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0. Introduction.

In [5, p. 115] Wu-Yi Hsiang conjectured the following: Of all possible
Riemannian metrics on a homogeneous manifold $M=K/H(K$ compact, semi-
simple), the natural metric, corresponding to the Cartan-Killing form of the
Lie algebra of $K$, should admit the largest isometry group. In [1] he tested
this conjecture with the second Stiefel manifold $V^{n.2}=SO(n)/SO(n-2),$ $n>20$,

odd. He claimed that dim $ISO(g)\leqq\frac{1}{2}n(n-1)+1$ for all Riemannian metrics

$g$ on $V^{n.2}$, where $ISO(g)$ denotes the isometry group of $g$, and that equality
holds only when $g$ is the natural metric. However, in this paper we will
establish the following:

THEOREM. The second Stiefel manifold $V^{n.2},$ $n\geqq 31$ , odd, has uncountably
many homothetically distinct homogeneous metrics $g$, for which dim $ISO(g)$

$=\frac{1}{2}n(n-1)+1$ . Note that dim $V^{n.2}=2n-3$ .
The procedure will be to study the space of K-invariant metrics on $K/H$

and by explicit computation of sectional curvature, distinguish different metrics
by homothety type. For terminology, see Section 1.

The author would like to thank Professor Larry Mann for suggesting
this problem, and for many useful conversations.

1. Background material.

In this section we collect some results on the geometry of homogeneous
spaces, all of which may be found in [3, Chapter X]. We study homogeneous
manifolds $M=K/H$, where $K$ acts as isometries of some Riemannian metric
on $M$, hence also as a group of automorphisms of the principal $O(m)$-bundle
over $M$ associated with the metric. Since $H$ is compact, $M$ is reductive; that
is, the Lie algebra $f$ of $K$ admits a vector space decomposition

$f=\mathfrak{h}+\mathfrak{m}$

where $\mathfrak{h}$ is the Lie algebra of $H,$ $\mathfrak{h}\cap \mathfrak{m}=0$, and $ad(H)\mathfrak{m}\subseteqq \mathfrak{m}$ .



656 G. W. LUKESH

We will state the first theorem in generality. Recall that a G-structure
on an m-dimensional manifold $M$ is a principal subbundle $P$ of $L(M)$ , the
bundle of linear frames over $M$, with structure group $G$ .

1.1 THEOREM. Let $P$ be a K-invariant G-structure on a reductive homo-
geneous space $M=K/H$ with decomp0siti0n $f=\mathfrak{h}+\mathfrak{m}$ . Then there is $a$ one-one
corresp0ndence between the set of K-invariant connections on $P$ and the set of
linear mappings $\Lambda_{\mathfrak{m}}$ : $\mathfrak{m}\rightarrow \mathfrak{g}$ such that

$\Lambda_{\mathfrak{m}}(adh(X))=ad(\lambda(h))\Lambda_{\mathfrak{m}}(X)$

for $X\in \mathfrak{m},$ $h\in H$, where $\mathfrak{g}$ denotes the Lie algebra of $G$ , and $\lambda$ is the linear iso-
tropy representati0n of $H$.

We next have a formula for the curvature tensors of the connections in
Theorem 1.1. Let $0=\{H\}$ , the coset of $H$ in $M$. Fix a frame $u_{o}=\{X_{1}, \cdots , X_{m}\}$

$\in P$ at $0$ . Identify $R^{m}$ and $T_{o}(M)$ (the tangent space to $0\in M$) by

$u_{o}$ : $R^{m}\rightarrow T_{o}(M)$

where $u_{o}(e_{i})=X_{i}$ , and $e_{i}$ is a standard basis element in $R^{m}$ . Identify $\mathfrak{m}$ with
$T_{o}(M)$ as follows: For $X\in \mathfrak{m}$, evaluate $X$ as a vector field on $M$ at $0$ . Thus
$\Lambda_{\mathfrak{m}}(X)\in \mathfrak{g}$ may be regarded as a linear transformation of the subspace $\mathfrak{m}$ .
Let $[, ]$ be the Lie bracket in $f$ and set

