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§1. Introduction and statement of the theorems.

In the recent paper [2] we have obtained the generalized form of Poincaré’s
inequality
(LD Il =" vll-+L*Ngvl) for velilw), >0,
by using Hormander’s theorem proved by the Campbell-Hausdorff formula
(Theorem 4.3 in [1]), and, as an application, we have studied the hypoelliptic-
ity for the operator L=a(X, D,)+g(X)b(X, Y, D,) (see also [3].

In the present paper we shall give an elementary proof of the inequality
(1.1) only by using the Taylor expansion.

Now we state the theorems to be proved.

THEOREM 1.1 (cf. (1.3) in [2]1). Let g(x) be a real-valued function in
B(R?). Assume that there exists a multi-index a, such that

(12) 920(0) %0,
(1.3) 07g(0)=0 for |al<|ayl.

Then there exists a neighborhood w of the origin in R%, such that the following
estimate holds for 0<z=<1

(1.4) ,Sup [ ulx, y+1) —ulx, MI=Clulle, -+ g (x)dyul)
for usCy(wXR)),
where 7,=1+ || /7)™ and 0<T =00,

Here we used the following usual notations:
asza/axj, 05=031 ---07 for multi-index a=(ay, -+, a,), 0,=0/dy, B(R})={ge

C(Rz); sup |d%g(x)| <co for any af, (&=~1+]E[* and Iul?e>,r=j<$>2’lﬁ(5,

)| *dédy (dE=(2x)"dE, dy=(2x)"dy), where 8(8, )={ e =FVDu(x,y)dxdy (x- 6=

1,61+ +x,8,) is the Fourier transform of ucCy(REX R)).
THEOREM 1.2. Let g(x) be a function as in Theorem 1.1. Then we can
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find a neighborhood w of the origin in R% such that for ©>0 we have (1.1),
and, equivalently, we have

(1.5) vl =Clvlizlgvle for veli(w),

where p=|a,|/(|a,| +7) and g=7/(|a,| +7).

This theorem can be easily proved, as in [2], by taking u(x, y)=X(¥)e‘***v(x)
(LeCr((—1, 1), XzO,SX(y)Zdyzl) for u in Mheorem 11 in case 0<z=<l and
{=C, for some C,>0, and by using interpolation in case r>1 and {=C,. Note
that (1.1) is trivial when 0<{<C,.

The formula leads us to the following inequality
(1.6) vl =Cofvll. for veCy(Bs),

where B;={x; |x| <0} is an open ball contained in w. In fact, noting that
g =C, | x|'* < Cyd' ™ for x= B,;, we get

vl SCyo el )2lv] ?=Cso™ " Plvlzv]? for veCF(Bs),

and hence we have (1.6). From this fact we can regard inequalities (1.1) and
(15) as generalized forms of Poincaré’s inequality.

Finally the author wishes to thank Prof. H. Kumano-go for his kind
suggestions and to thank Prof. L. Nirenberg for his comments. The author
also wishes to thank the referee for his advice.

§2. Proof of Theorem 1.1.

First we shall consider in case n=1, and show the following
theorem.

THEOREM 2.1. Let 6 be a positive number, and g(x) be a real-valued func-
tion in B(RL), which satisfies for some integer N,

(2.1) [0¥og(x)| =¢ce>0 n [—0,0].
Then we have for 0<r=1
(22) sup_1¢1 772, 3+0—u(x, )| Sl 1g(D0,ul)

for usCy(Q),

where ©,=(1+N,/7)"", 2=(—0,0)X R}, and 0<T=co. Moreover we can find
the constant C depending only on sup |0V 'g(x)|, ¢, and <.

REMARK. For any 0<T<co there exists a constant C(T) such that the
following estimate holds:

sup 117 u(x, y+t)—u(x, M= sup |17 ulx, y+1)—ulx, y)l

0<|t|<T
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= sup [t ~*lu(x, y+8)—ulx, WI+CT)ull.

oIt

For the proof of we need several lemmas.
LEMMA 2.2. For 0<s=1 we have

(2.3) . <S}}l\gmll‘l““Jlu(erz‘,y)—u(x,y)!léCilull«,=>,s for usCy(R:,),

(24) ogﬁgm]tl_s”u(x;y+t)_u<x;y)”_S_C”qu/),s for ueCy(R:y),

where lull.=(1+ 1717128, )l *dedy.
Proor. For any ¢ we have

2172 ux+t, 9)—ulx, yIP=]¢] > glu(ert, y)—u(x, y)|*dxdy

={ 111117 |aGe, pltdaan=C (¥ |ae, pI*agy

=Cllulé,s -

Consequently we have (2.3). Similarly we can prove (2.4). Q.E.D.
LEMMA 2.3. Let 0<s'<s=1l. Then we have

(2.5) IIullm,séC{Ksllglgmltl'sllu(x,er-t)—u(x,y)||+l|ull} for ueCy(R:,).

