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Amitsur ([1]) determined all finite multiplicative subgroups of division
algebras. We try to determine, more generally, all finite multiplicative sub-
groups of simple algebras of fixed degree. In [5] we characterized $p$-groups
contained in the full matrix algebras $M_{n}(\Delta)$ of fixed degree $n$ , where $\Delta$ is a
division algebra of characteristic $0$ . In this paper we will study multiplicative
subgroups of $M_{2}(\Delta)$ .

In \S 2 we will determine all finite nilpotent subgroups of $M_{2}(\Delta)$ , and in \S 3
all finite subgroups of $M_{2}(\Delta)$ with abelian Sylow 2-groups. Finally, in \S 4, we
will give some additional remarks.

\S 1. Preliminaries.

All division algebras considered in this paper are of characteristic $0$ . As
usual $Q,$ $R,$ $C$ and $H$ denote respectively the rational number field, the real
number field, the complex number field, and the quaternion algebra over $R$ .

Let $\Delta$ be a division algebra. We denote by $M_{n}(\Delta)$ the full matrix algebra
of degree $n$ over $\Delta$ . By a subgroup of $M_{n}(\Delta)$ we mean a finite multiplicative
subgroup of $M_{n}(\Delta)$ . Further let $K$ be a field contained in the center of $\Delta$ and
let $G$ be a subgroup of $M_{n}(\Delta)$ . We define $V_{K}(G)=\{\sum\alpha_{i}g_{i} a_{i}\in K, g_{i}\in G\}$ .
Then $V_{K}(G)$ is a K-subalgebra of $M_{n}(\Delta)$ and there is a natural epimorphism
$KG\rightarrow V_{K}(G)$ . Hence $V_{K}(G)$ is a semi-simple K-subalgebra of $M_{n}(\Delta)$ .

Let $m,$ $r$ be relatively prime integers, and put $s=(r-1, m),$ $t=m/s;n=the$

minimal positive integer satisfying $r^{n}\equiv 1$ mod $m$ . Denote by $G_{m,r}$ the group
generated by two elements $a,$

$b$ with the relations; $a^{m}=1,$ $b^{n}=a^{t}$ and $bab^{-1}=a^{r}$ .
Let $\zeta_{m}$ be a fixed primitive m-th root of unity and let $\sigma=\sigma_{r}$ be the automor-
phism of $Q(\zeta_{m})$ determined by the mapping $\zeta_{m}\rightarrow\zeta_{m^{r}}$ . Let $\{\alpha_{\sigma t_{\sigma}j}\}$ be the factor
set of $\langle\sigma\rangle$ in $Q(\zeta_{m})$ defined by

$\alpha_{\sigma^{i}\sigma j}=\{\zeta_{s}=\zeta_{m}^{l}1$

when $i+j<n$

when $i+j\geqq n$ ,

and denote by $\Lambda_{m,r}$ the crossed product of $Q(\zeta_{m})$ and $\langle\sigma\rangle$ by $\{\alpha_{\sigma^{i_{\sigma}j}}\}$ .
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Here we recall the results in Amitsur [1].

1.1 ([1]). Let $G$ be a finite group and let $\Delta$ be a division algebra. If $ G\subseteqq\Delta$ ,

then $G$ is one of the following types:
(1) All Sylow subgroups of $G$ are cyclic.
(2) The odd Sylow subgrouPs of $G$ are cyclic and the even Sylow subgroup

of $G$ is a generalized quaternion group of order $2^{\alpha+1},$ $a\geqq 2$ .
1.2 ([1]). A group $G$ is of type(1) in $(1, 1)$ if and only if $G\cong G_{m,r}$ for some

relatively prime integers $m,$ $r$ with $(n, t)=1$ . A group $G$ of type(1) or (2) in
$(1, 1)$ is metacyclic if and only if $G\cong G_{m,r}$ for some relatively prime integers $m,$ $r$.

1.3 ([1]). A group $G_{m,r}$ can be embedded in a division algebra if and only

if $\Lambda_{m,r}$ is a division algebra; then we have $V_{Q}(G_{m,r})\cong\Lambda_{m,r}$ and the isomorphism
is obtained by the correspondence $a\leftrightarrow\zeta_{m},$ $b\leftrightarrow\sigma_{r}$ .

The group $G_{2m,-1}$ are called the binary dihedral groups. We define $T^{*}=$

$\langle a, b, c|a^{4}=1, a^{2}=b^{2}, aba^{-1}=b^{-1}, cac^{-1}=b, cbc^{-1}=ab, c^{3}=1\rangle,$ $O^{*}=\langle a,$ $b,$ $c|a^{8}=1$ ,
$a^{4}=b^{2}=c^{3}$ , $ cba=1\rangle$ and $I^{*}=SL(2,5)$ .

