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§0. Introduction.

Concerning the analysis of wave propagation in random media, S. Ogawa
introduced a new type of partial differential equation of first order with
a random coefficient :

(0.1) %f_f—(t, x; @)+ {Bi(w)+b(t, 1)) —g-i—u, x; o)

=c(t, D)ult, x; w)+d(t, x),
(¢, )0, TIXR', T<oo,

where B,(0) is the white noise. He constructed a solution of Cauchy problem
of equation [(0.1) with given initial data

(0.2) u(0, x; w)=¢(x).
His main tools are a stochastic integral which he defined and the concept

. .. 0X . .
of the differentiation — - of a stochastic process X, with respect to the

0B,
Brownian motion B,.
Here, in this paper, we consider a natural extension of his equation:

03 Pt 5 0k B et DB@Tb, D)ot x5 0

:C(t’ x)u(t, x5, (U)-\‘d(t, X),
(¢, x)=[0, TIXG,

with initial data and boundary conditions at 0G, where G is a given

region in R?(d=1) and B'z(a)):{155{((1))}?=1 is the d-dimensional white noise.
More precisely, we construct a solution of the equation for



720 T. FuNakI

(i) the case of multidimensional bounded domain G with Dirichlet bound-
ary condition in §3, §4, and for

(ii) the case of half line G=(0, ©) with Neumann boundary condition
in §5.

Our main tool for the case (i) is a time reversed process Y,(w) of a
diffusion process X;(w) which is determined by a stochastic differential equation :

dXt:a(t, XL)°dBt’{_b<t, Xt)dt
(0.4)
Xi=x,
where a(t, x)={a(t, X)}isi,55a,  b(t, X)=1{b:i(t, x)}15i<a

and a(t, X,)°dB, is a symmetric differential (K. It6 [5]). S. Ogawa defined a

. . 1 . .
stochastic differential d*2B, of order 5 of Brownian motion. In our case,

this differential is equivalent to the symmetric differential. The equation
can be considered as an equation for the transport along a path of X,
and the time reversed process Y, plays the same role as a characteristic curve
by means of which we solve a non random partial differential equation of type,

05 T 0+ BAL, D, m=clt, Dult, D, ),

(t, x)e[0, TIXG.

Here, the time reversed process Y, is defined in an intrinsic way different
from that obtained by transforming the transition probabilities.
For the case (ii), we treat the simplest equation :

ou ou
ot Tox
and show that, among reflecting Brownian motions, that defined by A.V.
Skorohod is available for our problem. We also consider averaged boundary
value problem of equation [(0.6).

I wish to express my thanks to Professor T. Ueno for his continual
encouragement and valuable suggestions. I also thank Professor S. Ogawa
for introducing me to random transport problems.

(0.6) B,=0, (¢, x)e[0, T1x(0, =)

§1. The regularity of a solution of stochastic differential equation with
respect to parameters.

Here, we state some results of Y. N. Blagovescenskii and M. 1. Freidlin
in a convenient form (Theorem 1.1, 1.2) and extend them a little (Theoreml
1.1). Let {B(w)} ;2= {(Biw))L,} 10 be a d-dimensional Brownian motion defined
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on a complete probability space (2, &, P) and F..,; be the smallest og-field
generated by {Byw)—B.w); r<s=t} and the set of all P-null sets. When
r=0, we write simply &, in place of F, ..

For r<[0, T], we consider a stochastic differential equation :

(L1) { dx,(@)=a(t, x(w))d B w)+b(t, x,(w))dt, telr, T]

xw)=x, xeRe,

where a(t, x)={a;(t, x)}15s,5s¢ 1S @ matrix and b(t, x)={b;(¢, ¥)}1cisq IS a
vector defined on [0, T] X R¢. We denote by x(r, t, x ;w)or x(r, t, x),0=r<t=<T,
x€R? a solution x,(w) of equation [1.I).

THEOREM 1.1 [1]. Suppose that components of the matrix a(t, x) and of
the vector b(t, x) are bounded measurable functions and satisfy the Lipschitz
condition uniformly in x. Then, for each r[0, T], there exists a random
function x(r, t, x) which satisfies equation (1.1) and is continuous in (t, x)
elr, T1X R% with probability 1.

We consider the following function spaces for a non-negative integer &,

CY¥[0, TIX Re, S)={f(¢, x)eC**([0, TIXR?); fis S-valued and D°f is

bounded for each a=(ay, -+, ag) with |a| =k},

where D“:(aixlyl---(azd )ad and |a|:i§d}1ai

for a=(a,, --, ay) with non-negative integers a; (1=1=<d),
CY¥[0, TIX Re, S)={f(t, x)eC**([0, TIXR%); f is S-valued and has a
compact support in [0, T]X R%},
where S=R!KXR? or R<.

THEOREM 1.2 [1]. If a(t, x) and b(t, x) belong to classes C¥*([0, T]x R4,
R*@R?) and Cy**([0, TI1X R?, R%), respectively, then for almost all w and all
a=(ay, **+, ag), |a|=k, there exist derivatives D*x(r, t, x) which are continuous
wn (t, x) and satisfy

Déx(r, t, x):Dax+S:Da{a(s, x(r, s, x))}st—l—SiD“{b(s, x(r, s, ) ds.

For the proof of [Theorem 1.1, following estimate is available, that is, for
each positive integer =, there exists a positive constant C, which is inde-
pendent of » and

(1.2) EC|x(r, ti, x)—x(r, ty, ¥)|*™]
=Cillx—y|*™ 41t —t,1™), ty, t,€[r, T1, x, yER.
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Theorem 1.1 follows from this estimate and A.N. Kolmogorov’s theorem which
is stated below.

THEOREM (Kolmogorov). Let x,(w) be an R?%valued separable random
field defined for peR™. Then, in order that x,(w) be continuous in p with
probability 1, it suffices that for certain y>0, ¢>0, the inequality

E[| x (@)= x,0(@)|"]=Cl p—p/ | ¥
should hold.

we can extend as below.

