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Introduction.

Let $Z_{p,q}$ be the metacyclic group with presentation

$\{x, y|x^{p}=y^{q}=1, yxy^{-1}=x^{\sigma}\}$ ,

where $p$ is an odd integer, $q$ an odd prime, $(\sigma-1, p)=1$ , and $\sigma$ is a primitive
$q^{th}$ root of 1 mod $p$ . Denote by $\Theta_{n}$ the group of homotopy spheres, and by
$\Theta_{n}(\partial\pi)$ the group of homotopy spheres which bound parallelizable manifolds.
Then Petrie [5] proved that for each $\Sigma\in\Theta_{2q-1}(\partial\pi)$ there is a free smooth
action of $Z_{p,q}$ on $\Sigma$ . This theorem will be generalized as follows in this paper.

THEOREM. Let $Z_{h}$ denote a cyclic group of order $h$ and assume $h=2^{n}h^{\prime}$ ,
$(2, h^{\prime})=1$ . If $n$ takes $0,1$ , or 2 and $(h^{\prime}, Pq)=1$ , then for each $\Sigma\in\Theta_{2q-1}(\partial\pi)$

there is a free smooth action $Z_{p,q}\times Z_{h}$ on $\Sigma$ .
Our theorem follows immediately from the following two propositions.
PROPOSITION 5.7. There exists a free smooth action of $Z_{p,q}\times Z_{h}$ on some

homotopy sphere $\Sigma\in\Theta_{2q- 1}(\partial\pi)$ . Here $(h, pq)=1$ .
PROPOSITION 6.1. Let $m$ be any $integer\geqq 1$ . Assume $h=2^{n}h^{\prime}$ where $n=0,1$ ,

or 2 and $(h^{\prime}, Pq)=1$ . If $\Sigma\in\Theta_{4m+1}$ admits a free $Z_{p,q}\times Z_{h}$ -action, then $\Sigma\#\Sigma_{0}$

admits a free $Z_{p,q}\times Z_{h}$ -action, where $\Sigma_{0}$ generates $\Theta_{4m+1}(\partial\pi)$ .
Our methods are analogous to those in Petrie [5]. \S \S 1-4 are preliminaries

for Proposition 5.7 which is proved in \S 5. In \S 6, we prove Proposition 6.1 by
applying a theorem of Browder [1].

I would like to thank Professor Y. Kitada, Professor H. Suzuki and
Professor M. Nakaoka for their useful suggestions and criticism.

1. Construction of a $Z_{p,q}\times Z_{h}$-action.

We set $\pi=Z_{p,q}\times Z_{h}$ for the groups $Z_{p,q}$ and $Z_{h}$ in Introduction, where
$(h, pq)=1$ . We denote by $\pi_{p},$ $\pi_{q}$ the cyclic subgroups generated by $x,$ $y$

respectively. Let $Z_{ph}$ be a cyclic group of order $ph$ . Since $(p, h)=1$ , there
exist integers $m$ and $n$ such that $mp+nh=1$ , and an isomorphism of $Z_{ph}$ to
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$\pi_{p}\times\pi_{h}$ is given by
$g\leftrightarrow x^{n}z^{m}$ ,

where $z,$ $g$ are generators of $Z_{h},$ $Z_{ph}$ respectively. There is an integer $k$ such
that $x^{\sigma n}z^{m}=(x^{n}z^{m})^{k},$ $k-\sigma\equiv 0(p)$ , and $k-1\equiv 0(h)$ . Such $m,$ $n$ , and $k$ will be
fixed throughout this paper.

First we construct a linear action of $\pi$ on $C^{q+1}$ .
LEMMA 1.1. Let $\xi_{ph}$ be a primitive phth root of unity so that $\xi_{p}=(\xi_{ph})^{h}$ ,

$\xi_{h}=(\xi_{ph})^{p}$ are primitjve $p^{th},$ $h^{th}$ roots of unity respectively, and let $\xi_{q}$ be a
primitive $q^{th}$ root of unity. If $z_{1},$

$\cdots$ , $z_{q+1}$ are complex coordinates for $C^{q+1}$ , an
action of $\pi$ on $C^{q+1}$ is given as follows:

$x(z_{1}, z_{q}, z_{q+1})=(\xi_{p}z_{1}, \xi_{p}^{k}z_{2}, \cdots \xi_{p}^{k^{q- 1}}z_{q}, z_{q+1})$ ,

$z(z_{1}, z_{q}, z_{q+1})=(\xi_{h}z_{1}, \xi_{h}z_{2}, \xi_{h}z_{q}, z_{q+1})$ ,

$y(z_{1}, z_{q}, z_{q+1})=(z_{2}, z_{3}, z_{q}, z_{1}, \xi_{q}z_{q+1})$ .

PROOF. We dissect the group $\pi$ by means of the exact sequence

$1\rightarrow Z_{ph}\rightarrow^{i}\pi\rightarrow^{j}\pi_{q}\rightarrow 1$ .

Let $V_{ph}$ and $V_{q}$ be one dimensional complex representations of $Z_{ph}$ and
$\pi_{q}$ given by $\xi_{ph}$ and $\xi_{q}$ respectively. Then

$V=i_{*}V_{ph}+j^{*}V_{q}$

is a complex $q+1$ dimensional representation of $\pi$ . Here $i_{*}V_{ph}=C(\pi)\bigotimes_{C(z_{ph})}V_{ph}$

is the induced representation, $C(\pi)$ the complex group ring of $\pi$ and $j^{*}V_{q}$ the
one dimensional complex reprerentation of $\pi$ defined by $V_{q}$ viewed as a $C(\pi)-$

module via $j$ . We may take $z_{1},$
$\cdots$ , $z_{q}$ as complex coordinates for $i_{*}V_{ph}$ and

$z_{q+1}$ as a complex coordinate for $j^{*}V_{q}$ .
By $V$ we mean $C^{q+1}$ with the action of $\pi$ in Lemma 1.1. Putting $l=q^{r}$,

we consider a polynomial

$f_{l}(z_{1}, \cdots z_{q+1})=z_{1}^{ph}+z_{2}^{ph}+\cdots+z_{q}^{ph}+z_{q+1}^{l}$

which is invariant under the action of $\pi$ .
PROPOSITION 1.2. $\pi$ acts freely on the $(2q-1)$-dimensional Brieskorn manifold

$K_{f},=\{v\in V|f_{l}(v)=0, \Vert v\Vert=\eta\}$ ,

where $\eta$ is a small Positive number.
PROOF. If $ g\in\pi$ fixes a point, then $g^{k}$ fixes a point, for any $k$ and all

conjugates of $g$ fixes a point. Hence it is enough to select for each prime
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$t$ dividing the order of $\pi$ one Sylow $t$ subgroup $S_{t}$ and show that no element
of order $t$ in $S_{t}$ fixes a point.

