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Introduction.

Let Z,, be the metacyclic group with presentation

{x, y|xP=y'=1, yxy'=x},

where p is an odd integer, ¢ an odd prime, (c—1, p)=1, and ¢ is a primitive
g™ root of 1 mod p. Denote by O, the group of homotopy spheres, and by
©.,.(0r) the group of homotopy spheres which bound parallelizable manifolds.
Then Petrie proved that for each Y<©,, ,(dx) there is a free smooth
action of Z,, on 2. This theorem will be generalized as follows in this paper.

THEOREM. Let Z, denote a cyclic group of order h and assume h=2"h’,

2, h)=1. If n takes 0,1, or 2 and (h’, pq)=1, then for each X <0, ,(0r)
there is a free smooth action Z,XZ, on X.

Our theorem follows immediately from the following two propositions.

PROPOSITION 5.7. There exists a free smooth action of Z,,XZ, on some
homotopy sphere X <O, ,(0x). Here (h, pg)=1.

PROPOSITION 6.1. Let m be any integer=1. Assume h=2"h' where n=0, 1,
or 2 and (W', pg)=1. If Y€0O,p., admits a free Z, XZy-action, then Y 4 2%,
admits a free Z, X Zy-action, where 2, generates O p.,(07).

Our methods are analogous to those in Petrie [6]. §§ 1-4 are preliminaries
for [Proposition 5.7 which is proved in §5. In §6, we prove [Proposition 6.1 by
applying a theorem of Browder [1].

I would like to thank Professor Y. Kitada, Professor H. Suzuki and
Professor M. Nakaoka for their useful suggestions and criticism.

1. Construction of a Z, X Z,-action.

We set n=Z2,,XZ, for the groups Z,, and Z, in Introduction, where
(h, p9)=1. We denote by =, m, the cyclic subgroups generated by =x, y
respectively. Let Z,, be a cyclic group of order ph. Since (p, h)=1, there
exist integers m and n such that mp-+nh=1, and an isomorphism of Z,, to
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Tp,X7T, 18 given by
g—rx"z",

where z, g are generators of Z,, Z,, respectively. There is an integer k such
that x?"z™=(x"z™)*, k—0=0 (p), and k—1=0 (k). Such m, n, and % will be
fixed throughout this paper.

First we construct a linear action of = on C%™.,

LEMMA 1.1. Let &y, be a primitive ph'™ root of unity so that &,=(&pn)",
En=(&,n)? are primitive Pp**, h*"™ roots of unity respectively, and let & be a

primitive q'* root of unity. If zy, -+, zge1 are complex coordinates for C*, an
action of © on C%* is given as follows:

x(z1, 05 Zgr 2ge)=(Epz1, Eb2s, -+, éq'lzq, Zg+1)
z(zy, -, Zg» 2q+1):(§h21, Enzey vy Ehzq’ Zq+1) »
Y2y, -, 24 Zg41)=(2s, 23, *** Zg, 21, EqZq41) -
ProOF. We dissect the group = by means of the exact sequence

i J

1 th T Tq >1.

Let V,» and V, be one dimensional complex representations of Z,, and
r, given by &,, and &, respectively. Then

V:i*Vph+j*Vq
is a complex ¢g-+1 dimensional representation of =. Here i*Vph:C(n)c(X) Von
(th,)

is the induced representation, C(z) the complex group ring of = and j*V, the
one dimensional complex reprerentation of r defined by V, viewed as a C(x)-
module via j. We may take z,, -+, z, as complex coordinates for i,V ,, and
Zg+1 @s a complex coordinate for j*V,.

By V we mean C?! with the action of 7 in Lemma 1l.1. Putting I=¢",
we consider a polynomial

Sz, -, Zge)=2" 2+ e +Zgh+zé+1

which is invariant under the action of x.
PROPOSITION 1.2. = acts freely on the (29—1)-dimensional Brieskorn manifold

K;={eV|f)=0, [vl=2},

where 7 1S a small positive number.
Proor. If genr fixes a point, then g* fixes a point, for any %k and all
conjugates of g fixes a point. Hence it is enough to select for each prime
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t dividing the order of = one Sylow f subgroup S, and show that no element
of order t in S; fixes a point.

