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1. Introduction.

It was proved in $[1, 2]$ that

$s-\varliminf_{7\infty}[e^{-(t/n)A_{2}}e^{-(t/n)A_{1}}]^{n}=e^{-tA^{\prime}}P^{\prime}$ , $t>0$ , (1.1)

whenever $A_{1},$ $A_{2}$ are nonnegative selfadjoint operators in a Hilbert space $H$

(with no restriction on their domains). Here $P^{\prime}$ is the orthogonal projection
of $H$ onto the subspace $H^{\prime}$ spanned by $D^{\prime}=D(A_{1}^{1/2})\cap D(A_{2}^{1/2})$ and $A^{\prime}$ is the form
sum of $A_{1},$ $A_{2}(i$ . $e$ . the selfadjoint operator in $H^{\prime}$ associated with the densely-
defined, closed quadratic form $\Vert A_{1}^{1/2}u\Vert^{2}+\Vert A_{2}^{1/2}u\Vert^{2}$).

The purpose of the present paper is to prove a nonlinear analogue of (1.1).

As a natural generalization of a nonnegative selfadjoint operator, $A_{j}$ will be
replaced by the subdifferential $\partial\varphi_{j}$ of a lower semicontinuous, convex function
$\varphi_{j}\not\equiv+\infty$ on $H$ to ] $-\infty,$ $+\infty$] $;-\partial\varphi_{j}$ generates a semigroup $\{e^{-t\partial\varphi j}\}$ of non-
linear nonexpansive operators on $E_{j}=cl.D(\varphi_{j})$ . (For these notions see section
2.) Moreover, we shall admit any finite number $N$ of such semigroups. Thus
our result will take the form

$\lim_{m\infty}[e^{-(t/n)\partial\varphi N}P_{N}\cdots e^{-(t/n)\partial\varphi 1}P_{1}]^{n}x=e^{-t\partial\varphi}x$ ,

$\varphi=\varphi_{1}+$ $+\varphi_{N}$ , $t\geqq 0,$ $x\in cl.D(\varphi)$ , (1.2)

where $P_{j}$ is the nonlinear projection of $H$ onto the closed convex set $E_{j}$ , and
it is assumed that $\varphi\overline{\neq}+\infty$ . Note that $\partial\varphi$ is the analogue of the form sum of
the $\partial\varphi_{j}$ . The $factor3P_{j}$ are necessary to ensure that the product on the left
of (1.2) makes sense, since $e^{-t\partial\varphi j}$ is defined only on $E_{j}$ .

REMARK 1.1. The condition $x\in cl.D(\varphi)$ in (1.2) is a new restriction which
was not needed in the linear case (1.1). A straightforward generalization of
the latter would be to admit every $x\in H$ and replace $x$ by $Px$ on the right-
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hand side of (1.2), where $P$ is the projection onto cl.D $(\varphi)$ . But this is in general
impossible, as is seen from the following example. Let $N=2$ and let $\varphi_{j}$ be the
indicator function of a closed convex set $E_{j}\subset H(i$ . $e$ . $\varphi_{j}(u)=0$ for $u\in E_{j}$ and
$=+\infty$ otherwise) so that $D(\varphi_{j})=E_{j}=P_{j}H,$ $e^{-t\partial\varphi j}=1$ on $E_{j}$ and $e^{-t\partial\varphi}=1$ on $E=$

$E_{1}\cap E_{2}$ . Then the suggested generalization would give $\lim(P_{2}P_{1})^{n}x=Px$ for all
$x\in H$. But this formula (a familiar one for linear projections) is in general
false for nonlinear projections. This is seen from the special case in which
$H=R^{2},$ $E_{1}$ is the unit disk, and $E_{2}$ is a straight line through the origin.

Except for the restriction on $x,$ $(1.2)$ includes (1.1) as a special case. It is
interesting to note that we are able to include the case $N>2$ without essential
complication of the proof, whereas the proof given in $[1, 2]$ does not seem to
generalize to $N>2$ easily.

Actually we shall prove (1.2) in a more general case in which the semi-
group $e^{-t\partial\varphi j}P_{j}$ is replaced by a $\varphi_{j}$-family $U_{j}(t)$ to be introduced in section 2
(which includes some useful approximations to the semigroup, for example the
resolvent $(1+t\partial\varphi_{j})^{-1})$ . For the precise statement of the result, see the Theorem
below.) (A similar generalization was considered in the linear case $[1, 2]$ .
For these generalizations, comparison of the results for linear and nonlinear
cases is not easy, since the conditions for the approximating families are dif-
ferent.)