Case 1. $t=q$ . Let $S_{q}$ be the subgroup generated by $y$ . Then if $ y\vec{z}=z\rightarrow$

for $\vec{z}=(z_{1}, \cdots z_{q+1})\in V$, it follows that $\vec{z}=(z_{1}, \cdots , z_{1},0)$ and $f_{l}(z\rightarrow)=qz_{1}^{ph}=0$ .
Therefore we get $z_{1}=0$ but we have $|z\rightarrow|^{2}=q|z_{1}|^{2}=\eta^{2}>0$ . Hence $y$ fixes no
point.

Case 2. $t|p$ . Let $S_{t}$ be the subgroup generated by $\delta=x^{d}$ , where $p=t^{n}d$

and $(t, d)=1$ . Set $u=x^{\iota^{n-1_{d}}}$ . If $u\Xi=\vec{z}$, it follows that $\vec{z}=(O, . , 0, z_{q+1})$ and
$f_{l}(\rightarrow z)=z_{q+1}^{l}=0$ . Therefore we have $z_{q+1}=0$, and $u$ fixes no point.

Case 3. $t|h$ . Let $S_{t}$ be the subgroup generated by $\delta^{\prime}=z^{e}$ , where $h=t^{n^{\prime}}e$

and $(t, e)=1$ . Set $u^{\prime}=z^{t^{n\prime-1}e}$ . Similarly to Case 2, we see that $u^{\prime}$ fixes no
point.

2. Description of $H_{q-1}(K_{f_{l}})$ .
The $(2q-1)$-dimensional smooth manifold $K_{f_{l}}$ is $(q-2)$-connected (see [4,

p. 45]). We shall describe the $Z(\pi)$-module $H_{q-1}(K_{f_{l}})$ following Milnor [4].

Here $Z(\pi)$ is the group ring of $\pi$ over $Z$.
PROPOSITION 2.1. There is an exact sequence of $Z(\pi)$-modules

$0\rightarrow H_{q}(K_{f_{l}})\rightarrow H_{q}(F)H_{q}(F)\underline{1-\phi}\rightarrow H_{q-1}(K_{f_{l}})\rightarrow 0$

where
(i) $F=\{v\in V|f_{l}(v)=const.\}$ ,

(ii) $H_{q}(F)$ is the tensor Product $I_{ph}^{q}\otimes I_{q^{r}}$ as a $Z(\pi)$-module (Two $Z(\pi)-$

modules $I_{ph}^{q}$ and $I_{I^{r}}$ are settled in Proof),

(iii) $ 1-\phi$ is a $Z(\pi)$-homomorphism.

PROOF. From the Milnor fibering $S_{\eta}-K_{J\iota}-S^{1}$ , we have the above exact
sequence and it follows that

$H_{q}(F)\cong\tilde{H}_{0}(\Omega_{ph})\otimes\cdots\otimes\tilde{H}_{0}(\Omega_{ph})\otimes\tilde{H}_{0}(\Omega_{q^{r}})$ ($q+1$ fold),

$\Omega_{ph}$ and $\Omega_{q^{r}}$ being the finite cyclic groups consisting of all $ph^{th}$ and $q^{rth}$

roots of unity respectively (see [4]).
Denote by $I_{ph}$ the ideal $(1-x^{n}z^{m})Z(Z_{ph})$ of $Z(Z_{ph})$ , and $I_{q^{r}}$ the ideal

$(1-s)Z(\pi_{q^{r}})$ of $Z(\pi_{q^{r}})$ . Here $\pi_{q^{r}}$ is the cyclic subgroup of order $q^{r}$ generated
by $s$ . Obviously we see that

$\tilde{H}_{0}(\Omega_{ph})=I_{ph}$ and $\tilde{H}_{0}(\Omega_{q^{r}})=I_{q^{r}}$ .
The q-fold tensor product of $I_{ph}$ over $Z$ with itself is $denoted^{r_{1}}byI_{ph}^{q}$ . So,
$H_{q}(F)$ is the tensor product $I_{ph}^{q}\otimes I_{q^{r}}$ . Moreover, $H_{q}(F)$ inherits the action of
$\pi$ on $V$ . By Lemma 1.1, the action on $I_{ph}^{q}$ is given by
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$x(\lambda_{1}\otimes\cdots\otimes\lambda_{q})=(x\lambda_{1}\otimes x^{k}\lambda_{2}\otimes\cdots\otimes x^{kq-1}\lambda_{q})$ ,

$z(\lambda_{1}\otimes\cdots\otimes\lambda_{q})=(z\lambda_{1}\otimes z\lambda_{2}\otimes\cdots\otimes z\lambda_{q})$ ,

$y(\lambda_{1}\otimes\cdots\otimes\lambda_{q})=(\lambda_{2}\otimes\lambda_{3}\otimes\cdots\otimes\lambda_{q}\otimes\lambda_{1})$ ,

and the action of $\pi$ on $I_{q^{r}}$ is given by

$ x\lambda=\lambda$ , $ z\lambda=\lambda$ , and $ y\lambda=s^{l/q}\lambda$ .

Put
$A=I_{ph}^{q}\otimes I_{q^{r}}$ .

The diagonal action on the tensor product $A$ makes $H_{q}(F)$ a module over
$Z(\pi)$ . This proves (ii).

From the fact that

$\phi(\lambda_{1}\otimes\cdots\otimes\lambda_{q}\otimes\lambda_{q+1})=(x^{n}z^{m}\lambda_{1}\otimes\cdots\otimes x^{n}z^{m}\lambda_{q}\otimes s\lambda_{q+1})$ ,

it follows that the homomorphism $\phi:A\rightarrow A$ is a $Z(\pi)$-homomorphism. This
complets the proof of Proposition 2.1.

By Proposition 2.1 and its proof, our present task is to know the cokernel
of $ 1-\phi$ . Let $C$ denote the cokernel of $ 1-\phi$ .