Case 1. t=gq. Let S, be the subgroup generated by y. Then if yZ=2
for 2=(z,, -+, z;4+)€V, it follows that zZ=(z,, -+, z,, 0) and f,(2)=qz?=0.
Therefore we get z,=0 but we have |Z|*=¢|z;|?>=%*>0. Hence y fixes no
point.

Case 2. t|p. Let S, be the subgroup generated by d=x¢, where p=1t"d
and (t, d)=1. Set u==x'""'%, If u2=3, it follows that 2=(0, ., 0, z,4,) and
f1(®)=21,=0. Therefore we have z,,,=0, and u fixes no point.

Case 3. t|h. Let S; be the subgroup generated by ¢'=z¢, where h=t"e
and (¢, e)=1. Set u’=z!™"'¢. Similarly to Case 2, we see that u’ fixes no
point.

2. Description of H,_,(K,).

The (2¢g—1)-dimensional smooth manifold K, is (¢—2)-connected (see [4,
p. 45]). We shall describe the Z(z)-module H,-,(K,,) following Milnor [4].
Here Z(r) is the group ring of = over Z.

PROPOSITION 2.1. There is an exact sequence of Z(w)-modules

0—> Hy(K ; )—> H{(F)— s Hy(F)—> Hy (K ; ) —>0

where

(1) F={weV|f,(v)=const.},

(ii) HyF) is the tensor product 14,Ql as a Z(z)-module (Two Z(x)-
modules 1}, and I, are settled in Proof),

(iii) 1—¢ s a Z(x)-homomorphism.

PROOF. From the Milnor fibering S,—K,;,—S', we have the above exact
sequence and it follows that

H(F)=H(2,)® - @H(2,)RH(2,)  (g+1 fold),

2,, and 2, being the finite cyclic groups consisting of all pht™ and g™
roots of unity respectively (see [4]).

Denote by I,, the ideal (1—x"2™)Z(Z,.) of Z(Z,,), and I, the ideal
(1—s)Z(zyr) of Z(mgy). Here =my is the cyclic subgroup of order ¢" generated
by s. Obviously we see that

H(Q,»)=1,, and Hy(Qm)=I,.

The g-fold tensor product of /,, over Z with itself is denoted’;by %, So,
H(F) is the tensor product [%,&I,. Moreover, H(F) inherits the action of
7 on V. By Lemma 1.1, the action on 19, is given by
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(4@ - RA)=(xh@x*2,Q -+ @x*7'2,),
Z(4Q -+ QA)=(2: Q)24 -+ K24y,
V(AR -+ QA)=(284,& -+ @A),
and the action of 7 on /[, is given by
xA=12, zA=A, and yi=s"9.

Put
A=14R1 4.

The diagonal action on the tensor product A makes H,(F) a module over
Z(z). This proves (ii).
From the fact that

¢(21® ®2q®2q+1):(xnzm21® ®Xn2m2q®82q+l) ,

it follows that the homomorphism ¢: A—A is a Z(z)-homomorphism. This
complets the proof of Proposition 2.1

By [Proposition 2.1| and its proof, our present task is to know the cokernel
of 1—¢. Let C denote the cokernel of 1—¢.

LEMMA 2.2. C is annihilated by a power of g, so that CQRQZH=C, where
Z> denotes the integers localized at the prime ideal (q)CZ.

Proor. If 1—¢ is viewed as a linear transformation over Z, it suffices
to show that the determinant of 1—¢ is a power of q. By the proof of (iii)
in [Proposition 2.1,

(1—¢"") A @ -+ @A) =4 -+ R@ARQA— ") 2gs1 .

If we choose {(1—s?"*)s?t, =0, 1, -+, ¢"—2} as a basis of /-, the homomorphism
1—s?* of I, to itself is given by the (¢"—1)X(g"—1) matrix:

[ 1]
0
—1 1- 1
-1, -,
S |
0 .
1 2]

-~

The determinant of this matrix is ¢”. Hence
det (1—g?™)=g ®r-0%,

Since 1—@?"=(1—¢)1+¢+ -+ +¢?**) and q is prime, det(1—¢) is a power
of ¢g. This proves the lemma.
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In view of Lemma 22, C is also the cokernel of
(1-9)R1: ARZpy—>ARZ, .