$[, ]=[, ]_{\mathfrak{h}}+[, ]_{\mathfrak{m}}$

where $[, ]_{\mathfrak{h}}\in \mathfrak{h}$ and $[, ]_{t\mathfrak{n}}\in \mathfrak{m}$ .
1.2. THEOREM. For an invariant connection, the curvature tensor at $0\in M$

is given by

$R(X, Y)_{0}=[\Lambda_{\mathfrak{m}}(X), \Lambda_{\mathfrak{m}}(Y)]-\Lambda_{\mathfrak{m}}([X, Y]_{\iota \mathfrak{n}})-\lambda([X, Y]_{\mathfrak{h}})$ $X,$ $Y\in \mathfrak{m}$ .
REMARK. $\lambda([X, Y]_{\mathfrak{h}})Z=[[X, Y]_{\mathfrak{h}},$ $Z$] since the linear isotropy representa-

tion $\lambda$ of $H$ corresponds to the adjoint representation of $\mathfrak{h}$ in $f$ .
Using the identification of $\mathfrak{m}$ and $T_{o}(M)$ , we have the following relation-

ship between the $ad(H)$-invariant forms on $\mathfrak{m}$ and H-invariant forms on $T_{o}(M)$ :
1.3. PROPOSITION. If $M=K/H$ is reductive with $ad(H)$-invariant decom-

position $f=\mathfrak{h}+\mathfrak{m}$, then there is $a$ one-one corresp0ndence between H-invariant
forms $\langle X, Y\rangle_{0}$ on $T_{o}(M)$ and $ad(H)$-invariant forms $B$ on $\mathfrak{m}$ . The corresp0ndence
is given by

$B(X, Y)=\langle X, Y\rangle_{0}$ $X,$ $Y\in \mathfrak{m}$ .
REMARK. Since an H-invariant forms on $T_{o}(M)$ give rise to K-invariant

metrics on $M$, Proposition 1.3 establishes a one-one correspondence between
invariant metrics on $M$ and invariant forms on $\mathfrak{m}$ .
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The next theorem allows us to compute the Riemannian connection on
$M=K/H$ associated with an invariant metric on $M$, or equivalently, any
invariant form on $\mathfrak{m}$ . Thus it will allow us to compute the curvature tensor,
given in Theorem 1.2, explicitly.

1.4. THEOREM. Let $M=K/H$ be a reductive homogeneous space with an
$ad(H)$-invariant decomPosition $f=\mathfrak{h}+\mathfrak{m}$, and let $B$ denote an $ad(H)$-invariant
positive definite symmetric bilinear form on $\mathfrak{m}$ . Let $\langle, \rangle$ be the correspOnding
K-invariant metric on M. Then the Riemannian connection on $M$ associated with
the metric is given by

$\Lambda_{\mathfrak{n}\iota}(X)Y=\frac{1}{2}[X, Y]_{\mathfrak{m}}+U(X, Y)$

where $U:\mathfrak{m}\times \mathfrak{m}\rightarrow t\mathfrak{n}$ is the symmetric bilinear map defined by

$2B(U(X, Y),$ $Z$) $=B(X, [Z, Y]_{\iota \mathfrak{n}})+B([Z, X]_{\iota \mathfrak{n}}, Y)$ $X,$ $Y,$ $Z\in \mathfrak{m}$ .
Thus a study of pOssible $ad(H)$-invariant forms on the subspace $\mathfrak{m}$ of $f$ will
prOvjde us with information about the geometry of $M=K/H$.

Finally, recall, that a map $f:M\rightarrow M^{\prime}$ between Riemannian manifolds is
called a homothety if

$\langle f_{*}X, f_{*}Y\rangle_{f(x)}^{\prime}=c^{2}\langle X\backslash ’ Y\rangle_{x}$ $X,$ $Y\leqq T_{x}(M)$

where $c$ is a constant, and that in this case, corresponding sectional curvatures

are related by $K^{\prime}=\frac{1}{c^{2}}K$.
Note also that if $f:M\rightarrow M$ is an isometry of $M$ with respect to a metric

$\langle$ , $\rangle$ , then it is also an isometry with respect to the metric $ c^{2}\langle, \rangle$ ( $c$ constant).

In Sections 2 and 3 it will be important to distinguish manifolds by homothety
type.