LEMMA 2.2. $C$ is annihilated by a Power of $q$, so that $C\otimes Z_{(q)}=C$, where
$Z_{(q)}$ denotes the integers localized at the prime ideal $(q)\subset Z$.

PROOF. If $ 1-\phi$ is viewed as a linear transformation over $Z$, it suffices
to show that the determinant of $ 1-\phi$ is a power of $q$ . By the proof of (iii)
in Proposition 2.1,

$(1-\phi^{ph})(\lambda_{1}\otimes\cdots\otimes\lambda_{q+1})=\lambda_{1}\otimes\cdots\otimes\lambda_{q}\otimes(1-s^{ph})\lambda_{q+1}$ .
If we choose $\{(1-s^{ph})s^{phi}, i=0,1, \cdots q^{r}-2\}$ as a basis of $I_{q^{r}}$, the homomorphism
$1-s^{ph}$ of $I_{q^{r}}$ to itself is given by the $(q^{r}-1)\times(q^{r}-1)$ matrix:

$\left\{\begin{array}{llll}1 & & & 1\\ & & 0 & \\-1 & 1\cdot & & 1\\ & -1. & & \vdots\\ & & 1 & i\\ & 0 & -1 & 2\end{array}\right\}$

.

The determinant of this matrix is $q^{r}$ . Hence

det $(1-\phi^{ph})=q^{r(ph-1)^{q}}$

Since $1-\phi^{ph}=(1-\phi)(1+\phi+\cdots+\phi^{ph-1})$ and $q$ is prime, det $(1-\phi)$ is a power
of $q$ . This proves the lemma.
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In view of Lemma 2.2, $C$ is also the cokernel of

$(1-\phi)\otimes 1:A\otimes Z_{(q)}\rightarrow A\otimes Z_{(q)}$ .
Let $\omega$ be a primitive $ph^{th}$ root of 1. We can describe the $Z(\pi)$-module

structure $C\otimes Z_{(q)}(\omega)$ rather than $C$ itself. $C\otimes Z_{(q)}(\omega)$ is the cokernel of

$(1-\phi)\otimes 1:A\otimes Z_{(q)}(\omega)\rightarrow A\otimes Z_{(q)}(\omega)$ .
Let $I=(s_{1}, s_{2}, \cdots s_{q})$ be a q-tuple with $s_{j}\in Z_{ph}-\{0\}$ and put

$|I|=\sum_{j=1}^{q}s_{j}$ .
Set

$x_{s^{\prime}}=\sum_{i=0}^{p\hslash-1}\omega^{-s^{\prime}}{}^{t}(x^{n}z^{m})^{i}$ $s^{\prime}\in Z_{ph}-\{0\}$

and
$x_{I}=x_{s_{1}}\otimes x_{s_{2}}\otimes\cdots\otimes x_{s_{q}}$ .

PROPOSITION 2.3. $C\otimes Z_{q^{r}}(\omega)=\sum_{|I|\equiv 0(ph)}Z_{q^{r}}(\omega)\chi_{I}$ .
The $Z(\pi)$-module structure of $C\otimes Z_{q^{r}}(\omega)$ is given by

(i) $xx_{I}=\omega^{ha(I)}\chi_{I}$ with $a(I)=_{j=1}\S k^{j-1}s_{j}$ ,

(ii) $zx_{I}=x_{I}$ (trivial action),

(iii) $yx_{I}=x_{y(I)}$ ,

where $y(I)=y(s_{1}, s_{2}, \cdots s_{q})=(s_{2}, s_{3}, \cdots , s_{q}, s_{1})$ .
PROOF. By dePnition of $\chi_{s^{\prime}},$ $\{\chi_{s^{\prime}}, s^{\prime}\in Z_{ph}-\{0\}\}$ is a basis of $I_{ph}(\omega)$ . $Thu_{b}$

$A\otimes Z_{(q)}(\omega)=\sum_{I\subset S^{\prime}}Z_{(q)}(\omega)\chi_{I}\otimes(1-s)Z_{(q)}(\pi_{q^{r}})$ .

$S^{\prime}$ is the set of all $I$ with $s_{j}\in Z_{ph}-\{0\}$ . Since $(x^{n}z^{m})\chi_{s^{\prime=\omega^{s^{t}}}}\chi_{s^{\prime}}$ we have

$\phi(x_{I}\otimes(1-s))=\omega^{|I|\chi_{I}\otimes s(1-S)}$ .
Set

$\eta_{I}=1-s\omega^{|I|}$

and
$N=(1-s)Z_{(q)}(\omega)(\pi_{q^{r}})$ .

Then we get
$C\otimes Z_{(q)}(\omega)=\sum_{I\subset S^{\prime}}[N/\eta_{I}N]\chi_{I}$ .

For $|I|\not\equiv 0(ph),$ $\eta_{I}N=N$ and if $|I|\equiv 0(ph),$ $N/\eta_{I}N=Z_{q^{r}}(\omega)$ . Hence it follows
that

$C\otimes Z_{(q)}(\omega)=\sum_{|I|-\leftarrow 0(ph)}Z_{q^{r}}(\omega)\chi_{I}$ .
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By Lemma 2.2, $C\otimes Z_{q^{r}}(\omega)\cong C\otimes Z_{(q)}(\omega)$ . This proves the first assertion. The
second follows since $\pi$ acts on $\chi_{I}$ as in the proof of Proposition 2.1 and
$x=(x^{n}z^{m})^{h},$ $z=(x^{n}z^{m})^{p}$ .

3. Some representations of $Z_{p,q}\times Z_{h}$ .
We discuss certain representations of $\pi=Z_{p,q}\times Z_{h}$ over the ring $Z_{l}$ where

$l=q^{r}$ . For each integer $i$, let $S_{i}$ denote the set of primitive $j^{th}$ roots of
unity and let

$\Phi_{i}(t)=\prod_{\omega\in S_{i}}(t-\omega)$

denote the $i^{th}$ cyclotomic polynomial.
LEMMA 3.1. For each integer $d$ dividing $ph$ , the ring

$\theta_{d}=Z[t]/(\Phi_{d}(t))$

is a $Z(\pi)$-module if we set

(i) $x(\sum a_{i}t^{i})=\sum a_{\ell}t^{i+h}$ ,

(ii) $z(\sum a_{i}t^{i})=\sum a_{i}t^{i+p}$ ,

(iii) $y(\sum a_{i}t^{i})=\sum a_{i}t^{ki}$ .