Let w be a primitive pht* root of 1. We can describe the Z(x)-module
structure CQRQZ,(w) rather than C itself. CQRQZ(w) is the cokernel of

(1—-9)Q1: AQZp(w)—> AR Z p (@) .
Let I=(sy, ss, -+, s5) be a g-tuple with s;=Z,,— {0} and put

q
[I|=2s;.
Jj=1
Set
ph=1 _ .
Xs= _EO o ¥ (x"z™) s'€Zpn—1{0}
and
XIZX31®XSZ® ®qu .
PROPOSITION 23. CRQZw)= X Zy(wl;.
111=0(ph)

The Z(z)-module structure of CRZy(w) is given by
(1) xX=0™* Y, with a(l)= 5}1 kj'lsj,
£

(ii) =2X;=X; (trivial action),
(iii) Y r=Xyn

where y(I)=y(s1, Sz, **, S)=(Ss, S ***, S S1)-
PrOOF. By definition of X, {X,, s’€Z,,—{0}} is a basis of I,z(w). Thus

A®Z(q>(0))= I§S,Z(q)(w)x Q11— S)Z(q)(”qr) .

S’ is the set of all I with s,Z,,—{0}. Since (x"2™Xy=w"%y, we have

A R(1—5) =0T Qs(1—35).
Set
pr=1—sw'’"
and
N=1—35)Zp(w)7yr) .
Then we get

CRZe(w)= 3, IN/7: NI .

For |I1%£0 (ph), p;N=N and if |I|=0 (ph), N/n N=Zs(w). Hence it follows
that
CRZpw)= 2  Zplw;.
{I1=0(ph)
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By Lemma 2.2, CRZ(w)=CRZ(w). This proves the first assertion. The
second follows since = acts on X; as in the proof of Proposition 2.1 and
x=(x"z")", z=(x"2")".

3. Some representations of Z,,XZ,.

We discuss certain representations of #=Z2,,XZ, over the ring Z, where
I=q". For each integer 7, let S; denote the set of primitive i** roots of

unity and let
0= 1] (1—0)

denote the i** cyclotomic polynomial.
LEMMA 3.1. For each integer d dividing ph, the ring

0.=2Z[11/(P (1))
is a Z(m)-module if we set
(1) (X ait)=2 ag™",
(ii) 2(ZT a;tH=3X a;t*?,
(iil) y(XZ a:itH)=2 a;t**.
ProoOF. Note that @,(¢t*)=0,(t)¢(t) where ¢(t) is an integral polynomial.

It is easily seen that the action of = on #; is well defined.
For [=¢q", let (I) be the principal ideal defined by !/ in 6,, and we set

3.2) My=84/().

From the identities

(3.3) tP—1=T1 @,(t),
dip
(3.4) S=1+t+ - +t2'= I D40,
dip d#1

and the fact that the polynomials @,(¢) are relatively prime over Z,[t], we
have

LEMMA 3.5. E:Z,[t]/(f)zd 2(]1 1Md’ where (X)) denotes the ideal generated
1p, d#
by 2.
For the group Z,,=r,XZ,, we also need following representations over

Z,(w), ® being a primitive phtt root of 1. N,, is the free Z,(w)-module with
one generator Xs;, for s€Z, and relations

A= sy,
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zZXan=Xsn (2 acts trivially).
From the Z,(w)(Z,,)-modules Ny, for s€Z, and d|p, we can form the sums

(3-6) Ls= 3 Ng.
8€Sq

These L, are Z,(w)(x)-modules if we set
YEsn=Xp-15n -

If S is a Z,(x)-module, we denote the Z,(w)(x)-module S;@Z;(w) by E«(S).
l
The Krull-Schmidt implies that

E«(S)=E«(S" if and only if S=S’.
PROPOSITION 3.7. E«{M)=L,,

L,.
*1

d

E*(Fl): >
dip,
PROOF. A correspondence of L, onto E«(M,) is defined by
- ph-1 . .
Lsn—Asn= i}:{l [ 1Qw™*" .

