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§1. Introduction.

It is well-known that the Gauss map is an excellent device in classical
differential geometry of curves and surfaces in a Euclidean three-space. The
idea of Gauss map can be generalized to the case of an m-dimensional sub-
manifold M’ in a Euclidean n-space E”. In this case the image lies in the
Grassmann manifold G(m, n—m). It is conceivable that the Gauss map in this
sense will be an even more useful device in the differential geometry of sub-
manifolds in a Euclidean n-space. The Gauss map was generalized one step
further by M. Obata [2] to the case of an m-dimensional submanifold in V
where V denotes one of the following Riemannian manifolds of dimension N:
(i) An N-sphere SV of radius g, (ii) A Euclidean N-space, (iii) A hyperbolic
N-space of curvature —1/a%. Then the image lies in Q=G(N)/G(m) X O(N—m)
(for G(N) see [2]).

On the other hand E. A. Ruh and J. Vilms studied neighborhoods of
the Gauss map in the first generalized sense and obtained the following theorems.

THEOREM A. If M 1is immersed with parallel mean curvature vector into
E™ then the Gauss map is harmonic.

THEOREM B. The Gauss map of a mimimal submanifold in E™ is harmonic.

The present author also took great interest in some problems concerning
the Gauss map. In the present paper the following subjects are treated.

(i) Gauss-critical submanifolds, or Gauss-critical immersions.

(ii) Gauss-critical submanifolds with respect to which the Gauss map is
homothetic.

(iii) Submanifolds M’ in E™ such that the sectional curvature of the Grass-
mann manifold G(m, n—m) in the tangent planes of the Gauss image totally
vanishes.

(ii) is considered since submanifolds with homothetic Gauss map have some
characteristic properties. In this respect the following theorems of M. Obata

are suggestive [2].
THEOREM C. Let x be an isometric immersion of an Einstein space into V.
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Then x is pseudo-umbilical if and only if the Gauss map is conformal.

THEOREM D. Let x be a pseudo-umbilical immersion of a Riemannian mani-
fold M into a V. Then the Gauss map is conformal if and only if M is Ein-
steinian. In the case dim M>2, the Gauss map is homothetic if and only if M
is Einsteinian.

Let M be a compact orientable C* manifold of dimension m and : an im-
mersion of M into an n-dimensional Euclidean space E”. Then we get a sub-
manifold (iM, g;) where g; is the Riemannian metric induced naturally from
the standard Riemannian metric on E” From the Gauss map of M into
G(m, n—m) we define the Gauss map associated with the immersion 1 and denote
it by I';: M—G(m, n—m), so that I';(M) is the Gauss image of iM. As studied
by K. Leichtweiss and Y.-C. Wong the Grassmann manifold G(m, n—m)
bears a standard Riemannian metric g such that (G(m, n—m), g) is a symmetric
space. Then we have [I';: M—(G(im,n—m), 5). We consider in the present
paper only the case where ['; is regular, hence the second fundamental form
of 1M does not vanish. We also assume constantly that M is C=.

Let G4 be the Riemannian metric on /';(M) induced from g. Then we can
define Vol*I (M), G;). Let 4, be the space of all immersions i of M into
E™ such that ['; is regular. Then Vol*(/'y(M), G;) defines a mapping
Vol*: 9,—R. A critical point of this mapping Vol* will be called a Gauss-
critical immersion and, if ¢ is such an immersion, the submanifold M is called
a Gauss-critical submanifold and is denoted GCS. The equation of a GCS and
the following theorem are obtained where /'; is called a homothetic mapping
when the Gauss map [ : (M, g,)—([";(M), G;) is homothetic.

THEOREM 1. Let M be a given compact orientable manifold of dimension m.
If 1: M—E™ is a Gauss-critical immersion and at the same time (1M, g;) is an
Einsteinian submanifold and moreover I'; is a homothetic mapping, then the
components of the mean curvature vector of 1M are eigenfunctions of the Lapla-
cian on (iM, g;) belonging to an eigenvalue A. If 1: M—E™ is an immersion such
that (iM, g;) is an Einsteinian submanifold, I'; is a homothetic mapping and
moreover the components of the mean curvature vector of iM are eigenfunctions
of the Laplacian on (iM, g;) belonging to one and the same eigenvalue, then 1 is
a Gauss-critical immersion.