ProOF. To simplify the statements below, we introduce the notation

lulys= sup [t *fulx, y+1)—u(x, ). Noting that we can write |[7|* =
0<| ¢ <oo

Calgltl“”“’Ie“’i—llza’t for some C,, we have

el =C. {1+ Colpl ) 00, 7)1 %azdy
=cui{{ie1-er o g1, 1 2agddr-+ul)
=C{[f1e1m 0 e,y —utx, ) *dxdydr-+ )y
=Cudl 117 e, v+ —ute, ) e
] e, ) —ute, )1+l
=C,{lulyf It

jeisl

| e ndr )y

1ti>1
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=Cflulfs+lul®.

Consequently we have (2.5). Q.E.D.
LEMMA 2.4 (cf. Lemma 4.1 in [1]). Let h(x,t) be a continuous and real-
ualued function such that
|A(x, ) =C,.

Then we have for 0<s=l1

26) 18]~ ulx, y+Hth(x, ) —ulx, NI SCA+CY Fluly, for usCr(Ry,).
Proor. We have for any ¢
|u(x, y+th(x, ) —ulx, y)|°
=2|u(x, y+th(x, 1))—ulx, y+o)|*+2|ulx, y+o)—ulx, ¥)| >

Integrating with respect to x and y, averaging over ¢ for |o|<]|t|, and
multiplying by |#|~%, we have

L2172 N ulx, y+th(x, ) —ulx, WI?

it fute y+the, D)—ux, y+0) | *dxdydo+C,lul} .

leiit

Put I:ltl“““)g Ilu(x,y—l—z‘h(x, )—u(x, y+o)|?dxdyde, and change the va-

leiit

riables by z=y+th(x, {), w=o—th(x,t). Then we have
I=|t| ‘(ZHI’SX lu(x, z)—u(x, z+w)| *dxdzdw
lw+thix, ) I<It]

=<|t] -(zs+1>S Slu(x, z)—u(x, z+w)|2dxdzdw

[wI<1+C oIt
§C2<1+Co)23+1 | [12/,s .

Consequently we have (2.6). Q.E.D.
LEMMA 2.5. Suppose that h(x) be a continuous and real-valued function
such that for a constant cy>0

(2.7 |h(x)|Zc, in [—0,0].
Then we have for 0<s=1
(2.8) sup |t[~*llu(x, y+1)—ulx, y)I

0|t <o

s+1
<CO+a")"? sup |#17*lux, y+th(x))—u(x, n)I for usCi(@).

PrROOF. Since the proof is parallel to that of the preceding lemma, we
mention only the outline of the proof. First we have
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17, y+D—utx, IPSCL @] ug, y+0)
—u(x, y+oh(x))|*dxdy do+ sup [ % lu(x, y+t h(x))—uCx, M) .
A

In the integral we change the variables by z=y-+{, w=(oh(x)—t)/h(x). Then
the integral yields

] _(28+1)S.lew+t/h(z)!<lt[ |u(x, 2)—u(x, z+wh(x))|*dxdz dw

<t I, 2)—u(x, z-+wh(x) dw

lwi<+egt e

=C(1+c 1)23“03};‘% [ 2 lulx, y+# h(x))—ulx, »)I*.
Consequently we have (2.8). Q.E.D.
For 7 in we set p(m)=1+m/z and define for m=0,1, ---

An(u)= SUp [2] Ve ly(x, y+torg(x)—u(x, ).

Then we have

THEOREM 2.6. For any p satisfying 0<p=1 we take an integer N such
that p(N+1)=1/p. Then for any ¢>0 and m satisfying 1=m=N there exists a
constant Cp . such that the following estimate holds

(2.9) An(W)ZeAn 10+ Coel, 2 A+ [ulgre

F(1F gl wa)  Elullems)  For ueC3(RL,),

where |g| y=sup|oyg(x)|. Moreover we have for any ¢>0

(210 £ 4000 S A0 + Cllll et 1+ L] )l e,
for ucC7(R:,).

Proor. For the proof we introduce unitary operators in L*(R%,) as
follows :

(TOu)(x, y)=u(x+t, )
(GtHu)x, y)=u(x, y+talg(x)) for any integer .

We define for any &,>0 (Fu)(x, y)=u(x, y+e ™ P {org(x+er'tV")—o7'g(x)}) .
Then we get

F:Gm—1(_elt‘u(m_D)T(Efltl/r)Gm_l(ellL‘u(m-l>)T(——5l‘ltl/~‘) ]

In fact we have
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Fu(x, y)=u(x, y+e,t*™ {08 glater'1¥7) — 7~ g(x)})
=G o — &5 D)y, y+-e, ™D g (x+71Y7))
=G (— e ™ OV (T Y Yu(x— e 17, Y, ™ Dgm1g(x))
=Gn-1(—et" ™ )T (') G- (&2t P)u(x—er ', )
=Gns( =&t ™ )T (e )G (st ™) T (=7 ulx, 9)

On the other hand, noting that we have
et ™D 0 (e 1) — 0 g ()
N-

:t.“(m)agbg(x)_l_ kg:nsl—ktll(1n+k)a7zn+kg(x)_]__El—(N—m+1)t[l(N+1)gN+l(x, t)
by using the Taylor expansion and p(m)--k/c=p(m-+k), we can write
N-m

F=G(t"™) TI Graa(er ™) Fys

with Fyu(x, y)=u(x, yFer W mDe N+ bgy  (x, ).