THEOREM 1,1’. Under the same condition as in Theovem 1.1, there exists a
random function x(r, t, x) which satisfies equation (1.1) and is continuous in
(r, t, x), 0=r=t<T, xR, with probability 1.

Proor. It is well-known that under the condition of [Theorem 1.1 equation
has a unique solution in the following sense, if there exist two solutions
x(7, t, x) and x,(r, t, x), then

x.(r, t, x)=x,(», t, x) a.s.

for each 7, t, x with 0Zr=<t<T, x=R? Noting this fact, we can show the
equality,

1.3) x(ry, t, x)=x(ry, t, x(ry, 7, X)) a.s.

for each 7y, 7y, ¢, x with 0=r,Zr,<t<T, x=R% Since x(r, t, x) is independ-

ent of &,, it follows from the estimate that for &,-measurable random
variables a(w), flw),

(1.4) E[|x(r, t, alw)—x(r, t, Blw)|*"| F,]1=Crla(w)—Blw)|** a.s.

For 7y, 7,, t with 0, <r,<t<T, using [1.2), [1.3) and [1.4),

(1.5) EC| x(ry, t, x)—x(ry, ¢, x)|2"]
=E[|x(ry t, x(ry, 75, x))—x(rs, t, x)|*™]
SCRE[|x(ry, 75, x)—x|*"]
=Calri—re|™.
By the estimates and [1.5), we have
EC|x(ry, 1, 2)—x(7s, ts, MIPPISC(|x—=y "+ | r1—1, | "+ [t —1,]7),
ry, .00, T], t,elr, T1, t,=lr, T], x, yeR®.

Hence Kolmogorov’s theorem completes the proof of the theorem.
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§2. A time reversed process.

In this section, we assume that two functions a(¢, x) and b(¢, x) belong
to classes Cy3([0, TI1X R, RYQR?) and CYX[0, TIX R¢, R?Y), respectively. Let
X(r, t, x) 0=r=t<T, x= R?) be a solution of a stochastic differential equation :

dX,=a(t, X)-dB,+b(t, X)dt, te[r, T]
&0 { X,=x, xeRe.
REMARK 2.1. The equation is equivalent to [2.IY,
2.1y dX,=a(t, X,)dB,+b(t, X,)dt,

where b(t, x)=b(t, x)+—;—(a’a)(t, x) and (a’a) is a vector with components

da;; . . .
(a’a)= 3 axl ax;. Hence, the equation has a unique solution.

By the uniqueness and the continuity of X(r, ¢, x) from the argument in
§1, we have

(2.2) X(r, t, x)=X(s, t, X(r, s, x)) for all r, s, ¢, x
with 0Zr<s<t<T, x< R? with probability 1.
Noting that X(r, t, x) is differentiable in x by we set

Jr, t, x)= det( Y tm) L
the Jacobian of X(r, ¢, x), where X; is the j-th component of X.
LEMMA 2.1. J(r, t, x) is positive for each r, t, x with 0<r<t<T, x=R".
0X;

Proor. By [Theorem 1.2, ’(r, t, x) (1=1, j=<d) are continuous in x and
satisfy
»%(r t, x)=0d;;+ f} Sﬁa’k(s X(r, s x)) s, x)od B
ox; 7’ R ’ ’ 8 ’
k(¢ 0b
+ZS ’(s, X(r, s, x)) (r s, x)ds,
=1 Ta

where 0;; is Kronecker’s d.
Then, by the definition of J, we have

(23) Jor, t, 0=1+5 1, 5, 0@iv s, X(r, s, 2)} B

+{' 10, s, xxaiv vxs, X0, s, 2)ds,
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where a® is the i-th column vector of matrix a. Since the solution is given by

I, 1, m=exp {2 [ iv a)s, X(r, s, ¥)<d B}

1=

+Si(div b)(s, X(r, s, x))ds},

J(r, t, x) is positive.

LEMMA 2.2.Y For each v and t, 0vr<t<T, X(r, t, x) is a homeomorphism
of R? onto R4.

Proor. Since a(t, x) and b(¢, x) have compact supports in [0, T]XR¢,
there exists positive N=MNw) such that

X(r, t, x)=x for all r, ¢, x with 0=r=tZT, |x|>N.

Therefore, for an unbounded sequence {x,}5-; of points in R¢, {X(f, t, Xn)}toet

is also an unbounded sequence. We have the conclusion by Cemma 2.1 and
Carathéodory [2].
DEFINITION 2.1. We define

Y(r, t, )=X"r, t, -)(») for each 7, ¢, y with 0=r=t<T, yeR?,

where X! is the inverse function of X(r, ¢, x) as a function of x. We call
Y the time reversed process of X.

PROPOSITION 2.1. The random function Y(r, t, y) satisfies,

(i) Y(s, t, )=X0r, s, Y(r, t, ¥))  for r,s, t,y with
0=r=s=<t<T, yeR?.

(ii) Y, t, »)=Y(@, s, Y(s, t, y)  for r,s, t, v with
0=r=<s<t<T, yeR".

(iii) Y(», t, y) 1is continuous in (v, t, y).

Proor. (i) Since y=X(r, t, Y(r, t, y))=Y(, t, X(r, t, »)) and X(r, ¢, x)
=X(s, t, X(r, s, x)), we have

Y(s, t, »)=Y(s, t, X(r, t, Y(r, t, 3)))
=Y(s, t, X(s, t, X(r, s, Y(r, t, ¥))))
=X(r, s, Y(r, t, ¥)).

