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§ 0. Introduction.

Let F be a totally real algebraic number field of finite degree g, and m be
an integral ideal of F. Let X be a character of finite order of the narrow ray
class group modulo m. Then we say that X is totally real (resp. totally imaginary)
if the field corresponding to the kernel of X is totally real (resp. totally imagi-
nary). Consider the L-function with character X which is defined as usual by
L(s, X):(a%:l)((a)(N (a))~%, where the summation runs over all integral ideals a of

F prime to m, and N(a) denotes the norm of a from F to Q. In his paper [12],
C. L. Siegel considered the {-function {(b, m, s):,?_, (N(g))"*, where the summation

runs over all integral ideals g in the same narrow ray class mod.m as a fixed
ideal b prime to m, and showed that there is an algorithm to compute {(b, m, 1—m)
for positive integers m, and that the value {(b, m, 1—m) is contained in the
rational number field @. Especially, when m=y (the maximal order of F), he
obtained an arithmetical expression of {(b, m, 1—m) (see Siegel [11]). Recently,
using a method essentially different from Siegel’s, T. Shintani has given a
formula for the value {6, m, 1—m) (hence that of L(1—m, X) without our
assumptions on X (see below)) in terms of (a generalization of) Bernoulli poly-
nomials in several variables.

In this paper, we shall introduce a certain trick which enables us to apply
Siegel’s Theorem (see Siegel Satz 1, and see text Lemma 2.1) in the case
of a non-trivial character X which satisfies the following conditions :

(1) X is totally real or totally itmaginary,

(ii) m=#1, and mN\Z is a prime ideal pZ.
When the restriction of X to Z is not trivial, we shall further assume a certain
additional not too restrictive condition on X (for details, see and
2.2). Under the above assumptions on X, if £>1, we shall derive a new formula
for L(1—k, X) which is similar to the Siegel formula for {(1—k).
In particular, we can prove that

(*) L(1—Fk, X) is contained in QX) (=Q(X(a); a €Or)).
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If k=1, for a simple technical reason, our method gives the value of L(0, X)
only when X is a real valued character. In other words, we can give a formula
for the relative class number of the totally imaginary quadratic extension over
F corresponding to X (Theorem 2.1). So, our method and the final expression
of our formula have quite different natures from those of Shintani’s.

Now, let us explain our method in more detail. Let 5 be the maximal
order of F, and we denote by GL3(2r) the subgroup consisting of all elements
in GL,(Op) with totally positive determinant, and put I {(m)={asGLf(Op);

az[j 3]’ ¢=0 (mod.m)}. We regard GL{(Op) and [o(m) as subgroups of

GL;(R)?, the product of g-copies of GLI(R)={asGLyR); det(a)>0}, by the
following injection :
GL;(Op)2a—(a?®, -, a®)eGLf(R)?,

where we denote by a‘®’ the i-th conjugate of @« over @. Then GL;(Or) acts
on 92, the product of g-copies of the complex upper half plane $={z=C;
Im(z)>0}, as follows:

a(zl’ ) Zg):(a(l)(zl)y ) a(g)(zg»,
a(i)(Zi):(a(i)Zi‘{_b(i>)/(c(i)z1:+d(i)),

1) (%)
) a b ... .
where a=€GL; (Op), a=(@a‘?, -, a'®), a”’:[c(i) d“’]' For every positive inte-

ger k, and a function f on £%, we write

0.1) (flelad)2)=f(a(2)J(a, 2)7*,
where J(a, z)= i[l (cPz;4-d™P).

Let X, be the character of (Or/m)* which is naturally obtained from X. Let
M (m), X,) denote the vector space of all Hilbert modular forms of weight &
with respect to X,, We simply write it M.(I"«(m)), when X, is the identity
character. Namely feM (I (m), X,) if and only if

(0.2) FlLal=%(d)f(z) for all a:[? (ﬂe[’"(m),

and f(z) is holomorphic on ¢ and finite at every cusp of I'o(m). Then f ha-~
the following Fourier expansion at infinity :
(0.3) f<2)=ao+621a($bp) exp(2zi Tr(£2)),

by
F
&»0

where £ runs over all totally positive (3»>0) elements in d7!, and by is the different
of F and Tr(éz)=&Wz,+-++£¥z,. The coefficient a(§dr) depends only on the
ideal &§dr by the property Now we define the Dirichlet series correspond-
ing to f(z)e M (I"(m), X,) by using as follows:
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(0.4) Dy(s)=% ala)(N(@)™,

where a runs over all integral ideals of F.

In § 1, without assuming the condition (ii) for X, we shall introduce a Hilbert
modular form Ep, 3z &M (I'o(m), X,) (k; a positive integer), whose constant term
of the Fourier expansion at infinity is 27¢L(1—Fk, X). This form Ep,, is an
Eisenstein series of “ Neben”-type, and it corresponds to the Dirichlet series
Cr(s)L(s—k-+1, X), where {z(s) is the Dedekind {-function of F. These forms
have been constructed by Hecke [3], in the case of one var.able (F=Q).

Now, for a subgroup I'o(N) of SL,Z) for a positive integer N, let
Trrywyscy,czy denote the trace operator from H,(I'o(N)) to HMy(SL(Z)) (cf. Serre
[8] §3), namely

(05) (Trrowstaco D= 2 flilad,  for feM TN,

where SL(Z)= QF oNda;, d=(SLyZ):I'(N)). Further we define the em-

bedding P of $ into 9% by P(z)=(z, ---, z2)€9?. Let X denote the restriction of
X to @ In §2, under the above assumptions (i), (ii), we shall calculate the
Fourier expansion of Trr cpysz,c2((Er,z,2°P)X Eq,3,3) (for every positive integer
satisfying A=kg (mod.2)) when X1, and Trr,pysi,cz(ErezeP) when I=1.
Then, to our Trrocm/sz.zu)((EF,k,x°P)><Ea,z,i) and Trr0<p>/SL2<z>(Ep,k,z°P), we can
apply Siegel’s Theorem (Siegel Satz 1, see text, [Lemma 2.1.) that deter-
mines the constant term of a modular form with respect to SL,(Z). In the last
section (§3), we shall discuss some numerical examples of and

The author would like to express his sincere thanks to the referee whose
kind advice led to the improvement of the original paper.

Notation and terminology. As usual we denote by Z, Q, R, C respectively
the ring of rational integers, the rational number field, the real number field,
and the complex number field. For a ring X (=1), we denote by X~ the group
of all invertible elements of X, and M,(X) denotes the ring of 2x2 matrices
with entries in X, and we put GL,(X)=M,(X)*. If F is a totally real algebraic
number field of finite degree g, we denote by ©Op, dr, F4 respectively the
maximal order of F, the different of F, and the adele ring of F. Further FX
denotes the infinity part of F}, and FX, denotes the identity component of FZX.
Let G=GL, the general linear group of 2 variables, and G denotes the group
of all F-rational points of G, and G, denotes its adelization. For a place v of
F, we denote by F,, and G, respectively the completion of F and Gratv. Fora
finite place v of F, we denote by ©,, P, respectively the valuation ring of F,, and
the maximal ideal of ©,. For an idele x=(x,) of F}, we define div(x):IvI pordizy),
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where the product is taken over all finite places v of F, and |x|, denotes the
module of x on F4% For a finite algebraic extension K/F, we denote by bx,r
and Dg,r respectively the relative different, and the relative discriminant of
K/F. We follow the notation and terminology of adelic language of F and

G in Weil [13], [14].

§ 1. Eisenstein series of ‘“Neben’’-type with X of F.
In this section, first we shall define the C?**-valued function &, ¥’ on
BA={<8( {), xeF}, yeFA}, and prove that (¥, C-&F’) with a suitable constant

C is an automorphic pair in Weil’s sense (cf. [14], and see below). Then, we
shall interpret our result into the classical language, and we shall obtain Er s z.
To explain our result, we shall follow Weil the terminology and
notation. Let m be an integral ideal of F, and m=(m,) be an idele satisfying
div(m)=m, and m,=1 for any place v outside m. We always identify the
character X of F3;/F* of conductor m and the character corresponding to X of
the narrow ray class group modulo m. For every finite place v of F, we define
an open compact subgroup of G, by
‘Q”:{(z%w j), Z;‘j’mu:;utzee%v} We write £ for the center of G, and 2, for
its adelization.
We shall deal with a C?°-valued function @ on G, satisfying the following
conditions (see Weil §11):
(A) For all y=Gr and g=Ga, O(7g)=D(g).
(B) For all geGy and z€ %4, O(gz)=0(g)X(2).
(C) If v is any finite place outside m, then for all g€ G4 and P8R, O(gp)=00(g).
u

(D) If v is a place occurring in m, and p=<m w

for all geGa, D(gh)=D(X).