It is easily seen that this correspondence is an equivariant isomorphism. The
second follows from

4. Z(rw)-module structure of H,_,(K;).

In this section we determine H,-,(K,,) as a Z(r)-module. Set
T= Y Z o)X,

1 I1=o(ph)

where I=(sy, s, -+, 59 iS a g-tuple with s;€Z,,— {0} and |I|= é s,

Recall that the action of = on T. From [Proposition 2.3, we have

(xnzm)xlzwacl)xl, yXI:Xy(D ,

where a(I):jé ki71s;, y(D)=y(s1, Sg» = » S)=(Sz, Ss, ***, So» s). From the re-
lation £—1=0 (), we have a(I)=0 (h). And x=(x"z™)", z=(x"2z™)? show that
=" DY, |
zX;=X; (the action of z is trivial).

For :1eZ,, we set
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A= {T 1120 (ph), al)=hi€ Z,} .
Then we obtain
T=3 2 Z(o)X;.
i€Zp, I€4;

LEMMA 4.1. The cardinalities n; of the sets A; satisfy:
(1) niEO (2)7 iEZp;
(ii) ny=n; if 1, j are not zero in Z,,
(iii) n,=0 2¢).
Proor. Consider tuples I=(s,, s,, -:+, s,) With the properties
(1) s;=Z,, admits zero,
2) 11=0 (ph),
3 all)=hisZ,,.

Let P; be the “property” such that s;=0, and R be the set of “properties”
{P;|1=j=gq}. For each subset XCR, let N(X) be the number of tuples satisfy-
ing (1), (2), and (3), and at least the properties of X. Then it follows that

ni= 2 (=D"FNX),

where | X| is the number of elements in X and | X|=0 if X=0.
If |X|=q or g—1, we have
0 (1£0)

N(X):(
1 (1=0).

Assume |X|<g—1 and suppose P., Pg& X. Solving (2) and (3) for s., ss we
have

a"{" =
@ (s Sg=+*

ke ls,+ kP 1sg=x,
*x being terms given by conditions (2) and (3). The determinant of the co-
efficients of s,, sg in the equation (4) is k*~'(kf-*—1) (say B>a). Since k—1

=0 (h), this determinant is not invertible over Z,,. But in the image of the
projection x: Z,,—Z,, we have from (4)

(5)
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where ~ is the image of =. The determinant of the coefficients of 3,, 55 in

(5) is k**(kf~*—1). This is invertible over Z,, because the relations o—Fk
=0 (p), (6—1, p)=1, and k=1 (p) imply that (k*—1, p)=1 (1=a<q). There
are (ph)E-*1-% choices of * in (4), and 3,, 55 are unique by (5). Therefore,
from the exact sequence

zp n

6 0 Zy Zon Zp 0,
it follows that

N(X):(ph)iR—Xz—z,h .
Thus we obtain

ne=(pm™( % (CDTGRFTER)+60((=1) g+ (=1))

1<g-1 XCR
=(ph)*h(ph— 10+ (=1 phg—1))+o((—=1)* g +(—1)9),
which implies (i) and (ii).

7 acts on IGZA Z(w)X; invariantly, since
0
a(y(I)=~ka()=0 (I€A)
ly(D|=11|=0.

and

We can form 3 Z,(w)X; as the sum of disjoint union

2 Zo 1 =Z(0)zX1 )P -+ DZw)nXs,) ,
n(X;,) being orbits (i=1, ---, p). Set

Tr,=— {gEEﬂ]gX1i:x1i} .

Since a([i)=0, xX;i:w"“(’i)Xli:XIi and also lei:XIi‘ But we have y]([1.>#:11.
for 1=j<gq, g prime. Thus
ﬂlizﬂpxzh .

The orbits =(X;,) consist of ¢ elements. Hence the cardinality n, of A, is
divisible by g. This completes the proof.

THEOREM 4.2. Hy((K;)=no/qZ(z)+n.I"y as a Z(z)-module.

PrOOF. When we regard Z,(z,) as a Z,(r)-module such that x and z act
trivially, it has been seen in the proof of that

4.3) IEZAOZI(Q))XI:no/qE*(Zl(n'q)) .