In this theorem we consider a critical point of the mapping Vol*: J,—R,
hence i moves in J, and the integral represents the volume, whereas in the
theorem of Ruh and Vilms the immersion considered is such that the associated
Gauss map is a critical point of the energy integral. So to say, in our theorem
we consider nothing but the Gauss maps but in the theorem of Ruh and Vilms
Gauss maps are compared with other maps.

The sectional curvature of (G(m, n—m), g) in a section ¢ lying in a tangent
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plane of I',(M) is called the sectional curvature of the Grassmann manifold in
the Gauss map I'; or shortly the sectional curvature of the Gauss map I'; and
is denoted by Kr,(s). A necessary and sufficient condition that Kr (o) totally
vanish is obtained and some examples are given. The following theorem is
proved.

THEOREM Il. Let M be a manifold of dimension m and I'; the Gauss map
associated with an immersion 1: M—E™ Assume I'; to be regular. If n<2m,
then the sectional curvature of the Gauss map I'; cannot totally vanish.

In § 2 we introduce local coordinates in a neighborhood U of a point I/, of
G(m,n—m) and get the formulas of the curvature tensor and the sectional
curvature of the Grassmann manifold. Such formulas greatly facilitate sub-
sequent calculations. In §3 we introduce the Gauss map ['; and define the
Riemannian metric G; associated with an immersion i. In §4 the equation of
a GCS is obtained and [ is proved. §5 is devoted to the study of
sectional curvature of the Gauss map. In §6 some examples including T2 in
E*4 and the Veronese surface in E° are given.

The present paper is intended rather as a preliminary one and in a forth-
coming paper some properties of I'; which is homothetic and the image I";(M)
is totally geodesic in (G(m, n—m), &) will be studied.

§2. The Grassmann manifold G(mn, n—m).

We consider here a suitable neighborhood U of a point I/, of a Grassmann
manifold G(m, n—m) and introduce local coordinates valid in U. For this pur-
pose we fix in E™ an orthonormal frame

€1, €3y "ty Emy €y, "7, O

where the vectors e, (=1, ---, m) lie in /I, and the vectors e, (x=m+1, -+, n)
are normal to I7,. Let Il be a point in U and (f,, f;) an orthonormal frame
where f, lie in /I and f, are normal to //. Then we can put

fazéaﬂe‘8+€ayey s fxzéxﬁeﬁ'{“s.ryey

where, here and in the sequel, the summation convention is adopted for repeated
indices in each term and the range of indices are as follows,

«, ﬁ’ 7> 5;'" :17'”;m; X, Y, 2, u,---=m+1,---,n.

Though the frame (e, ¢,) is fixed, there remains some freedom in taking
the frame (f,, fz) and we can take

fa,:Taﬁf19 ’ f.r/:Txyfy



88 Y. Mutd

in stead of f, and f, where (r4s5) and (r,,) are orthogonal matrices. We can
choose them such that

Ta’ﬁfﬂr:TTﬂfﬁa s Tov8v:=7 26y

since there exist for any square matrix A an orthogonal matrix R and a sym-
metric matrix S satisfying A=RS. This means that we can take a frame
{fa fz) such that

Fawepp=<{Isexr, foew=fy, e
Then taking U suitably we can put

fa:<5aﬁ+§aﬁ)eﬁ+§ayey ’
(2.1)
fx:Ezﬁeﬁ+(5zy+Ezy)ey

where §as=8ga §2y=Eyz and |&asl, 1§25, 1€ayl, |62yl are smaller than a certain
number ¢>0. As (fa, fz) is an orthonormal frame we get

urt g GaskrH i) =0,
(2.2) EratEasTEasbastEarEey=0,
vty (Easfust ) =0.
If U is such that ¢ is sufficiently small, we can solve and get
Eur=y Earbn O,
(2.3) oa=—EaztO(e"),
o=y bbb O(EY).