PROOF. Note that $\Phi_{d}(t^{k})=\Phi_{d}(t)\psi(t)$ where $\psi(t)$ is an integral polynomial.
It is easily seen that the action of $\pi$ on $\theta_{d}$ is well defined.

For $l=q^{r}$, let $(l)$ be the principal ideal defined by $l$ in $\theta_{d}$ , and we set

(3.2) $M_{d}=\theta_{d}/(l)$ .
From the identities

(3.3) $t^{p}-1=\prod_{d\mathfrak{l}p}\Phi_{d}(t)$ ,

(3.4) $\Sigma=1+t+\cdots+t^{p-1}=$
$\prod_{d|P,}$

$\Phi_{d}(t)$ ,

and the fact that the polynomials $\Phi_{d}(r)$ are relatively prime over $Z_{l}[t]$ , we
have

LEMMA 3.5. $\Gamma_{l}=Z_{l}[t]/(\Sigma)\cong\sum_{d|pd\neq 1}M_{d}$ , where $(\Sigma)$ denotes the ideal generated

by $\Sigma$ .
For the group $Z_{ph}\cong\pi_{p}\times Z_{h}$ , we also need following representations over

$Z_{l}(\omega),$ $\omega$ being a primitive $ph^{\mathfrak{t}h}$ root of 1. $N_{sh}$ is the free $Z_{l}(\omega)$-module with
one generator $\chi_{sh}$ for $s\in Z_{p}$ and relations

$xx_{sh}=\omega^{(sh)h}\chi_{sh}$ ,
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$zx_{sh}=x_{sh}$ ( $z$ acts trivially).

From the $Z_{l}(\omega)(Z_{ph})$-modules $N_{sh}$ for $s\in Z_{p}$ and $d|P$ , we can form the sums

(3.6)
$L_{d}=\sum_{s\in S_{d}}N_{sh}$ .

These $L_{d}$ are $Z_{l}(\omega)(\pi)$-modules if we set

$y^{\chi_{sh}}=\chi_{k^{-1}s\hslash}$ .

If $S$ is a $Z_{l}(\pi)$-module, we denote the $Z_{l}(\omega)(\pi)$-module $S\bigotimes_{z_{l}}Z_{l}(\omega)$ by $E_{*}(S)$ .
The Krull-Schmidt Theorem [2] implies that

$E_{*}(S)\cong E_{*}(S^{\prime})$ if and only if $S\cong S^{\prime}$ .

PROPOSITION 3.7. $E_{*}(M_{d})=L_{d}$ ,

$E_{*}(\Gamma_{l})=\sum_{d|pd\neq 1}L_{d}$ .

PROOF. A correspondence of $L_{d}$ onto $E_{*}(M_{d})$ is defined by

$\chi_{sh}-Z_{sh}=\sum_{i\Rightarrow 0}^{ph- 1}[t^{i}]\otimes\omega^{-shi}$ .

It is easily seen that this correspondence is an equivariant isomorphism. The
second follows from Lemma 3.5.

4. $Z(\pi)$-module structure of $H_{q-1}(K_{f_{l}})$ .
In this section we determine $H_{q-1}(K_{f_{l}})$ as a $Z(\pi)$-module. Set

$T=\sum_{|I|\cdot 0(ph)}Z_{l}(\omega)\chi_{I}$ ,

where $I=(s_{1}, s_{2}, \cdots s_{q})$ is a q-tuple with $s_{j}\in Z_{ph}-\{0\}$ and $|I|=\sum_{f\approx 1}^{q}s_{j}$ .
Recall that the action of $\pi$ on $T$ . From Proposition 2.3, we have

$(x^{n}z^{m})^{\chi_{I}=\omega^{\alpha(I)}}\chi_{I}$ , $y^{\chi_{I}}=x_{y^{(I)}}$ ,

where $\alpha(I)=\sum_{j=1}k^{f-1}s_{j}qy(I)=y(s_{1}, s_{2}, \cdots s_{q})=(s_{2}, s_{3}, \cdots s_{q}, s_{1})$ . From the re-

lation $k-1\equiv 0(h)$ , we have $\alpha(I)\equiv 0(h)$ . And $x=(x^{n}z^{m})^{\hslash},$ $z=(x^{n}z^{m})^{p}$ show that
$Xx_{I}=\omega^{\hslash a(I)}\chi_{I}$ ,

$Zx_{I}=x_{I}$ (the action of $z$ is trivial).

For $i\in Z_{p}$ , we set
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$A_{i}=\{I||I|\equiv 0(ph), \alpha(I)=hi\in Z_{ph}\}$ .
Then we obtain

$T=\sum_{i\in z_{p}}.\sum_{I\in A_{i}}Z_{l}(\omega)\chi_{I}$ .

LEMMA 4.1. The cardinalities $n_{i}$ of the sets $A_{i}$ satisfy:

(i) $n_{i}\equiv 0(2)$ , $i\in Z_{p}$ ,

(ii) $n_{i}=n_{j}$ if $i,$ $j$ are not zero in $Z_{p}$ ,

(iii) $n_{0}\equiv 0(2q)$ .

PROOF. Consider tuples $I=(s_{1}, s_{2}, \cdots s_{q})$ with the properties

(1) $s_{j}\in Z_{ph}$ admits zero,

(2) $|I|\equiv 0(P^{h})$ ,

(3) $\alpha(I)=hi\in Z_{ph}$ .