(ii) The second assertion follows from (i) and the definition of Y.
(iii) By (i), Y(r, ¢, »)=X(0, r, Y(0, ¢, »)), and using (ii)

(1) The author thanks a referee for pointing out an error in the proof of this lemma.
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Y, ¢, »=Y0, ¢, Y@ T, X, T, y))
:Y(O’ T’ ‘X<t7 T’ y)))

and hence, Y(r, t, y)=X(, r, Y0, T, X(¢t, T, v))).
Since X(r, t, x) is continuous in (r, f, x) and Y(0, T, y) is continuous in y,
Y(r, t, y) is also continuous in (r, ¢, ¥).

Let 0 be a point which does not belong to R% For a bounded region G
of R?% we consider a stopped process Y4(r, t, ¥) of Y(r, ¢, y) in G as follows.

Y, t, v) for re[max (0, a(t, y)), t]
Yo(r, t, )= 0 for re[0, a(t, y)) if o(t, y)>0

0 for r=0—,
where
max {s; Y(s, t, y)&€G, s=[0, t7}
o(t, y)=a(t, y; co)Z{ , , ,
0— if the set in the bracket is empty.

Hereafter, we shall use the following notations (i)~(iii).
(i) For each » and ¢, 0=r=t=<T, we set

Gx(r, )=Gx(r, t; o)={xeG; X(r, s, x)eG for all s<[r, t1},
Gy(r, )=Gy(r, t; o)={y=G; Y(s, t, y)ECG for all se[r, t1}.
(ii) For each t<[0, T] and hs[0, T—t], we set
Gt)=G(t; @)={yeG; ot, »20}=G—Gy(0, 1),
G(t, H=G(t, h; @)= {Yo(t, t+h, 3); yEGUHMING.
(iii) For positive ¢ and DCG, we set
(Dy={xeG; |x—y|<e for some yeD}.
LEMMA 2.3. For each r and t, 0Zvr=<t<T, we have

Gx(r, )y={Y(r, t, y); yeGylr, t)}.

PrROOF. We obtain the conclusion by [Proposition 2.1] immediately.
LEMMA 24. For each t<[0, T] and h<[0, T—t], G(t, h) is included in
G(t). For any >0, there exists ho=hy(w)>0 such that

G(t)—G(t, WCOGY  for all he[0, hy].
PrOOF. Since

G(t, h=1{yeG: Y(s, t+h, )G for some s<[0, t) and
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Y(s, t+h, y)eG for all se[¢t, t+h]}
U{yeG;Y(s, t+h, y)G for some s[t, t-+h]}

=G,(t+h)\ UG (t+h),
we have

G(t, =[{Ys(t, t+h, 3); yEC(t+M}YI{Ye(t, t+h, ¥); yEGt+h}ING
={V4(t, t+h, ¥); yEG(t-+h)
={xeG(t); X(t, s, x)=GC for some s[t, t+h]},

therefore we see that 5(t, h) is included in é(t). Since X(t, s, x) is continuous
in (¢, s, x) and G is bounded, we have the second statement easily.

§3. Dirichlet problem.

Let G be a bounded region in R? with boundary oG of class C°. We
consider an initial-boundary value problem of a random transport equation :

@D Dy S @, DB D)L =t Dutdl, ),
t i, 5=1 axi
(1, =00, TIXG,
3.2) 1}15‘ u(t, x; w)=¢(x) for x=G,
(3.3) x(leié&é“(t’ x; w)=&  for (¢, §e(0, TI1x0G,

for given functions a, b, ¢, d, ¢ and ¢ which satisfy,

(1) a(t, x)eC*¥[0, T1XG, R*Q®R?), and

aus(t, au(t, i€ >0  for each (¢, §e(0, T1XIG,

d
N
where vy=(vy, ---, v4) is the inward normal,
(ii) (¢, x)eC*¥[0, TIXG, RY),
(iii) c(t, x) and d(t, x)eC(0, TI1xG, RY),
(iv) ¢(0)eCG), $§eCEG).

We denote by Q the set of all {F;}-quasi martingales, that is, Q;,=Q is a
measurable process written as a sum of a square integrable {F,}-martingale
and an {¥,}-adapted process which has a sample path of bounded variation.
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DErINITION 3.1. If a real valued random function u=u(t, x; w), (¢, x, w)
€[0, TIXG XL, satisfies the following (u.1)~(u.5), then u is called a solution
of equation (3.1) with conditions (3.2) and (3.3).

wl) u(t, «; wye LYG) for each (¢, w),
(u.2) SGu(z‘, x; o)wx)dxsQ for all weC{(G),

(u.3) for all v(t)eCy((0, T)) and w(x)eC;(G), the function u satisfies the
following equality,

ngxS:{w(x)—g%-%v(t)gl-gaa(bi(t, x)w(x))}u(t, x: w)dt

Xs

+.§S:{v(t)SGu(t, x; w)xi\é ..éii(a“(t, x)w(x))dx}odB{

Jj=1

+§Gw(x)dng{c(t, xu(t, x; w)+d(E, )yv(t)de

=0 a.s,
(ud) u(t, x; w)—¢(x) a.s. as t]0, for each xe€G,
wb) u(t, x; w)—¢&) a.s. as x(eG)-¢,
for each (¢, £)e(0, T]x0G .

We extend the domain of functions a(¢, x) and b(¢, x) to outside of region
G so that new functions belong to Cy*[0, T]X R?, R!@R?) and C}*[0, T]
X R¢, R%), respectively. For these new functions, let X(r, ¢, x) be the solution
of the stochastic differential equation [2.1), and consider the time reversed
process Y(r, t, y) of X and the stopped process (Y4(r, t, ¥), a(t, ¥))of Y in G
defined in §2. Clearly, Y4(r, ¢, y) is determined independently of the way of
extension of a(f, x) and 6(¢, x). We define at the point d,

(i) c(t, =d(t, 0)=¢(0)=¢(@)=0 for t<[0, T,
(1) Ye(r, t, 0)=0 and o(t, 0)=t for te<[0, T], relo, ¢].