2. Varying metrics on $M=K/H$.
In this section we apply the results of Section 1 to a special situation:

Suppose $M=K/H$ is a reductive homogeneous manifold where the linear iso-
tropy action on $T_{o}(M)$ is reducible, fixing a one dimensional subspace and
acting invariantly on a complementary subspace. Assume $K$ acts as isometries
of some metric on $M$, and let $B$ denote the corresponding $ad(H)$-invariant
form on $\mathfrak{m}$ in $f$ from Proposition 1.3. Let $\{X_{1}, \cdots , X_{m}\}$ be an orthonormal
basis for $\mathfrak{m}$ with respect to $B$ so that $X_{1}$ spans the stable line, and $\{X_{2}, \cdots , X_{m}\}$

span the complementary subspace. Define a new invariant form by

$B_{t}(X_{1}, X_{1})=t>0$

$B_{t}(X_{i}, X_{i})=1$ $i\geqq 2$

$B_{t}(X_{i}, X_{j})=0$ $i\neq j$ .
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This is a one parameter variation of the form on $\mathfrak{m}$ and gives rise to a
variation of the metric on $M=K/H$. What we will do is distinguish by
homothety type the manifolds that arise from a variation of this tyPe.

NOTATION. Let $M_{t}$ denote the homogeneous manifold with the invariant
metric corresponding to the form $B_{t}$ . Let $\langle$ , $\rangle^{t}$ denote the invariant metric
and let $R_{t}( , )$ denote the curvature tensor of $M_{t}$ . Let $\Lambda_{\mathfrak{n}\iota}^{t}($ $)$ denote the
connection on $M_{t}$ in Theorem 1.4, and let $K_{t}\{X, Y\}$ denote the sectional
curvature of the plane determined by {X, $Y$} in $T_{o}(M_{t})$ .

Define the “structure” constants of the subspace $m$ as follows:

$[X_{i}, X_{j}]_{\mathfrak{m}}=\sum_{k-1}^{m}c_{k}^{ij}X_{k}$ (note that $c_{k}^{ii}=0$ and $c_{k}^{ij}=-c_{k}^{ji}$).

To compute the curvature tensor, we will Prst need to compute $\Lambda_{m}^{t}($ $)$ in
four cases, using Theorem 1.4. All computations are straightforward and we
simply list the results:

(2.1) $\Lambda_{\mathfrak{m}}^{t}(X_{1})X_{1}=\sum_{I=2}^{m}tc_{1}^{I1}X_{I}$

1 $m$

(2.2) $\Lambda_{\mathfrak{m}}^{t}(X_{1})X_{j}=c_{1}^{1j}X_{1}+-\sum(c_{I}^{1j}+tc_{1}^{Ij}+c_{j}^{I1})X_{I}$ . $(j\neq 1)$

2 $1=2$

1 $m$

(2.3) $\Lambda_{\mathfrak{n}}^{t}(X_{j})X_{1}=-\sum(c\{1+tc_{1}^{IJ}+c_{j}^{I1})X_{I}$ . $(j\neq 1)$

2 $1=2$

(2.4) $\Lambda_{m}^{t}(X_{i})X_{j}=\frac{1}{2}\sum_{1=2}^{m}(c^{i}i+c\}^{j}+c_{j}^{Ii})X_{I}+\frac{1}{2t}(tc_{1}^{ij}+c\}^{j}+c_{j}^{1i})X_{1}$ . $(i, j\neq 1)$ .

We will now compute the sectional curvature for all planes determined
by pairs $\{X_{i}, X_{j}\}$ . We will consider two cases: $K_{t}\{X_{i}, X_{j}\}_{i,j\neq 1}$ an.d $K_{t}\{X_{1}, X_{j}\}$ .

Computati0ns for $K_{t}\{X_{i}, X_{j}\},$ $i,$ $j\neq 1$ .

$K_{t}\{X_{i}, X_{j}\}=\frac{\langle R_{t}(X_{i},X_{j})X_{j},X_{i}\rangle^{t}}{A_{t}(X_{i},X_{j})}$ .

Here $A_{t}(X_{i}, X_{j})=\langle X_{i}, X_{i}\rangle^{t}\langle X_{j}, X_{j}\rangle^{t}-(\langle X_{i}, X_{j}\rangle^{t})^{2}$, hence $A_{t}(X_{i}, X_{j})=1$ , and since
$\langle X_{i}, X_{i}\rangle^{t}=1$ for $i\geqq 2$ we need only compute this $X_{i}$ coefficient of $R_{t}(X_{i}, X_{j})X_{j}$ .
Now, from 1.2

$R_{t}(X_{i}, X_{j})X_{j}=[\Lambda_{\mathfrak{m}}^{t}(X_{i}), \Lambda_{\mathfrak{m}}^{t}(X_{j})](X_{j})-\Lambda_{\mathfrak{m}}^{t}([X_{i}, X_{j}]_{m})(X_{j})-[[X_{i}, X_{j}]_{\mathfrak{h}},$ $X_{j}$].