1.4 ([1]). The finite subgroups of the quaternion algebra $H$ are the cyclic
group of any order, the binary dihedral group of order $4m$ , the groups $\tau*,$ $0^{*}$

and $I^{*}$ .
We remark that the group $G_{4,- 1}$ means the ordinary quaternion group of

order 8 and that the crossed product $\Lambda_{4,-1}$ means the ordinary quaternion
algebra over $Q$ . The splitting fields for $\Lambda_{4,-1}$ can be determined by the fol-
lowing:

1.5 ([3]). Let $K$ be an algebraic number field. Then $K$ is a splitting field
for $\Lambda_{4,-1}$ if and only if $K$ is totally imaginary and the local degrees of $K$ at all
primes of $K$ extending the rational prime (2) are even. In particular, if $4|n$ ,
then $Q(\zeta_{n})$ is a splitting field for $\Lambda_{4,-1}$ , and, if $n=2m,$ $m$ odd, then $Q(\zeta_{n})=Q(\zeta_{m})$

is a splitting field for $\Lambda_{4,-1}$ if and only if the order of 2 $(mod m)$ is even.
Next we recall the results in [5].

Let $ P_{0}=\langle g\rangle$ be a cyclic group of order $p$ . Let $G,$ $G^{\prime}$ be finite groups and
let $G_{1}^{\prime},$ $G_{2}^{\prime},$ $\cdots$ , $G_{p}^{\prime}$ be the copies of $G^{\prime}$ . We call $G$ a simple (l-fold) $p$-extension
of $G^{\prime}$ if $G$ is an extension of $G_{1}^{\prime}\times G_{2}^{\prime}\times\cdots\times G_{p}^{\prime}$ by $P_{0}$ such that $G_{1}^{\prime\sigma_{g}}=G_{2}^{\prime},$ $\cdots$

$G_{p1}^{\prime^{\sigma_{\underline{g}}}}=G_{p}^{\prime},$ $G_{p}^{\prime^{\sigma_{g}}}=G_{1}^{\prime}$ where $\sigma_{g}$ denotes the automorphism of $G_{1}^{\prime}\times G_{2}^{\prime}\times\cdots\times G_{p}^{\prime}$ cor-
responding to $g$. More generally, a finite group $G$ is called an n-fold $P$ -exten-
sion of a finite group $G^{\prime}$ if there exist finite groups $G_{0}=G^{\prime},$ $G_{1},$

$\cdots,$
$G_{n-1},$ $G_{n}=G$

such that, for each $0\leqq i\leqq n-1,$ $G_{i+1}$ is a simple $p$ -extension of $G_{i}$ . Now we
put

$T_{p}^{(0)}=\{$

{all cyclic $p$ -groups} when $p\neq 2$

{all generalized quaternion 2-groups} when $p=2$ ,

and $T_{p}^{(0)}=$ { $a11$ cyclic $p$ -groups} for any prime $p$ . An element of $T_{p}^{(C)}$ (resp. $\tilde{T}_{p}^{(0)}$ )
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is called a $p$-group of O-type (resp. $\sim 0$-type). A finite $p$-group $P$ is said to be
of n-type (resp. n-type) if $P$ is an n-fold $p$-extension of a $p$ -group of O-type
(resp. $\sim 0$ -type). We denote by $T_{p}^{(n)}$ (resp. $T_{p}^{(n)}$ ) the set of all $p$-groups of n-type
(resp. $\tilde{n}$ -type).

1.6 ([5]). Let $n$ be a fixed Positive integer and let $P$ be a finite p-group.
Then the following conditions are equivalent:

(1) $P$ is a subgroup of $M_{n}(H)$ (resp. $M_{n}(C)$ ).
(2) $P$ is a subgroup of $M_{n}(\Delta)$ (resp. $M_{n}(K)$ ) for a division algebra $\Delta$ (resp.

commutative field $K$ ).

