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Introduction.

Let (4, a), (B, B) be algebras with involution over a global field K of
characteristic #2. Denote by Hom((A4, a), (B, B)) the set of all algebra
homomorphisms = : A — B sending the identity of A to that of B such that
n(a®)=n(a)’. For each place v of K denote by Hom,((4, a), (B, B)) the
similar set obtained by regarding (A4, a), (B, B) as algebras over the local
field K, at v. By the Hasse principle for (A4, a), (B, §) we shall mean the
following statement

(H)  Hom((4, a), (B, B))#0 e Hom, ((4, a), (B, B))+0  for all w.

Since the algebra with involution appears in many interesting scenes of mathe-
matics, we are anxious to know to what extent (H) is true. The main result
of this paper ((4.8) says that (H) holds when A, B are the matrix
algebras over K. For the proof, the case where both of a« and j are
“symmetric” is most important and, in this case, (H) is equivalent to the
Hasse principle for the division of quadratic forms ((3.1) [Theorem), a special
case of which appeared in Ono [1]. When A=C=C(qy), the Clifford algebra
of a quadratic form ¢, over a space V, and a=the involution—of C which
changes the sign of vectors in V, and (B, 8)=(End Y, %), where Y is a vector
space and * is a symmetric involution associated to a quadratic form ¢y on Y,
the set Hom ((C, —), (End Y, %)) is essentially the same as the set of solutions
B :XXY—Y (bilinear) to the Hurwitz equation g¢y(B(x, ¥))=q¢x(x)qr(y),
where (X, gx) is closely related to (V, gy) ((5.6) [Theoreml). Thus (H) swallows
up the Hasse principle for the Hurwitz equations. In §6, the younger author
considers the case where gy=x,°+ --- +x,?, gy=arbitrary form and reduces the
Hasse principle for the Hurwitz equation for ¢y, gy to the older author’s (4.8)
Theorem, whereby extending the scope of the validity of (H). The contents
of §1~§5 grew out of the course of lectures (Spring term, 1977) by the older
author.
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§1. Preliminaries.

Throughout this section, K will denote any field of characteristic#2.
We shall use the same symbol ~ for the following three equivalence relations.
Firstly, in the multiplicative group K*, we write a~b when ab'e(K*)%.
Secondly, we write A~B when central simple algebras A, B over K are
similar. Lastly, we write f~g when quadratic forms f, g over K are con-
gruent.

The symbol (a, b), a, b€ K*, means the quaternion algebra over K with
basis 1, 7, j, k& such that *=a, j?’=b, k=ij=—ji. The quaternion algebra
gives rise to a symmetric bilinear map

() KX /(KX K> /(K*)* —> B(K),

where B(K) is the Brauer group of K. We know the identities (a, —a)~1,
(a, a)~{(a, —1).

There are three basic invariants for the non-degenerate quadratic form f:
the rank r(f), the determinant d(f) and the Hasse algebra A(f). Here,
r (f)=dimension of the vector space where f is defined, d(f)=determinant of
the symmetric matrix associated with f and A (f)~ %}_(ai, a;) when f~<a,, -,
a,>, the diagonal form a,x,%+ --- +a, x,* on the space K*, n=vr(f). These
are invariants in the sense that »(f)=r(g), d(f)~d(g) and Ah(f)~h(g)
whenever f~g.

Let X, Y be vector spaces for non-degenerate quadratic forms f, g, re-
spectively. The direct sum f@ g is the quadratic form on X@ Y such that
(fPg)(x+y)=f(x)+g(y) and the tensor product f@ g is the quadratic form
on X®Y such that (fQR2)(x& y)=f(x)g(y). The set of all equivalence
classes of non-degenerate quadratic forms over K together with the operation
induced by f@P g and f Qg forms a commutative semiring. Under these opera-
tions, the invariants behave as follows:

r(f@g)=r(H+r(g), r(fRg=r(fr(g),
(1.1) d(fDg)~d(f)d(g), d(fR®g~d(fy®d(g)y,

h(fDg)~d(f), d@)Qr(fHQh(g).
The formula for A(f®g) is not explicit in the literature. To get this, we
need a little preparation. First of all, for any integer n, put n*=(1/2)n(n—1).

We define the discriminant of f by 4(f)=(—1yY"d(f). Next, suppose that
f~<ay, *++, arcs5yp. Then, for ce K*, we have

(1.2) h(cf)~ (e, 4(/)d(fY YR h(f).
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Next, by induction, one generalizes (1.1) to get
(1.3) i@ B )~ h (KA (f), - AN @ R h(£D).