Repeated application of 2.1-2.4 yields

$K_{t}\{X_{i}, X_{j}\}=\sum_{I=2}^{m}c\swarrow {}^{t}c_{i}^{iI}+\frac{1}{t}c^{1}J\cdot c_{t}^{i1}$
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$-\frac{1}{4t}(tc_{1}^{ij}+c_{\iota}^{1j}+c_{j}^{1i})(c_{i}^{1j}+tc_{1}^{ij}+c_{j}^{i1})$

1 $m$

(2.5) $-\sum_{I=2}(c^{i}d+c_{i}^{Ij}+c_{j}^{Ii})(c_{i}^{jI}+c_{j}^{iI}+c^{i}i)\overline{4}$

$-\frac{1}{2}c_{1^{j}}^{j}(c_{t}^{1j}+tc_{1}^{ij}+c_{j}^{i1})-\frac{1}{2}\sum_{I=2}^{m}c^{i}d(c\}^{j}+c_{1}^{ij}+c_{j}^{iI})$

$-\langle[[X_{i}, X_{j}]_{\mathfrak{h}}, X_{j}], X_{i}\rangle^{t}$ .
Computations for $K_{t}\{X_{1}, X_{j}\}$ .

$K_{t}\{X_{1}, X_{j}\}=\frac{\langle R_{t}(X_{1},X_{j})X_{j},X_{1}\rangle^{t}}{A_{t}(X_{1},X_{j})}$ .

Here $A_{t}(X_{1}, X_{j})=t$ , but $\langle X_{1}, X_{1}\rangle^{t}=t$ so we need only find the $X_{1}$ coefficient
of $R_{t}(X_{1}, X_{j})X_{j}$ to compute $K_{t}\{X_{1}, X_{j}\}$ . Now

$R_{t}(X_{1}, X_{j})X_{j}=[\Lambda_{\mathfrak{m}}^{t}(X_{1}), \Lambda_{t\mathfrak{n}}^{t}(X_{j})](X_{j})-\Lambda_{\iota \mathfrak{n}}^{t}([X_{1}, X_{j}]_{m})(X_{j})-[[X_{1}, X_{j}]_{\mathfrak{h}},$ $X_{j}$].

From 2.1-2.4, we obtain

1 $m$

$K_{t}\{X_{1}, X_{j}\}=\sum_{I=2}^{m}c^{If}\cdot c_{\overline{4t}}^{1I}-\sum_{I=2}(c_{I}^{1j}+tc_{1}^{Ij}+c_{j}^{I1})(tci^{I}+c_{j}^{1I}+c_{I}^{1j})$

(2.6) $-(c_{1}^{1j})^{2}-\frac{1}{2t}\sum_{I=2}^{m}c1^{j}(tci^{j}+ct^{j}+c_{j}^{1I})$

$-\frac{1}{t}\langle[[X_{1}, X_{j}]_{\mathfrak{h}}, X_{j}], X_{1}\rangle^{t}$

REMARK. While these formulas do not offer great insight into the
geometry of the homogeneous manifold $M_{t}$ , we can notice the following fact:
This variation technique is uniformly continuous in $t$ for a fixed plane and $t$

in some closed interval $[a, b]$ with $0<a<b$ . This fact will be useful for
the following discussion. Let $G_{2}(T_{O}(M_{t}))$ denote the Grassmann of two-planes
in $T_{o}(M_{t})$ . Since $G_{2}(T_{0}(M_{t}))$ is compact, and since the sectional curvature is
continuous on $G_{2}(T_{O}(M_{t}))$ , we may dePne:

DEFINITION. Let

$a(t)=minimum$ sectional curvature in $G_{2}(T_{O}(M_{t}))$ ,

$b(t)=maximum$ sectional curvature in $G_{2}(T_{o}(M_{t}))$ ,

$h(t)=a(t)/b(t)$, if $b(t)\neq 0$ .
From the discussion at the end of Section 1 we see that $h(t)$ is a homo-

thety invariant. The fact that the variation technique is uniformly continuous
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in $t$ , together with the fact that the Grassmann is compact, gives us the
following:

PROPOSITION. $h(t)$ is continuous in $t$ .
Thus for a family of manifolds $M_{t}$ obtained via this variation technique,

if we can determine that $h(t)\neq h(1)$ for some $t$ , we will conclude that there
are uncountably many homothetically distinct homogeneous manifolds in this
family. This will be done in the next section for the second Stiefel manifold
$V^{n.2}=SO(n)/SO(n-2)$ .