(E) @ is admissible type of Ky for every infinite place of F (see Weil § 53).
We denote by My(m, X), the vector space over C consisting of all the

functions satisfying the above conditions. A pair of functions @< H(m, X),

O’ = M)ym, I) is called an automorphic pair, when they satisfy the following

condition :

(LD ?'(g)=0(gm*)X(det(g))™",

—m é)EGA'

Now we consider the Fourier expansion of such @ following Weil §13,
§60. We shall define the Whittaker function W(x) (xFZ%), which is of C?*-
valued, corresponding to admissible type of 4y (for a positive integer k) at

Zt> is any element of 8, then

where m*:<
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every infinite place w of F. To explain this explicitly, we denote by P. the
set of all archimedean places of F,, and by [ the set of {1, 2}-valued multiindices
on P., i.e. I={(@w)wer Jan<{l, 2}}. For weP., we define a C*valued func-

tion W (x)=(Wy,(x), Wau,(x)) on Fy, (=R) and a C-valued function W,(x) for

a<] by
0, if x>0,

(1.2) Ww,l(x):
|x]*2-exp(—2x|x]), if x<0,

W, ol )= Wy o(—x)
Walx)= I Ww,a(Xw),  for each a=(ay)yer 1.

Then the Whittaker function W corresponding to type 4, at every w &P, is
defined by W(x)= (§D Ww(xw), for x=(x4)wep_, where the tensor product is

taken over C for all weP.. Namely

(1.3) W(x)=(Wx))aer (here we consider W(x) as a vector valued function
defined by a row vector (Wu(x))acr).

To describe the Whittaker function corresponding to the other function @’
in the automorphic pair (@, @’), we define a representation M, of O(2, R) by

Meo)=(5" ) for r0=(_ g 227) amd (g D= o).

We define a representation of g} 02, F,) by

M= @ Myw, where M,,=M, on 02, F,)=0(, R).

WEP,,
Then the Whittaker function W’ corresponding to @’ is given by
0 1
/ — -1
14 W/R=W M| Pl

Assume k is even if X is totally real and odd if X is totally imaginary. Then
by and we can easily prove
(1.5) W(x)=i*W'(x) (=+~—1).

We define a non trivial additive character ¢ of F,/F by the following
condition :
(1.6) ¢ x)=exp(2xi{Tr(x))) for a finite place v of F,
where {Tr(x)) denotes the rational part of the trace of x from F, to Q, (h,|p:
a prime of Z),

dw(x)=exp(—2rix) for weP..

We denote by d the differental idele attached to ¢.

The function @ satisfying the conditions (A)-(E) is. uniquely determined by
its restriction & to B4, and & has the following Fourier expansion by the pro-

perties (A)-(E) (see § 13).



254 H. Hipa

(1.7 F(x, y)=co(X)+E 2 c(div(Ed x)W (Ex=)(Ey)

where c¢q(x) is a linear combination of ¢(x)-|x|%? and ¢(x) is the character of
finite order and the conductor of ¢ is 1, and ¢ is a function on the divisor
group of F, satisfying the condition that c(a) equals to 0 unless a is integral

(see § 13, § 65).

We denote by 2 the group of all quasi-characters of F}/F* with the
natural complex structure (see [14] §9). Then we define the Dirichlet series
corresponding to F by Z(w)zZ‘ c(a)w(a) for we 2y, where the summation runs
over all integral ideals a of F.

Now we consider the Dirichlet series which is obtained as the product of
the Dedekind {-function of F and Hecke’s L-function with X. We put for a
positive integer k

(1.8) Cr(s) Lis—k+1, 1)=3 as,(a)(N(a))™*
=IT{1—=(VE)™} - TH1I— (V@) X ®)- (NB) ™}
= I =N E)* 20 - (N )™+ X@) - (N @) 7,

where the summation runs over all integral ideals a and the product is taken
over all prime ideals p of F. Therefore

(1.9) a (@)= %(N (6))51x() .

In the same way, if we put

(1.10) Crls—Rk+1L(s, 1)= X ai(a)(N(a))™*

=TT {1—((N@)* -+ XOXN M) HAXMNP)F 12},
then
(1.11) A2 (@)= blE‘I(N(B))’*“X(a/ﬁ) ‘
Now we define the functions ¢,y and ¢ on the divisor group of F by

[ (N(a))~*2a, 4(a), if a is integral (see [(1.10)),

(1.12) Cr @)= .
, otherwise.

C;e,l(a):

{ (N(a))~*2a, 4(a), if a is integral (see [(1.12)),
0, otherwise.

Further we put co,,(x)=2"¢L(1—k, X)-|dx|¥?, for x&F}.

Then we have the following result:

PrROPOSITION 1.1. Under the assumption (i) (see §0), we assume that m+1
and X is a primitive charactor mod.m. Further we assume k=dy (mod. 2), where
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P

0, if X is totally real,
] ' and we put
1, if X is totally imaginary,

(1.13) F(x, y):CO,k,Z<x)+$EX Crp(div(Ed X)W (Ex)p(Ey),
F'(x, y)=5kco,1,f(x)+€Ex62,z(diV(€d INW(ExIPEY),
0, if k>1,
where 5,2———{
1, if k=l

Then (F, (—1)*Z8(N(m) *V2WX)F’) can be extended to an automorphic pair

of admussible type Iy i My(m, X), where W(X) (=x(X)X(dm) in the notation

of Weil [13]) is the constant factor of the functlional equation of L(s, X).
ProOOF. The Dirichlet series corresponding to F is given by

(114) Z(ws>: ; Ck,l(a)ws<a)
=Cp(k/2+s)L(1—k/2+s, X),

where we define w;r by w,x)=|x|% The Fourier expansion of ¥’ with

respect to W/(x) (see (1.5)) is as follows:
F'(x, y)=0,Co,1,2(x)+i%* 2 ch,1(div(Ed x)) W' (Ex)p(Ey) .
gepr™

So the Dirichlet series corresponding to CF’ with C=(—1)"*2(N(m)) *"P2W (X)
is given by

(1.15) Z'(w)=1*C 2 ch,1(@wy(0)
=18 CL(1—k/2+S)L(E/2+s, T).

Now we consider the poles of Z(w) and Z’(w) on 25 (here the poles of
Z(w) and Z'(w) mean the poles of the analytic continuation of the product of
Z(w) or Z'(w) and the suitable ['-factor as in (A), see below). L(k/2+s, )
for w2y has simple poles at w.is, ®;-z. On the other hand, if k>1,
L(1—Fk/2+s, Xw) has zero at w;_z,», by the assumption 2=d; (mod.2). Conse-
quently, by the assumption m+#1, Z(w,) (resp. Z’(w.;)) has a simple pole at
w_x2 if B>1, and at wy,, -y if k=1. By Weil § 63 Proposition 14, § 59
Lemma 9 (see and the same discussion of § 65, the form of the con-
stant term of the Fourier expansion of &F, F’ is cw;,s(x) for a suitable constant
c¢. Consequently, the Fourier coefficients of &, &’ satisfy the conditions (a),
(b) of Proposition 6 of § 24 because of the Euler factorization property of
Z(w) and Z’(w) as in Therefore ¥ and F’ are eigenfunctions of
all the Hecke operator T, of any place of F prime to m. In [13], we have
studied only a B-cuspidal function on G,, but after a slight modification, Corol-
lary of Theorem 7 in is also valid for other than B-cuspidal functions.
Namely, (¢, CZ’) is an automorphic pair of admissible type 4,z if Z(w) and
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Z'(w) satisfy the following conditions :

(1) Z(w) and Z'(w) can be continued meromorphically to functions on Qr
with finite many simple poles at @-w.rs,, Where ¢ is a torsion element in 2r of
conductor 1, bounded in every wertical strip of Qr outside circles around these
poles.