Finally, since f®g~<ay, -+, arsy @ g~Kap D - DLary»») g~ a:18D
@D ars g, it follows from (1.2), (1.3) that A(f QR g)~h(a, gD - D arcpr &)~

h(ar@d(g), - ai§d @) QY hlag)~h(d(@)<a®, -, a®)H® E (a,
4(g)d (@) Q@ h(g))~(d(g), A(f)d(fy L@ Q h(fy® @ (d(f), 4(g)
-d(g)®)® h(g)y”, and we get the following formula:
L4 h(®g~W (), 42)R(d (@), 4N ES), d(g)y o
Q h(f)® ® h(g)y .
We shall say that a non-degenerate quadratic form f divides another such
form g and write f|g if there is a quadratic form ¢ such that g~¢Q® f.

If flg, one must have r(f)|r(g) by (1.1). When K is algebraically closed,
since there is one and only one class of forms of given rank, we have

flger(Hlrig),

and so the divisibility of quadratic forms is the same as that of natural
numbers.

§2. Local fields.

We shall first consider the case K=R. Let f be a non-degenerate quadratic
form over R. When f~<1,---,1, —1, -, —1> the signature o¢(f) is the
S— N ———

n

number m—n. It is well-knownmthat
f~g{=r(f)=r(g) and o(f)=0(g).
One verifies easily that

@1 o(fDg=a(f)ta(g), ca(f®g=0(Na(g).

As for the divisibility, we have the following criterion:
(2.2) PROPOSITION. For non-degenerate quadratic forms f, g over R, we have

(ii) either o(f)=a(g)=0 or o(f)#0
l and o (o e), 1o(@)a(f)H=r(@r(H,
a(g)a (f)*=r(g)r(f)* (mod.2).

I(i) r(lr(g) and

flg &
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PROOF. (=) Suppose that g~g® f. Then, by (2.1), we have o(g)=
o(@)o(f) and so o(g)=0 when o(f)=0. Assume now that ¢ (f)+#0. Then,
obviously ¢ (f)lo(g), and [a(g)a (/) '|=r(g)r(f)™* since |o(g)|=r(q). The
last relation follows from ¢ (¢)=7(q) (mod. 2).

(&) When o(f)=0(g)=0, we have o(g)=0d(q) o (f) for any g such that
r(@)=r(g)r(f)*. Hence g~¢g®f and so flg. When o(f)+0, put s=o(g)a(f)™.
Since [s|=r(g)r(f)™ and s=r(g)r(f)™* (mod. 2), there is a number k&, 0=k
r(g)r(f)™, such that s=2k—r(g)r(f)™'. Let g be a quadratic form of rank
r(g)r(f)* such that g~<1, ---, 1, —1, ---, —1>. Then, o (q)=k—{(g)r(f)*—k)

=s,and so g~q&Q f, q.e. d.k

From now on, in this section, let K be a non-discrete, non-connected
commutative locally compact field of characteristic#2; for simplicity, we shall
call such K a p-adic field, where p stands for the unique maximal ideal of the
unique maximal compact subring of K. Over such a field K, it is well-known
that two non-degenerate quadratic forms f, g are equivalent f~ g if and only
if »(f)=r(g), d(f)~d(g) and h(f)~h(g). Hence, we have f|g if and only

if* there exists a quadratic form ¢ such that
r(g)=r@r(f),
d(g)~d (g Pd(f)®,
2.3 h(g)~(d (@, 4()NRE(f), 4(@)R(d(g), d(f)y @+
Qh(@ P @ h(fye
~(d (@), 4(Nd (P P)RQE(), =" Q@ h(@ @ h ().

We need to state the criterion for f|g separately according to the parity

of »(f).

(2.4) PROPOSITION. Let f, g be non-degenerate quadratic forms over a b-adic
field K. When r(f)=0 (mod. 2), we have

(i) r(Nlr(g) and

(ii) d(g)~d(f/yr®™ ™ when A(f)#1,

flg = d(g)~d (fy ™™ and

B (@)~ (d (), D@D @ p (o

when A4(f)~1.

*) Needless to say that the ‘““only if”’-part works for any field of characteristic
#2. Similar remark applies to the ‘““only if”’-part of (2.4), (2.5) and (2.6).
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Proor. We only have to prove the “if”-part (&). When 4(f)~1, take
any ¢ such that r(g)=r(¢)r(f). The conditions (i), (ii) then imply (2.3).
When 4(f)»1, we first take a= K~ such that

(a, 4(F))~(d (f), =)@ Q h(g) @ h(f)yr @,

This is possible because the symmetric bilinear mapping (,): K*/(K*)?*X
K*/(K*)* - B(K) is non-degenerate when K is p-adic. Next, take ¢ such that
g~<a, 1, -, 1> and r(g)=r(q)r (f). Then, since d(g)~a, the conditions (i),
(ii) imply again (2.3), q.e.d.