This proves that m(n—m) numbers &,, can be used as local coordinates in U.
Let us study Riemannian geometry of G(m, n—m) with the use of such
local coordinates (see [1], [5]).
Let [I(£) be a point of U whose local coordinates are &,, and I1(§-+d€) a
point whose local coordinates are &.,+d&.,. Then the distance ds=d(lI(§),
II(&+d¢&)) is given, according to Leichtweiss, by

ds*=200,2{Af ay [ ={df ay f2){Af o, [2)
where
dfa=dEagestdEayey .
Hence we get
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dszzézﬁfzrdgaﬂdgar_l“2(521/ +Exy)§xﬁd5aﬁdéay
+(5xy+§xy>(5xz+Exz)d$ayd5az .

Let us denote the components of g with respect to the local coordinates
Eax bY g‘ﬂy,ax SO that
dszzgﬂy,azdfﬁydgax .

Then we get
~ e 8‘555 aésr
gﬁy,ax_gzagzr aEﬁy aStx.z‘
0 0§
+(5zy+5zy)5zr‘§%—+(5zx+'§zx)§z7‘ ager
ax BY

02y +&:4)(022 €22)0
which becomes on account of
(2.4) Zov,a:=0y20patEayE 5T 0(e?) .
For the contravariant components we get
(2.5) g7V =00 pa—Eay€paTO(e") .
From and we get for the Christoffel symbols

z 1
(26) {‘Byf ax}ZT(—5;’a6w5[3x—5rﬁazx5ay+57a5yxf/3z

+ 0540226701 0820208 1o+ 0750y 26 aa) +O(?).
The curvature tensor and the Ricci tensor are given by
.7 B e 50,06= (8500750550 10)0usbys
+ 0570 50002y Ouy22) +O(%),
(2.8) K, 5 =(n—2)8,50.,0(e?) .

These are not invariant expressions. But we get from Ky=
(n—2)gs, which is valid for any local coordinates &4 (A=1, ---, m(n—m)) of
G(m, n—m).

With the use of we can calculate the sectional curvature K(o) of
(Gim,n—m), §). Let (u,v) be a pair of orthonormal tangent vectors of
G(m,n—m) at a point /I, and denote their components by u**, v**. Let o=
o(u, v) be a 2-plane spanned by u and v. Then, for the sectional curvature

K(o(u, v)), we get from
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K(a(u, v))=v®¥p@yfyyss —yfvyasyavyhe
A pBryaryByyay__gBvyazybryay
‘where u**us*=yp**p**=1, y**p**=0. But we have identities
(uﬁxva.r_vﬁxuax)(uﬁyvay__vﬁyuay)
:2<u3xuﬁyvaxvay__uﬁxuayvaxvﬁy> s
(uﬁyvﬁx_vﬁyuﬁxxuayvaz_vayuax)

=2(UPV UV STY ST — BV AT BTV |
Hence we get

(29) K(o(u, v))=—y (PFPi+QuQse)
where

Pﬂa:uﬂzuax _ U,B’zuax ,
(2.10)

Qyz:uayvax_vayuaz .

§ 3. The Gauss map of a submanifold of a Euclidean space.

Let i be an immersion of an m-dimensional manifold M into an n-space E™
and assume that the image iM is given in each suitable neighborhood V of
M by

xh:xh(yl, ’ym)

where x" (h=1,---,n) are rectangular coordinates and y* (¢=1,---, m) local
coordinates of M in V. Define B;* by B;*=0x"/0y*. At each point p€V and
for each 1 (1=1, -+, m) the vector b; whose components are B;"(p) is a tan-
gent vector of tM at ¢p. The tangent plane iM;,=i(M,) can be taken, after
a suitable parallel displacement, as a point I'(p) of the Grassmann manifold
G(m, n—m) and from this fact we get naturally a mapping I : iM—G(m, n—m),
namely, [';: M—G(m, n—m). I is called a Gauss map and I'; a Gauss map
associated with the immersion 1. In order to avoid possible difficulties we con-
sider only the case of regular mapping.