(3) There exist non-negative integers $t,$ $m_{0},$ $\cdots$ , $m_{t}$ with $\sum_{t=0}^{t}p^{i}m_{i}\leqq n$ and $P_{i}^{(1)}$ ,

$P_{i}^{(2)},$ $\cdots$ , $P_{i}^{(m_{i})}\in T_{p}^{(t)}$ (resp. 7 $p(i)$ ), $0\leqq i\leqq t$ , such that $P\subseteqq\prod_{i=0}^{t}\prod_{f=1}^{m_{i}}Pj^{j)}$ .
1.7 ([5]). Let $P$ be a finite non-abelian p-grouP, $\Delta$ a division algebra and $K$

a field contained in the center of $\Delta$ . Assume that $P\subseteqq M_{n}(\Delta)$ and $V_{K}(P)=M_{n}(\Delta)$ .
(1) If $P$ is a $2$-group which is not of tyPe $0$ and $\Delta$ is non-commutative,

then there exists a subgroup $P_{0}$ of $P$ of index 2 such that $V_{K}(P_{0})\cong M_{n/2}(\Delta)$

$\oplus M_{n/2}(\Delta)$ .
(2) If $\Delta$ is commutative, then we have $V_{R}(P)=M_{n}(\overline{K})$ and there exists a

subgroup $P_{0}$ of $P$ of index $p$ such that
$p$

$ V_{\overline{K}}(P_{0})\cong M_{n/p}(\overline{K})\oplus\overline{\oplus M_{n/p}(\overline{K}})\sim\cdots$ ,

where $\overline{K}$ is the algebraic closure of $K$.
(In [5], we proved (1.7) for $K=Q$ .

$K$ contained in the center of $\Delta.$ )

\S 2. Nilpotent groups.

But that proof holds good for any field

We begin with
LEMMA 2.1. Let $\Delta$ be a division algebra (of characteristic $0$) and let $K$ be

a field contained in the center of $\Delta$ . Let $G$ be a finite subgroup of $M_{2}(\Delta)$ .
Then we have $V_{K}(G)\cong\Delta_{1},$ $M_{2}(\Delta_{2})$ or $\Delta_{3}\oplus\Delta_{4}$ where $\Delta_{i},$ $1\leqq i\leqq 4$ , are division
algebras.

PROOF. This is evident, because $V_{K}(G)$ is semi-simple.
Here we give the following basic lemmas.
LEMMA 2.2. Let $\Delta$ be a division algebra and $K$ be a subfield of the center

of $\Delta$ . Let $H,$ $J$ be finite groups and $G_{\sigma},$ $\sigma\in H$, be normal subgroup of J. Let
$G$ be an extension of $J$ by H. Assume the following conditions;

(1) $\bigcap_{\sigma\in H}G_{\sigma}=1$ and $G_{\sigma}\neq G_{\tau}$ for any $\sigma\neq\tau$ in $H$.
(2) Let $\{u_{\tau}\}_{\tau\in H}$ be a set of representatives of $H$ in G. Then $G_{\sigma}^{u_{\tau}}=G_{\sigma\tau}$ for
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any $\sigma,$
$\tau\in H$.

(3) $J/G_{1}\subseteqq M_{n}(\Delta)$ and $V_{K}(J/G_{1})=M_{n}(\Delta)$ .
Then we have $G\subseteqq M_{nh}(\Delta)$ and $V_{K}(G)=M_{nh}(\Delta)$ , where $h$ is the order of $H$.
PROOF. Let $V$ be an irreducible $M_{n}(\Delta)$ -module. Then $V$ can be regarded

as a $K[J/G_{1}]$ -module because $V_{K}(j/G_{1})=M_{n}(\Delta)$ . Let $\phi;J\rightarrow J/G_{1}$ be the natural
homomorphism. Then we may further regard $V$ as a $KJ$-module through $\phi$ .
Now we have $V^{G}=KG\otimes_{KJ}V=\sum_{\sigma\in H}\oplus u_{\sigma}^{-1}V$ . Since Ker $u_{\sigma}^{-1}V=\{g\in J|gu_{\sigma}^{-1}v=u_{\sigma}^{-1}v$

for all $v\in V$ } $=\{g\in J|gv=v$ for all $v\in V\}^{u_{\sigma}}=KerV^{u_{\sigma}}=G_{1}^{u_{\sigma}}=G_{\sigma}$ by our assump-
tions (2), (3), we have $u_{\sigma}^{-1}V\neq\leftrightarrow u_{\tau}^{-1}V$ as KJ-module for any $\sigma\neq\tau$ . Therefore
$Hom_{KG}(V^{G}, V^{G})\cong Hom_{KJ}(u_{\sigma}^{-1}V, V^{G})\cong Hom_{KJ}(u_{\sigma}^{-1}V, u_{\sigma}^{-1}V)\cong\Delta^{op}$ . Because $\dim_{K}V^{G}$

$=h\dim_{K}V$ , the simple component of $KG$ corresponding to $V^{G}$ is $M_{nh}(\Delta)$ . As
is easily seen, $V^{G}$ is G-faithful. Hence $G\subseteqq M_{nh}(\Delta)$ and $V_{K}(G)=M_{nh}(\Delta)$ .