Assume now that »(f)=1 (mod. 2). From (2.3), it follows that f|g if and
only if there exists a ¢ such that

d(g)~d(g)d (fyrern-t
h(g)~h(g) @ h (/@77 @ (d(@d (fy @™, A(Nd (/e ™)
& (d (f), —1)(T(E)r(f)—1>*-

{ r(Q=rer(/)™,

(2.5) l

In what follows, we shall use the fact: In order that there exists a quadratic
form ¢ over K of rank r such that d(¢g)~d and h(q)~e, it is necessary and
sufficient that r=1, e~1; or r=2, d#—1; or r=2, e~1; or r=3, where ¢
means an element in B(K)~Q/Z of order 1 or 2. (We shall often identify with
—1 the element of order 2 in B(K)).

(2.6) PROPOSITION. Let f, g be non-degenerate quadratic forms over a p-adic
field K. Assume that r(f)=1 (mod. 2). Then we have

(i) r(Nlr(g) and r(r()H723, or

(i) r(@=r(f) and L@ h()DUE@d(), 1y ~L,

flg<=> < or

(iii) r(g)=2r(f) and either d(g)*—1 or
h(g)®(d(g), 4()) R (f), —1)~1.

Proor. We only have to prove the “if”’-part. In case (i), by the above
remark, we can find ¢ such that r(¢)=7(g)r ()™, d(¢) ~d (g)d (f)®7"~" and
h(g) ~the algebra on the right hand side of (2.5). Then flg by (2.5). In
case (ii), take ¢ such that r(g)=1 and g~<d(g)d(f)>. Then, since h(q)~1,
we have (2.5) and so f|g. In case (iii), we can find ¢ such that r(q)=2,

d(g)~d(g) and h(g)~h(g)@(d(g), 4(f))Q(d(f), —1) and hence fl|g, again,
by (2.5), q.e.d.
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§ 3. Hasse principle for division of quadratic forms.

In this section, K will denote a global field of characteristic+2. For a
place v of K we denote by K, the completion of K at v. We shall reserve the
symbol ~ exclusively for objects (field elements, quadratic forms, central simple
algebras etc.) over the global field K. For objects defined over local field K,,
we shall write ~ for the equivalences. For quadratic forms f, g over K,, we
shall write fig vwhen f divides g.

(3.1) THEOREM. Let f, g be non-degenerate quadratic forms over a global field
K of characteristic +2. Then, flg if and only if flg for all places v.

We recall here some necessary facts on global fields.

(3.2) (THEOREM 4.5.10 of Scharlau [17). Let g, be a quadratic form for each
v, with a fixed rank. There exists a quadratic form q over K such that
g~ q, for all v if the following conditions are satisfied:

(f) there is a deK* such that d(q,)~d for all v,

(ii) h(gy)~1 for almost all v, ’

(iii) the nuz;nber of v where h(qv)ovél s even.

(3.3) (A special case of Exercise 2.16, p.355 of Cassels-Frohlich [1]). Let a<=
K* and let e,==1 for each v. There exists x€ K* such that (a, x)~¢, for all
v if the following conditions are satisfied: ’

(i) e&,=1 for almost all v,

(ii) the number of v where e,—=—1 is even,

(iii) there is an x,=(K,)* such that (a, x,,)r:;sv for all v.

(3.4) (LEmMMA 5 of Ono [1]). Let K be an algebraic number field and L be a

quadratic extension: L=K(s/d). Let M be a subset of the set of all real
infinite places of K such that d is positive in K,. Then, there exists an

element c=L such that Np,x(c) has an arbitrarily given sign in each K,,
ve M.

Proor of (3.1) THEOREM. We only have to prove the “if”-part.

Case 1. r(f)=1 (mod. 2).

For each v, the assumption of the “if”-part implies that there is a ¢, such
thea 2~ ® f, and so

r(gn)=r(g)r (/)7
69 [ d(g0) yd (@) d (fyr @™,
R yh (@RS OO @A) d (fy OO, A(f)d (from s
l R d (f), __1)(7(8)r(f)‘1)*'
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Hence, if we put d=d(g)d (f)"®""" then (i) of (3.2) follows from (3.5).
The conditions (ii), (iii) of (3.2) hold since h(g,) is equivalent to an algebra
given globally as the right hand side of (3.5). Hence, there exists a g over K
such that 47~ qo for all v. We have then gr:q@ f for all v. By the Hasse-

Minkowski theorem on quadratic forms, we have g~¢qQ® f, i.e. flg.

Case 2. r(f)=0 (mod. 2), 4(f)~1.
The assumption that f|g implies that

d (g) ~d (f)'r(g)r(f)“l’

9 {MQTMUL—WMWWW®hUWWmﬂ

Let E be the set of all real infinite places of K for which the signature o,(f)+0.
By the independence of valuations, one can find a form ¢ over K such that
r(g=r(g)r (f)* and o,(q)=0,(g)0,(f)* for all ve E. Then we have g~q¢Q f
for all infinite places v of K. As for a finite place v=p, (3.6) implies thgt

{am7ﬂﬂmn
h (g)fpv(d () =" Q@ h(f)y®,
and by (2.3) we see that q~e & f. Therefore, by the Hasse-Minkowski

theorem, we have g~q¢ & f.