THEOREM 3.1. The random transport equation (3.1) with initial condition
(8.2) and boundary condition (3.3) has a next solution.

(3.4) u(t, x; )
= {§(Vol0, 1, N+V olo(t, ), £, 2} -exol ['els, Vals, 1, x)ds)

+S:d(s, Ye(s, ¢, x))-exp{g:c(r, Yolr, t, x))dr}ds.
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§4. The proof of Theorem 3.1.

We prepare three lemmas for the proof of [Theorem 3.1. But, since the
proofs of first two lemmas are quite elementary, we shall omit the details.
We consider following conditions (i) and (ii) for a family of Borel sets
{G} telo, 71— {G(w)} tero,ras

(i) the indicator function Xg,(x) is &,-measurable for each (¢, x),

(ii) d(, t+h; w)= sup inf |x—y|—0 as A | 0 uniformly in t [0, T)

TEGdGirp YEIG,
a.s., where G,4G,,, is the symmetric difference of two sets.
We also consider following conditions (iii)~(v) for an R%valued function
f(t, x; w)={fi(t, x; w)}%, and condition (vi) for a real valued function g(z,
x; w), (t, x; w0, TIXGXQ;
(iii) fit, x; w)=0 for each x,
(iv) the total variation on [0, 7] of bounded variation part of f; belongs
to LY{(GX ) for each 7, 1=i=d,
[M’ B*] u

<00,

V) sup {Ifidzgeat]

tero, T LZ(GXQ)}

d[zM’ B*]
dt
Nikodym derivative of quadratic variation [M}, Bi] (K. It6 [5).
S. Ogawa called this process B-derivative of f;,
(vi) g€ L¥[0, TIXGX ) and is an {F,}-adapted process for each x.
LEMMA 4.1. We assume that a family {G:}icto,r1 0f subsets of a bounded
region G satisfies conditions (i) and (ii). We also assume that, for functions
f(t, x; w) and g(t, x; w) which satisfy conditions (iii)~(v) and (vi), respectively,
there exists e=e(w)>0 such that

where M} is the martingale part of f; and — is the Radon-

4.1) fi(t, x; w)y=g(t, x; @)=0 for t<[0, T] and x<(0G,)*.
If we set

d
h(t, x; @)= QIS:fi(s, x5 w)°dB§+S:g(s, x; w)ds,
then Sa h(t, x ; w)dx belongs to @ and the equality
t

d{SGth(_t, x; “’)d"}:é{gatﬁ'(t’ x; w)dx}odBH—{SGtg(t, x; w)dx}dt

holds.
OUTLINE OF THE PROOF. We may note that the condition (4.1) implies

that when we consider the differential form d{ga h(t, x; w)dx}, we can treat
t
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G. like immovable and the conditions (iii)~(vi) guarantee the exchange of
order of integral with respect to dB} and dx.

LEMMA 4.2. The random function u(t, x ; w) defined in (3.4) satisfies the
initial condition (3.2).

Proor. Since Y(r, ¢, y) is continuous in (7, ¢, y), we can easily prove that
the function u(#, x ; w) satisfies the condition (u.4) of Definition 3.1

LEMMA 4.3. The random function u(t, x; w) defined in (3.4) satisfies the
Dirichlet boundary condition (3.3).

PrOOF. We prove that each £€0G is a regular point of Y(r, ¢, x), that is,

é(t, &)=t for each t<[0, T,
where (¢, &)=d(t, &; w=sup {r; Y(r, t, &G, re {0—} V[0, t]} .

Since £€0G is a regular point of the process X(r, -, &) (we can easily extend
the result in A. Friedman in tha case of a stochastic differential equation
with time-dependent coefficients) and X(r, t, x) is continuous in (7, t, x), we
have

(4.2) ox(r, &)=r for all (r, &[0, T]X0G a.s.,

where ox(r, &=inf {t; X(r, t, O)& G, telr, T} .

If, for some (¢, &), Y(r, t, £)€0G for all r<[0, ¢t], then for r<¢,
0 (r, Y(r) t} E))gt >

and by ¥
O.X<T: Y(?’, t} E)):T,

so, we have

(4.3) P(Y(r, t, £)=0G for all r<[0, t])=0.

Since G is a bounded region with smooth boundary 0G, we can take two
sequences {e}%-; and {D,}5-; such that

(i) e>ey> - [0

(ii) D, are regions with smooth boundaries which satisfy,

D,cG, G—D,C(@G)r, and

ai(t, D)a;@, i)y (n)>0  for each nsdD,,

d
i.j. k=1

where v(9)=((n), --+, va(x)) is the inward normal.
By the same reason to get we have

(4.4) o x,a(r, p)=r for all n=1, 2, --- and (r, p)={0G\JdD,}, a.s,

where ox,a(r, 9)=1inf {t; X(r, t, & G—D,, t<lr, T]}.
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There exists some n=n(w), by (4.3), such that

dn(t, >0 for each (¢, &£ [0, T]X0G,

where da(t, =sup {r; Y(r, t, )& G—D,, r= {0—}I[0, t]} .
Since 0 x,n(G:(t, &), Y(aa(2, ), t, E)=t,

and ox,n(34(, §), Y(aa(2, &), 1, ©)=05.(2, ) =t,

we get Ga(t, &)=t .

Therefore (¢, £)=t, namely, £€0G is a regular point of Y. By the continuity

of the process Y (7, t, y) in (7, t, ¥), we see that the random function u(¢, x; )
defined in (3.4) satisfies the boundary condition (u.5) of [Definition 3.1l
PrROOF OF THEOREM 3.1. We set

Ity =9 o(0, ¢, x)exp [ els, Yols, 1, 2)ds},
1t =[G, Yols, t, Dyexp {| e, Yolr, 1, m)dr}ds,
I(t, D=g(Y o(a(t, ), t, Dexp{| (s, Vols, t, 2)ds} .