For nonlinear product formulas similar to (1.2) but under different assump-
tions, see [3; Propositions 4.3, 4.4].

2. Definitions. The main theorem.

(For basic notions and results regarding maximal monotone operators and
the subdifferentials of convex functions, we refer to the book [3] by Brezis.)

Let $\Phi$ denote the set of all lower semicontinuous, convex functions $\varphi$ on a real
Hilbert space $H$ to ] $-\infty,$ $+\infty$] such that $\varphi\not\equiv+\infty$ . For $\varphi\in\Phi$, the effective
domain $D(\varphi)$ is the (nonemPty) set of all $u\in H$ with $\varphi(u)<+\infty$ . Because of
convexity, $\varphi$ is lower semicontinuous in the weak topology of $H$. Let $\partial\varphi$ be
the subdifferential of $\varphi;\partial\varphi$ is a multiple-valued, maximal monotone operator in
$H$, and the relation $f\in(\partial\varphi)u$ is characterized by

$\varphi(v)\geqq\varphi(u)+(v-u, f)$ for all $v\in H$ . (2.1)

$-\partial\varphi$ generates a strongly continuous semigroup $\{e^{-t\partial\varphi} ; t>0\}$ of nonlinear non-
expansive operators on $E=cl.D(\varphi)=cl.D(\partial\varphi)$ , where $cl$ . denotes the closure and
$D(\partial\varphi)$ is the set of all $u\in H$ such that $(\partial\varphi)u$ is not empty.

DEFINITION 2.1. Let $\varphi\in\Phi$ . A family $\{U(t);t>0\}$ of nonexpansive opera-
tors on $H$ to $H$ will be called a $\varphi$-family if
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$\varphi(v)\geqq\varphi(U(t)y)+t^{-1}(v-y, y-U(t)y)+(2t)^{-1}\gamma\Vert y-U(t)y\Vert^{2}$ (2.2)

for every $v,$ $y\in H$ and $t>0$, where $\gamma$ is a positive constant. The largest num-
ber $\gamma$ with this property will be called the $\varphi$-index of $\{U(t)\}$ and will be denoted
by $\gamma$ again.

REMARK 2.2. (a) The definition of a $\varphi$ -family is rather implicit; we shall
give below several examples of $\varphi$-families.

(b) It is convenient to note that (2.2) is equivalent to:

$\varphi(v)\geqq\varphi(U(t)y)+t^{-1}(v-w, y-U(t)y)-(2t)^{-1}\Vert y-w\Vert^{2}$

$+(2t)^{-1}\Vert w-U(t)y\Vert^{2}+(2t)^{-1}(\gamma-1)\Vert y-U(t)y\Vert^{2}$ (2.3)

for every $v,$ $y,$ $w\in H$.
(c) If $\{U(t)\}$ is a $\varphi$-family, $U(t)$ maps $H$ into $D(\varphi)$ , as is seen from (2.2)

by choosing $v\in D(\varphi)$ . Also $U(t)y\rightarrow y,$ $t\downarrow 0$, if $y\in E$ . Moreover, $ t^{-1}(1-U(t))\rightarrow\partial\varphi$

in the sense of resolvent convergence. This is a special case of the Theorem
for $N=1$ .

(d) The value of $\gamma$ is important; the family is “nice” if $\gamma\geqq 1$ (see the
theorem). On the other hand, $\gamma>2$ is impossible except when $\varphi=const$ and
$U(t)=1$ . (To see this set $v=U(t)y$ in (2.2).)

EXAMPLE 2.3. Let $\varphi\in\Phi,$ $J(t)=(1+t\partial\varphi)^{-1},$ $t>0$ (the resolvent of $\partial\varphi$ ). As
is well known [3; Proposition 2.2], $J(t)$ is a nonexpansive operator on $H$ to
$D(\partial\varphi)\subset D(\varphi)$ . $\{J(t)\}$ is a “nice” $\varphi$ -family with $\gamma\geqq 2$ .

To see this, we note that $t^{-1}(y-J(t)y)\in(\partial\varphi)J(t)y$ [ $3$ ; after Theorem 2.2].