LEMMA 2.3. Let $G$ be a finite group and let $N$ be a normal subgroup of
G. Let $\Delta$ be a division algebra and let $K$ be a field contained in the center of
$\Delta$ . Assume that $G\subseteqq M_{2}(\Delta)$ and $V_{K}(G)=M_{2}(\Delta)$ . Let $V$ be an irreducible $M_{2}(\Delta)-$

(so, $KG$ ) module. Further let $W$ be an irreducible KN-submodule of $V$ and let
$U$ be the sum of all KN-submodules of $V$ which are isomorphic to W. Define
$H=\{g\in G|gU=U\}$ . Then the number $m$ of all isomorphism classes of irre-
ducible KN-submodules of $V$ is 1 or 2. In the case where $m=2$ , we have $[G:H]$

$=2$ and $ V_{K}(H)\cong\Delta\oplus\Delta$ . Moreover $H$ has normal subgroups $H_{1},$ $H_{2}$ satisfying
$H_{1}\cap H_{2}=\{1\},$ $H_{1}^{g}=H_{2}$ and $H/H_{1}\cong\rho(H)$ , where $\{1, g\}$ is a set of representative

of $G/H$ in $G$ and $\rho$ is the projection of $V_{K}(H)$ on the first component of $\Delta\oplus\Delta$ .
In the case where $m=1$ , we have $V_{K}(N)\cong M_{2}(\Delta^{\prime})$ or $\Delta^{\prime}$ for a division algebra
$\Delta^{\prime}$ , and, especially, if $|N|$ is odd, then $V_{K}(N)$ is a division algebra.

PROOF. By Clifford’s theorem $(e. g. [2])U$ is irreducible as a KH-module,
$V=U^{G}$ and $m=[G:H]$ . Let $M_{r}(\Delta^{\prime})$ be the simple component of $KH$ corre-
sponding to $U$ . Let $V=U^{G}=U\oplus U_{1}\oplus\cdots\oplus U_{k}$ be a decomposition of $V$ into
irreducible KH-modules. By the assumption on $U,$ $U\not\cong U_{i}$ as KN-module for
all $1\leqq i\leqq k$ . Therefore $U\not\cong U_{i}$ as KH-module, so we have $\Delta^{op}\cong Hom_{KG}(V, V)\cong$

$Hom_{KH}(U, U)\cong\Delta^{\prime op}$ . Since 2 $\dim_{K}\Delta=\dim_{K}V=m\dim_{K}U=mr\dim_{K}\Delta^{\prime}=mr\dim_{K}\Delta$ ,

we have $mr=2$ and so $m\leqq 2$ .
We now assume that $m=2$ . Then $r=1$ and so $ V_{K}(H)\cong\Delta\oplus\Delta$ . Since $[G:H]$

$=2,$ $H$ is a normal subgroup of $G$ . Let $G=H\cup gH$ be the decomposition of $G$

into cosets of $H$. Then $V=U\oplus g^{-1}U$ and $U\not\cong g^{-1}U$ as KH-modules. And we
may assume that $U$ (resp. $gU$ ) is the irreducible $V_{K}(H)$ -module corresponding
to the first (resp. second) component of $\Delta\oplus\Delta$ . Put $ H_{1}=Ker\rho$ and $H_{2}=H_{1}^{g}=$

$(Ker\rho)^{g}$ . Because $V=U\oplus g^{-1}U$ is H-faithful, $1=Ker(U\oplus g^{-1}U)=\{h\in H|hu+hg^{-1}u$

$=u+g^{-1}u$ for all $u\in U$ } $=$ { $h\in H|hu=u$ for all $u\in U$ } $\cap\{h\in H|hg^{-1}u=g^{-1}u$ for
all $u\in U$ } $=Ker\rho\cap(Ker\rho)^{g}=H_{1}\cap H_{2}$ . Furthermore since $ V_{K}(H)=\Delta\oplus\Delta$ , we have
$H_{i}\neq\{1\}$ and so $H_{1}\neq H_{2}$ .
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Assume $m=1$ . Then it is easily shown that $V_{K}(N)\cong M_{2}(\Delta^{\prime})$ or $\Delta^{\prime}$ for a
division algebra $\Delta^{\prime}$ . Let $\overline{K}$ be the algebraic closure of $K$. Then we have

$\overline{K}\otimes_{K}M_{2}(\Delta^{\prime})\cong M_{2}(\overline{K}\otimes_{K}\Delta^{\prime})\cong\overline{M_{2t}(\overline{K})\oplus}\cdot\overline{\oplus M_{2t}(\overline{K}})s$

for some integers $s$ and $t$ .
Therefore, if $V_{K}(N)\cong M_{2}(\Delta^{\prime})$ , then we have $2t||N|$ .