Let us take at each point ip where p<V an orthonormal frame (f,, f,) of
E™ such that f, (a=1,--,m) are vectors in (M,) and f, (x=m-+1,--,n) are
vectors normal to i(M,). The components f," of f, satisfy

(31) fah:rchBlh

where the matrix (7,") is such that
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(32) Tﬂ”?’algﬂ/z:apa ’ Bpa— B#hB;_h s

where g, are the coefficients of the first fundamental form of M, hence the
components of the Riemannian metric g; induced on iM. The coefficients of
the second fundamental form of iM are

H,ulh:a,uBlh—{ :/{ }Blﬂh ’ a/‘:a/ay#

where { * 1 is the Christoffel symbol derived from g,;.
©a g

(fa fo) determines a point of G(m,n—m). The distance between the two
points (fa, fz) and (fo+dfs, fz+df,) is denoted by do and is given by

(33) dUZZZa,z<dfa; fz>2 .
From we get, assuming (fa, fz) to be a field in V,
dfah:(vyrazBlh+ra2Hylh)dy/l

where, here and in the sequel, VAB means (VA)B and V covariant differentia-
tion with respect to the Riemannian metric g;. Let C,* be the components of
the normal vector field f,. Then, as we have {dfa, f-)=74'H,"C."dy*, we get

do.zzgkf:HvzhH#’chdyudyﬂ s

hence

(3.4) do*=G ;dy*dy*
where G, is defined by

(3.5) Gua=H,"H;,"g?f .

is the first fundamental tensor G; of the submanifold I';(M) of

G(m,n—m). As we assume ['; to be regular, G; is a Riemannian metric on
I';(M).
If M is compact we have the following integral,

(3.6) jM(@i/gi)l/z,u(gi)

where §;=det (G,,), g;=det(g,,) and u(g;) is the volume form of (iM, g;). The
integrand of is the volume form of (I";(M), G;). But, as does not
always give the volume of (I",(M), G;), we call this integral Vol*(I";(M), G;).

§4. Gauss-critical submanifolds.

DEFINITION. Let 4, be the space of all immersions 7 of M into E£™ such
that I'; is regular. Then Vol*(I';(M), G;) defines a mapping Vol*: 9y,—R. A
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critical point ¢ of this mapping will be called a Gauss-critical immersion, the

corresponding submanifold tM a Gauss-critical submanifold and denoted GCS.
Let us consider an immersion i(¢) depending on a parameter ¢ such that

the points of i(t)M can be expressed by differentiable functions in the form

xh=x"(t, y*)

if t€(—e¢, ¢) and the points are in some coordinate neighborhood of M. Then
we have for each t&(—e¢,¢) the Gauss map [y : M—T oy(M), Girr). Let
Vol*(#) denote the volume* of (I";n(M), Giy)- Then we have
d 1 0
* —_ . N1/2 -1\pl
Vol =—-| (®./80"(G Y
where 1=1(¢) and ((G™")*) is the inverse matrix of (G,»).
REMARK. Though g, change with ¢ they are not contained in the inte-

grand ultimately, for the latter can be written vV, dy'A --- Ady™ locally.
From we get

Gylﬂ(gl)

(41) W = e g pgon gy 2" oo
e e
where
i R LS s S A

1

0 .
D;tlzﬁgﬂly Dyh:Dngb: .

Now we define the vector field of deformation X" by

ox™
h_.
(4.2) X =5
and put t=0. Then we have

D,;=0,X"0x"+0,X"0,x"
and

(4.3) ( aHmh

ot

), =V X

R ENAAN GRS QTR0
Substituting into [(4.1) we get
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aGF"z J— oh U
(T>0 _‘HZ VHVJXh—f— H/z hvlvaXh

—H,""H (BN X'+ B,V , X
Hence we have

d
_ % — NP -1y Ah 3
(Vo) =| (Gu/90" TG 1,29, 7,X
—(G™*H H, BV X" g:)
and after repeated integration by parts we obtain

d

@ (vor®) =| 970Gy eH)

+VAS /g HG ) HAH P B 1X gy
From (4.4) we see that, if (1M, g;) satisfies
(4.5) V. V(8 /)G H
+V:A(8:/g)V (G )*H, H S B, =0,

then (1M, g;) is a Gauss-critical submanifold.