Let $P_{j}$ be the “property” such that $s_{j}=0$, and $R$ be the set of “properties”
$\{P_{j}|1\leqq j\leqq q\}$ . For each subset $X\subset R$ , let $N(X)$ be the number of tuples satisfy-
ing (1), (2), and (3), and at least the properties of $X$. Then it follows that

$n_{i}=\sum_{X\subset R}(-1)^{|X|}N(X)$ ,

where $|X|$ is the number of elements in $X$ and $|X|=0$ if $ X=\emptyset$ .
If $|X|=q$ or $q-1_{f}$ we have

$N(X)=(01(i\neq 0)(i=0)$ .
Assume $|X|<q-1$ and suppose $P_{a},$ $P_{\beta}\not\in X$. Solving (2) and (3) for $s_{\alpha},$

$s_{\beta}$, we
have

(4) $(s_{a}+s_{\beta}=*k^{\alpha-1}s_{a}+k^{\beta-1}s_{\beta}=*$

,

$*being$ terms given by conditions (2) and (3). The determinant of the co-
efficients of $s_{\alpha},$ $s_{\beta}$ in the equation (4) is $k^{\alpha-1}(k^{\beta-\alpha}-1)$ (say $\beta>\alpha$). Since $k-1$

$\equiv 0(h)$ , this determinant is not invertible over $Z_{ph}$ . But in the image of the
projection $\pi:Z_{ph}\rightarrow Z_{p}$ , we have from (4)

(5) $(\overline{s}_{a}+\overline{s}_{\beta}=\overline{*}k^{a-1}\overline{s}_{a}+k^{\beta-1}\overline{s}_{\beta}=\overline{*}$

,
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where $-$ is the image of $\pi$ . The determinant of the coefficients of $\overline{s}_{a},\overline{s}_{\beta}$ in

(5) is $\overline{k^{\alpha-1}(k^{\beta-a}-1).}$ This is invertible over $Z_{p}$ , because the relations $\sigma-k$

$\equiv 0(p),$ $(\sigma-1, p)=1_{f}$ and $k^{q}\equiv 1(p)$ imply that $(k^{\alpha}-1, p)=1(1\leqq a<q)$ . There
are $(ph)^{|R-X|-2}$ choices of $*in(4)$ , and $\overline{s}_{a},\overline{s}_{\beta}$ are unique by (5). Therefore,
from the exact sequence

(6) $0\rightarrow Z_{h}\rightarrow^{xp}Z_{ph}\rightarrow^{\pi}Z_{p}\rightarrow 0$ ,
it follows that

$N(X)=(ph)^{|R-X|-2}\cdot h$ .
Thus we obtain

$n_{i}=(ph)^{-2}(\sum_{|X|<q-1X\subset R},(-1)^{|X|}(ph)^{|R-X|}h)+\delta_{0t}((-1)^{q-1}q+(-1)^{q})$

$=(ph)^{-2}h((ph-1)^{q}+(-1)^{q}(phq-1))+\delta_{0i}((-1)^{q-1}q+(-1)^{q})$ ,

which implies (i) and (ii).

$\pi$ acts on $\sum_{I\in A_{0}}Z_{l}(\omega)\chi_{I}$ invariantly, since
$\alpha(y(I))=k^{-1}\alpha(I)=0$ $(I\in A_{0})$

and
$|y(I)|=|I|=0$ .

We can form $\sum Z_{l}(\omega)\chi_{I}$ as the sum of disjoint union

$\Sigma Z_{l}(\omega)\chi_{I}=Z_{l}(\omega)(\pi(\chi_{I_{1}}))\oplus\cdots\oplus Z_{l}(\omega)(\pi(\chi_{I_{\mu}}))$ ,

$\pi(\chi_{I_{i}})$ being orbits $(i=1, \cdots , \mu)$ . Set

$\pi_{I_{i}}=\{g\in\pi|g^{\chi_{I_{i}}}=\chi_{I_{i}}\}$ .
Since $a(I_{i})=0,$ $xx_{I_{i}}=\omega^{h\alpha(I_{i})}x_{I_{i}}=x_{I_{i}}$ and also $zx_{I_{i}}=x_{I_{i}}$ . But we have $y^{j}(I_{i})\neq I_{i}$

for $1\leqq j<q,$ $q$ prime. Thus
$\pi_{I_{i}}\cong\pi_{p}\times Z_{h}$ .

The orbits $\pi(\chi_{I_{i}})$ consist of $q$ elements. Hence the cardinality $n_{0}$ of $A_{0}$ is
divisible by $q$ . This completes the proof.

THEOREM 4.2. $H_{q-1}(K_{f_{l}})\cong n_{0}/qZ_{l}(\pi_{q})+n_{1}\Gamma_{l}$ as a $Z(\pi)$-module.
PROOF. When we regard $Z_{l}(\pi_{q})$ as a $Z_{l}(\pi)$-module such that $x$ and $z$ act

trivially, it has been seen in the proof of Lemma 4.1 that

(4.3) $\sum_{I\in A_{0}}Z_{l}(\omega)^{\chi_{I}}=n_{0}/qE_{*}(Z_{l}(\pi_{q}))$ .

In view of Proposition 3.7, there is an isomorphism
$of\sum_{i\in Z_{p^{-0}}},$ $\sum_{A_{i}}Z_{l}(\omega)\chi_{I}$ onto

$n_{1}E_{*}(\Gamma_{\iota}),$ $i$ . $e.$ ,
$\psi:\sum_{A_{i}}Z_{l}(\omega)\chi_{I}\rightarrow n_{i}Z_{l}(\omega)\chi_{\alpha(I)}$ .



754 Y. KAMISHIMA

Here we use (ii) of Lemma 4.1. It is easily checked that $\psi$ is an isomorphism
of modules, and so
(4.4)

$\sum_{i\in z_{p}-0}.\sum_{I\in A_{i}}Z_{l}(\omega)^{\chi_{I}}=n_{1}E_{*}(\Gamma_{l})$ .

By (4.3) and (4.4), it follows that

(4.5) $T=E_{*}(n_{0}/qZ_{l}(\pi_{q})+n_{1}\Gamma_{l})$ .

By Proposition 2.3, $E_{*}(C)=T$ . Applying the Krull-Schmidt Theorem, we have

(4.6) $C\cong n_{0}/qZ_{l}(\pi_{q})+n_{1}\Gamma_{l}$ .

Since $C$ is the cokernel of $ 1-\phi$ (see Proposition 2.1), the result follows from
(4.6).

5. Surgery on $K_{f_{l}}$ .
Since $q$ is an odd prime, we try to apply the Theorem 5.6 [8] (or equi-

valently \S 5 in [5]) to the $(2q-1)$-smooth manifold $K_{f_{l}}$ . Here is the Theorem
stated in \S 5 of [5] which also holds for $\pi=Z_{p,q}\times Z_{h}$ .