Now we will determine all finite nilpotent subgroups of simple algebras
$M_{2}(\Delta)$ where $\Delta$ are division algebras.

LEMMA 2.4. Let $\Delta$ be a division algebra and let $K$ be a field contained in
the center of $\Delta$ . Let $G$ be a finite nilp0tent subgroup of $M_{2}(\Delta)$ . For each prime
$p||G|$ let $S_{p}$ be the Sylow p-subgroup of $G$ , and let $|S_{2}|=2^{l}$ and $|\prod_{p\neq 2}S_{p}|=m$ .
Assume that $V_{K}(G)$ is simple. Then $\prod_{p\neq 2}S_{p}$ is cyclic, $V_{K}(\prod_{p\neq 2}S_{p})\cong K(\zeta_{m}),$

$V_{K}(S_{2})$

is simple and $V_{L(\backslash m}’$) $(S_{2})=V_{K}(G)$ , where $L$ is the center of $V_{K}(S_{2})$ . Further assume
that $V_{K}(S_{2})$ is a division algebra. Then one of the following conditions is
satisfied:

(1) $S_{2}$ is a cyclic group and $V_{K}(G)\cong K(\zeta_{2^{l}m})$ .
(2) $S_{2}$ is a generalized quaternion group and $V_{K}(G)\cong K(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1}, \zeta_{m})$

$\otimes_{Q}\Lambda_{4,-1}$ .
PROOF. By (1.6) $\prod_{p\neq 2}S_{p}$ is abelian. Then $V_{K}(\prod_{P\neq 2}S_{p})$ is contained in the

center of $V_{K}(G)$ , and therefore $V_{K}(\prod_{p\neq 2}S_{p})$ is a field. Hence $\prod_{p\neq 2}S_{p}$ is cyclic and

$V_{K}(\prod_{p\neq 2}S_{p})\cong K(\zeta_{m})$ . Further we easily see that the center of $V_{K}(S_{2})$ is contained

in the center of $V_{K}(G)$ . Therefore $V_{K}(S_{2})$ is simple and $V_{L(\zeta_{m})}(S_{2})\subseteqq V_{K}(G)$ .
On the other hand it clearly holds that $V_{K}(G)\subseteqq V_{L(\backslash m)}’(S_{2})$ . Hence $V_{L(\zeta_{m})}(S_{2})=$

$V_{K}(G)$ . Now assume that $V_{K}(S_{2})$ is a division algebra. Then by (1.1) $S_{2}$ is a
cyclic group or a generalized quaternion group. If $S_{2}$ is cyclic, then we have
$V_{K}(S_{2})\cong K(\zeta_{2^{l}})$ , and so $V_{K}(G)\cong K(\zeta_{2^{l}m})$ . On the other hand, if $S_{2}$ is a generalized
quaternion group, $i$ . $e.$ , if $S_{2}=G_{2^{l-1}’-1}$ , then we have by (1.3) $V_{Q}(S_{2})=\Lambda_{2^{l-1}’-1}$ .
The center of $\Lambda_{2^{l- 1}’-1}$ is $Q(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1})$ , so $ V_{K}(S_{2})\cong K\otimes_{Q(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1}})V_{Q}(S_{2})\cong$

$K(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1})\otimes_{Q}\Lambda_{4,-1}$ . Therefore we get $V_{K}(G)\cong K(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1}, \zeta_{m})\otimes_{Q}\Lambda_{4,-1}$ .
This completes the proof of the lemma.

We now give
THEOREM 2.5. Let $G$ be a finite nilpotent group and for each prime $p||G|$

let $S_{p}$ be the Sylow $P$-subgroup of G. Let $|S_{2}|=2^{s}$ and $|\prod_{p\neq 2}S_{p}|=m$ . Let $\Delta$ be

a division algebra and $K$ a field contained in the center of $\Delta$ . Assume that $G$

can be embedded in $M_{2}(\Delta)$ in the form that $V_{K}(G)=M_{2}(\Delta)$ . Then $G$ satisfies the
following conditions (a) and (b).