Thus we have proved the following lemma.

LEMMA 4.1. Let (M, g’') be an m-dimensional compact submanifold of E™
such that I': (M’, g")—G(m, n—m) is a regular mapping. Then (M’, g’) is a GCS
if and only if (4.5) is satisfied.

As an immediate application we get the following theorem.

THEOREM 4.2. An tmmersion i of an m-dimensional manifold M into E™ such
that iM is contained in a subspace E™ of E™ is a Gauss-critical immersion.

PROOF. As iM is contained in £™"!, we can take a coordinate system in

E™ such that x™*2= ... =x"=0 on iM. The second fundamental tensor takes
the form

H

B R
#A “hMN

where N” is a unit normal vector satisfying N°=0 (é=m-2, ---, n). Let C*
be n—m—1 orthonormal constant vectors normal to E™*'. From

N"™ ,N*=0Q, C:"V,;N*=0
we get
VlNh:_hiaBah
where hf=g%h;,. If we define k** by k*h,,=d% we get

(G_l)’“/l:k‘uakal
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from G, =h,.h;*. We also obtain v&,;/q; =det (h;*) which is assumed not to
vanish. Hence we get

O3 (G H P =det (NP,

V&;/0; (G #H, A H M B =det (hs*)g™B," .
As we have
Vikid=—kr k2 oh,,,  Vilog det (hs™) =k Y hs"

and V,h,,;=V h,; we get
VAVG/0,(G ) H, ) =—det (hs)g"*B,",

hence is satisfied.

COROLLARY 4.3. A totally umbilical immersion in a Euclidean space is a
Gauss-critical immersion.

DerFINITION. If I';: M—(I" (M), G;) satisfies

G;z,l: ng,ul

with a constant ¢>0, I'; is said to be homothetic or M is said to be homothetic
to (I';(M), G;) by I';. This is equivalent to saying that (iM, g;) is homothetic
to (I'\(M), G,) by I'. ‘

If I'; is homothetic, (4.5) is equivalent to

(4.6) VN HA e HY =0
where
Hh: ’]'_Hﬂﬂh
m

is the mean curvature vector. On the other hand we get from the Ricci
identity

A4.7) Y HeA e = KB
where K,; is the Ricci tensor of (iM, g;). From (4.6) and (4.7) we get
mN NeHY N (K#BM)+mc*H*=0 .
If (1M, g;) is an Einstein manifold we get
(4.8) Vv N*HY-(c*+K/m)H"=0

where K is the scalar curvature. This proves the following theorem.
THEOREM 4.4. Let M be a given compact orvientable manifold of dimension

m. If i: M—E™ is a Gauss-critical immersion and at the same time (iM, g;) is

an Einsteinian submanifold and moreover I'; is a homothetic mapping, then the
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components of the mean curvature vector of iM are eigenfunctions of the Lapla-
cian on (iM, g;) belonging to an eigenvalue. If i: M—E™ is an immersion such
that (1M, g;) is an Einsteinian submanifold, I'; is a homothetic mapping and
moreover the components of the mean curvature vector of iM are eigenfunctions
of the Laplacian on (iM, g;) belonging to an eigenvalue, 1 is a Gauss-critical
immersion.

§ 5. Sectional curvature of the Gauss map of a submanifold of E7".
As in § 3 we assume the equation of an immersion i: M—E™ to be
xh:xh(yla Tt ym)

in some neighborhood V of M containing the point y*=0. We take a fixed
orthonormal frame (e, ¢,) of E™ at y*=0 and a field of orthonormal frame
(far fo) satisfying (fa, f2)0=(a, ¢z) and { fa, e50={f35, x>, { [z, €s0={fy, €z). Then
taking a matrix (y.") satisfying we get

(51) rale"e‘g":: n.,*B,;"ea" .

Indices a, B3, 7, --- =1, ---, m are used to the vectors of the frame tangent to
iM, while «, 4, ¢, -~ =1,---,m are used in connection with local coordinates
of V.