THEOREM 5.6 OF [8]. A necessary and sufficient condition that surgery is
possible on $ K_{f_{l}}/\pi$ yielding a manifold $N$ with $\pi_{1}(N)=\pi$ and such that the universal
cover $\Sigma$ of $N$ is a homotopy sphere is that there exist a free module $F$ offinite
rank $s$ over $Z(\pi)$ and an $(s\times s)$-matrix $B$ such that $B^{*}=-B$ and an exact sequence

$0\rightarrow F\rightarrow F\rightarrow H_{q-1}(K_{f_{l}})B\omega\rightarrow 0$

such that the linking number form
$\phi:H_{q-1}(K_{f_{l}})\rightarrow Hom_{Z(\pi)}(H_{q- 1}(K_{f_{l}})fQ(\pi)/Z(\pi))$

is given by
$\phi(y)(x)=\sum x_{i}B_{ij}^{-t}\overline{y}_{j}$ mod $Z(\pi)$

when $x=(x_{1}, \cdots , x_{s}),$ $y=(y_{1}, \cdots , y_{s})\in F$.
To apply this theorem, we must know a homological property of $\Gamma_{l}$ and

$Z_{l}(\pi_{q})$ in view of Theorem 4.2. The homological dimension of both constructed
as above is the same as that of \S 3 [5].

Fix $l=q^{r}$ where $r$ is the order of the projective class group $K_{0}(Z(\pi))$

which is finite (see $[6],[7]$). Moreover, from the fact that $n_{0},$ $n_{1}$ are even
by Lemma 4.1, we have the following theorem similar to the theorem 3.2 [5].

THEOREM 5.1. There exists a free $Z(\pi)$-module $F$ of rank $s$ , an $(s\times s)$-matrix
$A$ over $Z(\pi)$ with $A^{*}=-A$ , and the following exact sequence

$0\rightarrow F\rightarrow FA\rightarrow n_{0}/qZ_{l}(\pi_{q})+n_{1}\Gamma_{l}\rightarrow 0$ .
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Since the linking number form (see [8], $p248$)

$\phi$ : $H_{q-1}(K_{f_{l}})\rightarrow Hom_{Z(\pi)}(H_{q-1}(K_{f_{l}}), Q(\pi)/Z(\pi))$

is a non-singular skew Hermitian form, we have only to classify skew Hermitian
forms on $H_{q-1}(K_{f_{l}})$ over $(Z_{l}(\pi), -)$ where –denotes an involution.

LEMMA 5.2. If $\phi:H_{q-1}(K_{J\iota})\times H_{q-1}(K_{J\iota})\rightarrow Z_{l}(\pi)$ is a skew Hermitian form,
$\phi$ can be reduced “uniquely” to a skew Hermitian form

$\phi^{\prime}$ : $H_{q- 1}(K_{f_{l}})\times H_{q-1}(K_{f_{l}})\rightarrow Z_{l}(Z_{p,q})$

on the $Z(Z_{p,q})$-module $H_{q-1}(K_{f_{l}})$ over $Z_{l}(Z_{p,q})$ .
PROOF. We shall recall the action of $\pi$ on $H_{q-1}(K_{f_{l}})$ . On $Z_{l}(\pi_{q}),$ $x$ and $z$

act trivially and $y$ acts cyclotomically. We have $\Gamma_{l}=Z_{l}[t]/(\Sigma)=\sum_{d|pd\neq 1}M_{d}$

by Lemma 3.5. $\pi$ acts on $\Gamma_{l}$ as follows:

$x[\sum a_{i}t^{i}]=[\Sigma a_{i}t^{i+h}]$ ,

$z[\Sigma a_{i}t^{i}]=[\Sigma a_{i}t^{i+p}]=[\Sigma a_{i}t^{i}]$ ,

$y[\sum a_{i}t^{i}]=[\Sigma a_{i}t^{ki}]$ .

From the relation $mp+nh=1$ , we may replace a generator of $\pi_{p}$ by $x^{n}$ .
Then we have

$x^{n}[\Sigma a_{i}t^{i}]=[\Sigma a_{i}t^{i+1}]$ .

From $k-\sigma\equiv 0(p)$ , it follows that

$y[\sum a_{i}t^{i}]=[\sum a_{i}t^{\sigma i}]$ .
Note that $y(x^{n})y^{-1}=(x^{n})^{\sigma}$ . Comparing this action with that of $Z_{p,q}$ in \S 2 [5],

we see that the $Z(\pi)$-module $H_{q-1}(K_{f_{l}})=n_{0}/qZ_{l}(\pi_{q})+n_{1}\Gamma_{l}$ is the same as the
one stated in \S 2 [5] if we ignore the action of $Z_{\hslash}$ . Since the action of $Z_{h}$

is trivial on $H_{q-1}(K_{f_{l}}),$ ${\rm Im}\phi$ is contained in $Z_{l}(\pi)^{Z_{h}}\subset Z_{l}(\pi)$ and we have an
isomorphism $Z_{l}(\pi)^{Zh}\cong Z_{l}(Z_{p,q})$ preserving the involution -. Hence $\phi$ can be
reduced uniquely to a skew Hermitian form

$\phi^{\prime}$ : $H_{q-1}(K_{f_{l}})\times H_{q-1}(K_{f_{l}})\rightarrow Z_{l}(Z_{p,q})$

on the $Z(Z_{p,q})$-module $H_{q-1}(K_{f_{l}})$ over $Z_{l}(Z_{p,q})$ .
As for the uniqueness of skew Hermitian forms on the $Z(Z_{p,q})$-module

$H_{q-1}(K_{f_{l}})$ over $Z_{l}(Z_{p,q})$, there is a proposition (see Corollary 4.18 [5]).

PROPOSITION 5.3. Every “skew Hermitian Form” $on$

$C=H_{q- 1}(K_{f_{l}})=n_{0}/qZ_{l}(\pi_{q})+n_{1}\Gamma_{l}$

over $(Z_{l}(Z_{p,q}), -)$ is hyperbolic.
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From Lemma 5.2 and Proposition 5.3, we have
PROPOSITION 5.4. There is a unique skew Hermitian form on the $Z(\pi)-$

module $H_{q-1}(K_{f_{l}})$ over $(Z_{l}(\pi), -)$ .
Since $l\cdot H_{q-1}(K_{f_{l}})=0$, we have the following corollary in view of the

Remark of [5, p. 123].