By using [Lemma 2.2 and [Lemma 2.4 we have

[t1 ulx, y+ 1m0z g () —ulx, Y= 1¢] | Gu(@ ™ )u—ul
=1t I Fu—ull 4G ™)u— Full}
= {1t HNGr-o(—et* ™ P)u—ul 4[] T (et u—ul
1 Ges(ent ™ P)u—ull + [t I T (=7t Ju—ul}

N-m
T TG (e ™ Py u—ul + [ ] 7 Fyau—ul}
§28%/#(m—1)Am_1(”)+k=§+15f(k—m)l/‘u(k)Ak(u>

+Co (et L 18] wad) E o) -

Consequently we have with e=2el/Mm=1
For the proof of we take sequences {¢;}Y; and {c¢;} ¥, which satisfy

j-1
e1=¢/2,¢e;=1/c; (7=2), c;=2 and cj=2+I§1ckck,ek(j§2). Then we can get
since we have by

2 enAn()= X cnfenAn)FCnepl 2 A+ s

(11 g e [l o))
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N-1 N m-1
=AW+ X An(w)+ 3 (5 ciCher) Anw)

N L
+ 3 enCoe(ltl e+ gl v s . Q.E.D.

REMARK. Let exp X be the one parameter group of transformations in
R%, defined by a real vector field X. Then we have T(¢)=exp (10,), Gi(t)=
exp (t0Lg(x)d,), and F=expY exp X exp(—Y) exp(—X)=exp ([V, X]) -
=exp (t*™org(x)0y)--+, for Y =—¢e, " Do 'g(x)d, and X=¢e't"°0,.

PROOF OF THEOREM 2.1. Take p=1/u(N,+1) for p in theorem 2.6, then
N=N,. From we have

AN(U)écl(Ao(u)‘}_ ”u”<5>,r+(l+ lg[ N+1)p+%”u”<ﬂ>,p) fO?’ ue C8°<R.2r,y) .

Since we have
A(u)= Sup_ L]~ Hu(x, y+tg(x0)—ulx, I =lg(x)aulx, )|,
we get

1
(211) Ay =C(lull.«+ 1g0yul +1+1gl ye)” Elulamo) for usCe(RL,).
Now using we have from

sup |¢| Y ulx, y+1)—ulx, y)|

0< ¢ [<oo

1

=C(+a)™"2 sup [#] 7 ulx, y+1¥g(x)—ulx, 9)l

1

=C'(L+) " 2 Ax(w) for usCy(Q).
Combining this with (2.11), we get
(2.12) sup [t 7" ulx, y+t)—u(x, y)ll

0<iti<o
=Clgllulle,c+lgdyul+lulam,e) for usCi(£2).

Here and in what follows we denote by C;(g) the constants depending only
on |glwy+1, ¢ and z. Taking p’ with p<p’<z;, we have from

lullap, 0 =C”( sup [¢] " ulx, y+1)—ulx, )|+ lul)

0<| ¢ oo

=Cy(@)lulle,«+ 1 g0yull+ [l ap,0) -

By using interpolation we have

(2.13) Il om0 =Ca( g )(Mlutll g5 e+ g0y uell)
Then we have from [(2.12) and [2.13). Q.E.D.

PrROOF OF THEOREM 1.1. We may assume that a,=ay=--=a,, and for



22 K. TANIGUCHI

any B (08g(0)=0, |Bl=la,l, B*a,) we have a,;=8; (j<k), ay,> B for some k.
Introducing new variables z=(z,, --*, z,) by setting

—_ +1 - n 92 .
B =AM L k=20 Az, e, X, =202+ 2, (No=] )

with sufficiently large positive number 4, we can get for Ny=|a,]
05°0)%0.

Then there exists a neighborhood w={z,; |z:| <8} X {z"; |2'| <d"} (z/=(z, -+,
zn)) of the origin such that

[oNog(z)| =co>0 in .
Considering z’ as a parameter we get by using [Theorem 2.1
(2.14) sup [#[7*lu(z, y+1)—ulz, y)lizz

0<} ¢ <0

<c(|A+1E1 18, 2/, )1 ddy

+1g(2)0yu(z, Y2z ) for usCF(wxXR)),

where #({,, 2/, y):Se‘“lglu(z, y)dz, is the partial Fourier transform of u. Then

we get the inequality by integrating with respect to 2z’ and
rechanging the variables from z to x. Q.E.D.
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