Hence $\varphi(v)\geqq\varphi(J(t)y)+(v-J(t)y, t^{-1}(y-J(t)y))$ by (2.1), from which (2.2) follows
with $\gamma\geqq 2$ .

EXAMPLE 2.4.
$Fo_{1}r-$

.
any fixed positive integer $m,$ $\{J(t/m)^{m}\}$ is a “nice” $\varphi-$

family with $\gamma\geqq 1+m$

To see this, write $y_{k}=J(t/m)^{k}y,$ $y_{0}=y$ . Then $mt^{-1}(y_{k-1}-y_{k})=mt^{-1}(1-J(t/m))y_{k- 1}$

$\in(\partial\varphi)J(t/m)y_{k-1}=(\partial\varphi)y_{k}$ as above, so that by (2.1)

$\varphi(v)\geqq\varphi(y_{k})+(v-y_{k}, mt^{-1}(y_{k- 1}-y_{k}))$ , $1\leqq k\leqq m$ . (2.4)

On setting $v=y_{k-1}$ , we see that $\varphi(y_{k})$ is decreasing in $k$ . Hence we may replace
$\varphi(y_{k})$ by $\varphi(y_{m})$ in (2.4) and take the average for $k=1,$ $\cdots$ , $m$ , obtaining

$\varphi(v)\geqq\varphi(y_{m})+t^{-1}(v-y, y-y_{m})+t^{-1}\sum_{k=1}^{n}(y-y_{k}, y_{k-1}-y_{k})$ . (2.5)

The last term in (2.5) becomes, with $a_{k}=y_{k-1}-y_{k}$,

$t^{-1}\sum_{k=1}^{m}(a_{1}+ +a_{k}, a_{k})=(2t)^{-1}[\sum_{k=1}^{m}\Vert a_{k}\Vert^{2}+\Vert\sum_{k=1}^{m}a_{k}\Vert^{2}]$

$\geqq(2t)^{-1}(1+m^{-1})\Vert\sum_{k=1}^{m}a_{k}\Vert^{2}=(2t)^{-1}(1+m^{-1})\Vert y-y_{m}\Vert^{2}$ ,
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which proves the assertion. (A more precise estimate shows that $\gamma\geqq 1+$

$O((\log m)^{-1})$ for large $m.$)

EXAMPLE 2.5. Let $U(t)=e^{-t\partial\varphi}P$, where $P$ is the nonlinear projection of $H$

onto $E=cl.D(\varphi)$ , which is a closed convex set [3; Theorem 2.2]. $\{U(t)\}$ is a
“nice” $\varphi$-family with $\gamma\geqq 1$ .

This follows from Example 2.4, since $U(t)y=\lim_{m\rightarrow\infty}J(t/m)^{m}y$ for every $y\in H$

[ $3$ ; Corollary 4.4].

REMARK 2.6. All the examples given above apply to the linear case in
whicb $\varphi(u)=(1/2)\Vert A^{1/2}u\Vert^{2}$ with $A$ nonnegative selfadjoint, so that $\partial\varphi=A,$ $E=H$

and $P=1$ . In particular, $U(t)=e^{-tA}$ forms a $\varphi$-family with $\gamma\geqq 1$ . In this case
we have actually $\gamma\geqq\gamma_{0}>1$ , where $\gamma_{0}$ is a universal constant, as one can prove
using the spectral formula.

We are now in a position to state the main theorem. Let $\varphi_{j}\in\Phi,$ $j=1,$ $\cdots$ , $N$,
with $\varphi=\varphi_{1}+$ $+\varphi_{N}\not\equiv+\infty$ , so that $\varphi\in\Phi$ too. Let $D_{j}=D(\varphi_{j}),$ $D=D(\varphi),$ $E_{j}=$

$cl.D_{j},$ $E=cl.D$ , and let $P_{j},$ $P$ be projections of $H$ onto $E_{j},$ $E$, respectively.
THEOREM. Let $\{U_{j}(t);t>0\}$ be a $\varphi_{j}$-family with $\varphi_{j}$-index $\gamma_{j}>0,$ $j=1,$ $\cdots$ , $N$.