In view of Proposition 3.7} there is an isomorphism of > 3 Z,(w)X; onto
K3

EZp—o’ Ai
mE«"), i.e,
¢ ; Z X —>n:.Z (@) acr -
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Here we use (ii) of Lemma 4.1. It is easily checked that ¢ is an isomorphism
of modules, and so

4.4) M IEEA'ZIGD)XI:nlE*(B) .

iEZp-O'

By and it follows that
(4.5) T=Ex(no/qZ(n)+n.I7).

By [Proposition 2.3, E«(C)=T. Applying the Krull-Schmidt we have

(4.6) C=no/qZ(n)+ndy.

Since C is the cokernel of 1—¢ (see Proposition 2.1, the result follows from
4-6.

5. Surgery on Kj,.

Since ¢ is an odd prime, we try to apply the [Theorem 56 (or equi-
valently §5 in [5]) to the (2¢—1)-smooth manifold K;,. Here is the
stated in §5 of [5] which also holds for #=2Z2,XZ,. ,

THEOREM 5.6 OF [8]. A necessary and sufficient condition that surgery is
possible on K, /x yielding a manifold N with m\(N)=n and such that the universal
cover X of N is a homotopy sphere is that there exist a free module F of finite
rank s over Z(w) and an (sXs)-matrix B such that B¥*=— B and an exact sequence

B

0—>F »F———H,_(K;)—>0

such that the linking number form

o: Hq—l(Kfl)__)Hom Z(z)<Hq—l<Kfl)’ Q(n)/ Z(x))
is given by
d(¥)(x)=2 x:Bi}¥; mod Z(x)
when x=(x1, =+, X5), y=(¥1, =+, ¥5)EF.

To apply this theorem, we must know a homological property of I'; and
Z(z,) in view of The homological dimension of both constructed
as above is the same as that of §3 [6].

Fix [=q" where r is the order of the projective class group K,(Z(x))
which is finite (see [6],[7]). Moreover, from the fact that n, n, are even
by we have the following theorem similar to the theorem 3.2 [5].

THEOREM 5.1. There exists a free Z(n)-module F of rank s, an (s X s)-matrix
A over Z(w) with A*=—A, and the following exact sequence

0—>F F—sn,/qZ(z))+n,l—>0.
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Since the linking number form (see [8], p 248)
¢ : Hy-s(Ky)—>Hom g (Ho-1(Ky), Q(n)/Z(x))

is a non-singular skew Hermitian form, we have only to classify skew Hermitian
forms on H,_,(Ky) over (Z/(x), —) where — denotes an involution.

LEMMA 52. If ¢: Hyi(K; )X Hy o(Ky)—Zy(x) ts a skew Hermitian form,
¢ can be reduced “uniquely” to a skew Hermitian form

¢/ : Hq—l(Kfl) X Hq—l(KfL)_‘_)ZL(Zp,q)

on the Z(Z,q)-module H, \(K;,) over Z\(Z,,,).
ProoF. We shall recall the action of 7 on H,_y(K;,). On Z(z,), x and z
act trivially and y acts cyclotomically. We have Fl:Zl[t]/(Z):d Z;i M,
!p, #1

by r acts on I, as follows:
x[2 ait’]=[Zai™"],
2[3 a it ]=[3 at™?]=[3 a;t'],
X ait’]=[2 ast*].

From the relation mp+nh=1, we may replace a generator of =z, by x™.
Then we have . ‘
2"[X a;t 1= ast™].
From k—o=0(p), it follows that
y[2 a;t*]=[2 a;t°*].