() Z(w) and Z'(w) have the functional equation of the following type for
w<€ 8y, whose conductor is prime lo m.

(A) w];) Gy(s+sy+k/2—A,)Z(0w;)

=k(0)’wo(—1)- i U lw(m)w(d f)? | m|i- |d S|
x IL G—s—suwtk/2+Au)Z" (0 '0_;).

Here we denote by w. and w, (w<P.), the infinite part of @ and the w-com-
ponent of w, respectively. Further, A, and s, are defined by w,(x)=x *w-|x|%,
A,y,=0o0r 1, s, =C, and f is an idele of F such that div(f) coincides with the
conductor of w. We put Gu(s)=(2r)*"*I'(s), and x(w) is the normalized Gaussian
sum with respect to f and d (see Weil [13]).

The condition (1) has already proved by and the above argu-
ment on the poles of Z(w) and Z’(w). Now we consider the condition (II).
First we put

Z(ww)=Lk/2+s, 0), Zlww,)=L(1—F/2+s, lo),

Ziww)=LA—k/2+s, w), ZYoww)=L(k/2+s, Iw).
The functional equation of Z,(w) is (see Weil [18]) given by
(B) wleTP G:(1/2+s+(k—1)/2+s54) - Z(wws)

=x(@)-o(df) 1dfIE>* T Gi1/2—s—(k—1)/2=sp+24u) Ziw  0.,) ,

where G(s)=n"2I"(s/2).
The functional equation of Z,(w) is given by
© wg G,(1/24s—(k—1)/2+5,+1—2A4,)  Z(ww;)

=r(wX): wX(dfm)-|df mly-|dfm|z% "
X wg G(1/2—s+(k—1)/2—5,+1)-ZHo 'w_,),
if X is totally imaginary.

(©) L Gi1/2+ s—(k=1)/2+5.)- Zwo)

=k(X)-0X(dfm)-|df m|%-|dfm|g% "2
X L G1/2=s+(k=1)/2= 54, +240) Zo 0),
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if X is totally real. By (1.14) we have
Z(ww)=Z(0w,) Z{ww;), Z'(ww,)=i*CZow) Zow,),
where C=(—1)#28. |y |02 W (X).
Thus we obtain the following functional equation of Z(w) and Z'(w) by (B),
©), (C1);
(i) if X is totally imaginary,

(D) TI Gi(1/2+s+(k—1)/2-5u): Gu(1/2+ s—(k—1)/2+ 55+ 1—244)  Z(0w;)
=CH(=1)** e(@)e(@)X(d m)X(flo(d fYo(m)-|df1Z- [m]y- |m|g*—0"
X I Gi(1/2—s—(k—1)/2—s,+2A4)
-Gy(1/2—s+(k—1)/2=sp+1)-Z' (0 0_s),

Where C:(_l)[k/ﬂg . l ml[—l(k—l)/Z_ W(x)’
(ii) if X is totally real,

(D) wIE'; Gi(1/2+s+(k—1)/2+54)-G,(1/2+s—(k—1)/2+s4) - Z(ww;)
=CH—=)** wl@)u(@X(d m)X(flw(d f)w(m)-|d fI5-|m|%- |m|z* 0"
X II G(1/2—s—(k—1)/2—s,+2A,)

wWEP
-G(1/2—s+(k—1)/2—5,+2A,)- Z (0w 'w_y),
where C is as above.

Now we shall prove that (D) (resp. (D’)) is equivalent to (A) if X is totally
imaginary (resp. totally real). First we consider the ['-factor (G-part) of (D) or
(D), i.e. we shall prove the following relation between the G-part of (A) and
the G-part of (D) or (D).

Case (i)

(1.16)  G,(1/2+s+(k—1)/2+45y) - Gi(1/24s—(k—1)/2+ 5, +1—2A,)
XGy(1/2—s5—(k—1)/2—5,+2A,) " G,(1/2—s+(k—1)/2—5,+1)7*

=(—1)*2-Gy(s+spt+k/2—Ayp) G(—s—su+k/2+A,)",
Case (ii)

117  G(1/24s+(k—1)/2+54,)-G,(1/24s—(k—1)/2+54)
XG(1/2—s—(k—1)/2—5,4+2A,) G (1/2—s+(k—1)/2— 5, +2A4,)"
=(—1DAw-(—1)*3-Gy(s+ s, +k/2—Ay) G(—s—s,+ER/2+A,) .
To prove (1.16) and (1.17), we use the following formulae of G, and G,:

(1.18) G(s—2n)= _InI(s/Z—j)‘lﬁ"Gl(s), for any positive integer n.
j=1

(1.19) G(s)-G(s+1)=r"1Gys).
(1.20) Go(s+1)=n"1sGys).
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The formula (1.18) and are easy consequences of the formula /"(s+1)
=sI'(s), and is derived from I'(s/2)'((s+1)/2)=nrV221=5"(s).

We first consider Case (i) (In Case (i), k=1 (mod.2) by the assumption).
As to the G-part of the left hand side of (D), we obtain by (1.18),

(1.21) G,(1/2+s+s,—(k—1)/2+1-2A,)

(k-1)/2

{1/2+(1/2+ s+ 50+ (k—1)/2+1—24,)—1} ~-z¢4-0r

i=1
X G(1/2+s+s,+(k—1)/24+1-24,),
and by (1.21) and we obtain
(1.22) G(1/24s—(k—1)/2+5s,+1—2A,)-G,(1/2+ s+ s, +(k—1)/2)

(k-1)/2

= il_Il {1/2-(1/2+5s+s,+(k—1)/24+1—2A,)—1i} "t-qtk=32
X Gy(1/24s+5,+(k—1)/2—Ay).
In the same way, as to the G-part of the right hand side of (D), we obtain

(1.23) G(1/2—s—(k—1)/2—5,+2A,)-G,(1/2—s+(k—1)/2—s,+1)

(k-1)/2

= T {1/2-(1/2—s—su+24,+(k—1)/2)—i} 1. gtk

1=

X Gy(1/2—5—54,+(k—1)/2+Ay).

Then we see easily

(1.24) (kt_I_I:m{(1/2)-(1/2+s+sw+(k—1)/2+l~2Aw)—i}“
=(—1)* T (1/2) (<172 s su—(k—1)/2—-1424,)+1}

=(— 1) 02 T ((1/2)-(1/2— s— s+ 240+ (E—1)/2)—1—(k—1)/2+1} -

1=1

=14 T (12 (12— s— s+ 24, H = 1)/2) =) 1.

Therefore we obtain (1.16). As to case (ii) (k=0 (mod.2)), we obtain exactly
like as (1.21) and (1.22), for the G-part of the left hand side of (D)

(125)  Gy(1/2+ s+ (B—1)/2454) Gi(1/2+ s—(k—1)/2+5.)
= I {1/2:(1/24 s+ (b= D)/2+ 50+ D—i) Hm e
X Gy(1/2+s+(k—1)/245,).
As for the right hand side of (D’), we have
(126)  Gy(1/2—s—(k—1)/2—5u+240) Gy(1/2— s+(k—1)/2— 5, +2A)
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— ij:j (1/2-(1/2— s-H-(b—1)/2— 5y +2 A, +1)— i} =1 g4/

X Gy(1/2—s+(k—1)/2—5,+2A,).

If A,=0, by the same argument as (1.24), we obtain

(1.27) :I_I_/j{1/2-(1/2+s+sw+(k—1)/2+1)—i}"‘

=(—1)** :T:I/j {1/2-(1/2—s+(k—1)/2— sy +2A,+1)—i} 2.

If A,=1, we have by [1.20
(1.28) G,(1/2+s+(k—1)/24s,)=1/2+s+(k—1)/2+ s, —Ay) 7*

X G(1/24s+(k—1)/24s,—Aw)
and

(1.29) Gy(1/2—s5+(k—1)/2—s,+2A,)=01/2—s+(k—1)/2—5s,+ Ay) 71
X Gy(1/2—s+(k—1)/2—5p+Aup).
Also like as (1.24), we obtain

(1.30) j_—[j {1/2-(1/24+s+(k—1)/2+ s, +1)—1} - (1/24s+(k—1)/24 s, — Aw)

=(=1)#e I {1/2-(1/2 s+ (k—1)/2— 5, + 24, + 1)~}

X(1/2—s+(k—1)/2—5s,+Aw).