COROLLARY 5.5. There is a unique skew Hemitian form
$\Phi$ : $H_{q- 1}(K_{f_{l}})\rightarrow Hom_{Z(\pi)}(H_{q-1}(K_{f_{l}}), Q(\pi)/Z(\pi))$

with
$\Phi(y)(x)=-\overline{\Phi(x)(y).}$

Let $A$ be the matrix given by Theorem 5.1. $A$ induces a skew Hermitian
form $\psi_{A}$ on $H_{q- 1}(K_{f_{l}})$ by setting

$\psi_{A}(y)(x)=\sum x_{i}A_{ij}^{-t}\overline{y}_{j}$ mod $Z(\pi)$

where $x=(x_{1}, x_{2}, \cdots x_{s}),$ $y=(y_{1}, y_{2}, \cdots , y_{s})\in F$.
COROLLARY 5.6. The skew Hermitian form $\psi_{A}$ coincides with the linking

number form on $H_{q- 1}(K_{f_{l}})$ .
Theorem 5.1 and Corollary 5.6 provide us a sufficient condition in Theorem

5.6 of [8], and we have
PROPOSITION 5.7. There exists a free smooth action of $Z_{p,q}\times Z_{h}$ on some

homotopy sphe re $\Sigma^{2q-1}\in\Theta_{2q-1}(\partial\pi)$ .

6. Application of the generalized Kervaire invariant.

In [1], Browder defined the generalized Kervaire invariant. In particular,
in the case that a “B-orientation“ of ’Browder’ is the orientation induced by
a normal map, this invariant is well dePned. And if a surgery obstruction
of the normal map is the Kervaire invariant, these generalized Kervaire
invariant and Kervaire invariant agree.

Let $M$ be a smooth (or p. 1.) manifold with $\pi_{1}(M)=Z_{2}$ , $p:\tilde{M}\rightarrow M$ the
double covering map and $f:M^{\prime}\rightarrow M$ a normal map covered by $b:\nu_{M^{\prime}}\rightarrow\nu_{M}$ . For
$n=2s+1$ , form the manifold

$M^{\prime}(n)=(nM^{\prime})\cup(-s\tilde{M})$

where $nM^{\prime}=M^{\prime}\cup\cdots\cup M^{\prime},$ $n$ times, $-s\tilde{M}=(-\tilde{M})\cup\cdots\cup(-\tilde{M}),$
$s$ times, $-\tilde{M}$

being $\tilde{M}$ with the opposite orientation. Then there is a normal map

$nf:M^{\prime}(n)\rightarrow M$

defined to be $f$ on each copy of $M^{\prime}$ and $P$ on each copy of $-\tilde{M}$, and covered
by $b$ on each $\nu_{M^{\prime}}$ and by a fixed map $d$ covering $p$ on each $\nu_{\tilde{M}}$, where $d$ is the
inverse of $dp:\tau_{\tilde{M}}\rightarrow\tau_{M}$ . Clearly $nf$ has degree 1.
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The Kervaire invariants of $M^{\prime}(n)$ have been computed by Browder in terms
of the invariants of $M$ (see [1, p. 212]). As an application of this result, we
prove:

PROPOSITION 6.1. Let $m$ be any $integer\geqq 1$ . Assume $h=2^{n}h^{\prime}$ where $n=0,1$

or 2 and $(h^{\prime}, pq)=1$ , and $h^{\prime}$ odd. If $\Sigma\in\Theta_{4m+1}$ admits a free $Z_{p,q}\times Z_{h}$ -action,
then $\Sigma\#\Sigma_{0}$ admits a free $Z_{p,q}\times Z_{h}$ -action, where $\Sigma_{0}$ generates $\Theta_{4m+1}(\partial\pi)$ .

PROOF. Set $\pi=Z_{p,q}$ and $|\pi|=the$ order of $\pi$ .
Case 1. $n=0,$ $h=h^{\prime}=odd$ . Since the order of $\Theta_{4m+1}(\partial\pi)$ is at most 2, the

universal cover of $\Sigma/\pi\times Z_{h}\#\Sigma_{0}$ is $\Sigma\#\Sigma_{0}$ which admits a free $\pi\times Z_{h}$-action.
Case 2. $n=1,$ $h=2h^{\prime}$ and $h^{\prime}$ odd. Let $Z_{2}$ be a subgroup of order 2 in

$\pi\times Z_{2h^{\prime}}$ . First we construct a non zero surgery obstruction in $L_{4m+2}(Z_{2}f -)$

$=Z_{2}$ . We shall prove the following (see [3, p. 68]).

LEMMA 6.2. Let $\eta(resP\cdot E(\eta))$ be the canonical line ( $ resP\cdot$ disk) bundle over
$\Sigma/Z_{2}$ , so that $\partial E(\eta)=\Sigma$ . Then there is a normal map $g:N\rightarrow E(\eta)$ which is a
homotoPy equivalence on the boundary $\partial N=\Sigma$ and $\theta(g)$ is not zero in $L_{4m+2}(Z_{2}f -)$

$=Z_{2}(i$ . $e_{f}$ the obstruction to making $g$ a homotopy equivalence $rel$ . boundary is
not zero).

$PROOFOFLEMMA6.2$ . Take $\Sigma/Z_{2}(5)=(5\Sigma/Z_{2})\cup(-2\Sigma)$ and5id $=(5id)\cup(-2p)$ .
The normal map $5id:\Sigma/Z_{2}(5)\rightarrow\Sigma/Z_{2}$ induces a normal map

$E(5id):E(5id^{*}\eta)\rightarrow E(\eta)$ .
Here $E(5id^{*}\eta)$ is the disk bundle induced by $5id$ . The boundary $\partial E(5id^{*}\eta)$ is
$ 5\Sigma\cup-4\Sigma$, and so connecting the components of $E(5id^{*}\eta)$ along the boundary
we obtain a normal map

$g:\overline{E(5id^{*}\eta})\rightarrow E(\eta)$

so that $\overline{\partial E(5id^{*}\eta)}=\Sigma$ and $g|\overline{\partial E(5id^{*}\eta)}$ is a homotopy equivalence. Attaching

cone to the boundary of $\overline{E(5id^{*}\eta}$), we have

$E(5id^{*}\eta)U(cone)=(\Sigma(\Sigma/Z_{2}))(5)$ ,

where $\Sigma(\Sigma/Z_{2})$ is the suspension of the (p. 1.) manifold $\Sigma/Z_{2}$ . Similarly we
have

$E(\eta)U(cone)=\Sigma(\Sigma/Z_{2})$ .