Now let us turn our attention to the Gauss map I';. A point (3*) of VCM
is mapped into a point of G(m, n—m) whose local coordinates are &,, where

(5.2) Ewr=7a"B:e;"

since we have adopted the frame (f,, f,) as mentioned above. From we
get

aEO[x
oyt

(5.3) =(Vara" B +7."H e, .

DEFINITION. Let M be an m-dimensional manifold, p a point of M and I';
the Gauss map associated with an immersion i: M—E™ Assume ['; to be
regular. Let ¢ be a 2-plane in the tangent m-plane of I';(M) at I';(p). The
corresponding sectional curvature of (G(m, n—m), §) is called the sectional cur-
vature of the Gauss map I'; at p and is denoted Kr (o).

In order to find properties of K (o) we take a coordinate neighborhood
V of M such that peV and such that y*=0 at . Then the tangent m-plane
of I'y\(M) at I',(p) is spanned by m vectors & (4=1, ---, m) whose components
are

(54) (aﬂfax)ozraE(O)Hlxh<0)exh .
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Let uw (a=1,---,m) be an orthonormal frame in T(I',(M)) at I'y(p) with
respect to the Riemannian metric G, Then we can put

(5.5) U<a>:7-'alfu> .

Now we use the symbol {, >; or {, > for an inner product with respect
to the Riemannian metric § or G;. Then we get from and

Cuep), Ucae=<Uep), Ucw)a
=75"7a(0,£72)0(0:612)0
=757 1(0)H .., (0)e, 72 (0) H;,M(0) e,
=75"Ta’g"*(0)H ., (0)H,,%(0)

- Tle‘ufalG‘u,z(O) .

2

Hence 7,* must satisfy

z"g“f,me(O):(Sﬁa .
In order to get the formula of K (o) for the 2-plane spanned by u¢, and

Ucp, we must calculate

P y=ulfulsy—uddu’s ,
(5.6)

Q%’ﬁr) @@= u?éﬁu?&”) - H{Z)u{%:)
and substitute them into the formula [2.9). We get, substituting and
into (5.6),

Pyay=757a"15"(0)7 " (0){H 40" (0) H 1, (0)— H2, (0)H ., (0)}

Q?}g)(d) - T‘B#Tazrrw(o)rrp<0> {H,uwi(())H).vh(O) _—I{sz(o)Hyvh(O)} eyiexh H
hence

P?g)(d): _“T‘B#TazTﬁw(o)rrv(O)va,uZ(O) ’
(6.7

Q¥ w=15"ca" {H,"(0)H3s"(0)—H 7 (0)H,.."(0)} e e .

From and (5.7) we see that a necessary and sufficient condition for
Kr, (o) to vanish at every point and in every direction is that

Tﬁ#TaJTBMTTvau‘uZ: O
and

Tﬁ#z-a](H,uaiHlah— HzaiH,uah)Cyicxh:O

hold for every value of «, 8, 7,0=1, -, m and x, y=m+1,---,n. Thus we get
as the necessary and sufficient condition
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(5.8) Ka)u‘uX:O y
(5.9) H‘uaiHth: H‘u”hH,zgi .

Thus we have proved the following lemma.

LEMMA 51. Let M be an m-dimensional manifold and i an immersion
M—E™ A necessary and sufficient condition for the sectional curvature Krp (o)
of the Gauss map I';: M—(G(m, n—m), &) to vanish totally is that (iM, g;) be a
flat Riemannian manifold and the second fundamental form satisfy (5.9).

Let us study some property of the second fundamental form satisfying
(5.9). We fix a point pM and choose local coordinates so that g.1=0,; holds
at p. Let A* be the square matrix (H,;") of order m. Then is equivalent
to A*A*=A"A*. Hence choosing local coordinates again we can transform all
matices into diagonal ones simultaneously and get

Hy,zh:H/,”b‘M .

On the other hand from the equation of Gauss K,,:.=H,."H,"—H,.,"H,;" we
obtain
H,"H (0,10 2—0,60,2)=0 (not summed for g, v)

in view of [5.8). Putting v=r+pu=21 we get
HM=0 v#p.
But we have
G#;ZHF,""HM":HFI”H{L%; .
As we assume det (G,,)#0, we get

HH>0 for each v

hence H.*, ---, H," are m linearly independent vectors of E™. But these vectors
are normal vectors to 1M at 1p. Consequently there can be no more than n—m
linearly independent vectors. This proves the following theorem.