(a) $S_{2}$ has a subgroup $S$ of index 2 and $S$ has two normal subgroups $T_{1}$ ,
$T_{2}(\neq\{1\})$ of $S$ such that $T_{1}\cap T_{2}=\{1\}$ and $T_{1}^{g}=T_{2}$ , where $\{1, g\}$ is a set of
representatives of $S_{2}/S$ in $S_{2}$ .
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(b) $S/T_{1}$
$and\prod_{\sim 2}S_{p}$ satisfy one of the following conditions:

(1) $S/T_{1}$ and $\prod_{p\neq 2}S_{p}$ are cyclic groups.
(2) $S/T_{1}$ is a quaternion group of order $2^{l},\prod_{p\neq 2}S_{p}$ is a cyclic group and

$K(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1}, \zeta_{m})\otimes_{Q}\Lambda_{4,-1}$ is a division algebra.
Conversely, assume that $G$ satisfies the condition (a). Let $|S/T_{1}|=2^{l}$ . Further-

more if $G$ satisfies the condition (1) in (b), then $G\subseteqq M_{2}(K(\zeta_{2^{l_{m}}}))$ and $V_{K}(G)=$

$M_{2}(K(\zeta_{2^{l}m}))$ . If $G$ satisfies the condition (2) in (b), then $G\subseteqq M_{2}(K(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1},$ $\zeta_{m}\rangle$

$\otimes_{Q}\Lambda_{4,- 1})$ and $V_{K}(G)=M_{2}(K(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{1}, \zeta_{m})\otimes_{Q}\Lambda_{4,- 1})$ .
PROOF. By (2.4) $\prod_{p\neq 2}S_{p}$ is cyclic. First assume that $V_{K}(S_{2})$ is a division

algebra. Because $V_{K}(G)=M_{2}(\Delta)$ , again by (2.4) $S_{2}$ is a generalized quaternion
group and $V_{K}(S_{2})=K(\zeta_{2}s- 1+\zeta_{2^{S-1}}^{-1})\otimes_{0}\Lambda_{4,- 1}$ . Therefore $S_{2}\subseteqq K(\zeta_{2}s- 1+\zeta_{2^{S-1}}^{-1})\otimes_{Q}\Lambda_{4,-1}$

$\subseteqq\overline{K}\otimes_{Q}\Lambda_{4,- 1}=M_{2}(\overline{K})$ and $V_{\overline{K}}(S_{2})=M_{2}(\overline{K})$ , where $\overline{K}$ is the algebraic closure of $K$.
By (1.7) there exists a subgroup $S$ of $S_{2}$ of index 2 such that $V_{\overline{K}}(S)=\overline{K}\oplus\overline{K}$.
Hence by (2.3) $S$ has normal subgroups $T_{1},$ $T_{2}$ satisfying the condition (a) such
that $S/T_{1}$ is the subgroup of $\overline{K}$. So $G$ satisfies the conditions (a) and (1) in
(b). Next assume that $V_{K}(S_{2})\cong M_{2}(\Delta^{\prime})$ for a division algebra $\Delta^{\prime}$ . If $\Delta^{\prime}$ is com-
mutative, then, by the same reason as above, $G$ satisfies the conditions (a) and
(1) in (b). On the other hand, if $\Delta^{\prime}$ is non-commutative, then $S_{2}$ is not of type
$0$ . Therefore by (1.7) there exists a subgroup $S$ of $S_{2}$ of index 2 such that
$V_{K}(S)=\Delta^{\prime}\oplus\Delta^{\prime}$ . Then by virtue of (2.3) $S$ has normal subgroups $T_{1},$ $T_{2}$ satis-
fying (a), $S/T_{1}$ is a subgroup of $\Delta^{\prime}$ and $V_{K}(S/T_{1})=\Delta^{\prime}$ . It follows from ( $ 2.4\rangle$

that $S/T_{1}$ is a generalized quaternion group and $\Delta^{\prime}=V_{K}(S/T_{1})\cong K(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1}\rangle$

$\otimes_{Q}\Lambda_{4,- 1}$ . Therefore again by (2.4), $M_{2}(\Delta)=V_{K}(G)=K(\zeta_{2^{l- 1}}+\zeta_{2^{l-1}}^{-1}, \zeta_{m})\otimes_{Q}M_{2}(\Lambda_{4,- 1})$ .
Hence $G$ satisfies the conditions (2) in (b).

Finally we prove the converse. If $G$ satisfies the condition (a), then $G$ is
an extension of $S\times\prod_{p\neq 2}S_{p}$ by $S_{2}/S$ and $G$ satisfies the conditions (1), (2) in (2.2).