Note that y(x™)y~'=(x")°. Comparing this action with that of Z,, in §2
we see that the Z(z)-module H, ,(K;)=n,/qZ(n)+n,I"; is the same as the
one stated in §2 if we ignore the action of Z,. Since the action of Z,
is trivial on Hy-(K;,), Im ¢ is contained in Z,(x)’*CZ,(x) and we have an
isomorphism Z,(z)?"=Z(Z,,,) preserving the involution —. Hence ¢ can be
reduced uniquely to a skew Hermitian form

¢": Hy- (K )X Hy oKy ))—>Z1(Z5,9)

on the Z(Z,,)-module H, ,(K;) over Z,(Z,,).
As for the uniqueness of skew Hermitian forms on the Z(Z,,)-module
H,-«(K;) over Z(Z,,), there is a proposition (see Corollary 4.18 [5]).
PROPOSITION 5.3. Every “skew Hermitian Form” on

C:Hq—l(Kfl):nO/qu(ﬂq)+n1Fl

over (Z(Z,,q), —) is hyperbolic.
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From Lemma 5.2 and [Proposition 5.3, we have

PROPOSITION 5.4. There is a unique skew Hermitian form on the Z(xn)-
module Hy_((K;,)) over (Z,(x), —).

Since [-H, (K;)=0, we have the following corollary in view of the
Remark of [5, p. 123].

COROLLARY 5.5. There is a unique skew Hermitian form

o . Hq—l(Kfl) — Hom Z(n:)(Hq—1<Kfl) ’ Q(TE)/Z(TE))

with
O(y)(x)=—D(x)(¥).

Let A be the matrix given by [Theorem 5.1. A induces a skew Hermitian
form ¢4 on H,.,(K;,) by setting

Pu(y)x)=2 x:Ai¥; mod Z()

where x=(x,, x5, =+, x5), Y=(¥1, Y2, =+, Yo EF.

COROLLARY 5.6. The skew Hermitian form ¢4 coincides with the linking
number form on Hy (Kjy)).

[Theorem 5.1 and [Corollary 5.6 provide us a sufficient condition in
5.6 of and we have

PROPOSITION 5.7. There exists a free smooth action of Z,,XZ, on some
homotopy sphere X 'e @,,_,(0r).

6. Application of the generalized Kervaire invariant.

In [1J, Browder defined the generalized Kervaire invariant. In particular,
in the case that a “B-orientation” of ‘Browder’ is the orientation induced by
a normal map, this invariant is well defined. And if a surgery obstruction
of the normal map is the Kervaire invariant, these generalized Kervaire
invariant and Kervaire invariant agree.

Let M be a smooth (or p.l) manifold with =, (M)=2Z, p: M—M the
double covering map and f: M’—M a normal map covered by b: vy —vy. For
n=2s-+1, form the manifold

M (n)=(nM")\J(—sM)
where nM'=M"U - UM, n times, —sM=(—NM)\J - \U(—M), s times, —M
being M with the opposite orientation. Then there is a normal map

nf: M'(n)— M

defined to be f on each copy of M’ and p on each copy of —]\7[, and covered
by b on each vy and by a fixed map d covering p on each vj, where d is the
inverse of dp: tj—7ty. Clearly nf has degree 1.
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The Kervaire invariants of M’(n) have been computed by Browder in terms
of the invariants of M (see [1, p. 212]). As an application of this result, we
prove:

PROPOSITION 6.1. Let m be any integer=1. Assume h=2"h' where n=0, 1
or 2 and (0, pg)=1, and h' odd. If 2EO s, admils a free Z,,XZy-action,
then X # 2, admits a free Z, X Z,-action, where 2, generates ©,,,,(0x).

PrROOF. Set 7=Z,, and |x|=the order of =.

Case 1. n=0, h=h’=o0dd. Since the order of ©,,.,(0x) is at most 2, the
universal cover of X/aXZ, 423, is 2 4 2, which admits a free 7 XZ,-action.

Case 2. n=1, h=2h'" and h’ odd. Let Z, be a subgroup of order 2 in
wXZy. First we construct a non zero surgery obstruction in L,,..(Z,, —)
=Z, We shall prove the following (see [3, p. 68]).

LEMMA 6.2. Let 5 (resp. E(y)) be the canonical line (resp. disk) bundle over
Y /Z,, so that 0E(p)=2. Then there is a normal map g: N—E(y) which is a
homotopy equivalence on the boundary ON=2 and 6(g) is not zero in Lynio(Z,, —)
=Z, (i.e., the obstruction to making g a homotopy equivalence rel. boundary is
not zero).