THEOREM 5.2. Let M be an m-dimensional manifold and i an immersion
M—E™ and assume that the Gauss map I';: M—(G(m, n—m), g) is regular. If
n<2m, the sectional curvature of the Gauss map Kyr,; cannot totally vanish. If
n=2m, Kp,; vanishes if and only if (1M, g;) is flat and (5.9) holds.

§ 6. Some examples.
1°.  An immersion i of a torus 7% into E* given by

xi=r,cosu, x*=r,;sinu, x¥=r,cosv, xt=r,sinv.
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For this immersion we have

gu=(r)?, g1:=0, g22a=(72)?, G#l‘:apl .

The Gauss map ['; is not homothetic if r,#7,. As (iT? g;) is flat and satisfies
the sectional curvature Kp,(o) totally vanishes. As is satisfied,
(iT% g) is a GCS. If r,=r,=r, we get G,;=r"’g,; and the mean curvature
vector satisfies

Hr'=——/——x"
2

—V NeH =c*H", ci=r"?

hence by T. Takahashi’s theorem ¢ is a minimal immersion into a hypersphere
of E* [4]. Moreover in this case we have a pseudo-umbilical submanifold.

2°. An immersion ¢ of a torus T? into E* given by
x'=cosucosv, x*=cosusinv,
x*=sinucosv, x*=sinusinv.
For this immersion we have
g,az:5ﬂz ’ G;Mzzg,ul

hence [I’; is homothetic. The sectional curvature Kr (o) totally vanishes.
(iT?, g;) is also a GCS and pseudo-umbilical. The mean curvature vector satisfies

Ht'=—x", Y, Vexh=—2x"
hence 7 is 2 minimal immersion into a hypersphere of E* [4].

3°. The Veronese surface in E°®, given by

xlzizg—sin 2usinv, xzz—\{zgsin 2ucosv,
x"'zizi sin®u sin 2v, x4:_\%§ sin’u cos 2v ,
x5:vé~(1—3 cos?u),

Oéué%, 0=v=2r

It is well-known that the Veronese surface is a minimal submanifold of a
hypersphere in E° For this homothetic immersion 7: S?>—E°® we have
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gll:?); g12:0, g22:3 Sin2u.

I'; is homothetic, G,;=(5/3)g,.; but the sectional curvature Kr,(o) does not
totally vanish since this submanifold has positive constant curvature. But this
submanifold is a GCS. The mean curvature vector H" satisfies H"=—x" and
it is easy to verify directly that the functions x* on S%4/3) are eigenfunctions
of the Laplacian belonging to the eigenvalue 4, of multiplicity 5.

4°. S™M(y )X S™(r,) in E™*™2*2 gych that S™(r,) is in E7*! and S™(r,) in
E;n2+1’ E'lm1+1_LE'én2+1.

This submanifold is a GCS, but the sectional curvature Kp;(o) does not
totally vanish if m;>1 or m,>1. [I'; is homothetic only when r,=7,.

5°. An immersion ¢ of a torus 7% into E°® given by
1. 2 __ ol 3 4 o3
x'=cos u, x*=sinu, x3=cos v, x*=sginv,
x*=cosw, x°=sinw.

This is also a minimal immersion into a hypersphere of E® [4]. For this
immersion G,;=g,,=0,; hence I'; is isometric. Kr,(o) totally vanishes and
(T3, g;) is a GCS and a pseudo-umbilical submanifold.

6°. An immersion ¢ of a torus 7 into E® given by

x'=cosucosvcosw, x*=cosucosvsinw,

x*=cosusinvcosw, x*=cosusinvsinw,
x°=sinu cos v cos w, x®=sinucosvsinw,
x"=sinusinv cos w, x®=sinusinvsinw.

This immersion is also a minimal immersion into a hypersphere of E® [4).
For_ this immersion G,;=3g.; g£.2=0,: hence I'; is homothetic. (iT? g;) is a
GCS. But Kr,(o) does not totally vanish.
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