1)$ on $E_{x}\cong P^{r-1}$ .
b) $r\geqq 3$ .

This lemma follows from (4.9), since $[-D]_{E_{x}}=\mathcal{O}(1)$ .
(5.5) $THEOREM/C$. Let $A,$ $M,$ $B$ and $C$ be as in (5.1). SuPpose that $r=\dim B$

$-\dim C>2$ and that $B$ is projective. Then there exists a manifold $N$ as in (5.1).
PROOF. The exceptional divisor $E$ on $A$ is a $P^{r-1}$-bundle over $C$. So,

Lemma A4 implies that $H^{1}(E, [E-tA]_{E})=0$ for any $t\geqq 0$ . Using the exact
sequence $H^{1}(A, [-tA])\rightarrow H^{1}(A, [E-tA])\rightarrow H^{1}(E, [E-tA]_{E})$ and the vanishing
theorem of Kodaira, we infer $H^{1}(A, [E-tA])=0$ for any $t>0$ . On the other
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hand, Lefschetz Theorem V says that Pic $(M)\cong Pic(A)$ . Hence we can apply
(2.4) to obtain a divisor $D$ on $M$ which satisfies the condition 1) in (5.2). We
want to prove the condition 2) by (2.9). Clearly $D$ is locally Macaulay. $D$ has
only finite singular points since $E$ lies on it as an ample divisor. Therefore $D$

is normal. Now, take an ample line bundle $H$ on $B$ . We have $F\in Pic(M)$ such
that $F_{A}=H_{A}$ since Pic $(M)\cong Pic(A)$ . Therefore $H_{E}$ comes from $F_{D}$ and $H_{c}$ is
ample. So (2.9) applies. The conditions 3) and 4) are proved by (5.4) and (5.3).

REMARK. The first step of this proof is due to Sommese [24], p. 69.
(5.6) PROPOSITION. Let $A,$ $M,$ $B,$ $C,$ $D,$ $E$ and $N$ be as in (5.1) and (5.2).

SuPpose that the restriction of $[B]\in Pic(N)$ to $C$ is ample. Then $B$ is amPle
on $N$.

PROOF. We have $[B]_{M}=[A]+[D]$ since $A$ is the proper transform of $B$

in $M$. So it suffices to show the following
(5.7) LEMMA. Let $C$ be a submanifold in a manifold $N$ and let $M$ be the

blowing up of $N$ with center C. Let $L$ be a line bundle on $N$ such that $L_{c}$ is
ample on C. Supp0se that $L_{M}-k[E]$ is ample on $M$ for some $k>0$ , where $E$

denotes the excepti0nal divisor on $M$ over C. Then $L$ is ample on $N$.
PROOF. It suffices to show that $L_{Y}$ is strictly effective for any subvariety

$Y$ of $N$ with dim $Y>0$ (see Theorem B6 in the Appendix). Clearly we may
assume Yq $C$ . Hence the proper transform $\tilde{Y}$ of $Y$ in $M$ is not contained in $E$ .
So $[E]_{Y}^{\sim}$ is effective. Therefore $L_{Y}^{\sim}=[L-kE]_{Y}^{\sim}+k[E]_{Y}^{\sim}$ is strictly effective
since $L-kE$ is ample on $M$. Hence $L_{Y}$ is also strictly effective (see Lemma
B2).

(5.8) Now we give a couple of applications.

$PROPOSITION/C$. Let $C$ be a submanifold in $P\cong P^{n}$ with codim C $=r\geqq 3$ .
Then the blowing-up $A=Q_{C}(P)$ of $P$ with center $C$ cannot be an ample divisor in
any manifold.

PROOF. Let $H$ denote the hyperplane section bundle on $P$ and let $E$ denote
the exceptional divisor on $A$ over $C$. Assume that $A$ is an ample divisor on
a manifold $M$. Using (5.5) we Pnd a manifold $N$ which contains $P$ as a divisor
such that $M\cong Q_{c}(N)$ . For $[P]\in Pic(N)$ we put $[P]_{P}=kH$. We have $[A]_{A}=$

$kH_{A}-[E]$ since $A$ is the proper transform of $P$ in M. $k>0$ since $[A]_{A}$ is ample.
This implies that $[P]_{C}$ is ample. So (5.6) proves that $P$ is ample on $N$. Hence
(3.10) applies and we obtain $N\cong P^{n+1}$ and $k=1$ . Namely $P$ is a hyPerplane on
$N$. Take a line $Y$ on $P$ such that $ Y\cap C\neq\emptyset$ and $Y\not\subset C$ . Then $[E]_{Y}^{\sim}\geqq 1$ for the
proper transform $\tilde{Y}$ of $Y$ in $A$ . So $[A]\tilde{Y}=H\tilde{Y}-E\tilde{Y}\leqq 0$ . This contradicts the
ampleness of $A$ .