Assume that one of the following conditions is satisfied.
(i) $\gamma_{j}\geqq 1$ for all $j=1,$ $N$, and for $k$ with $\gamma_{k}=1$

$U_{k}(t)u=U_{k}(t)P_{k}u$ , $t>0,$ $u\in H$ . (2.6)

(ii) There is a $k$ such that $\gamma_{j}>1$ for all $j\neq k$ and

$(\gamma_{k}-1)\sum_{J\neq k}(\gamma_{j}-1)^{-1}>-1$ . (2.7)

Then we have

$\lim_{t\downarrow 0}[1+\lambda t^{-1}(1-U_{N}(t)\cdots U_{1}(t))]^{-1}x=(1+\lambda\partial\varphi)^{-1}x$ , $\lambda>0,$ $x\in H$ , (2.8)

$\lim_{n\rightarrow\infty}[U_{N}(t/n)\cdots U_{1}(t/n)]^{n}x=e^{-t\partial\varphi}x$ , $t\geqq 0,$ $x\in E$ , (2.9)

the convergence in (2.9) being uniform in $t\in[0, T]$ for any $T>0$ .
COROLLARY. (1.2) is true.
REMARK 2.7. If $N=1$ , assume simply $\gamma_{1}>0$ instead of (i), (ii). If $N=2$,

(2.7) becomes $\gamma_{1}+\gamma_{2}>2$, and (2.6) is required only when $\gamma_{1}=\gamma_{2}=1$ .
The proof of the theorem will be given in the following section. Here we

give two lemmas required in the proof, under the assumptions of the theorem.
LEMMA 2.8. There is $M<+\infty$ such that for any $a_{j}\in H,$ $j=1,$ $N$,

$\sum_{j=1}^{N}(\gamma_{j}-1)\Vert a_{j}\Vert^{2}+M\Vert\sum_{j=1}^{N}a_{j}\Vert^{2}\geqq 0$ . (2.10)

PROOF. This is trivial in case (i), and also in case (ii) if $\gamma_{k}\geqq 1$ . Thus we
may assume (ii) with $\gamma_{k}<1$ . Then (2.7) implies that there is $s>0$ such that
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$(1+s)\Sigma^{\prime}(\gamma_{j}-1)^{-1}<(1-\gamma_{k})^{-1}$ ,

where $\sum^{\prime}$ means $\sum_{j\neq k}$ . Writing $a=a_{1}+$ $+a_{N}$, we then have

$\Vert a_{k}\Vert^{2}=\Vert a-\Sigma^{\prime}a_{j}\Vert^{2}\leqq(1+s^{-1})\Vert a\Vert^{2}+(1+s)\Vert\Sigma^{\prime}a_{j}\Vert^{2}$

$\leqq(1+s^{-1})\Vert a\Vert^{2}+(1+s)[\sum^{\prime}(\gamma_{j}-1)^{-1}][\sum^{\prime}(\gamma_{j}-1)\Vert a_{j}\Vert^{2}]$

$\leqq(1+s^{-1})\Vert a\Vert^{2}+(1-\gamma_{k})^{-1}\sum^{\prime}(\gamma_{j}-1)\Vert a_{j}\Vert^{2}$ ,

which implies (2.10) with $M=(1-\gamma_{k})(1+s^{-1})$ .
LEMMA 2.9. Let $z\in D$ and $z_{0}(t)=z,$ $z_{j}(t)=U_{j}(t)\cdots U_{1}(t)z,$ $t>0,$ $j=1,$ $\cdots$ , $N$.

Then $z_{j}(t)-z=O(t^{1/2})$ as $t\downarrow 0$ .
PROOF. (2.2) gives, with $v=y=z$,

$+\infty>\varphi_{j}(z)\geqq\varphi_{j}(U_{j}(t)z)+(2t)^{-1}\gamma_{j}\Vert z-U_{j}(t)z\Vert^{2}$

$\geqq-M\Vert U_{j}(t)z-z\Vert-M+(2t)^{-1}\gamma_{j}\Vert U_{j}(t)z-z\Vert^{2}$ ,

where $M$ is a constant; note that any $\varphi\in\Phi$ is bounded from below by a (in-
homogeneous) linear functional as is seen from (2.1). Since $\gamma_{j}>0$, it follows
that $U_{j}(t)z-z=O(t^{1/2})$ . In particular $z_{1}(t)-z=O(t^{1/2})$ . The same result for $z_{j}(t)$

can be proved by induction, since

$\Vert z_{j}(t)-z\Vert\leqq\Vert z_{j}(t)-U_{j}(t)z\Vert+\Vert U_{j}(t)z-z\Vert$

$\leqq\Vert z_{j-1}(t)-z\Vert+O(t^{1/2})$ ;

note that $z_{j}(t)=U_{j}(t)z_{j-1}(t)$ and that $U_{j}(t)$ is nonexpansive.