So, if $S/T_{1}\times\prod_{p\neq 2}S_{p}$ is a subgroup of a division algebra $\Delta$ and $ V_{K}(S/T_{1}\times\prod_{p\neq 2}S_{p}\rangle$

$=\Delta$ , then we have by (2.2) $G\subseteqq M_{2}(\Delta)$ and $V_{K}(G)=M_{2}(\Delta)$ . Therefore it remains
only to prove that $S/T_{1}\times\prod_{P\neq 2}S_{p}$ satisfies the above condition. First assume
that $G$ satisfies the condition (1) in (b). Since $S/T_{1}\times\prod_{p\neq 2}S_{p}$ is a cyclic group

of order $2^{l}m$ , $S/T_{1}\times\prod_{p\neq 2}S_{p}$ can be embedded in $K(\zeta_{2^{l}m})$ in the form that

$V_{K}(S/T_{1}\times\prod_{p\neq 2}S_{p})=K(\zeta_{2^{l}m})$ . If $G$ satisfies the condition (2) in (b), we have by

(1.3) $S/T_{1}$ is a subgroup of $\Lambda_{2^{l- 1.-1}}=Q(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1})\otimes_{Q}\Lambda_{4,- 1}$ such that $V_{Q}(S/T_{1})$

$=\Lambda_{2^{l- 1}’-1}$ . Then $S/T_{1}\times\prod_{p\neq 2}S_{p}$ can be embedded in $K(\zeta_{2^{l- 1}}+\zeta_{2^{l-1}}^{-1}, \zeta_{m})\otimes_{Q}\Lambda_{4,- 1}$ and

$V_{K}(S/T_{1}\times\prod_{p\neq 2}S_{p})=K(\zeta_{2^{l- 1}}+\zeta_{2^{l-1}}^{1}, \zeta_{m})\otimes_{Q}\Lambda_{4,- 1}$ . Thus the proof of the theorem is

completed.

COROLLARY 2.6. Let $G$ be a finite nilpotent group and for each prime
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$p||G|$ , let $S_{p}$ be the Sylow subgroup of G. Assume that $G$ can be embedded in
$M_{2}(\Delta)$ for a division algebra $\Delta$ in the form that $V_{Q}(G)=M_{2}(\Delta)$ . Then $G$ satisfies
the following condition (a) and one of the following conditions $(b-1)\sim(b-3)$ .

(a) $S_{2}$ has a subgroup $S$ of index 2 with normal subgroups $T_{1},$ $T_{2}(\neq\{1\})$

such that $T_{1}\cap T_{2}=\{1\}$ and $T_{1}^{g}=T_{2}$ , where $\{1, g\}$ is a set of representatives of
$S_{2}/S$ in $S_{2}$ .

$(b-1)$ $S/T_{1}$ and $\prod_{p\neq 2}S_{p}$ are cyclic groups.
$(b-2)$ $S/T_{1}$ is a quaternion group of order 8, $\prod_{p\neq 2}S_{p}$ is a cyclic group and

the order of 2 $(mod m)$ is odd.
$(b-3)$ $S/T_{1}$ is a generalized quaternion group of order $>8$ and $\prod_{\# 2}S_{p}=\{1\}$ .
Conversely, assume that $G$ satisfies the condition (a). Let $|\prod_{p\neq 2}S_{p}|=m,$

$|S/T_{1}|$

$=2^{l}$ . Furthermore if $G$ satisfies the condition $(b-1)$ , then $G\subseteqq M_{2}(Q(\zeta_{2^{l_{m}}}))$ and
$V_{Q}(G)=M_{2}(Q(\zeta_{2^{l_{m}}}))$ . If $G$ satisfies the condition $(b-2)$ , then $G\subseteqq M_{2}(Q(\zeta_{m})\otimes_{Q}\Lambda_{4,- 1})$

and $V_{Q}(G)=M_{2}(Q(\zeta_{m})\otimes_{Q}\Lambda_{4,- 1})$ . And if $G$ satisfies $(b-3)$ , then $G\subseteqq M_{2}(\Lambda_{2^{l- 1}’-1})$

and $V_{Q}(G)=M_{2}(\Lambda_{2^{l- 1}-1})$ .
PROOF. We may only check this when $Q(\zeta_{2^{l-1}}+\zeta_{2^{l-1}}^{-1}, \zeta_{m})\otimes_{Q}\Lambda_{4,-1}$ is a divi-

sion algebra. Let $|S/T_{1}|=2^{l}$ . According to (1.5), if $l=3$ , then the order of 2
$(mod m)$ is odd, if $l>3$ , then $m=1$ .