STeEP 1. First we consider SGll(t, x)w(x)dx for w(x)eCy(G). Substituting

x by X(0, t, ¥) in the integrand, and by the fact that Y is the time reversed
process of X, we have

S I (t, x)w(x)dx

G

I

g I(t, x)w(x)dx
Gy(O,t)

=[O exp {[ cls, X, 5, ) dsfw(X, t, IO, £, 9)dy,

where Gx(0, t) and Gy(0, t) are defined in §2. By and Itd’s formula for
symmetric differentials,

dtexp {[ (s, X, 5, y)dsfu(X©, 1, IO, 1, )]
¢ d a )
= exp{{/c(s, X, 5, s}, ¢, ), 3, 5 (@uw)t, XO, 1, »)dB]

+{;~£;(biw)+(cw)}(t, X0, ¢, y))dt] )
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We can apply in this case, since 0G (0, t) is included in {y=G;
X(, t, y)=0G} and X(0, ¢, y) is continuous in (¢, y) and w(x) has a compact
support in G. Then, we obtain

d[SGII(t, x)w(x)dx]

510 t)¢<y> exp {{'e(s, X(O, 5, s}, ¢, 3)

Jj=1

><E (auth X, t, y))d;] -d B
+[SGX(O’D¢(y) exp{g:c(s, X, s, y))ds} JO, t, ¥)

X{:l (b, w)+cw}(t X, ¢, y))dy]dt

substituting y by Y(0, ¢, x), as an &;-measurable substitution,

=3 [SGqS(YG(O, t, exp{|'cts, Yals, 1, )ds}

Jj=1

XE = (a“w)(t x)dx|=dBi+|| $Vo0, ¢, )

X exp {S c(s, Yo(s, t, x))ds} {d (b w)+cw}(t x)dx]

Hence,

d[v(t)ggll(t, x)w(x)dx]:jii)l[v(t)g (¢, X)Z (az,w)(t x)dx] dBj

+[v(t)8é[1(t, x){él aa }(t, x)dx SGII(t, x)w(x)dx]dt
for v(t)=C7((0, T)).
Thus, we have
(4.5) SdeSOT{w(x) (t)+v (z‘)E (b, D)1, xdt

R ARCOINAG x)é}l—ii—(aij(t, Ow(x))dx}ed By

T
+S6w(x)dx§0 c(t, x)I(¢t, x)dt=0.
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STEP 2. Concerning the second term I,(f, x), a similar way as in Step 1
implies

(4.6) [ ax{"lw-2- o+ S ﬁi—iwi(t, ()L, x)dt

0

Zd)g «{v(z‘)g 1,(t, x)i}lai—i(a”{t, x)w(x))dx}odB

Jj=1

+8Gw(x)dx52<{c(t, 0)I,(t, x)+d(t, x)}dt:o

for each »(1)eCy((0, T)) and each w(x)eCi(G).
STEP 3. For simplicity, we set
&(t, x)=&(t, x; w)=Ys(a(t, x), t, x)€0G\J {0} .
For each sufficiently small >0 which depends on @ and each x<supp (w),
E(t+h, x)=8@, Y(t, t+h, x)),

holds, since Y(r, t, x) is continuous in (r, #, x) and function w(x) has a compact
support in G and the relation in (ii) of [Proposition 2.1l holds. Therefore, we
have

S L(t+h, w(x)dx= S ¢(§(t+h x)) exp {S c(s, Ye(s, t+h, x))ds}w(x)dx

SG - Pp&(t, Y(¢, t+h, x))exp {S:Mc(s, Y(s, t+h, x))ds}w(x)dx ,

substituting x by X(¢, t+h, v),

=[., et e {{'ets, Yets, 1, s+ els, Xtt, s, y)as)

Xw(X(t, t+h, )/, t+h, y)dy,

where 5(t+h) and G(t, h) are defined in §2. Using Lemma 2.4, we can take
ho®)>0 such that

w(X(t, t+h, y)=0 for each (%, y)€[0, hlw)1X {G(t)—G(t, h)} .
Therefore, for each h<[0, hlw)],

[ Ut =12, 2} w(x)dx

=96t yexp { cls, Vls, 1, yyas}
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t+h

[exo{l, s Xat, 5, wdshulxc, t+h, NI t4h, —uw()]dy

:Sa(t)gb(é(z.‘, y)) exp {S:c(s, Ye(s, t, y))ds}dySiM exp {Src(s, X(t, s, y))ds}

t

xJt, 7, 9|3, (e, X(t, 7, 3)-dBE

+{§1—a%<biw)+(cw)}(f, X(t, 7, y)de|
=50 Vs ot syexo{[ s, Yels, 1, 3)ds

+lets, X, 5 aspIE, o NE oo (agu)te, Xt, 7, 3)]aBY

+{. e, ot mexp {{ s, Yol £, )

i=

+{lels, X2, s, s}, = D S+, X, 7, )dy,

substituting y by Y(¢, 7, x),

=507 [ 906 vexn ([ Yols, 7 0ds} S 52 (@ouite, wdx]-dBy
"l g yexn ([ Yols, 7 asE 5o Ga e, s
=50 5 0 iaim(a”wxz, x)dx|-d Bt
+" el e, {2 %—i«(biwwcw}@, x)dx .

Hence,

d[ggls(t, x)w<x)dx]

d
=z

j=1

[Sols(t’ x>i2: %(aijw)(t, x)dx] °dBj

#1000 D{F 5 G+ ewke, dx]ar.
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Thus, in the same way as in Step 1, we have

U7 Scdxgj{w(x) Z?~(t)+v(t)izz}1—a%(bi(t, x)w(x)>}13<t, x)d1

+3 foof 1, x)gai(a”(t, Ow(x))dx}edBi

Xi

T
+5Gw(x)dxgo ot DIt 2)dt=0
for each v(1)eCy((0, T)) and each w(x)eC3(G).