3. Proof of Theorem.

According to a lemma due to Chernoff and Brezis-Pazy (see [3; Theorem
4.3]), (2.8) implies (2.9). Thus it suffices to prove (2.8). To this end, let

$y_{0}(t)=[1+\lambda t^{-1}(1-U_{N}(t)\cdots U_{1}(i))]^{-1}x$ , $t>0$ , (3.1)

$y_{j}(t)=U_{j}(t)\cdots U_{1}(t)y_{0}(i)$ , $j=1,$ $\cdots$ , $N$ , (3.2)

$a_{j}(t)=y_{j- 1}(t)-y_{j}(t)$ , $j=1,$ $\cdots$ , $N$ , (3.3)

$a(t)=a_{1}(t)+$ $+a_{N}(t)=y_{0}(t)-y_{N}(t)$ . (3.4)

(3.1) and (3.4) imply that
$y_{0}(t)+\lambda t^{-1}a(t)=x$ . (3.5)

PROPOSITION 3.1. $y_{0}(t),$ $y_{j}(t)$ and $\varphi_{j}(y_{j}(t))$ are bounded as $t\downarrow 0,$ $j=1,$ $\cdots$ , $N$.
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PROOF. Let $z\in D$ be fixed and construct $z_{j}(t),$ $j=0,1,$ $\cdots$ , $N$ as in Lemma
2.9. Since $U_{j}(t)$ is nonexpansive, we have

$\Vert y_{j}(t)-z_{j}(t)\Vert\leqq\Vert y_{j- 1}(t)-z_{j- 1}(t)\Vert$ . (3.6)

Since $z_{j}(t)\rightarrow z$ as $t\downarrow 0$ by Lemma 2.9, it follows that

$\lim_{t\downarrow}\sup_{0}[\Vert y_{j}(t)-z\Vert-\Vert y_{0}(t)-z\Vert]\leqq 0$ , $j=1,$ $\cdots$ , N. (3.7)

To prove that the $y_{j}(t)$ are bounded, therefore, it suffices to show that $y_{0}(t)$ is
bounded.

Let $v\in D=\cap D_{j}$ . Since $\{U_{j}(t)\}$ is a $\varphi_{j}$-family, we can apply (2.2) to $\varphi=\varphi_{j}$

with $y=y_{j-1}(t)$ , obtaining

$\varphi_{j}(v)\geqq\varphi_{j}(y_{j})+t^{-1}(v-y_{j- 1}, a_{j})+(2t)^{-1}\gamma_{j}\Vert a_{j}\Vert^{2}$ ; (3.8)

here and in what follows we write simply $y_{j},$ $a_{j}$, etc. for $y_{j}(t),$ $a_{j}(t)$ , etc. Sum-
ming (3.8) for $j=1,$ $\cdots$ , $N$ and using (3.4), (3.5), we obtain for any $v\in H$

$\varphi(v)\geqq\sum_{j=1}^{N}\varphi_{j}(y_{j})+\lambda^{-1}(v-y_{0}, x-y_{0})+(2t)^{-1}b$ , (3.9)

with
$b=\Sigma[\gamma_{j}\Vert a_{j}\Vert^{2}+2(y_{0}-y_{j-1}, a_{j})]$

$=\Sigma[\gamma_{j}\Vert a_{j}\Vert^{2}+2(a_{1}+ +a_{j-1}, a_{j})]$

$=\sum(\gamma_{j}-1)\Vert a_{j}\Vert^{2}+\Vert\sum a_{j}\Vert^{2}$

$\geqq-M\Vert\Sigma a_{j}\Vert^{2}=-M\Vert a\Vert^{2}\geqq-Mt^{2}\lambda^{-2}\Vert x-y_{0}\Vert^{2}$ , (3.10)

where we have used Lemma 2.8 and (3.5). Thus (3.9) gives

$\varphi\varphi_{j}$ (3.11)

We note again that $\varphi_{j}(y_{j})$ is bounded from below by a (inhomogeneous)

linear functional in $y_{j}$ . In view of (3.7), therefore, we have

$\varphi_{j}(y_{j})\geqq-M-M\Vert x-y_{0}\Vert$ . (3.12)

Now it is easy, using (3.11) with $v\in D$ , to show that $\Vert x-y_{0}(t)\Vert$ is bounded as
$t\downarrow 0$ . Hence all the $y_{j}(t)$ are bounded by (3.7).