Therefore, by (1.256~30), we obtain (1.17).
Comparing the equation (A) with (D) (resp. (D’)), by (1.16) (resp. (1.17)), our
task is to prove the following:

K@) 0(—1)- iU (m)a(d ) Imls-1d %

XAC (=) u(@)r(@X)X(d m)X(Fe(d fYro(m)-|d f 14 mly- | m|z*72
(—1)hims : Case (),
(— B0, (—1) (0(—1)=(=1)%w): Case (ii),

where C=(—1)1#/28| ;|3 * V2. W(X). Then the equation is reduced to

(1.31) W{—Dr(0) X {C k(wX)X(dm)- | m|z* 2} -1
{ (—1)k/28 : Case (i),
B (—=1)*%24 (—1): Case (ii).

It is easy to see by the definition of x(w),
w.{—De(@)e(X): Case (i),

(1.32) /c(a)X)Z[
£lw)e(X) : Case (ii).
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By the definition of C, and by W(X)=x(X)X(dm) (see Weil Chap. VI), we
can see immediately from [1.32)

Finally, we calculate the constant term of &, &¥’. To formulate our result,
we first explain some notations for the Haar measure on Fj;. We put

Y={xeFi;|x|l4.=1}, N={x&€F%; x=(, -, v) vER}},

then we have F4DOF* and Fi=F4YXN. We also put G,=F}/F*. For each veR},
we define u, as the element (v, ---, v)€N. For each finite place v, we normalize

the Haar measure d*u, on F; by S d*u,=1, and for an infinite place w we
OX

v
define the Haar measure d*u,, by d*u,=|u,| - du,, where du,, is the Lebesgue
measure on F,,. We denote by d*u the product measure on F} of d*u, for every
place v. On N, we take the Haar measure d*v by d*v=v7'dy, and on F* we

take the canonical Haar measure dd defined byS fdo= > f(&), and on G,
F* gcr*
we define the Haar measure d,u by do-d,u-d*v=d*u. By the discussion of the

beginning of this proof, the constant term of &, ¥’ is given by the following:
(1.33) Co, e, (X)=bw /(%)

ok, 1 (X)=b"wrs(x), for suitable constants b, b'.
Now we define J(w,) following to Weil § 63,

](ws)ZS:SG {Ftuu,, 0)—cor,(tuu,)} - w,(tun,) -diud*y .

1
Since, (F, CF’) is an automorphic pair (where C=(—1)*2. W (%) |m|7* V7?),
(F, CF’) satisfies F(tuu,, 0)=CF'(mt'u"'u,™, 0) (see Weil §64 (45)).
Therefore we have -

1

(1.34) f<ws>=3 S (F(tun,, 0)—b-wrsluny)} o (uu,)dud y
+C'S;SG {F'(mtuu, ™, 0)—b"  wpo(mt u u, ™} - o (tun,)d,ud”y
1

1
+c-bf-goga @ra MU0, @ (tu,)d yud
1
1
—b-SOSG wr(tun,) wduu,)d,ud”y.
1
By Lemma 10 of Weil § 61 and the argument of § 63, we see easily that
the first and the second integral in (1.34) are entire functions in s. Then we
calculate another integral by using the fact: SG diu=28"1hp-Rr, where hp is
1

the class number of F and Ry is the regulator of F. We obtain

(1.35) J(ws)=“an entire function in s”+C-b"-2¢" - hp-Rp-|m|%2-|t|5¥%/(s—Fk/2)
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—b-25" hp-Rp-[tI5*/(s+k/2) .
On the other hand, by Proposition 14 in Weil § 63, and
| Wi o) ® dup=@n) s Gsth/2e,  for acl,
FX WETeo

=<

we have
(1.36) J(wo)=1d|3* 2r) ¢ G(s+k/2)% - Z(w;)
=|d|5*-27%-Gi(s+k/2):G\(s+k/2+1)* Z (w;) Zo(ws) (by [1.1I9).

Since the residue at s=0, 1 of G.(s)¢-{#(s) is well known (see Weil Chap.
VI § 6 Theorem 3), the residue of G,(s+k/2)%-Z,(w,) at s=—Fk/2 is —25 ' hp-Rp,
and also Zy(w-_g)=L(1—k, X). Consequently, the residue at s=—k/2 of J(w,) is
—28 "V hp-Rp-27¢L(1—F, X)-|d|%¥? by Therefore by (1.35) we obtain

b=2"2L(1—k, X)-|d|%>.

Repeating the same calculation, we obtain

) 0 if k>1,
S loep(0, 1) ldlr if k=1
Then all the assertion of [Proposition 1.1l were already proved. g.e.d.

REMARK 1.1. We explain the same result in the case of m=1 without proof.
In this case Z(w) and Z'(w) have poles at w_;;, and Z-wy, if £>1 and .y,
L -w.y, if k=1, then we can prove the same result as [Proposition 1.1l for the
following constant term of &, &’

if B>1  copu(1)=2"2L—k, X)-|d|{* wro(x),
¢o,,1(0)=2(d)- 27 L ~k, 2)-|d|Z*- Xw /(%) ,

if k=1 coau(x)=272L(0, X)-|d|{* wyo(x)+X(d)- 275 L(0, 7)-|d|>- Xewyso(),
¢6,1,2(0)=27L(0, 1) |d14* 1o 2)+X(d)- 27 L(0, X)- |d[if*+ Xwyo( %) .

Now, we shall interpret our result in the classical terminology. For details,
the correspondence of classical modular forms and adelic ones are explained in
Yoshida [15]. In this paper, we discuss only the restriction of &F, F’ to
FX.xXF. To formulate our result, we define some notations :

For a=(1, .-, 1)el={1, 2} 4, we denote by W, the a component of the
Whittaker function (see (1.3)). We put ¢ (resp. ¢’, ¢”) for the component of F
(resp. F’, F'(mx, my)) corresponding to a. For (x, y)eF..XF., we define
z€9? (the product of g copies of the upper half complex plane) by z=ix+y
=(ixy+Yw) WEP. We define the function Ep iy, E'pr,x, E”F,r,x 0n H° by

Ep,1,x(2)=|d|3"* wg} [x] ¥2 B(x, ¥),
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E'pa@)=d]a" 1L 20|77 ¢(x, 3),

E"p (@)= lmd3" TL |xwl™?-¢"(x, 3).

Then the condition (A)~(E) and [Proposition 1.1 assert Erz, E'Fex
eML(m), X,). By [1.13), we have

(1.37) &(x, y)=co,p,(x)+ erck,x(pr) W& x) exp(—2miTr(€y)),
<F

¢'(x, M)=co,p,1(0)+ 2 ¢, 1(607) W€ x) exp(—27iTr(§y)),

ser

&"(x, M)=co,pr,z(mx)+ 2 ¢ p,7(Edm)W(Ex) exp(—2aiTr(€y)) .

geF™ .
By and (1.3), we have

IO [xwl*2exp@raTr(x)), if x,<0 for all wel.,
Wx)=1 ¥F=

0, otherwise.

Therefore, by the definition of Er %, E’r,2,x E”r:x and [Proposition 1.1, we
obtain

(1.38) Ep,1,(2)=2"8L(1—k, )+ 2 a,dr) exp2riTr(§z)),
gen
£>0

E'px(2)=0,275L(0, X)'i‘e > . a’,2(Edp) exp(2miTr(£2)),
cop
E»0

E”p,1,2(2)=0,27%L(0, X)+e >_T) la’k,x(Eme) exp(2riTr(€z)).
Eb;, m-
&>o

Now we put t,=(xp+yi)"%, fu=ti' Xw, ew=tz'+y, and e,=—e, for (x, y)
eFZ . XF and for weP., and t,=1, f,=1, e,—=e,=0 for any finite places wv.
Then by Proposition 4 and the condition (II’) of [14] § 17, (¥, CF’) satisfies :

(1.39) F(@tf, te)=CF'(mt™f, mtte’)- @ M (r(n/2—arg(zL)),
where z=1ix+y and arg(z,) denotes the argument of z, and M, is defined;in

(1.3) below. So we restrict both hands side of to FX.XF, then by an
easy calculation, we obtain:

(140)  Erpp(—1/2)- 11 zt=(=0f (= D2 N @)™ W) E”p,1,1(2),

where —1/z=(—1/z,, -+, —1/z,). Summing up our results, we obtain the fol-
lowing [Corollary]:

COROLLARY TO PROPOSITION 1.1. We assume m+#1 and k=d, (mod.2) and
we put for an integral ideal a in F,

@@= (N X(0), - asx(@)=23 (N(6))* ™ 2(a/).
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Then we obilain

(1.38)  Ep,p(2)=27%-L(1—Fk, X)+ 2_161 r(E0p)-exp2riTr(€z2)),
e
E'pp2(2)=0,-27%- L0, N+ = la/k,z(gbp)‘eXD(ZI”fiTl’(fZ)) ’
vy
I3

E”F,k,x<z):5k'2—g'[4(0; X+ }?.4 1a/k,x(Sme)'eXP<27Tin(§Z>) ’
§cop'm”
£30

1, if k=1
where 0,=
0, if k#1.