STEP 4. The equalities [4.5), [4.6) and [4.7) indicate that the function
u(t, x ; w) satisfies the condition (u.3) of Definition 3.1. We complete the proof
by and 4.3.

§5. One-dimensional Neumann problem.
We consider the random transport equation with initial condition and
Neumann boundary condition in the half line,

ou ou
st o Be=0,  (t, e[, T1x(0, o),

(5.2) lgrl} u(t, x; o)=¢(x), x<(0, c0),

6.1

(5.3) g—u(t; w)=lim —l—{u(t, x; w)—u(t, 0; w)}=0, t(0, T],
v zi0 X

for ¢(x)eC([0, co))NCH(0, o).

We intereret equation (5.1) with conditions (5.2) and (5.3) in the same way
as in §3. We set

Y(r, t, x)=x+B,—B,+{(r, t, x), x€[0, o), 0=r=t<T,
where (r, t, x)=[—inf {x+Bs—B;; s[r, t]}1V0,

and let B, be one-dimensional Brownian motion defined on (2, &, P).
THEOREM 5.1. The random transport equation (5.1) with initial-boundary
conditions (5.2), (5.3) has a next solution,

(5.4) u(t, x; @)=¢(Y (0, t, x)).
ProOOF. It is clear that u(f, x; ) in satisfies the initial condition
(5.2). Setting p(t)=p(t; w)=—inf {B,; r<[0, t]}, we have

%

-1 if t satisfies B,+p()>0
(0, 15 w)=
v 0

if ¢ satisfies B,+p(#)=0.
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ou_

Hence we have -
oy

(t)=0 a.s. for each ¢>0, because P(B,+p(¢)=0)=0 and

T =g (B0, L x {1t 20, )} (=28,

Now, we%prove that u(¢, x ; w) satisfies the following relation :
0

T o T
(5.5) Sodtgow(x)v’(t)u(z‘, x; w)dx—FSOU(t)S w/(x)u(t, x; wydx-dB;

—0 (v’: dv , dw)

dt "V T dx
for each v(t)eCy((0, T)) and each w(x)=C((0, x)).

The left hand side of is

g:v’(t)dt{gzﬁpmgﬁ(x— Boyw(x)dx +Sf£+pm¢(p(t))w(x)dx}
Bytp

+S:v(t){r ¢(x—Bz)w’(x)dx+S (“gb(p(t))w’(x)dx}ede .

Bi+po(t)
Here,

[ f=Bowds={" sowly+B)dy.

Bi+p(t)

Noting that the process p(t) is increasing, we have

d[v(t)g:mgﬁ(y)w(y%— B,)dy]

-]

=—¢(p(t))w(3z+p(t))v(t)dp(t)+v(t)gp(t)¢(y)w’(y+Bz)dyode

+@)” g+ Bydydt .

Since dp(t)+0 implies B+ p(t)=0, the first term of the right hand side of
the above equality is 0. Hence, we have

T o
(5.6) Sov(t)g $x—Bow'(x)dx=dB,

Bi+o(t

T o0
+g0v’(t)dtSBMqu(x—-Bc)w(x)dx:0.

In the same way,

d[v(t)(gfﬁ'omw(x)dx)qi(p(t))]
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By+p(t

=p(o®)(], " w0 dx o (D dt -+ B+ p()G(o(t) (- dB.+dp(t)

0

+o0)([) " w0 dx)g (o) d ot

=p(o)([. " wCdx W (Dt + (DBt p()Fp(t)- B,
Therefore, we have
5.7) [Fomar{™ " gloywinds
+HTo " oy (ndxedB.=o.

Combining the equalities and we can show that the function u(¢, x ; ®)

in satisfies the relation
Now, we introduce a problem of the random transport equation (5.1) with an

initial condition (5.2) and an averaged Neumann boundary condition (5.3),
(53) S8 (=0, 1e0, T,

where a(t, x)=E[u(t, x; w)].

DEFINITION 5.1. A random function u(f, x; w) is called a solution of (5.1)
with (56.2), (5.3)" if u(t, x ; w) satisfies the conditions (u.1) and (u.2) of Definition
3.1 and,

(@) there exists a real valued random function U(v; w), (v, @) @([0, T]) X 2,
which satisfies,

1) E[UWw; w]=0 | for all v(t)e®([0, T,
oo T T I
2) Sow(x)dxgov’(t)u(t, x; w)dt—%—gov(t)gow’(x)u(t, x; w)dxedB,
‘—}—v(O)S:w(x)ng(x)dx:w(O)U(v; )
for all (v, w)e @0, T])XP([0, 0)),
where O([0, TD)={v(t)eC([0, T); supp (v)C[0, T},
O([0, co))={w(x)eCF([0, «)); w'(x)eC5((0, o))} .

We can prove that a function u defined by
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u(t, x; w)=¢(Z(0, t, x)),
where Z(r, t, x)=|x+B,—B,|,

is not a solution of the initial-boundary value problem of the random transport

equation (5.1), (5.2) and (5.3), but a solution of the initial-averaged boundary

value problem of the random transport equation (5.1), (5.2) and (5.3)".
REMARK 5.1. On the uniqueness of solution of random transport equation

with boundary condition, we shall study in forthcoming paper.

Appendix.

A time reversed diffusion process (general case).

We assume that a(¢, x) and b(t, x) belong to C°3*[0, T]XR¢ R*QR%)
and C**[0, T]xR% R?), respectively. Let X(r, t, x) be a solution of a
stochastic differential equation :

(A-l) dXt:a<ty Xt)odBt+b(t’ Xt)dt ’ tE[T, TX(T! x)):

with initial condition
X,=x,

where zx(r, x) (r<cx(r, x)ZT) is an explosion time of X(7, t, x), if zx(r, x)<T.
Let f(x) be a function defined on R¢ which satisfies,

(i) flx)=1 for x; |x|=1,
(ii) fx)=0  for «x; |x[=2,
(iii) flx)eC¥R?).