Case 3. 7(f)=0 (mod. 2), 4(f)»1.
The assumption implies that for each v there is a ¢, such that

d ~d r(g)r(f)‘l,
on | (&) ~d (f)

h(g) e (d (f), =1)®T D™ R (d (go), 4(f)) @ h (ST,
By (3.3) and (3.7) with x,=d(g,), one can find an element t=K* such that

3.8 h(g)~(d(f), —1)r@rD D Q (¢, A(f)) Q h(f)r@rnt,

For each real infinite place v, denote by s,(p) the number of negative coeffici-
ents in the diagonal form of a quadratic form ¢. So, we have the relations

a5(p) =7 (@)—25,(¢),
(3.9 ’ d (p) (= 1)@,
h (90) ?J (_ 1)80(90)..

From (3.7), (3.9), we have
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(3.10) (—1)$@* =((—1)%D, _1>;r(g)r(f)‘1)*<t’ (—=1)re +sutny

X (_ 1)sv(f)*r(g) T(f)—l,

where (, ), means the Hilbert symbol at v.

Let E be as before, the set of all real infinite places of K for which ¢,(f)+0.
We have then

_lrr(e  r(g—2s(g)
(3.11) 5v<qv>—2(r<f> r(F)—2s,(f) /"

Now, let M (resp. N) be the set of places veE for which 4(f)>0 (resp.
4(f)<0). By (3.4), there is an element ceL>*, L=K(s/4(f) ) such that

sign, (tN¢)=(—1)%w for all veM.

Since one can replace ¢ by (Nc¢ in (¢, 4(f)), one can assume without loss of
generality that

sign, (#)=(—1)% for all veM.

Next, we claim that
sign, (1)=(—1)% for all ve .
In fact, since A(f)v<O for ve N, we have
(3.12) lzr(f)*%—sv(f)z%r(f)—sv(f) (mod. 2), veN.
We also have
3.13) @, 4(f))=C(t, —1),=sign,(t), veN.
Substituting (3.13) in (3. 10), we get
(.14 sign,()=(— 1)@ D TOTDT (1, 1)@

Now, one sees easily from (3.11) that

_ (@/2)(so(@) = s D (@) r(H7Y)
-1 N (V12 £ = T R

Since the denominator of (3.15) is odd by (3.12), we get

(_l)sku):(- 1)1/2(sv(g)—su(f>r(g)r<f)‘1):Signv(t), UEN,
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by a straightforward calculation using (3.14). In other words, we have
proved that

sign, (H)=(—1)% for all ve E=N\UM.

Now, by the independence of valuations, one can find a form ¢ over K such
that 7(g)=r(Qr(f), g~<a,  argp-1, (a1, =, ary)™"> and s,(q)=s,(g,) for
all veE. Note that d(qg)~t. We have then o,(¢)=0,(g)0o,(f)}, vEE, ie.
0,(g)=0,(g® f), vEE. Since this last equality is trivially true for real in-
finite v E, we have g~q¢q & f for all infinite places. On the other hand, (3.7),
(3.8) imply that d (g)~d (/) ~d(@® ) for all p and h(g)~(d(f), ~1y®’
R (), 4(f)) R h(f)"®. Therefore, we have g;vq@f for all p. Hence,
again by the Hasse-Minkowski theorem, we have g~¢& f, i.e. flg, g.e.d.

§ 4. Hasse principle for the matrix algebras with invoelutions.

Let K be a field of characteristic #2 and A, B are algebras with 1 over K.
By a homomorphism of A to B we always mean an algebra homomorphism
sending 1 onto 1. We denote by Hom(A, B) the set of all homomorphisms.
Let a, B be involutions of A, B respectively. We denote by Hom ((4, a), (B, B))
the subset of Hom(A, B) consisting of homomorphisms r satisfying = (a%)=
7w (a)’>, a=A. In this section, we shall consider exclusively the case where A,
B are the matrix algebras: A=K,, B=K,. Obviously, we have

“.1 Hom (K., K,)#0<{—> m|n.

Since we are looking for the criterion for Hom ((K,, a), (K,, 8))#0, we may
assume by (4.1) that n=qm, q=Z.
As is well-known, one can write
a*=F"1'"aF, a€K,, Fe(K,)*, ‘F=(sgna)F=-=+F and
P=G*bG, beK,, Ge(K,)*, ‘G=(sgnB)G==+G.

When sgna=—1, m must be even and « may be replaced, without extending
the ground field, by the standard involution j=j,/s:

@'=Jt ), J=Tnn=( X —1’”’2).