3. Proof of the theorem.

In the previous section we developed the technique of ”varying” metrics
on homogeneous manifolds under the assumption that the linear isotropy
action was reducible, fixing a one dimensional line and acting invariantly on
a complementary subspace. In this section, using formulas 2.5 and 2.6, we
will compute the sectional curvatures of two-planes in $T_{o}(M_{t})$ for the second
Stiefel manifold $V^{n,2}=SO(n)/SO(n-2)$ , and using the homothety invariant
$h(t)$, we will show that there are uncountably many homothetically distinct
homogeneous metrics on $V^{n,g}$ having $SO(2)\times SO(n)$ as full isometry group,
thus disproving a theorem due to Hsiang [1], and forcing as alteration in a
conjecture, also due to Hsiang, [5].

HSIANG’S CONJECTURE. Let $M=K/H$, where $K$ is compact, semi-simple.
There is a ”natural” form on $f$ which is $ad(K)$-invariant (hence $ad(H)$-invari-
ant), namely, the Cartan-Killing form, given by

$\phi(X, Y)=tracead(X)ad(Y)$ $X,$ $Y\in f$ .
Since $K$ is compact, semi-simple, $\phi$ is negative definite. Thus we may define

$B(X, Y)=-\phi(X, Y)$ .
Restricting to the subspace $\mathfrak{m}$ in $f$ gives us, as Hsiang says, the most ”natural”
$ad(H)$-invariant form on $\mathfrak{m}$, hence the most $t$‘natural” metric on the homo-
geneous space $M=K/H$.

To state Hsiang’s conjecture in his terms we need to introduce the
following: The degree of symmetry of a differentiable manifold $M$ is the
maximum dimension of all isometry groups of all possible Riemannian metrics
on $M$. In case $M$ is comPact, this agrees with the maximum dimension of all
compact subgroups of $Diff(M)$ .

CONJECTURE. ([5]) The natural metric on a homogeneous manifold $M=K/H$

is the most symmetric metric.
To test his conjecture, Hsiang used the second Stiefel manifold $V^{n,2}$

$=SO(n)/SO(n-2)$ . For $n\geqq 31$ , odd, the largest connected transitive compact
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group of motions of $V^{n.2}$ is $SO(2)\times SO(n)$ (cf. [2]). In [1] Hsiang claims that
the natural metric on $V^{n,8}$ alone (up to scalar factor) has $SO(2)\times SO(n)$ as
the connected component of the identity of the full isometry group. We will
show that this is not true: In fact, there are uncountably many homothetically
distinct homogeneous metrics on $V^{n}$ 2 having $SO(2)\times SO(n)$ as the identity
component of the full isometry group.

REMARKS. Hsiang is in error in [1] when he claims the equivalence of
his Theorem and Theorem’. Hsiang’s conjecture may be valid in the following
revised form: The degree of symmetry of a homogeneous manifold of a
compact, semi-simple Lie group equals the dimension of the isometry group
of the natural metric, but there may be homothetically distinct metrics having
the same isometry group.

We now begin the proof of the theorem stated in the introduction. From
[2] we know that the group $SO(2)\times SO(n)$ acts on $V^{n}$

,a as follows: We may
regard $V^{n.z}$ as $n\times 2$ matrices with columns of norm 1. For $(A, B)\in SO(2)$

$\times SO(n)$ and $V\in V^{n.9}$ let
$(A, B)V=BVA^{-1}$ .

Define multiplication in $SO(2)\times SO(n)$ pointwise

$(^{*})$ $(A, B)(A^{\prime}, B^{\prime})=(AA^{\prime}, BB^{\prime})$ .
Then

$(AA^{\prime}, BB^{\prime})V=(BB^{\prime})V(AA^{\prime})^{-1}=B(B^{\prime}V(A^{\prime})^{-1})A^{-1}$

$=B((A^{\prime}, B^{\prime})V)A^{-1}$

$=(A, B)((A^{\prime}, B^{\prime})V)$ .
Thus this is an action. To apply our results of Section 2 we embed $SO(2)$

$\times SO(n)$ in $SO(n+2)$ as follows:

$(A$ ,

Notice that matrix multiplication is exactly *multiplication.
We now fix a distinguished point in $V^{n.2}$ (the “origin”), namely

$V_{0}=\left\{\begin{array}{ll}1 & 0\\0 & 1\\0 & 0\\\vdots & \vdots\\ 0 & 0\end{array}\right\}n$
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and compute the stabilizer of $SO(2)\times SO(n)$ at $V_{0}$ . That is, we seek $(A, B)$

such that
$(A, B)V_{0}=V_{0}$ .