Furthermore Ep, 4,7, E'p s xS M(I(m), %) and
(140)  Epl=1/2) IT zo*=(=* (=1 =(Nm) ™= W) E” r,1,3(2) .

REMARK 1.2. [Corollary] to [Proposition 1.] can be also proved by the
classical result of Hecke (cf. Hecke [2], Kloosterman [6]). One can also
refer this fact to Serre appendice.

REMARK 1.3. For the case m=1, we also obtain the same result as above.
But if F=Q(~/D) with a positive integer D, has no signature distribution and
X has order 2, then it is easy to see that Ep,, is reduced to 0.

§2. The values of Hecke’s L-functions at non-positive integers.

For a positive even integer k>2, let G, be the Eisenstein series of weight
k with respect to SL,Z). The Fourier expansion of G, (k>2) is given by

(2.1) Gu(2)=1—(2k/B,)- élak_l(n)-exp@rzinz),

where B, is the k-th Bernoulli number and o, is defined by ag(n)zg)tg. We
put also Go=1. We define 4(z) by 4(z)=exp(2riz)- ﬁl(l——exp(Zﬂinz))“.t)oF urther,
for a positive even integer h, we put Tp=Gisrnr-n+2d" """ for
( [h/12]41, if h=£2 (mod. 12),
r(h)=dim M,(SLLZ))=
Ch/12], if h=2 (mod. 12).
We define the rational integer C,, ;j=1, -+, ¥=v(h) by
Tw=Cn,r exp(—2xirz)+---+Cn, - exp(—2miz)+Cp ot .
It is easy to see by the definition of T, Cy,,=1, if 7(h)=#0.
Here we restate Siegel’s result (Siegel [1I] Satz 1, Satz 2).
LeMMma 2.1 (C.L. Siegel). Let M=a,+ glanexp(Zninz) be the Fourier ex-
pansion of a modular form of weight h with respect to SLy(Z). Then we have
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Ch,o'a0+cn,1'a1+"'+ch,r'a'r:(), Jfor r=r(h).

Furthermore Cp,0#0 if r(h)#0.
REMARK 2.1. We recall here Siegel’s table (Siegel p. 91) of C,,;
J=1, -, r=r(h).

h | r(h) Cnyo Chy Chy2
4 1 —240 (—2%-3-5) 1
6 1 504 (22-32-7) 1
8 1 —480 (—2°-3-5) 1
10 1 264 (2%-3-11) 1
12 2 —196560 (—2¢-3%*-5.7-13) 24 2-3)| 1
14 1 24 (2°-3) 1
16 2 —146880 (—2°-3%-5-17) —216 (=283 1
18 2 86184 (23-3%-7-19) 528 (2*+-3-1) | 1
20 2 —39600 (—2*-3%-5%-11) —456 (—2%3-19 | 1
22 2 14904 (2%-3%-23) 288 (25-3%9) | 1
24 3 —52416000 (—2°-3%-5%.7-13) —195660 (—2°%-3%2-5-1087) | 48 (2*-3)
26 2 1224 (23-32:17) 48 (2+-3)| 1

From now on, we assume the condition (ii) of §0, i.e.
(i) m+#1 and mN\Z is a prime ideal pZ.

We put N(m)=p/, f>0. We consider the embedding P from £ into $¢ defined
by P(z)=(z, -+, z), then P satisfies the following properties :

(2.2) (i) For all a=GLI(Q), a-P=P-q,
(ii) For all feM(I(m), Xo), foPEM (I (D), Zo),

where we denote by Z, the restriction of X, to Z.
For a positive integer N, we have defined in Introduction (see (0.5)) the

linear map Trp vysz,cz (if there is no confusion, we write it simply by Tr)
from HM,(I'\(N)) to M (SL,(Z)) by

2.3) (Trrycxyszacef)z) = E Flila), for every feu(T(N)),

where a;, j=1, ---, d is one of the left representatives of I'((N) in SL,(Z), i.e.
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SL(Z)= }d{ I'(N)a,, (disjoint union and d=(SLy(Z): I'(N)).

To calculate the Fourier expansion of Tr(f) for a given feM, ([ «(N)), we
prepare next Lemmas.
LEMMA 2.2. We assume that N is a prime number, then

SL{(Z)=_\J NFO(N)<(1) _DUFO(N), (disjoint union).

PROOF. It is easy to see by the definition of I () that ((1) _;), 0=d<N
is not left equivalent to each other under I'((N) and using the fact (SL,(Z):
I(N))=N-+1 we obtain q.e.d.

LEMMA 23. Let N be a prime number and f(z) be an element of My(I"(N)).
Put

1) f@=a+ g}l a,-exp(2rinz), and

(i) f(—1/2) 2z *=by+ i;l bn-exp(2zinz/N).
Then we have

(24) (Tr(FNe)=(ao+ Nb)+ 33 (an-+Nbay) exp(2rminz).

Proor. We put ad=<$ _cli

i) Tr(f)=f+, 3 Fliladd.

), 0<d<N, then by

By the assumption (ii) of this Lemma, we have

3 fhlad= 3 f(=1)z+d)-(z+d)
=Nby+ i)l (OSdE<N exp(2zind/N))-b,-exp(2rinz/N) (by (ii))

=Nb,+N i b.n-exp(2rinz), where we use
n=1

0, if n=£0 (mod. N),
N, if n=0 (mod.N).

Therefore by (iii), we obtain Lemma 2.3 g.e.d.
By [Corollary] to [Proposition 1.1, for a primitive character ¢ of (Z/NZ)*,
we put the Eisenstein series associated with the character ¢ of weight 4 by

> exp(2mind/N)=
0sd<N

(2.5) Ea,1,4(2)=—Bi,4/22+ i by, s(n)-exp(2minz),
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E’q,1,4(2)=—02B1,4/22+ nﬁ:)l b 1, 4(n)-exp(2rinz) ,

where B, is the A-th generalized Bernoulli number with ¢ and,

[ 0, if 2#1,
5;21 .
1, if 2=1, and
(2.6) bay(n)=2> d**-¢(d),
5
b 3,0(n)= > At g(n/d).
&5,

By the property (2.2) (ii), if we put @sx=FEprsx°P, ¢ 2,x=E'F,°P, and
" s x=E"p,r,2°P, then ¢uz, ¢ p,0E M (L o(D), %). Put

@.7) b rn2)=2"L(1—k, 1)+ il Ay A(n)-exp(2zinz)

8" 1x(2)=0:274 L0, D)+ 3 A'w(n)-expQainz/p),

0, if k+1,
where 0,=
1, if k=1, then by (1.38) of Corollary to Proposition 1.1, we have

2.8 Ap(n)="2 a,(6dp),
gvp!
Tr)=n
£>0

A’k,x(n): > a/k,l(Eme)-
¢svpim™l
Tré&)=n/p
£30

By (1.40) of [Corollary| to [Proposition 1.1, we obtain
2.9 Eox(—1/2) 27 2=(—i)*-(=1)#2-N"V2. W())- E’ g,2,5(2/N) .
B ai(—1/2) 2 HE= (=) F - (DD (N )™ W (D) 34, 2(2)

Now, we calculate the Fourier expansion of Tr(Eq, 7 ¢e,y) (A=kg (mod. 2)) if
%+#1, and Tr(@s,x) if X=1 by using Lemma 2.3 After an easy calculation, we
obtain the following Fourier coefficients:

the n-th Fourier coefficient of Eq,3,7 @&,z

=2"¢L(1—k, N)ba,5(n)—(B;,3/22) Ar,(n)+ :lZ:}i b7 (1) Ar(n—7j),

the constant term of Eq ;% ¢ x=—2"2L(1—Fk, X)-(B,,3:/22),
the Fourier coefficient of exp(2zinz/p) of E’q;:(2/p):¢" r,7(2)

= 3427 L0, )-b2(1)— 32+ (Bo2/ D Al a(m)+ 2 ba a5 A xln =),

the constant term of E’q,1(2/p):¢"+,1(z)=—040,-274L(0, 7)(By,1/2).
By Eoi Grx and E’q1(z/p)-¢"s,2(z) satisfy the assumption of



Values of Hecke’s L-functions 267

Lemma 2.3, therefore we can apply to these forms, then we obtain
the following Fourier expansion of Tr(Eq,:,7 ¢r,), if 1#1.