“Tdmi/2 0

(4.2) PrOPOSITION. Hom ((Kn, a), (K,, B))#0 G~UQF for some Us(Kp)*.
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Proor. Call r, the representation in Hom (K,,, K,) given by r,(a)=1,&Qa.
Since K, is a simple algebra, any other representation = in Hom(K,, K,) can
be written as

w(a)=Tr,(a) T? for some Te(K,)".
Then we have
zeHom ((Kn, a), (Ka, B))<{—) z(a®)=n(a)’, a€Kn
(> Tro(a®) T '=(Tr,(a) TY.

Now, we have
Try(a®) T=T(,QF *aF)T'=T(1,QF (1R a)1,QF) T
and
(Tro(a) T V=G (Tr,(a) THG=G"T*(1,®)'TG.

Hence !TGT(1,Q F™') commutes with 1,&‘a for all a=K,, and so it must
be of the form U®1, for some Us(K,)*. We have thus ‘TGT=UQRF,

q.e.d.
From (4.2) we deduce the following results on Hom ((Kn., a), (K., 8)),

with n=gm.
4.3) If sgna=sgn f=—1, then Hom ((K, a), (K., j8))+0.

In fact, replacing «, B by the involution j, i.e. replacing F, G by Jn/e,
Jn2, Tespectively, we have J,p~UQ Jn,, with U=1,.

4.4 If sgna=sgnp and ¢=1 (mod. 2), then Hom ((K,,, ), (K,, 8))=0.

In fact, if there exists U such that G~U® F, then U must be skew-
symmetric, but this is impossible since ¢ is odd.

(4.5) If sgna=1, sgnf=-—1 and ¢=0 (mod. 2),
then Hom ((K,,, a), (K., B))+0.
In fact, put U=]y,. Then one has G~ J /s~ Js @ F.
(4.6) If sgna=—1, sgn =1, ¢=0 (mod. 2) and Hom ((K,,, a), (K., B))+0,
then G~ J35 & Jmsz-

In fact, let Ue(K,)* be such that G~ U @F. Since F is skew-symmetric
and G is symmetric, U must be skew-symmetric and so U~ J,,.

4.7 If sgna=sgn =1, then Hom ((K,, «), (K,, 8))+0
if and only if F|G in the sense of §1.
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Now, let K be a global field of characteristic#2 and (4, a), (B, §) be
algebras with involution over K. We put Hom,((4, @), (B, 8))=Hom((4,, ),
(By, B)) where A,=K,Q® A, B,=K,Q B. By the Hasse principle for (4, a),
(B, B) we shall mean the statement:

(H) Hom((4, a), (B, B))+0<{—> Hom,((4, a), (B, B))+0 for all v.

(4.8) THEOREM. Let m, n be any natural numbers and (Kn, a), (K,, B) be
matrix algebras with tnvolutions. Then (H) holds for these algebras.

Proor. We only have to prove (&). The assumption implies that min
and so we put n=g¢gm. In view of (4.3), (4.4), (4.5), it remains to consider
the cases (i) sgna=-—1, sgnf=1, ¢=0(mod. 2) and (ii) sgna=sgnB=1. In
case (i), by (4.6), applied for K,, we have Gr}v]q,2 & Jmse for all v. Hence by
the Hasse-Minkowski theorem, we have éw Jaue @ JImie~Jy: @F and so
Hom ((Kn, a), (K, B))#0 by (4.2). In case (ii), by (4.7), our assertion is
nothing else than (3.1) [Theorem|, q.e.d.

§5. Hurwitz equations.

Let K be a field of characteristic2, X a vector space over K of dimen-
sion p=1, gy a non-degenerate quadratic form on X, Y another vector space
over K of dimension n=1 and ¢y a non-degenerate quadratic form on Y.
We shall assume that there is an e=X such that ¢gx(e)=1 and fix such an
element once for all. Denote by B the set of all bilinear maps f: XXY =Y
satisfying the Hurwitz equation :

6.1 gr (B (x, ¥))=qx(x)qr ().

Our problem is to find a criterion for B=0. As the first reduction of the
problem, we have
(5.2) PROPOSITION. Put B,={B8€B, B(e, y)=y, y&Y}. Then, B#0— B,#0.

PrOOF. (&) is trivial. To prove (=), put s(y)=f(e, ). Then, (5.1)
implies that s=0O (gy), the orthogonal group of ¢y. Obviously, the map §,(x, ¥)
=s1(B(x, y)) belongs to B,, g.e.d.