Straightforward computation shows that the stabilizer must consist of matrices
of the form

$C\in SO(2)$ , $D\in SO(n-2)$ .

Thus we may write

$V^{n.2}=\frac{SO(2)\times SO(n)}{SO(2)\times SO(n-2)}$

where $H=SO(2)\times SO(n-2)$ is embedded in $SO(2)\times SO(n)$ in a twisted fashion.
From Section 2, we know that to study the geometry of $V^{n,2}$ it will

suffice to study the relationship between the Lie algebra @c(2)+@o(n) of $SO(2)$

$\times SO(n)$ and the Lie subalgebra $\mathfrak{s}\mathfrak{o}(2)+@0(n-2)$ . We will write the full algebra
and subalgebra as follows:

$\mathfrak{c}\in \mathfrak{s}0(2)$ , $\mathfrak{d}\in \mathfrak{s}o(n-2)$ .

All of our computations (in Section 2) are carried out in terms of basis
vectors for the algebra and subalgebra. It will be convenient to designate a
basis for the subalgebra and extend it to the full algebra. Recall that

$Bo(n+2)=$ { $\mathfrak{a}|\mathfrak{a}+\mathfrak{a}^{t}=0,$ $\mathfrak{a}$ is $(n+2)\times(n+2)$ , real}.
Set
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$where3_{\frac{\leq}{e1}}j\leqq n(zeroessewhere)j<i$

(For convenience, the index $ij$ starts at the third row and column.)

To extend to a basis for the full algebra we set

(zeroes elsewhere)

$3\leqq i\leqq n$

(zeroes elsewhere)

DEFINITION. Let
$\mathfrak{m}_{o}=span\{X_{1}\}$

$\mathfrak{m}_{1}=span\{X_{3}, ’ X_{n}\}$

$\tilde{\mathfrak{m}}_{1}=span\{\tilde{X}_{3}, \cdots \tilde{X}_{n}\}$ .
We claim that $\mathfrak{m}_{o}$ is the ”stable” line and $\mathfrak{m}_{1}+\tilde{\mathfrak{m}}_{1}$ is $ad(H)$-invariant. Since
$H$ is connected, it suffices to establish that $[\mathfrak{h}, \mathfrak{m}_{0}]=0$, and $[\mathfrak{h}, \mathfrak{m}_{1}+\tilde{\mathfrak{m}}_{1}]\subseteqq \mathfrak{m}_{1}+\tilde{\mathfrak{m}}_{1}$ .
The following are easily derived:

3.1. Computations.

a) $[E_{1}, X_{1}]=0$

b) $[E_{ij}, X_{1}]=0$

c) $[E_{1}, X_{i}]=-\tilde{X}_{i}$ $3\leqq i\leqq n$

d) $[E_{1},\tilde{X}_{i}]=X_{i}$ $3\leqq i\leqq n$
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e) $[E_{jk}, X_{i}]=\left\{\begin{array}{ll}0 & if j, k\neq i\\X_{i} & if j=i\\-X_{j} & if k=i\end{array}\right.$

f) $[E_{jk},\tilde{X}_{l}]=\left\{\begin{array}{ll}0 & if j, k\neq i\\\tilde{X}_{k} & if j=i\\-\tilde{X}_{j} & if k=i.\end{array}\right.$

Notice that $a$ and $b$ establish that $\mathfrak{m}_{0}$ is stable, and that $c$ through $f$ establish
the invariance of $m_{1}+\mathfrak{m}_{1}$ .