Then $g$ can be extended to a normal map

$\overline{g}:(\Sigma(\Sigma/Z_{2}))(5)\rightarrow\Sigma(\Sigma/Z_{2})$ .

Applying Theorem 4.1 and 4.8 of [1] to $\overline{g}$, we see that the surgery obstruction
$\theta(\overline{g})$ is the Kervaire invariant $k((\Sigma(\Sigma/Z_{2}))(5))$ , and $k((\Sigma(\Sigma/Z_{2}))(5))=1$ in $ Z_{2}\cong$
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$L_{4m+2}(Z_{2}$ , - $)$ , therefore the obstruction $\theta(g)$ is not zero. This completes the
proof of Lemma 6.2.

Form a manifold

$M_{\pi\times Z_{2h^{\prime}}}=(5\Sigma/\pi\times Z_{2h^{\prime}})\cup(-2\Sigma/\pi\times Z_{h^{\prime}})$ ,

where $Z_{h^{\prime}}$ is a subgroup of order $h^{\prime}$ in $Z_{2h^{\prime}}$ . There is a normal map

$f=(5id)\cup(-2p):M_{\pi xZ_{2h^{\prime}}}\rightarrow\Sigma/\pi\times Z_{2h^{\prime}}$ ,

where $id$ is the identity map on $\Sigma/\pi\times Z_{2h^{\prime}}$ and $p:\Sigma/\pi\times Z_{h^{\prime}}\rightarrow\Sigma/\pi\times Z_{2h^{\prime}}$ is

the projection. The normal map $g:\overline{E(5id^{*}\eta)}\rightarrow E(\eta)$ in Lemma 6.2 is transverse
regular to $\Sigma/Z_{2}$ and $g^{-1}(\Sigma/Z_{2})=\Sigma/Z_{2}(5),$ $g|\Sigma/Z_{2}(5)=5id$ . We have a commu-
tative diagram of normal maps

$E(5(id)^{*}\eta)E(\eta)\underline{g}$

$\cup$ $\cup$

$\Sigma/Z_{2}(5)\underline{5id}\Sigma/Z_{2}$

(1)

$M_{\pi xZ_{2h^{\prime}}}1^{p}\rightarrow^{f}\Sigma/\rfloor_{\times Z_{2h^{\prime}}}p$

where $p:\Sigma/Z_{2}\rightarrow\Sigma/\pi\times Z_{2h^{\prime}}$ is the $h^{\prime}|\pi|$ -fold covering map. By Theorem 12
of [9] (see also [10]), the surgery obstruction $\theta(f)$ is zero in $L_{1}(\pi\times Z_{2h^{\prime}})$ .
Chasing the diagram (1), we have a normal cobordism $F:V\rightarrow\Sigma/Z_{2}\times I,$ $\partial_{-}V$

$=\Sigma/Z_{2}(5),$ $F|\partial_{-}V=5id$ and $\partial_{+}V$ is an $h^{\prime}|\pi|$ -fold cover of a manifold which is
homotopy equivalent to $\Sigma/\pi\times Z_{2h^{\prime}}$ . By the normal cobordism extension
property (see [3, IV 3.3]), there is a normal map

$g^{\prime}$ : $W\rightarrow E(\eta)$

normally cobordant to $g$, rel. boundary. $g^{\prime}$ is transverse regular to $\Sigma/Z_{2}$ ,
$g^{\prime-1}(\Sigma/Z_{2})=\partial_{+}V$, and $g^{\prime}|\partial_{+}V$ is a homotopy equivalence.

Let $N$ be a normal bundle of $\partial_{+}V$ in $W$, and put $X=W-intN$. Then we
have a normal map $g^{\prime}|X:X\rightarrow\Sigma\times I$ which is a homotopy equivalence on the
boundary. Therefore $X$ is a framed cobordism between $\Sigma$ and the universal
cover $\Sigma^{\prime}$ of $\partial_{+}V$ which admits a free $\pi\times Z_{2h^{\prime}}$ -action. Since $\theta(g^{\prime})\neq 0$ , the
Kervaire obstruction of $X$ is not zero in $Z_{2}\cong L_{4m+2}(1)$ . Hence $\Sigma^{\prime}=\Sigma\#\Sigma_{0}$ .

Case 3. $n=2,$ $h=4h^{\prime}$ and $h^{\prime}$ odd. Form a manifold
$M_{\pi xZ_{4h^{\prime}}}=(5\Sigma/\pi\times Z_{4h^{\prime}})\cup(-\Sigma/\pi\times Z_{h^{\prime}})$

and a normal map
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$f^{\prime}=(5id)\cup(-p):M_{\pi\times Z_{4h^{\prime}}}\rightarrow\Sigma/\pi\times Z_{4h^{\prime}}$

where $p:\Sigma/\pi\times Z_{h^{\prime}}\rightarrow\Sigma/\pi\times Z_{4h^{\prime}}$ is the projection. Then we have a commu-
tative diagram of normal maps

$M_{\pi xZ_{2h^{l}}}\underline{f}\Sigma/\pi\times Z_{2h^{\prime}}$

(2)
$M_{\pi xZ_{4h^{\prime}}}\Sigma/\pi I^{p}\underline{f^{\prime}}|$

$p$

$\times Z_{4h^{\prime}}$

where $p:\Sigma/\pi\times Z_{2h^{\prime}}\rightarrow\Sigma/\pi\times Z_{4h^{\prime}}$ is 2-fold covering map. The surgery ob-
struction $\theta(f^{\prime})$ is zero in $L_{4m+1}(\pi\times Z_{4h^{\prime}})$ by Theorem 12 of [9]. It follows
similarly to the case 2 that $\Sigma\#\Sigma_{0}$ admits a free $\pi\times Z_{4h^{\prime}}$ -action. This com-
pletes the proof of Proposition 6.1.

NOTE. In the case $n\geqq 3$, the proof of proposition 6.1 fails because of the
following reason. The obstruction $\theta(g)$ of a normal map $g$ constructed from
$((2^{n}+1)id, \Sigma/Z_{2}(2^{n}+1))$ as in the proof of Lemma 6.2 is zero for $n\geqq 3_{f}$ since
$k((\Sigma(\Sigma/Z_{2})(2^{n}+1))=0$ .
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