Before stating the second reduction of the problem, we need some pre-
parations. First, decompose the space X as the orthogonal sum X=Ke |V
and put gy=—qyx|V. Let C=C(qy) the Clifford algebra of g, and let x+— X be
the unique involution of C such that 9=—v for all veV. Next, let a — a* be
the involution of the algebra End Y of endomorphisms of Y such that
(ay, )=, a*y"), v, y'€Y, where (y, y)=Q1/2)(gr (¥ +3)—qr ()—aqr (3")).
(5.3) PROPOSITION. There is a bijection Hom ((C, —), (End Y, *))= B,.
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PRroOOF. First, we consider X=Ke |V as a subset of C=KH VP --- by
the identification e=1€K. For z€Hom((C, —), (EndY, %)), put B(x, y)=
7 (x)y, x€X, y€Y. We claim that =+ § is the bijection we are looking for.
In fact, we have gr(B(x, ¥))=qr(m (x)y) = (7 (x)y, 7 (x)y)=(y, 7 (x)x7 (x)y)=
(v, () n(x)y)=(y, x(Xx)y). Write x=x,t+v, x,€K, veV. Then, we have
Zx=x/—v"=x"—qr W)=qx(x) and so gr(B(x, ¥))=(y, ¢x(X)¥)=qx (x)qr ().
Obviously, B is bilinear and satisfies B(e, y)=y, hence f&B,. Since C is
generated by 1 and V, clearly the map 7= +— § is injective. Conversely, take
any € B, and consider a linear map A : X — End ¥ defined by A2(x)y=p8(x, ).
Put A,=2|V. The relation (5.1) implies that

(5.4) A(x)xA(x)=qx (x).

Writing x=x,+v as above, we get, from (5.4), x,*—¢qy (V)=x2+x, (A, W)+ 4, (V)*)
+ 2 (V)x4,(v), or

(5.5) A W)+ 2, )x=0, A, (V)*4, (V)=—gqy ),

which implies that A,(v)’=qy(v). Hence, by the universal property of the
Clifford algebra, we can extend 4, to a representation = of C. Now, by (5.5),
we have n(—v)x=—2,(W)x*=24,v)== (v), v€V. Since C is generated by V, we
have reHom ((C, —), (End Y, %)), q.e.d.

Combining (5.2) and (5. 3), we get
(5.6) THEOREM. Notation being as above, we have

B+#0 <) Hom((C, —), (End Y, %))+0.

When K is a global field of characteristic#2, denote by B, the set of all
bilinear maps 8 : X,XY,— Y, satisfying the condition (5.1), where X,=K,® X,
Y,=K,®Y. By the Hasse principle for the ordered pair (gqx, gv) we shall
mean the statement :

.7 B#0<{—) B,#0  for all .

From (4.8), (5.6), (5.7), we deduce the following
(5.8) THEOREM. Notation being as above, the Hasse principle for (qx, qv) holds
whenever C(qy)=Kym, m=dim V, gyp=—qx|V.
(5.9) The assumption of (5.8) is satisfied if, e.g., m is even and ¢, has the
maximal index. As for other examples, see (6.4).



Hasse principle for division of quadratic form. 153

§6. The case gx=xi+ -+ +x3.

We put m=p—1, qgv=—x?— --- —xj; and denote by (C,, —) the Clifford
algebra of gy. We shall determine the structure of (C,, —) and prove the
Hasse principle (H) for Hom ((C,, —), (K,, *))#0, which in turn implies the
validity of the Hasse principle for our Hurwitz problem.

(6.1) LEMMA. (Cn, =) Q(Cy, —) = (Cpss, —), for m=1, 2,3, ---.

PROOF. Suppose {ei, e, ¢, ey, {ei, ---, e} are sets of generators of C,,

C,, with the relations

i=ep=—1, e;e;=—eje; (1#]),

ehen—=—ene, (B£h).

Put
e/'=1Qe;, 1=i=4,
e/=¢ej_, R e e,e;e,, 4<i<m-+4.
Then, e¢f ef=—cef e/ (i#j) and e/*=—1. Moreover, ¢/=—e{, q.e.d.

This lemma reduces our problem to that of determining (C,, —) for m=4.
(6.2) LEMMA. If D=(—1, —1)x is not trivial,
(Cy, —)=(L, —)
(G, —)=(D, —)
(Cs, = )=(DDD, — B —)
(Cy, —)=(D,, t—), where

L=K(~/—1) and — in (L, —) denotes the non-trivial automorphism of L over
K; t— is the involution — @t of DR K,=D,.

Proor. If Ci is the even part of C,, C,=Ci P C5. i=K+Ke,e,+Ke,e,
+Keze,=D, and therefore (C;, —)=(D® D, — P —). C,;=CiQ C; where

Ci=K+Ke,e,+Ke,e,+Keze,
1=K+Ke,+Ke,e,e,+Keje,ee,.

Since Ci=D, C{=K,, we have C,=D,. The rest follows easily, gq.e.d.
(6.3) LEMMA. (i) If D is not trivial,

(D; —)®(D7 _)z(K4, t)

(D’ —) ® (L: _) z(LZ) t_)'
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(ii) If D is trivial,
(D, —-)z(KZ) jO);

Jo being the involution ZH(—(I) é)tz( _(1) (1))—1.