To use formulas 2.5 and 2.6, we need also to compute $[\mathfrak{m}, \mathfrak{m}]_{m}$ and $[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{h}}$

where $\mathfrak{m}=\mathfrak{m}_{o}+\mathfrak{m}_{1}+\tilde{\mathfrak{m}}_{1}$ , and $[, ]_{n\iota}$ and $[, ]_{\mathfrak{h}}$ denote the projections of the
bracket into $\mathfrak{m}$ and $\mathfrak{h}$ respectively. The following computations are straight-
forward:

3.2. Computations.

a) $[X_{1}, X_{1}]=0$

b) $[X_{1}, X_{i}]=-\tilde{X}_{i}$ hence $[X_{1}, X_{i}]_{\mathfrak{h}}=0$

c) $[X_{1},\tilde{X}_{l}]=X_{i}$ hence $[X_{1},\tilde{X}_{i}]_{\mathfrak{h}}=0$

d) $[X_{i}, X_{j}]=E_{ij}$ $j<i$ hence $[X_{i}, X_{j}]_{\mathfrak{m}}=0$

e) $[\tilde{X}_{i},\tilde{X}_{j}]=E_{ij}$ $j<i$ hence $[\tilde{X}_{i},\tilde{X}_{j}]_{\mathfrak{m}}=0$

f) $[X_{i},\tilde{X}_{j}]=0$ if $i\neq j$

g) $[X_{i},\tilde{X}_{l}]=-X_{1}$ hence $[X_{i},\tilde{X}_{i}]_{\mathfrak{h}}=0$ .
Finally, we need to define bilinear forms $B_{t}$ on $\mathfrak{m}$ for each $t>0$ and show
that they are $ad(H)$-invariant.

DEFINITION. Define $B_{t}$ by

$B_{t}(X_{1}, X_{1})=t$ $B_{t}(X_{i}, X_{j})=0$ $i\neq j$

$B_{t}(X_{i}, X_{i})=1$ $3\leqq i\leqq n$ $B_{t}(\tilde{X}_{i},\tilde{X}_{j})=0$ $i\neq j$

$B_{t}(\tilde{X}_{i},\tilde{X}_{i})=1$ $3\leqq i\leqq n$ $B_{t}(X_{i},\tilde{X}_{j})=0$ .
Claim. $B_{t}$ is $ad(H)$-invariant.
Since $H$ is connected, it suffices to verify that

$B_{t}([Z, X], Y)+B_{t}(X, [Z, Y])=0$

for all $Z\in \mathfrak{h}$, and $X,$ $Y\in \mathfrak{m}$ . This is straightforward.
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We are now in a position to compute the sectional curvature of two-
planes in $T_{o}(M_{t})$ determined by pairs of basis vectors in { $X_{1},$ $X_{3},$ $\cdots$ , $X_{n},\tilde{X}_{3}$ ,

, $\tilde{X}_{n}$ }. To apply formulas 2.5 and 2.6 we need the structure constants $c_{k}^{ij}$

defined by

$[X_{i}, X_{j}]_{m}=\sum_{k=1}^{m}c_{k}^{lj}X_{k}$ $(m=\dim \mathfrak{m})$ .

From 3.2, we see that the only non-zero structure constants are

$c_{i}^{1}\sim^{i}=-1$ , $c_{i}^{1}\gamma=1$ , $c_{1}^{I}\tau=-1$ .
(We have used the index $t$ for the basis vector $\tilde{X}_{i}.$) Thus the computations
of formulas 2.5 and 2.6 are greatly simplified.

CompuiatiOns using formula 2.5. We compute the following for $3\leqq j<i\leqq n$ .
A) $K_{t}\{X_{i}, X_{j}\}$

B) $K_{t}\{\tilde{X}_{i},\tilde{X}_{j}\}$

C) $K_{t}\{X_{i},\tilde{X}_{j}\}$ $(i\neq j)$

D) $K_{t}\{X_{i},\tilde{X}_{i}\}$ .

A) $K_{t}\{X_{l}, X_{j}\}$ . In formula 2.5 the only contribution is from the last term

$-\langle[[X_{i}, X_{j}]_{\mathfrak{h}}, X_{j}], X_{i}\rangle^{t}$ .
But from 3.2, $[X_{i}, X_{j}]|=E_{ig}$ , and $[E_{ij}, X_{j}]=-X_{i}$ from 3.1, hence the last
term is $-\langle-X_{i}, X_{i}\rangle^{t}=1$ since $i\neq 1$ .