To show that the $\varphi_{j}(y_{j})$ are bounded, it suffices to note that they are
bounded from below because of (3.12) and, consequently, also from above by
(3.11).

PROPOSITION 3.2. For each $z\in D$ we have
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$\Vert y_{j}(t)-z\Vert^{2}-\Vert y_{0}(t)-z\Vert^{2}\rightarrow 0$ , $t\downarrow 0$, $j=1,$ $\cdots$ , N. (3.13)

PROOF. Since $y_{0}(t)$ is bounded, it follows from (3.4) and (3.5) that $y_{0}-y_{N}=$

$a\rightarrow 0$ . In view of (3.6) and $z_{j}\rightarrow z$, we have then $\Vert y_{j}-z\Vert-\Vert y_{0}-z\Vert\rightarrow 0$ . (3.13)

follows from this since $y_{j}$ and $y_{0}$ are bounded.
PROPOSITION 3.3. There exists a sequence $t_{n}\downarrow 0$ such that $y_{j}(t_{n})-y_{J^{*}}\in H$,

$j=1,$ $\cdots$ , $N$, where –denotes weak convergence in H. Furthermore, we have

$y_{0^{*}}=y_{N}^{*}$ , $y_{j}^{*}\in D_{j}$ , $j=1,$ $N$ , (3.14)

$\varphi(v)\geqq\sum_{j=1}^{N}\varphi_{j}(y_{j}^{*})+\lambda^{-1}(v-y_{0^{*}}, x-y_{0^{*}})$ , $v\in H$ . (3.15)

PROOF. This follows directly from the boundedness of the $y_{j}(t)$ and $\varphi_{j}(y_{j}(t))$ ,
and inequality (3.11). Recall that $y_{0}(t)-y_{N}(t)\rightarrow 0$ and that $\varphi_{j}$ are lower semi-
continuous in the weak topology.

PROPOSITION 3.4. Set $a_{J^{*}}=y_{j-1^{*}}-y_{j}^{*},$ $j=1,$ $\cdots$ N. Then

$a_{1}^{*}+$ $--+a_{N^{*}}=0$ , (3.16)

and for $k$ with $\gamma_{k}\geqq 1$

$2(u_{k}-z, a_{k}^{*})+(\gamma_{k}-1)\Vert a_{k}^{*}\Vert^{2}\leqq 0$ , $z\in D,$ $u_{k}\in E_{k}$ . (3.17)

PROOF. (3.16) follows from $y_{0^{*}}=y_{N}^{*}$ (see (3.14)). To prove (3.17), we may
assume that $u_{k}\in D_{k}$ . Then (2.3) gives, with $\varphi=\varphi_{k},$ $U=U_{k},$ $v=u_{k},$ $y=y_{k-1}(t)$ ,

$w=z$, and $\gamma=\gamma_{k}$ ,

$2t\varphi_{k}(u_{k})\geqq 2t\varphi_{k}(y_{k})+2(u_{k}-z, a_{k})-\Vert y_{k-1}-z\Vert^{2}$

$+\Vert y_{k}-z\Vert^{2}+(\gamma_{k}-1)\Vert a_{k}\Vert^{2}$ .

Letting $t=t_{n}\downarrow 0$ and using (3.13), we obtain (3.17); note that $\Vert a_{k}^{*}\Vert^{2}\leqq$

lim $inf\Vert a_{k}(t_{n})\Vert^{2}$ .
PROPOSITION 3.5. We have

$(y_{k- 1^{*}}-z, a_{k}^{*})\leqq 0$ , $z\in D,$ $k=1,$ $\cdots$ , N. (3.18)

PROOF. First we note that $a_{k}^{*}=0$ whenever $\gamma_{k}>1$ , as is seen from (3.17)

with $u_{k}=z$ .
It follows that in case (ii), $a_{k}^{*}=0$ for all $k$ so that (3.18) is true a fortiori.