(2.10) Tr(Eq,i¢r,)0=—2"5L(1—k, X)-(Bs,/2A)—C:34-8-27¢L(0, 7)-(B,,7/2)
+ n2=1 [27¢L(1—Fk, X)-b;,3(n)—(By,7/22)- A x(n)+ jz;): b1 Ag n—7)
+Ci{04-275L(0, 1)-0'3,5(np)— 82+ (By,7/2)- A »,2(np)

no-1
+ ng b 3,7(J) A r,i(np— )} 1-exp(2r)inz,
where we put N(m)=p/ for />0 and
Clz(_i)kg+2(_1)[k/2]g+[2/2]p<1-f)/2 W(X) W(Z) .

Exactly like as above, we obtain the following Fourier expansion of Tr(ge,x)

if 1=1.

(2.11) Tr(pe)=2"5L(1—Fk, 2)+C,0 272 L0, %)

=+ 21 (A (n)+Co A’ ¢, 3(np))-exp(2r)inz,

where we put N(m)=p/ for f>0 and C,=(—1)*8-(—1)tF/=8. pl=I2. W (X).
Before applying to (2.10) and we prove some Lemmas.
LEMMA 24. Assume the conditions (i), (ii) in §0 and that X is a primitive
character modulo m and has order 2. Put N(m)=p’. Then ¥=1=7f=0 (mod.2)

and m is prime to 2, or m|2.

PROOF. First we assume that m is a prime ideal and prime to 2. We
choose a primitive root x (mod.m). If we put d=(p’—1)/(p—1)=1+p+---+p/ 73,
then x? is a primitive root (mod. p), and Z=1=X(x?)=1. It is easy to see f=0
(mod. 2)=d=0 (mod. 2)eX(x%)=1. In this case, we obtain

Next we assume m is prime to 2, therefore m is squarefree. We put the
prime ideal decomposition of m as follows:

d
m= I p;, and N(p)=p"i. We denote by X; the p;-part of X Since X is
i=1

primitive, we have X;#1. By the above argument, ¥;=1&f,=0 (mod.2). Now
we may assume for a suitable positive integer e<d that ¥;=1<i>e. Therefore
we obtain

- €
i<esf,: odd, then we have x:nxi:(—-)e,
i=1 p

where (;) is the Legendre symbol. Consequently we have I=1<e¢: evens
d -
fzg‘,lfi: even. As to m|2, clearly we have 1=1. g.e.d.
LEMMA 2.5. Under the assumption (i) of §0,
() if T#1, W)W p* =),
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if 1=1, W(O-p* " <QQ),
(ii) if X has order 2, then W(X)=1.
Proor. To prove (i) we consider the Gaussian sum G(X) of X, i.e.
G(X)-——X(pbpm% ‘E%Ey‘" Xo(B)-exp(riTr(pfB)),

pevp!

where p is an element of F satisfying (pbrm, m)=Op. Then we have
(—D)EGX)p~7"2 if X is totally imaginary,
GX)p~772 if X is totally real.

For a positive integer b prime to p, we denote by o, the element of Gal(Q(X, {)
/QX) (=exp2ni/p’)) satisfying (={® and X°=X. From the definition of
G(X), we obtain easily

) G»=1CA=ULGCE), GAP=iBGE),
so that we have (G(X)G()%))“b:G(X)G(i). Therefore we obtain
COGCE=QX).

On the other hand, if X is totally imaginary and g is odd, then X is imaginary,
and if X is as above and g is even, then X is real. So, for a non-trivial %, we
obtain the followings :

(2.12) W)=

(—DEGG)p~U*172 | if g is odd and X is totally imaginary,
213) WOWD={(—)*COOG) Y  if g is even and % is totally real,
G(X)G(JZC) pIrD otherwise.

Then by (2.13), we have W)W@)p*"=+CCHp~ Q). 1f L is the
identity character, then we obtain by and (*),

GCeEQX) and WX)pr /=4+GA)p* 7 €QX).

This proves (i). The assertion (ii) is obvious from the fact that W(X) is also
the constant factor of the functional equation of the Dedekind {-function of the
field corresponding to X. g.e.d.

REMARK 2.2. In terms of G(X), the constant C,, C, in (2.10) and is
expressed more simply in

C=GUCAP!, C=GU)p .

This is an easy consequences from [2.12), (2.13) and the expression of C; and C,
in (2.10) and [2.1T)

Now we apply (Siegel’s Lemma) to (2.10) and [2.11) When
k=1, we assume that X is a real valued character (in this case, X is totally
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imaginary). To formulate our result, we use the same notations as in
2.6), [(2.7), (2.8}, [2.9), (2.10) and In the case that ¥ is not trivial, put for
a positive integer 1=kg (mod. 2) as in (2.10) and

(214)  Ru(A, 0)={(—By1/22—8,(— i) *'p* "B, 1/2} + Ceino

7(8+2 R ' )
+ g )Cg+z,j{bz,i(f)+(—l)cg’z”"p“'f)’zb’,z,z(]p)} if k=1,

Jj=1

T(kg+A

Ri(4, X)=—(B3,3/22)Crg+1,0t ng Crg,02,5(7) if k>1,

Lh/12]+1 if h#%2 (mod.12)

Ch/12] if h=2 (mod. 12)
for a positive even integer A.
Further put for a positive integer j=<v(kg-+2)

where r(h):*

(2.15) S¥4, X, ]'):“(Bz,i/ZZ)A k,x(j)+ ;2:1 bz,i(”l)A k,x(j_ m)

jp—t .
+C{ X b mA 4,2 m)= 3Bz DA 51D,
(_1)[3/2]+2p(1—f)/2 lf k:1,

G(X)G(i)])'f (:(__1)Ekg/2]+[k/2]g+zp(1—f)/2 if X:Z) if B>1.
Then, by (2.10), Lemma 2.1, Lemma 2.5 and Remark 2.2, we obtain

r(kg+A)

(2.16) 278 L(1—k, X)(— R4, 1))= E Cres2,55:( 4, X, 7).

where Clz{

In the case that ¥ is trivial, by [2.11) and Lemma 2.1, we obtain

r(kg) . .
(2.17) C-27¢L(1—Fk, V)= P2 Crg, LA (NFTCA 1,:(5D) ,
_(1+(_i)gp(1-f)/2)cg’0 if kzl,
where C:[
—Chrgyo if £>1, and

{ (—0ept=I2  if k=1,
a G pr=T (=(—1)kermttbept=f if y=7) if k>1,

(in this case, kg is always an even integer).
When k=1, put
K: the totally imaginary quadratic extension over F corresponding to X,
hg (resp. hp): the class number of K (resp. F),
Wg: the number of roots of unity in X,
Eg (resp. Ez): the unit group generated only by the fixed system of
fundamental units of K (resp. F).
Then it is well known 27¢L(0, X)=W(Eg: Ez) *hg/hp. In this case, the con-
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ductor of X 1is the relative discriminant Dg,r of K/F by the discriminant and
conductor theorem. Then we obtain, by [2.16) and [2.17), the following two
theorems :

THEOREM 2.1. Let the notation be as above. Let K be totally imaginary
quadratic extension of F with relative discriminant Dg,p.  Assume the condition
(i), (i) in § 0 for the character X of F corresponding to K, and put N(Dg p)=p”'
for a positive integer f. X denotes the restriction of X to Z.