We define, for n=1, 2, ---,

a‘™(t, x)=f(‘z—)a(t, x),

b™(t, x)= f(%)b(t, x).

Let {X,(r, t, x)}7-; be the solutions of (A.1) with a(¢, x) and b(t, x) replaced
by a‘®(¢, x) and b™(t, x), respectively, and let
inf {t; | X™(@, t, x)|=n, telr, T
T(n)(r, x)=z"">(r, x; w>:{ )l [ :l}
T if the set in the bracket is empty.

Since {z™(r, x)}5-, are lower semi-continuous in (7, x) and
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P{X™(r, t, x)=X(r, t, x) for t€[r, t™(r, x))} =1

for each (r, x)e[0, T]XR?,
we see that

(A.2) X®(r, t, x)=X(r, t, x)

for (r, x)[0, T1XRe, te[r, t™(r, x)) a.s.
Hence,
(A.3) lim ™ (r, x)=tx(r, x) for (r, x)e[0, TIXR%.

By {X™(r, t, )}, are homeomorphisms of R?¢ onto R¢ for each
r, t, 0Zr<t<£T.
Here, we define for each r, t, 0Zr<t<T,

RX(TY t):Rx(T, t: (’)): {x; t<TX(7’: JC)} »
Ry(r, )=Ry(r, t; 0)={X(r, t, x); xERx(r, t)}.

Since {X™(r, t, -)}»-, are homeomorphisms of R? into R¢, by equalities (A.2)
and (A.3), X(r, t,-) is a bijection of Ry(r, t) onto Ry(r, t) for each r, ¢,
0=sr=t=T.

DEFINITION A.l. For each r, t, v, 0Zr<t<T, ye R4J {3}, we set

X-l(r: t) ')(y) if yERy(T, t)
Y(r, t, y)={

if y&Ry(r, t),
where X! is the inverse mapping of X(r, f, x) as a function of x.
LEMMA Al. If Y(r, t, y)=0, then Y(s, t, y)=0 for each s<[0, r].
ProoF. Since, if y=0, the statement is obvious, we assume yeR<¢ If

the conclusion is not true, there exists s€[0, ] and x= R? such that Y (s, ¢, y)
=yx, namely, y=X(s, ¢, x). By the equality,

X(s, t, x)=X(r, t, X(s, 1, X)),
Y(r, t, y)=X(s, r, x)ER?.

we have

This contradicts to the assumption.
DEFINITION A.2. For each (¢, ¥)[0, T1XR?, let
sup {r; Y(r, ¢, y)=0, r[0, t1}
w(t, y)=w(t, ¥ W)= . _ _
0— if the set in the bracket is empty.
ProrosiTiON A.l. Y(r, t, y) satisfies following (i) and (ii). (@) Y(r, t, y)
=Y, s, Y(s, t, ») for v, s, t, 3, 0=r=s<t=<T, yeR*J{o}, (ii) Y(r, t, y) is
continuous in r<(ry(t, ), t] for each (¢, ¥)[0, T1X R?, where (0—, t]1=[0, ¢].
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The proof is similar to that of Proposition 2.1l
LEMMA A.2.® For each t<[0, T], \OJ‘ Ry(r, t)=R".
T7E(0, 1)

ProOF. We write simply =,(-)=X(r, ¢, -) for r[0, t]. If the conclusion
is not true, there exists a point x,& R% which does not belong to Ut Ry(r, t).
700, 8)

Consider a unit sphere V(x,) with center x, in R¢ We denote by i the
identity mapping of V(x,) into R? and by g a retraction of R%— {x,} onto
V(x,) defined by

x~x27

[x—x,| °

g x—>

Since 7.(x) is continuous in (r, x), nt,yuo,:gon,oi (homotopic) for r<[0, 1).
If we denote by [z] a generator of H,;_,(V(x,))=Z", then, by mlvuo):identity,
we have

(gemron)s([z])=[2].

On the other hand, since
i* (71'7)*

g.
(gemrot)s: Haoy(V(xy)) —> Ha_(R*) —> Hy_y(R*—{0}) it Hy (V(xo)),
and H;_,{R?% ={0}, we have

- . (o, )u([2D)=0.
This is a contradiction.
LEMMA A.3. For each r, t, 0Zr=t<T, E\OJ )RY(S: )=Ry(r, t).
8<[0. 7

ProoF. It is obvious that SE[KO,JT) Ry(s, t)C Ry(r, t). Conversely, for ye
Ry(r, t), there exists x= R? such that
(A4 X(r, t, x)=y.
Since R¢= seHr>RY(S’ r) by Lemma A.2, there exists s<[0, ) such that
xE Ry(s, 7), nam.ely, there exists z= R? such that
(A.5) X(s, r, 2)=x.
By (A.4) and (A.5), we have

y=X(r, t, X(s, r, 2))=X(s, t, )<= Ry(s, t)CSEHT)RY(s, t).

PrOPOSITION A.2. If 7y(t, ¥)=0, then zy(t, y) is the explosion time of
Y(r, t, y), that is, : '
lim |Y(r, t, y)|=00.
rity(t, y)
PrROOF. If the assertion is not true, there exists a sequence {r,}57-; and
x,€ R? such that

(2) The author thanks A. Gyoja for his advice on the proof of this lemma.
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o lzy(t, ¥) and Y(r,, t, y)—x, as n—co.

If we set x,=Y(r,, t, y), then y=X(r,, t, x,).
Since X{(r, t, x) is continuous in (7, ¢, x),

X(rq, t, x2)—>X(zy(t, ¥), t, x) as n—oo,

Therefore y=X(zy(t, ), t, x,) and hence y=R(zy(t, y), t). By Lemma A.3,
there exists a positive ¢ such that

yER(zy(t, y)—e, t).