Indeed, we the $n$ have $\gamma_{k}>1$ , hence $a_{k}^{*}=0$, except possibly for one $k$ . But (3.16)

then shows that all $a_{k}^{*}$ must be zero.
It only remains to consider the case (i) with $\gamma_{k}=1$ . Then we have

$y_{k}(t)=U_{k}(t)y_{k- 1}(t)=U_{k}(t)P_{k}y_{k-1}(t)$ (3.19)

by (2.6). Now apply (2.3) to $\varphi=\varphi_{k},$ $v=w=z$ and $y=P_{k}y_{k-1}(t)$ . Then we obtain
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by (3.19)
$2t\varphi_{k}(z)\geqq 2t\varphi_{k}(y_{k})-\Vert P_{k}y_{k-1}-z\Vert^{2}+\Vert y_{k}-z\Vert^{2}$ .

In view of Propositions 3.1 and 3.2, we thus obtain

$\lim_{\iota\downarrow}\sup_{0}(\Vert y_{k-1}-z\Vert^{2}-\Vert P_{k}y_{k- 1}-z\Vert^{2})\leqq 0$ . (3.20)

On the other hand, a simple geometric consideration shows that $\Vert y-z\Vert^{2}-$

$\Vert P_{k}y-z\Vert^{2}\geqq\Vert y-P_{k}y\Vert^{2}$ for any $y\in H$, since $z\in D\subset D_{k}\subset E_{k}$ and $P_{k}$ is the projec-
tion onto $E_{k}$ . Thus (3.20) gives $y_{k-1}-P_{k}y_{k-1}\rightarrow 0$ as $t\downarrow 0$ . Hence $y_{k-1^{*}}\in E_{k}$ be-
cause $E_{k}$ is weakly closed. Then we can apply (3.17) with $u_{k}=y_{k-1^{*}}$ and $\gamma_{k}=1$ ,
obtaining (3.18).

PROPOSITION 3.6. $a_{k}^{*}=0,$ $y_{k}^{*}=y_{0^{*}},$ $ k=1,\cdots$ , $N$.
PROOF. (This was already proved in case (ii) in the proof of Proposition

3.5. The following proof is necessary only for case $(i).)$ We may assume $O\in D$

without loss of generality. Then we can set $z=0$ in (3.18), obtaining $(y_{k-1^{*}}, a_{k}^{*})$

$\leqq 0$ for all $k=1,$ $\cdots$ , $N$. Then $\Vert y_{k}^{*}\Vert^{2}=\Vert y_{k- 1^{*}}-a_{k}^{*}\Vert^{2}\geqq\Vert y_{k-1^{*}}\Vert^{2}+\Vert a_{k}^{*}\Vert^{2}$ and so
$\Vert a_{1^{*}}\Vert^{2}+$ $+\Vert a_{N^{*}}\Vert^{2}\leqq\Vert y_{N}^{*}\Vert^{2}-\Vert y_{0^{*}}\Vert^{2}=0$ by (3.14), hence $a_{k}^{*}=0$ for all $k$ .

PROPOSITION 3.7. $y_{0^{*}}=(1+\lambda\partial\varphi)^{-1}x\in D(\partial\varphi)\subset D$ .
PROOF. In view of Proposition 3.6, (3.15) becomes

$\varphi(v)\geqq\varphi(y_{0^{*}})+\lambda^{-1}(v-y_{0^{*}}, x-y_{0^{*}})$ .

Since this is true for any $v\in H$, we have $y_{0^{*}}\in D(\partial\varphi)$ and $\lambda^{-1}(x-y_{0^{*}})\in(\partial\varphi)y_{0^{*}}$

(see (2.1)). Hence $x\in(1+\lambda(\partial\varphi))y_{0^{*}}$ , which is equivalent to the required result.
PROPOSITION 3.8. $y_{0}(t)\rightarrow y_{0^{*}}$ , so that (2.8) is true.
PROOF. First we note that $y_{j}(t)-y_{j}^{*}=y_{0}^{*}$ as $t\downarrow 0$ for $j=0,1,$ $\cdots$ , $N$. This

follows from the standard argument since $y_{0^{*}}$ as given by Proposition 3.7 is
independent of the sequence $t_{n}\downarrow 0$ used above.