(i) If X is the identity character, further assume f+2 or g=0 (mod. 4), then

(2.18) Wi (Ekg: Ep)  hi/he
r(g)
=—1+H(=0fp" ) Cl P2} Co, { A1z H(—0)fpt T2 A (5D))

(for details in the case of f=2 and g=2 (mod. 4), see Remark 2.3).
(i) If % is not trivial, further assume R,(A, X)#0 for a positive integer A=g
(mod. 2) (for details of this condition, see Remark 2.4), then

(2.19)  Wx'(Ex: E)hg/hrp=—R\Q2, )7 ]}:31 Cei2,55(%, X, j)  for r=r(g+2)

(for the definition of R,(1, X) and Si(4, X, j), see (2.14) and (2.15)).

THEOREM 2.2. Let the notation be as in (2.14), (2.15), (2.16) and (2.17). Let
X ‘be a ray class character modulo m satisfying the condition (i), (ii) in §0 and
put N(m)=p’ for a positive integer f. X denotes the restriction of X to Z. Let
k be a positive integer larger than 1.

(i) If 7 is the identity character, then

(2.20) 27 L(1—k, 1)=—Ciz.0" é‘i Cre,i{lAr(N+GCOP T A1z (G0},

where r=r(kg) and G(X) is the Gaussian sum for X.
(i) If 7 is not trivial, further assume R (4, X)#0 for a positive integer
A=kg (mod.2) (such 2 exists for any 2 and X, see Lemma 2.6), then

@21)  2°¢L(1—k, N)=—RQ2, x>—1_él CopniSih, 2, ) for r=r(kg+2).
P

COROLLARY TO THEOREM 2.2. Let X be a ray class character of F satisfying
the conditions (i), (ii) in § 0, and k be a positive integer larger than 1. Then
L—k, H)eQX).

PROOF. Assume that there exist some A such that R.(4, X)+0, when ¥ is
not trivial. Then this corollary is an easy consequence from and
The existence of such A is proved in the following

LEMMA 2.6. Let X be a ray class character of F satisfying the conditions
(i), (ii) of §0. Assume that X is not trivial. Then, for a positive integer k>1,
there are infinitely many A such that R (2, 2)#0.

Proor. Put, for an arbitrary non-trivial Dirichlet character ¢ with prime
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conductor, a positive even integer i and a positive integer A,

r(
Qu(A, §)=(—B13/22)Ch o+ 2 Co (i) s

where b, 4(j) is as in Fix a prime ¢ and an integer s=4, 6, 8, 10, 14.
Further put for a positive integer n, h,=12(¢"—1)+s and I(n)=12r(n)—n+2.
Then r(h,)=¢" and l(h,)=I(s)=14—s. Now we assume G,=1 (mod. q) for
[=I(s), where G, is the Eisenstein series of weight [ defined in [2.1) (in the case
of /=0, we put G,=1). Here the congruence means that all Fourier coefficients
of G,—1 are divisible by ¢. Then, by the definition (see the beginning of this
section),

Th,=Gippd ™" =G 477",
so that
T1,()=4""(2)=G(¢"2)47(q"2)=Ts(q"z) (mod. q),

since G,(z2)=G,(¢"z)=1 (mod. ¢) and 47! has integral Fourier coefficients. There-
fore we obtain for s=4, 6, 8, 10, 14,

Chmqnj:_:cs’j (mOd q) for ]:0, 1, and
Cr,,m=0 (mod. ¢q) for 0<m<qg".

At first, we take 3 as ¢g. Applying to G;, we obtain 2s/B,=C,,
for /=4, 6, 8,10, 14. Hence, by the table in Remark 2.1 and[2.I}, G,=1 (mod. 3)
for all /=0, 4, 6, 8, 10, 14. So the assumption of the above consideration is
satisfied. We have for s=4, 6, 8, 10, 14,

Ch,n;=Cs,; (mod.3) for j=0, 1, and

Ch,,m=0 (mod. 3) for 0<m<3".
By the table in Remark 2.1, C;,=0 (mod.3) for s=4, 6, 8, 10, 14, so that
Ch,,0=0 (mod. 3).

Now we assume that B,g/22 is a 3-adic integer. This condition is satisfied
for a character ¢ whose conductor is prime to 3 (see Carlitz [I] and Leopoldt
[7]. Since Cy,,»n=0 (mod.3) for 0=m<3" and C, =1, we obtain

Qn, (4, §)=b;5(3"=1 (mod.3) when 1=2,
here we consider the congruence in the 3-adic completion of Q(¢). Hence
Qr,(4, )0 for 2>1.

When the conductor of ¢ is 3, then gb:(?) (the Legendre symbol). By
Theorem 6, for 4>2,

Bag/A=5(1—9(2) 3 mg(m) (mod.2),

so that B;./A=0 (mod.2) for A>2, since ¢(2)=1 (mod.2). Therefore B, /22 is
a 2-adic integer for A>2. Now, we take 2 as gq. Then, in the same manner
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as above, we have @, (4, ¢)#0 for gb::(—?;) for A>2.

Finally, let X be an arbitrary ray class character of F satisfying the as-
sumptions of the Lemma. Then we see Ri(Z, X)=Qr.:+:(4, X). Take enough
large n such that h,—kg>2, and put A=h,—kg, then 1=kg (mod.2) and
Ry(2, X)=Q4 (2, 1)#0. This completes our proof. q.e.d.

REMARK 2.3. When ¥ is trivial g=2 (mod.4) and f=2, gives
no formula. So we apply the same method to E%,;°P, then we obtain the
following class number formula which is a quadratic equation whose root is the
relative class number of K/F:

(2.22) Cog,o(1+H(—0)%p* ) hg/hp)*+2 ]E; Cog,iR(7)(hx/hr)

+ 2 Car,sS()=0,

where r=7(2g) and
R()=(Ex: Ea\Wgk-{ X (—0*2p*Ta, (60 Dg/r)+a,(E0p)},

Tr§)=j

sevpiogtn
£30
S()=(Ex: Ez)*Wk- ? {(—i)ep7- 25 al,X(#prK/F)-al,z(l)bFDK/F)
Tr&)=j ptv=
—ipzl 2, V>0
EEbF$>1;K/F /z,VEb;lD‘,g}F
+B(&)}
for
2, audpde)-anbe) iE S,
B&)={ e

0 otherwise

(for the definition of a,y, see [Corollary| to [Proposition 1.1). It is easy to see
that degenerates if g is odd and f=1. For an actual calculation of hx/hp
by hand, the formula (2.18) and (2.19) are less easy than

REMARK 2.4. In the case of k=1, we cannot prove, in general, the existence
of 2 such that R,(4, X)#0 for a fixed X. But in a special case, if g=1 (mod.4)
and f+#1, or g=3 (mod.4) and g=<23, we have R,(1, X)<0. To prove this, we
see

Ry(1, D)=(14(—1)#*1p= ) (=B, 1/2)Cgaro+ z S Ne))

for r=r(g+1). Hence if g=1 (mod.4) and f=I1, we have R,(1, X)=0. Since
Cys1,;>0 if g=1 (mod.4) (see [IL]), —B,,7/2>0 and b,(j)=0 for all j, we
obtain '

(“Bl,i/z)cgﬂ,o"l' ng Cg+1,jb1,i(j>>0 .
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Therefore R,(1, X)<0 if g=1 (mod.4) and f+#1. In the case of g=3 (mod.4)
and g=23, we see easily, by the table of Remark 2.1 and the fact that b, ;(5)
=<2 for j=2, 3,

(_Bl,i/z)cg+1,o+ ng Cg+1,jb1,i(j)<0 .
This proves our assertion. In a similar manner as in Wwe can prove
the existence of A such that R,(2, X)#0, under the assumption of X%(3)=—1, for

an arbitrary g. But the other case, i.e. X(3)=1 or 0, this method gives no
general proof.

§3. Examples.

Here, we calculate some numerical examples for [Theorem 2.1l and [T heorem
2.2.