This contradicts to the definition of zy(¢, ¥).
REMARK A.l. In the case of unbounded region G in §4, we can obtain a

similar result, noting Proposition A.2 and that the test function weC3(G)
has a compact support.

THEOREM A.l. For each (t, y)e[0, TIX(R®J{a}), Y(r, t, ) is a time
reversed Markov process with respect to r<[0, t], that is,

(A-G) P[Y(T, tr J’)EA]Y(H, t: y):yly R Y(Tn: Z, J’):yn]
=P[Y(r, r, y)EA] as.,

for 0=Zr=r< - St ¥, Y1, - Yo €R¥J {0} and a Borel subset A of R*\J {0}.
Proor. By Proposition All, Y(r, ¢, y)=Y(r, r;, Y(ry, t, ¥)). Since random
function Y(», r;, x) is F, . -measurable and {Y(r;, £, ¥)}{-, are &, -measur-
able, Y(r, r,, x) is independent of {Y(r;, ¢, ¥)}%,. Therefore we have (A.6).
We investigate the generator of time reversed process Y(r, f, ¥) in a
temporally homogeneous case, that is,

(A7) a(t, x)=a(x) and b(t, x)=b(x).
We consider the following function space,
Co R (3= {fx)eC(R™3}); lim f(x)=0 and f(0)=0}
with norm || fl.=sup | f(x)].
REMARK A.2. Under the condition (A.7), if we set
T.f(x)=E[f(X(O0, t, x))]  for feC(R*J{d}),

then the system of linear operators {T,}:s 18 a semigroup on C.(R?%J{d}),
that is,

T.Ts=T:+s,  To=the identity, [T:[-=1, ltigl IT: f—flle=0
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for all feC.(R%J{0}), and T,f=0 for all f=0.
The generator ¢y of {T,} is defined by

Gxf=slim LT\ j~f) for fea(an),
where
D@x)={fEC(R? (3}); there exists s-lim —;—(Tt .
and

s-lim f,=f means |f,—fllo—0 as n—co.

As is well-known,

@ ND=1, 51 an®) g (a5 @)+ S0 2

d
jr k=1

for feD(@x)NCHR?).
We set

(T f)X)=ELfY(T—r, T, x))] for feCu(R*J{3}), re[0, T].

PROPOSITION A.3. {TT}TGEO,TJ 1S a semigroup in the sense in Remark A.2.
ProoF. First we note that, since Y(r, ¢, x) is continuous in x, by Lebesgue’s
dominated convergence theorem, E[ f(Y(r, t, x))] is continuous in x, especially
T, feC(RY).
For w(x)eCy(RY),

(A7) SRdE[ Y (t—r, ¢, X)) ]w(x)dx

:E:Sm AY(t—r, t, x))w(x)dx]

=F

[, SN X =7, £, 0I(t=r, 1, »)dy

=E|{ SO T =r, T, 9)JT =7, T, )dy |

=| T undz,

where J(r, t, x) is the Jacobian of X(r, ¢, x) and we used the fact that
X(r, t, x) is temporally homogeneous. Since E[AY(t—r, ¢, x))] and T,/(x)
are continuous in x, we have

ELAY(t—r, t, ON=T,/x) rel0, t].

By virtue of this equality and Proposition A.l, (i), we have
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~AoA

T, 70,=Tssr, for r,7r,=0 with r+nr=T.

It is easy to show that T,feC.(R¥UJ{d}) for fEC(R*J{3}), T,=the identity,
I T le<1, and YN‘ngO for f=0. The strong continuity of {7,},s, follows
from the continuity of Y(r, ¢, ) in (7, ¢, ).

We consider the generator &y of {YN‘T}TEEO,N with domain 9(Gy) in the
same way as in Remark A.2.

THEOREM A.2. For fed(gy),

@r 0=, 35 an0)go—(au(n) 5 =)= £ b)) 5=(x)

in distribution’s sense.
Proor. For fe 9(gy) and weC7(RY),

[ o fwndy
=tim | L ECAY(T—h, T, 3)1F0) w(3)dy
=tim B[ [ ST =, T, utiay]-{ fouras)

—lim %{E[Skd FOwX(T—h, T, 2)J(T—h, T, x)dx]

—SRdf(x)w(x)dx} ]

We can easily check that J(r, t, x) also satisfies equality [2.3), that is,

aaij . d abz
0x; (X‘)odBH—i:l 0x;

aj: :]t(i’él

)dt).

Hence, by Itd’s formula,

dwX)I)=]: 5 22 (X ai(X) dBi-b(X D)

aaij ] d abz
e, (X»odBH;l@Z(Xt)dt}

x| 3

d 0 p ¢ 9
—]ti Z1a_xi(aijw)(Xl)odB£+jtiZ=179x—i(biw>(Xt)dt

=135, e X0aBi 51, 5 S wf(Xodt

t,j=1
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I o (ba)X ot

Since J(T—h, T—h, x)=1, we have
ETw(X(T—h, T, x))J(T—h, T, x)]

—w(x)—|—E[S h{%i,fé=l 5?7 (a“’a% (acw))
+ 5L Ga)f(XT—h, s, T—h, 5, Dds] .
Therefore,
| fomudy

RS LT (L S

+3 —a—i;(biw)}(X(T—h, s, NT—h, 5, )dx

i=1

({7, B (@ng G+ B 5 a0 dx

244 k=1

= (=3 0 4 =P b 2L
_Q,(Rd)<——- > aik*a;a(ajk o1, (x)) 12=1b’<x) ar, (x), w>

oy Ry

This implies the conclusion.

REMARK A.3. H. Omori showed the fact corresponding to our Lemma
2.2 on a compact manifold. P. Malliavin [6] also studied the time reversed
processes.
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