(5.9) $CoROLLARY/C$. Let $C$ be a disjoint union of submanifolds in $P^{n}$ of
codimensions $\geqq 3$, where the dimensions of the compOnents of $C$ may differ to each
other. Then $A=Q_{C}(P^{n})$ cannot be an amPle divisor in any manifold.
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Using (5.5) and (5.6), we prove this corollary by the induction on the
number of components of $C$.

(5.10) $PROPOSITION/C$. Let $C$ be a disjoint union of submanifolds in $B$ of
codimensions $\geqq 3$ , where $B$ is a smooth hyperquadric in $P\cong P^{n}$ . SuppOse that the
blowing-up $A=Q_{C}(B)$ of $B$ with center $C$ is an ample divisor in a manifold $M$.
Then $C$ is a linear submanifold in $P$ and $M=Q_{C}(P)$ .

PROOF. Using (5.5) and (5.6), we infer by induction on the number of
components of $C$ that $B$ is an ample divisor on a manifold $N$ such that $M=$

$Q_{c}(N)$ . In view of Lefschetz Theorem V we take $L\in Pic(N)$ so that $L_{B^{--O_{B}(1)}}$ .
Put $[B]=eL$ . There is a line $Y$ in $P$ which lies on $B$ such that $ Y\cap C\neq\emptyset$ and
$Y\not\subset C$ . Hence we infer $e>1$ as in (5.8). On the other hand, $e$ divides 2 (see

(3.8)). Therefore $e=2$ and $N=P$. Assume that $C$ is not a linear submanifold
in $P$. Then there is a line $X$ on $P$ such that $XcLC$ and $X$ meets $C$ at more
than one points. Then $E\tilde{X}\geqq 2$ for the proper transform $\tilde{X}$ of $X$ in $M=Q_{C}(P)$ .
So $A\tilde{X}=(2L-E)\tilde{X}\leqq 0$ , which contradicts the ampleness of $A$ . Consequently $C$

must be a linear submanifold in $P$.
(5.11) REMARK. If codim $C=2$ , then $Q_{c}(P)$ and $Q_{c}(B)$ can be ample divisors

in various cases.

Appendix A. A vanishing theorem for $R^{p}f_{*}$ of Kodaira-Ramanujam type.
DEFINITION Al. A line bundle $L$ on a variety $V$ is said to be semi-amPle

if Bsl $ tL|=\emptyset$ for some positive integer $t$ . If so, $\kappa(L)$ denotes dim $\rho_{1tL\mathfrak{l}}(V)$ .
DEFINITION A2. Let $f:V\rightarrow S$ be a surjective morphism onto a projective

scheme $S$ . Then $L\in Pic(V)$ is said to be semi-ample with respect to $f$ if $L+f^{*}F$

is semi-ample for some $F\in Pic(S)$ . If so, $L+f^{*}H$ is semi-ample for any
sufficiently ample line bundle $H$ on $S$ . Moreover, $\kappa(L+f^{*}H)=\dim S+\kappa(L_{x})$ ,
where $L_{x}$ is the restriction of $L$ to a general fiber of $f$ over $x\in S$ . By $\kappa_{f}(L)$

we denote $\kappa(L+f^{*}H)-\dim S=\kappa(L_{x})$ .
LEMMA A3. Let $f:V\rightarrow S$ be as above and let $L$ be a relatively semi-ample

line bundle on $V$ with respect to $f$. Let $T$ be any subscheme of $S$ and let
$f_{T}$ : $V_{T}=f^{-1}(T)\rightarrow T$ be the restriction of $f$. Then $L_{V_{T}}$ is semi-ample with respect
to $f_{T}$ and $\kappa_{f_{T}}(L_{\gamma_{T}})\geqq\kappa_{f}(L)$ .

Proof is easy and is omitted.
$LEMMA/C$ A4. Let $f:M\rightarrow S$ be a surjective morphism onto a projective

variety $S$ from a manifold M. Let $L$ be a relatively $semi\rightarrow ample$ line bundle on
$M$ with resPect to $f$. Then $H^{p}(M, -L)=0$ for $p<\kappa_{f}(L)$ .

PROOF. We use the induction on $s=\dim S$ . When $s=0$ , the assertion can
be reduced to the vanishing theorem due to Ramanujam [22]. So we consider
the case $s\geqq 1$ . Take a sufficiently ample general hypersurface section $H$ on $S$.
Note that $D=f^{-1}(H)$ is smooth and that $L_{D}$ is relatively semi-ample with respect



Hyperplane section principle 167

to $f_{H}$ and $\kappa_{f_{H}}(L_{D})\geqq\kappa_{f}(L)$ . Consider the exact sequence: $ H^{p}(M, -L-f^{*}H)\rightarrow$

$H^{p}(M, -L)\rightarrow H^{p}(D, -L_{D})$ . The first term vanishes for any $p<\kappa_{f}(L)$ , since
$\kappa_{f}(L)<\kappa(L+f^{*}H)$ . The third term also vanishes for $p<\kappa_{f}(L)$ by the induction
hypothesis for $s-1$ . Hence $H^{p}(M, -L)=0$ for $p<\kappa_{f}(L)$ . Thus we prove the
lemma.