Proor. Let {1, 1, j, k} be a basis of D with *=j*=—1 and k=ij=-—ji.
Let {1, ¢/, j/, '} be another copy of the basis. Then, D Q D=A,; Q A;, where

Ay=K+KI+KJ+KI]
A=K+KI'+KJ'+KI']'
I=iQl, J=1QJ, I'=1Q75, J=iQFk.

Since A,=A,=K,, DQ D=K,. Moreover, the involution —&@ — of DD
corresponds to ¢ under the identification

L= )i hre—= ()

Next, D L — L, is given by

. ) Xotx;V =1 x,+x,/—1
(tot it xej+x,k) @z—> 2( - ).
— Xt xvV =1 xo—x, v/ —1

Finally, if D is trivial, —r*—s?=1 for some 7», s€ K, and (D, —)=(K,, j,) under
the identification

. (“?’ S) . ('—'S "‘?’)
71— , Je— s
S 7r —-r S

g.e.d.
By combining the above lemmas, we can prove
(6.4) PROPOSITION. (i) If D is not trivial, then (C,, —) is isomorphic to

(K(@2™%), 1) if m=8c  for some integer c
(L(2tm-bizy ) =8¢c+1
(D @2m-2iz) ) =8c+2
(D (2m=912) @ D (212, t— ) t—) =8c+3
(D @2m-2izy ) =8¢+4
(L(2m-bizy ) =8c+9
(K(2™'%), t) =8c+6

(KQ@m=0m) @ K@M, t D) =8c+T.
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(ii) If D is trivial, then (Cn, —) is isomorphic to

(K @2™%), ) if m=4c
(LE2Mm=D77), 2.—) if —le(K*)?

=4c+1
(K@% @ K@™), £2) if —1e(K*)
(K (@2™2), 2e41) =4c+2
(K @M=D) G KR™ D), 2w D Aerr) =4c+3.

In this list, K(a), L(a), D(a) mean K., L,, D,, respectively, and A,=t if ¢ is
even and A.=j, if ¢ is odd, where j, is the involution Z — J'Z]71, ]Z(_? é)»
also (X, Y )he=(Y%, X%,

(6.5) THEOREM. Let a’ be an arbitrary involution of K,. Then, the Hasse
principle for Hom((A4, a), (K,, *))#0 holds for the following (A, a):

(1) A=D,=DRXK,, a=— Q.
(2) A:Km@Km, (X; Y)a___(Ya" X*).
(3) A=L,=LQRQK,, a=—Qa’, if —1¢(K*)* and L=K(~/-1).

In particular, the Hasse principle for Hom ((C,, —), (K,, *))#0 is true for
all m, n=1 and all involutions * of K, in view of (6.4) proposition. We
remark that the theorem is true for (A, a)=(K,, D K., &’ B a’) or (D, P D,
B @ p) if it is true for (A, a)=(Kn, a’) or (Dn, B), respectively.

PrOOF. There exists an involutorial homomorphism of (A, a) into (K, *)
if and only if K, has a subalgebra isomorphic to A on which = restricts to an
involution equivalent to «, provided that (A, &) is one of the types described
in the statement of the theorem. In this case, we shall say that (K,, *) contains
(A, @) for the sake of simplicity in this proof. We assume that ((K,),, *)
contains (4,, ) for each valuation v of K and show that (X,, *) contains
(A, a) over K.

(1) 4, a)=Dn, —RQa’). First assume D,»1. Then n=4mh for some
integer A and (K,),=(Dyn ®(D,),. Since * leaves (D,), invariant, it leaves
its centralizer (D,), in (K,), invariant. There exists some Fe(D,), such that
Zx=FtZF-! for all Ze(D,), and ‘F=+F. If tF=F, tSFS is diagonal for some
invertible S=(D,), and we may assume that F itself is diagonal without loss
of generality. In particular, Fe(K,), and * leaves (K,), and therefore the
factor (Dy)n @ D, invariant in the factorization (K,),~(Dy)n ® (D,),. Thus,
((Ky),, *) contains ((Dy)n @Dy, — Ra’ @ —)=((Kpim, @’ ®1t). In this case,
sgn*=sgna’. If ‘F=—F, then, for some invertible S&(D,),, tSFS is of the
form
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s )

,  Hy=—u;, 2r+s=h.

Us

Let £ be the matrix in (Ko)in=D, & (D,), corresponding to 1 X F. Then Fis
skew-symmetric and Zx=FtZF-1 for all Z&(K,)s,. In this case, sgn*=—sgna’,

£~ (OIZh

F is similar to I 0 ), and therefore ((K,),, *) contains ((Ky)m, a’ Q jo),
“Tdan

0 I,
-1, 0
((Kyn, *) contains ((Ky)em, @’ @ j,). If sgnx=sgna’, then ((K,),, *) must
contain ((K)um, @ Q@ jo® jo)=((Kp)m, @’ ®1). In all cases, if sgnx=sgna’,
((Ky)n, *) contains ((Kp)m, @’ @1), and therefore, by (4.8) theorem, (K,, )
contains (K,,, «’ @t), which contains (D,, a’ ® —). If sgn*=-—sgna’ and
D+1, then D,#1 for some v and therefore 4m divides n, and (K,, *) contains
(Kim, a’ R j,), which contains (D,, a’ Q —) because (D, —) X (D, a)=(K,, j,)
if z21=yzu™* and a=—u+0. If D~1, (4.8) theorem applies directly.