PROOF OF LEMMA 6.2. Take 2/Z,(5)=(5%/Z,)\/(—2%) and 5id=(5id)\J(—2p).
The normal map 5id: 2/Z,5)—2/Z, induces a normal map

E(Gid): E(id*y) — E().

Here E(5id*p) is the disk bundle induced by 5id. The boundary 9E(5id*y) is
5Y\U—4%, and so connecting the components of E(5id*y) along the boundary
we obtain a normal map

g: EGid*n) — E(y)

so that dE(Gid*y)=2 and g|0E(bid*y) is a homotopy equivalence. Attaching

cone to the boundary of E(5id*y), we have
E(5id*n)\J(cone)=(2(2/Z))(5),

where 2(2/Z,) is the suspension of the (p. 1.) manifold Y/Z, Similarly we
have

E(p)J(cone)=2(2/7,).
Then g can be extended to a normal map
g: (2(2/Z2)5) — 2(3/Zy).

Applying Theorem 4.1 and 4.8 of to g, we see that the surgery obstruction
0(2) is the Kervaire invariant R(2(2/Z,)(5)), and k(2(2/Z,))5)=1 in Z,=
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Lnx(Z,, —), therefore the obstruction #(g) is not zero. This completes the
proof of Lemma 6.2
Form a manifold

My z,, =03 /nXZypp )\ N—=2X /7 XZy),
where Z,. is a subgroup of order A’ in Z,,.. There is a normal map
[=G1d)\N—2p) 1 Mrxz,, —> 2/mXZsn,
where id is the identity map on 2/nXZ,, and p: X/aXZy—2/nXZy, is

the projection. The normal map g: E(5id*7)—E(y) in is transverse
regular to X/Z, and g *(2/Z,)=2/Z,(5), g|2/Z«5)=5id. We have a commu-
tative diagram of normal maps

g
EG@d)*n) E(n)
U . U
3/745) oid 37,
(1)
p b
Mnxzzh’ f >2/7Z'><Zzhr

where p: X/Z,—2/nXZy, is the h'|x|-fold covering map. By Theorem 12
of (see also [10]), the surgery obstruction 6(f) is zero in L,(zxXZ,,).
Chasing the diagram (1), we have a normal cobordism F: V—23/Z,xI, 0.V
=2/7,5), F|0_V=bid and 0,V is an h’|r|-fold cover of a manifold which is
homotopy equivalent to 2/xXZ,,. By the normal cobordism extension
property (see [3, IV 3.3]), there is a normal map

g’ W—s E(y)

normally cobordant to g, rel. boundary. g’ is transverse regular to 2/Z,,
g’ (2/Z,)=0,V, and g’|0,V is a homotopy equivalence.

Let N be a normal bundle of 0,V in W, and put X=W—int N. Then we
have a normal map g’| X: X—2 X[ which is a homotopy equivalence on the
boundary. Therefore X is a framed cobordism between J and the universal
cover 2’ of 0,V which admits a free nXZ,,-action. Since 6(g’)+0, the
Kervaire obstruction of X is not zero in Z,=L,,.+,(1). Hence 3'=3¢£5,.

Case 3. n=2, h—=4h’ and h’ odd. Form a manifold

MxeUL':(SZ/TCXZULI)U(—E/EXZ’V)
and a normal map
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F=0Gid)(=p): Mpxz,y —> 2/mXZsn

where p: Y/aXZ,—23/nXZ,, is the projection. Then we have a commu-
tative diagram of normal maps

szzm' f =3 Z/ﬂXZHL'
M, A
nxZ4p' — Z/TCXZUL'

where p: Y/nXZy—2/aXZy is 2-fold covering map. The surgery ob-
struction 6(f’) is zero in L,n.,(wXZ,;) by Theorem 12 of [9]. It follows
similarly to the case 2 that X # 2, admits a free = XZ,;-action. This com-
pletes the proof of [Proposition 6.1l

NoTE. In the case n=3, the proof of proposition 6.1 fails because of the
following reason. The obstruction #(g) of a normal map g constructed from
(@2"+1)id, XY /Z,2™+1)) as in the proof of is zero for n=3, since
k((2(2/Z,)2"+1))=0.
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