To prove that we have strong rather than weak convergence, it suffices to
show that $sup\Vert y_{0}(t)\Vert\leqq\Vert y_{0^{*}}\Vert$ . To this end, we return to (3.11) and set $v=y_{0^{*}}$

$\in D$ . Then
$\lambda^{-1}\lim$ $sup(y_{0^{*}}-y_{0}(t), x-y_{0}(t))$

$\leqq\varphi(y_{0^{*}})-\lim\inf\sum_{j=1}^{N}\varphi_{j}(y_{j}(t))\leqq\varphi(y_{0^{*}})-\varphi(y_{0^{*}})=0$ .

Since $y_{0}(t)-y_{0^{*}}$, this implies $\lim\sup\Vert y_{0}(t)\Vert^{2}\leqq\Vert y_{0}^{*}\Vert^{2}$ as required.

4. Remarks and examples.

The limit $u(t)=e^{-t\partial\varphi}x$ in (1.2) or (2.9) is characterized as the (strongly con-
tinuous) solution of the Cauchy problem
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$-du/dt\in(\partial\varphi)u(t)$ , $a$ . $e$ . $t>0$ , $u(O)=x$ ; (4.1)

see [3; Theorems 3.1, 3.2]. In view of (2.1), (4.1) is equivalent to

$\varphi(v)\geqq\varphi(u(t))-(v-u(i), du/dt)$ for all $v\in H$ . (4.2)

In this sense (4.1) is a variational inequality.
In general $\partial\varphi$ or (4.1) is difficult to describe more explicity. But it often

happens that each $\varphi_{f},$
$\partial\varphi_{j}$ and $\varphi=\varphi_{1}+\cdots+\varphi_{N}$ are known in concrete form.

In such a case, (1.2) or (2.9) is useful because it gives a constructive method
for computing $u(t)$ .

EXAMPLE 4.1. Let $N=2$ and $\varphi_{2}=ind_{E_{2}}$ (the indicator function of a convex
closed set $E_{2}\subset H$). Then (4.2) becomes

$\varphi_{1}(v)\geqq\varphi_{1}(u(t))-(v-u(t), du/dt)$ for all $v\in E_{2}$ , (4.3)

with the additional condition $u(t)\in E_{2}$ . This is still rather implicit, but (1.2) or
(2.9) gives the following formula, which is computable if one can compute the
semigroup $e^{-t\partial\varphi 1}$ or the resolvent $(1+t\partial\varphi_{1})^{-1}$ for $\partial\varphi_{1}$ :

$u(t)=\lim[P_{2}e^{-(tfn)\partial\varphi 1}P_{1}]^{n}x=\lim[e^{-(t/n)\partial\varphi_{1}}P_{1}P_{2}]^{n}x$

$=\lim[P_{2}(1+(t/n)\partial\varphi_{1})^{-1}]^{n}x=\lim[(1+(t/n)\partial\varphi_{1})^{-1}P_{2}]^{n}x$ ; (4.4)

note that $e^{-t\partial\varphi_{2}}P_{2}=(1+t\partial\varphi_{2})^{-1}=P_{2},$ $t>0$, in this case [3; Example 2.8.2].

EXAMPLE 4.2. In the above example, suppose that $H=L^{2}(\Omega),$ $\Omega\subset R^{m}$ (an
open set), and $\varphi_{1}(u)=(1/2)\Vert gradu\Vert^{2}-(u, f)$ , where $D(\varphi_{1})=H_{0}^{1}(\Omega)$ (the Sobolev
space) and $f\in H$. Furthermore, let $\varphi_{2}=ind_{E_{2}}$ with $E_{2}\subset H$ consisting of all $u\in H$

such that $u(x)\geqq g(x)a$ . $e.$ , where $g$ is a given function on $\Omega$ such that $E_{2}$ is not
empty. In this case $P_{2}u(x)=\sup\{u(x), g(x)\}$ . Since $P_{1}=1$ and $(\partial\varphi_{1})u=-\Delta u-f$

with $ D(\partial)\subseteqq H_{toc}^{2}(\Omega)\cap$ , it is in principle possible to compute (4.4). For
example, $[P_{2}e^{-(t/n)\partial\varphi 1}P_{1}]v$ is obtained by solving the (inhomogeneous) heat equa-
tion $dw/dt=\Delta w+f$ for the time interval $t/n$, starting with the initial value $v$ ,
and then replacing $w$ by $sup\{w, g\}$ . The variational inequality (4.2) is not so
easy to handle directly. (The stationary variant of this example is a classical
variational inequality studied by Lewy, Lions, Stampacchia, and others; see
$[4, 5]$ .)
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