ExaMPLE 1. Let us take g=2, 2:=2, f=1, then r=1, and by [Theorem 2.1,
3.1 Wg'-(Eg: Ep)™-hg/hp=—R\2, X)7*-5:(2, X, 1),
where Ry(2, X)=—(B,,1/4)-Cs,o+1—p,
-1
Si(2, 2, D=—(Bu1/4) Aspl)— T, V'0,1) A'sp—1).
Now we take F=Q(~2), K=Q(~/ 2, ¥ —5—24/2), then we have hz=l,

(Ez: Ez)=1 (because F has an arbitrary signature distribution of the unit group),
Wx=2, b»=(24/2) and Dg/r=05+2+/2). So by we have

(32) B/ 2= (—(Bayi/4)- Coot 1=} ™+ {(Bay1/4) A1)
B a0) Al b3,

and p=17, i:<1_7>' B,z can be calculated easily (see Leopoldt [7]), we obtain

B.,(;)=8. By the table of Remark 2.1, we have C,,,=—240. Therefore we have
(3.3) R.(2, X)=464.
For the value of X(b) for a prime ideal p of F, we can easily calculate by using

the equation x?=—5—2+/2, see the following table :

Table A. (The value of X at a prime ideal)

b N®) x(p) b N(») X(p)
(W2) 2 1 (17+114/2) 47 1
(3) 3? —1 (17—114/2) 47 1
(5) 52 —1 (13+74/2) 71 1
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Table A. (continued)

b N(») X(p) b N () x(p)
(3-+4/2) 7 1 (13—74/2) 71 —1
(3—+/2) 7 —1 (19-+124/2) 73 —1

(11) 112 —1 (19—124/2) | 73 1
(13) 132 1 (234+154/2) 79 —1
(5+24/2) 17 0 (23—154/2) 79 | 1
(5—24/2) 17 —1 (114+44/2) 89 1
(19) 192 1 (11—44/2) 89 1
(11474/2) 23 1 (21+134/2) 103 —1
(11—74/2) 23 —1 (21—184/2) 108 —1
(29) 29 | —1 | (25+164/2) 113 1
(7434/2) 31 1 (25—164/2) 113 —1
(7—34/2) 31 —1
as+svz) 4 —1
(13—8+/2) a1 ro

To calculate S,(2, X, 1), we shall give in Table C the ideal &Dg,zdr for a
totally positive number & in Dxlzby' whose trace to  is j/17 (j=1, ---, 16), and
the value of a,(§Dg/rdr), b’z,(ﬁ)<17_j), and b/2,<1—7)(17—j)'al,X(EDK/FbF)- By
Table C, we obtain,

16 }
(3:4) T Vaa(17=1)- A'sli)=224.
A totally positive element & in by! whose trace to @ equals to 1 is as follows;

(3.5 E=(2++2)/4,1/2.

Therefore by Table A, we obtain A, ;(1)=4. Then by [3.1), and Bs,(5)=8,
we obtain S,(2, X, 1)=—232. Therefore hy/2=—(—232)/464=1/2. So we have
h}'{:]..

By and the formula in Remark 2.3, we obtain the following
class numbers of CM-field of degree 4 and 8.
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Table B. (Class number of CM-field)

Fo| K he| x| D/r N(Drr)
QD) *F(v=3) | 1] 1] ®) 32
v *F(v=1D) | 1] 1] (11) 112
” } F(«/=19—12/2) | 1] 1 (194+124/2) 73
" | F(v/—1l—4+/32) | 1] 1 (114 44/7) 89
v F(V=13—6+2) | 1] 3 13+ 6/2) 97
v F(V=15—4+2) | 1] 5 (15+44/2) | 193
**Q(V'3) F(vV/—11—4+/3) | 1| 4 (11+44/3) 73
Q)| F(v—stzvi) | 2| 4] (9—2vi0) | a1
QV2,v5) *F(V/—7—44/2) | 1| 1 (74 44/2) 172
” *F(A/—8—38+2—4/5—~/10) 1 | 3| (8+3+/2++/5 ++/10) 1601

* These class numbers are calculated by the formula in Remark 2.2. We use
the electronic computor for the field of degree 8.

** Q(+/3) has no signature distribution, but by Shimura [9], if the Galois group
of the Galois closure of K is a dihedral group of order 8, then (Eg: E;)=1.
So we can calculate hyx/hp by [Theorem 2.1

ExAaMPLE 2. We take the same character X as above. Here, we shall
calculate L(—2, X). For g=2, k=3, f=1, 2=2, by [Theorem 2.2, we obtain
(3.6) 272 L(—2, N)=—Ry(2, 1)1-S,(2, X, 1),

R3(2, X)=—(B,,7/4):Cs,0t+1,
S, %, D= —(Bayt /9 A1) = 2 b'a 1) A's il p=1)

By Table A and Asx(1)=7, and by B,(;)=8 and:C;,=—480 (see Remark
2.1), Ry(2, X)=961. To calculate S;(2, X, 1), we give the Table of & in Dglzdz!
satisfying the following conditions : |

(i) €& is a totally positive element in Dgzlzd7!,

(i) Trge(é)=7/17, for j=1, ---, 16.
Now, we put dp=(4), =22+ 2), Dx,r=(d), d=5+24/2

Table C.

| : , , N a1 (dAE)) s (dd
dds | |N@AE)| a'uu(ddR) | a's(d40) b2,x<17—1>X‘;,,Z,imf}%}X‘gfz,’;({wf}%

3+247| 3 1 1 1 18 | 18 1 18

2+4/2

5 2 2 5 14 28 ] 70
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Table C. (continued)

Al | j | NW@LE)| o'\ (dde) | o/,(d5) b'2,1<17—j>¢x‘gi;;;<<(1d7"_f}§ aaen

6+4va| 6 2 3 21 10 | 30 210
107 1 1 1 12 12 12
10-+74/7 7{ 2 2 5 12 24 60
54+3v2| 8| 7 0 18 7 0 336
9+6v2| 9 32 0 80 15 0 | 1200
4+2v7 10 99 4 8 6 2 | 510
134+9v/7 | 10 7 2 50 6 12 | 300
8+5v7 11| 2.7 4 250 6 24 1500
17+12v/7 | 11 1 1 1 6 6 6
S+v/7 12| 7 2 50 4 8 200
12487 12| 2 5 341 4 20 1364
THVT | 13| 17 0 288 7 0 2016
16+11y3| 13| 2.7 0 240 7 0| 1680
2l1a| 2 3 21 2 6 42

11+7v7| 14| 23 2 530 2 4 1060
20+14yv7| 14| 2 4 85 2 8 170
6+3v7| 15| 2.3 0 400 3 0 1200
15+12v7 15| 5| 0 624 3 0 1872
10464716 | 227 0 1008 1 0 1008
19+13v7| 16 | 23 0 528 1 0 528

total 224 15362

Therefore
Ss(2, X, 1)=—(By,1/4)- As,2(1)—15362
=—15376,

then by 2-2. (—2, X)=15376/961=16.
ExaMPLE 3. In the formula (2.19) of and (2.21) of Theorem
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So for each 4, we obtain

another formula of L(1—Fk, X). For example, we take Q for F and Q(+/—11)

for K, then X:(ﬁ). Now we calculate hy in the two special cases where

A=3 and A=5. By [Theorem 2.1, we obtain r=1,

R1(3) X):_(BS,X/6)'C4,O+1_p2 ’
R\(5, 1)=—(Bs,2/10)- Co,s+1—p*,

Si3, % )=—(Bux/6)— 2 b's;ei)- /s, p—1)

$i(5, 7, D=—(Be/ 10~ 2, V'sa()-b's(p—1).

then hxg=-—2-S(4, X, 1)/R\(4, X), for 2=3, 5. By Remark 2.1, C,,=—240, C,
=504, and B3,(1_1)———18, B5,(ﬁ)=——12750/11, then R,(3, (ﬁ)):600, R,(5, <ﬁ>):

481560/11.

Table D.

Jo| Ve ‘ Vo)) |0, ()(AL =) "5, (5)(7) "1, () (11— 1)) 05, (1)) b1, (i)(A1—1)
1 0 0 0
2 3 15 3 9 45
3 0 0 0
4 0 0 0
5 0 0 0
6 30 1230 2 60 2460
7 48 2400 1 48 2400
8 51 3855 2 102 7710
9 0 0 0

10 78 9390 1 78 9390

total | 297 22005

Therefore by Table D, S,(3, (ﬁ) 1)=—300, S,(5, (ﬁ) 1)=—240780/11, then hx
=2-300/600=2-(11,/481560)-(240780,/11)=1.
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