$THEOREM/C$ A5. Let $f:M\rightarrow S$ be a surjective morphism onto a projective
va riety $S$ from a manifold M. Let $L$ be a relatively semi-amPle line bundle on
$M$ with resPect to $f$. Then $R^{p}f_{*}O_{M}[-L]=0$ for $p<\kappa_{f}(L)$ .

PROOF. Put $\mathcal{H}^{p}=R^{p}f_{*}(O_{M}[-L])$ for each $P$ and take a sufficiently ample
line bundle $H$ on $S$ such that $H^{q}(S, \mathcal{H}^{p}[H])=0$ for any $q>0$ and that $\mathcal{H}^{p}[H]$

is generated by its global sections for any $p$ . Observing the Leray spectral
sequence for $O_{M}[f^{*}H-L]$ with respect to $f$, we infer that $ H^{p}(M, f^{*}H-L)\cong$

$H^{0}(S, \mathcal{H}^{p}[H])$ . The left hand side vanishes for $p<\kappa_{f}(L)=\kappa_{f}(L-f^{*}H)$ by
Lemma A4. Combining them we prove $\mathcal{H}^{p}=0$ since $\mathcal{H}^{p}[H]$ is generated by
its global sections.

$CoROLLARY/C$ A6. Let $f:M\rightarrow S$ and $L$ be as above. Then $H^{p}(M, f^{*}E\otimes L^{\vee})$

$=0$ for any $p<\kappa_{f}(L)$ and any vector bundle $E$ on $S$ .
For a proof, consider the Leray spectral sequence.

Appendix B. A reformed version of Nakai-Mo\u{i}\v{s}ezon criterion.
DEFINITION Bl. Let $L$ be a line bundle on a variety V. $L$ is said to be

c-effective if there exists an effective divisor $D$ on the normalization $\tilde{V}$ of $V$

such that $c_{1}(D)=mc_{1}(L_{\gamma}^{\sim})$ for some $m>0$ . If in addition $D\neq 0$ , then $L$ is said
to be strictly c-effective.

LEMMA B2. Let $f:V\rightarrow W$ be a surjective morphism between varieties and let
$L\in Pic(W)$ . Then $f^{*}L$ is (strictly) c-effective if and only if so is $L$ on $W$.

Proof is easy since $f$ induces $\tilde{f}:\tilde{V}\rightarrow\tilde{W}$.
DEFINITION B3. Let $L$ be a line bundle on a variety V. $L$ is said to be

$c$-semipositive if $L_{W}$ is c-effective for any subvariety $W$ of V. $L$ is said to be
$c$-positive if in addition $L_{W}$ is strictly c-effective for any $W$ with dim $W>0$ .

LEMMA B4. Let $L$ be a line bundle on a variety $V$ and let $f:W\rightarrow V$ be a
morPhism. Then $f^{*}L$ is $c$-semiPositive if so is L. If in addition $f$ is finite and
$L$ is $c$-positive, then $f^{*}L$ is c-positive.

PROOF. Let $Y$ be any subvariety in $W$. Put $X=f(Y)$ . Then $L_{X}$ is c-
effective by Definition B3. So Lemma B2 proves that $L_{Y}$ is c-effective. Hence
$L_{W}$ is $c$-semipositive by definition. A similar argument proves the second as-
sertion.

LEMMA B5. Let $L_{1},$ $L_{2},$ $\cdots$ , $L_{r}$ be $c$-semiPositive line bundles on a variety
$V$ with dim $V=r$. Then $L_{1}L_{2}\cdots L_{r}\{\eta\geqq 0$ . If in addition each $L_{j}$ is c-positive,
then $L_{1}L_{2}\cdots L_{r}\{V\}>0$ .
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PROOF. We use the induction on $r$. Clearly it suffices to consider the
case $r>1$ . We may assume that $V$ is normal since the morphism $\tilde{V}\rightarrow V$ is
finite. So we find an effective divisor $D$ on $V$ such that $c_{1}(D)=mc_{1}(L_{\tau})$ for
some $m>0$ . Then the induction hypothesis proves $ mL_{1}L_{2}\cdots L_{r}\{V\}=L_{1}\cdots$

$L_{r-1}\{D\}\geqq 0$ since $[L_{j}]_{D}$ is c-semipositive. In the latter case we have the in-
equality because $[L_{j}]_{D}$ is c-positive (Lemma B4). Thus we prove the lemma.

THEOREM B6. Let $L$ be a $c$-positive line bundle on an irreducible reduced
algebraic space V. Then $L$ is ample.

PROOF. The above lemmata enable us to apply the criterion of Nakai-
Moi\v{s}ezon (see [11], [21], [15] and [1]).
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Added note: After the typing, I found that the ’only if’ part of Lemma
B2 is not clear when char K divides deg f. However, this lemma is not used
in such a situation in any other part of this article.
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