(2) We first note that the extensions of the involution (x, y)=(y, x) of

where Zio=J'Z], ]=< ) Next, assume D,~1. By (ii) of (6.3) lemma,

x 0y, . : g
KD K~{(0 y)’ X, yEK} to K, are precisely j, and j; given by

S S S L (O L CR

We settle the case m=1 first. If ((K,)., *) contains (K,P K,, ), we may
x

0
ments (1, 0), (0, 1) must have the same rank in (K,),. * leaves invariant the

identify (x, y)e K, @ K, with ( g>®1h, n=2h, because the unipotent ele-

. x
centralizer { (

0 g>, x, ye&}@(&,)h of K,®K,. Put X'=X7 if

(6 )0 (o o)on)

=(8 ?)@X’.

I

(5 o)2x)
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Similarly, define 0 by

(o Dex)=( o

Then, 7, 0 are antiautomorphisms of (K,), and J=y !. There exists some

Se(K,), such that X7=S5"1"XS and X°=!S'tX'S by Skolem-Noether theorem.
. . 1 0 0 0

By conjugating (K)u=(K). @ (Ka by (; o) ®7s+(y |)®S, we may

: 2)@)()*_—_(3(’) 2)@0{ for all x, yeK, and Xe(Ky),.
Since * leaves the second factor (K,), invariant, it leaves the first factor (K,),
invariant. The remark at the beginning implies that ((K,),, *) contains
((Ky)s, 7o) if sgnx=1 and ((K,),, j,) if sgn*=—1. We can show similarly that,
for any m, ((K)., *) contains ((K,)m, @’ & jo) if sgnx=sgna’ and ((K,)sm,
a’ Q. if sgnx=—sgna’.

assume that <<

(3) As above, it suffices to study the case m=1. We first note that the

. . . Xy X —y - X YN,
extensions of the involution (——y x>'_)<y x) of L= {(—y x)’ X, yEK}
to K, are precisely (K,, t) and (K,, j,). First assume —1&(K;)%. Then L,=
LR K,=K,(~/—1) is a field. If (K,), contains L,, 2 divides n and we may

assume that x++/—-1y€L, is identified with (_; i)@[he(Kv)z(X)(Kv)hz

(K., n=2h. As before, there exists some Fe(L,), such that Z*=Ft!ZF-! for
all Ze(L,), and tF=+F. If tF=F, tSFS is diagonal for some invertible
Se(L,), and we may assume Fe(K,),. Then * leaves the first factor (K,),
invariant. If sgn*=1, ((K,),, *) contains ((K,),, t) and if sgn*=—1, it contains
((Ky)s, jo). If tF=—F, we may assume that F is of the form

. » aiEK‘v’ 27’_{—5:/'1.
a;v/—1

ao/=T ]
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Put

a;

J )

*k — t -1 —
1 0>®Hz. Then Z*=F*'ZF ! for all Z——( y x)@X.

Therefore Z*=TEF‘ZF-1T1 for all Ze(K,), for some T, which commutes

and F=I,® H,+(

with all elements of the form (_; i)@X and therefore is in L,; T=

o )en. TR=(_7 V) @H+H(T) V) ®H. If sne=l, TF
must be symmetric and hence x,=0. In this case, TE£ is similar to I,QF,
for some F,, i.e., ((K,)., *) contains ((K,), ). If sgn*=—1, TF is skew-
symmetric and we must have y,=0. In this case, ((K,),, *) contains ((K,);, Jo)-
Next, assume —1<(K;)%. In this case, (L,, —)=(K, P K,, ) and the argument
in (2) implies that ((K,),, *) contains ((K,),, ji) if sgnx=1 and ((K,)., jo) if

) s
is equivalent to {. Combining all the cases, we see that (K, *) contains
(K,, t) or (K,, j,) both of which contain (L, —), and this completes the proof
of the theorem.

Yo

sgnx=—1. Since —1 is a square in K, (? é)w((l) _?)m(

(6.7) REMARK. A slight modification of the above proof shows that (6.5)
theorem remains true if we replace ((—1, —1)g, —), (K(+~/—=1), —) by more
general ((a: b)K} —>) (K('\/_E); —)'
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Added in Proof: In a recent letter Dr. A. Wadsworth remarked that one
can prove [Theorem| (3. 1) of this paper by induction on the number n=r(g)/r(f)

starting with the statement for n=1 which is the main theorem of Ono [1].
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