B) $K_{t}\{\tilde{X}_{i},\tilde{X}_{j}\}=1$ by similar computation.
C) $K_{t}\{X_{i},\tilde{X}_{j}\}$ with $i\neq j$ . Again, the only possible contribution in formula

2.5 comes from the last term
$-\langle[[X_{i},\tilde{X}_{j}]_{\mathfrak{h}},\tilde{X}_{j}], X_{i}\rangle^{t}$ .

but from 3.2 we have $[X_{i},\tilde{X}_{j}]_{\mathfrak{h}}=0$, therefore $K_{t}\{X_{i},\tilde{X}_{j}\}=0$ .
D) $K_{t}\{X_{i},\tilde{X}_{i}\}$ . Any part of formula 2.5 with $\mathfrak{l}\geqq 2$ gives zero contribution

by the simplicity of the $c_{k}^{ij}’ s$ . Hence

$K_{t}\{X_{i},\tilde{X}_{i}\}=-\frac{1}{4t}(tc_{1}^{ii}+c_{i}^{1i}+c_{\sim}^{1i}\iota)(c_{i}^{i1}+tc_{1}^{ii}+c_{\sim}^{i1})\sim\sim\sim\sim i$

$-\frac{1}{2}c_{1}^{ii}(c_{i}^{1i}+tc_{1}^{ii}+c_{i}^{i1}\sim)-\langle[[X_{i}\sim\sim\sim,\tilde{X}_{i}]_{\mathfrak{h}},\tilde{X}_{i}], X_{i}\rangle^{t}$ .

Evaluating this, using the fact that $[X_{i},\tilde{X}_{i}]_{\mathfrak{h}}=0$, yields

$K_{t}\{X_{i},\tilde{X}_{i}\}=1-\frac{3}{4}t$ .



666 G. W. LUKESH

Computati0ns using formula 2.6. We compute $K_{t}\{X_{1}, X_{j}\}$ . The computation
for $K_{t}\{X_{1},\tilde{X}_{j}\}$ is similar. The only contribution in formula 2.6 arises when
$I=j\sim$. Then

$K_{t}\{X_{1}, X_{j}\}=-\frac{1}{4t}(c_{j}^{1j}\sim+t^{\sim\sim\sim\sim}c_{1}^{jj}+c_{j}^{j1})(tc_{1}^{jj}+c_{f_{j}}^{1f}+c_{\sim}^{1j})$

$-\frac{1}{2t}c_{\sim}^{1j}(r_{C_{1}^{jj}+c_{\sim}^{1j}+c_{J}^{1j})-\frac{1}{t}\langle[[X_{1}}^{\sim\sim}JJX_{j}]_{\mathfrak{h}}, X_{j}],$ $X_{1}\rangle^{t}$ .

Evaluating this yields $K_{t}\{X_{1}, X_{j}\}=\frac{t}{4}$ . Similarly, $K_{t}\{X_{1},\tilde{X}_{j}\}=\frac{t}{4}$ .
REMARKS. A decomposition $f=\mathfrak{h}+\mathfrak{m}$ together with an $ad(H)$-invariant

form $B$ is called naturally reductive if

$B(X, [Z, Y]_{\mathfrak{l}r})+B([Z, X]_{\iota r}, Y)=0$

for $X,$ $Y,$ $Z\in \mathfrak{m}$ . Our decomposition is naturally reductive when $t=1$ , and the
resulting Stiefel manifold has non-negative curvature.

Let $V_{t}^{n.2}$ denote the second Stiefel manifold with the homogeneous metric
corresponding to the form $B_{t}$ . Recall, from Section 3, that $h(t)=a(t)/b(t)$ is
a homothety invariant, where $a(t)$ and $b(t)$ are, respectively, the minimum
and maximum sectional curvatures in $G_{2}(T_{o}(V_{t}^{n,2}))$ . From the computations
and the above discussion we have the following:

$b(t)\geqq 1$ for all $t>0$ , hence $h(t)$ is continuous,

$a(1)=0$,

$a(t)<0$ for $t>^{\underline{4}}$

3

hence $h(1)=0$ ,

hence $h(t)<0$ for $t>\frac{4}{3}$ .

Continuity of $h(t)$ now establishes the existence of uncountably many homo-
thetically distinct homogeneous metrics on the second Stiefel manifold, and
thus proves the Theorem.

REMARK. Similar computation was used in [4] to establish the existence
of uncountably many homothetically distinct homogeneous metrics on the
spheres $S^{2n-1}=U(n)/U(n-1)$ in the course of a classification of homogeneous
Riemannian manifolds.
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