We conclude this section with the following
COROLLARY 2.7. Let $G$ be a finite nilpotent group. Then the following

conditions are equivalent;
(1) $G$ can be embedded in $M_{2}(H)$ in the form that $V_{R}(G)=M_{2}(H)$ .
(2) $G$ is a 2-group. And $G$ has a subgroup $S$ of index 2 with normal sub-

groups $T_{1},$ $T_{2}(\neq\{1\})$ such that $T_{1}\cap T_{2}=\{1\}$ and $T_{1^{g}}=T_{2}$ , where $\{1, g\}$ is a set
of representatives of $G/S$ in $G$ , and $S/T_{1}$ is a generalized quaternion group.

PROOF. Assume that $G$ satisfies the condition (1). For each prime $p||G|$

let $S_{p}$ be the Sylow $p$-subgroup of $G$ . Then by (2.5) $\prod_{p\neq 2}S_{p}$ is cyclic, so $V_{R}(\prod_{p\neq 2}S_{p})$

is a field contained in the center of $V_{R}(G)=M_{2}(H)$ . Therefore $V_{R}(\prod_{p\neq 2}S_{p})=R$

and $\prod_{p\neq 2}S_{p}=\{1\}i$ . $e.,$ $G=S_{2}$ . It follows from (1.8) and (2.2) that $G$ satisfies the

condition (2).

\S 3. Groups with abelian Sylow 2-subgroups.

In this section we will study subgroups of $M_{2}(\Delta)$ with abelian Sylow 2-
subgroups.

Let $G$ be a group and let $H$ be a subgroup of $G$ . As usual $N_{G}(H),$ $C_{G}(H)$ ,
$Z(G)$ denote respectively the normalizer of $H$ in $G$ , the centralizer of $H$ in $G$ ,
and the center of $G$ .

LEMMA 3.1. Let $G$ be a finite group which can be embedded in $M_{2}(\Delta)$ for
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a division algebra $\Delta$ . Let $p$ be the minimal Prime divisor of $|G|$ .
(1) If $P$ is odd, then $G$ has a normal p-comPlement.
(2) If $p=2$ and the Sylow 2-subgroup of $G$ is abelian, then $G$ has a normal

2-complement.
PROOF. If $p$ is odd, then by (1.6) the Sylow $p$ -subgroup of $G$ is abelian.

Therefore in both cases the Sylow $p$-subgroup of $G$ is abelian. Let $P$ be a
Sylow $p$ -subgroup of $G$ and put $N=N_{G}(P)$ . Now it suffices by Burnside’s
theorem ([4], (20.13)) to prove that $P\subseteqq Z(N)$ . By (2.1) we have $V_{Q}(N)\cong\Delta_{1}$ ,
$M_{2}(\Delta_{2})$ or $\Delta_{3}\oplus\Delta_{4}$ for some division algebras $\Delta_{i}$ . If $V_{Q}(N)\cong\Delta_{1}$ , then $P$ is cyclic,
and therefore, by ([4], (20.14)), we have $P\subseteqq Z(N)$ . If $V_{Q}(N)\cong M_{2}(\Delta_{2})$ , then, by
the proof of (2.3), $2||N|$ and so $p=2$ . Because $2\nmid[N:P]$ , it follows from (2.3)
that $V_{Q}(P)$ is a division algebra. Then $P$ is cyclic. Therefore again by ([4],

(20.14)) we have $P\subseteqq Z(N)$ . Assume that $V_{Q}(N)\cong\Delta_{3}\oplus\Delta_{4}$ and let $\rho_{i}$ be the pro-
jection of $V_{Q}(N)$ on $\Delta_{i},$ $i=3,4$ . Since $\rho_{i}(P)\subseteqq\Delta_{i},$ $\rho_{i}(P)$ is cyclic, and so $\rho_{\iota}(P)$

$\subseteqq Z(\rho_{i}(N))$ . Hence $\rho_{3}(P)\times\rho_{4}(P)\subseteqq Z(\rho_{3}(N)\times\rho_{4}(N))$ . Thus we get $P\subseteqq Z(N)$ ,
and this completes the proof of the lemma.

As a direct consequence of (3.1) we get

PROPOSITION 3.2. Let $G$ be a finite group with abelian Sylow 2-subgroups.
Assume that $G\subseteqq M_{2}(\Delta)$ for a division algebra $\Delta$ . Then $G$ is solvable.

We now give, as a main result in this section,

THEOREM 3.3. Let $G$ be a finite group with abelian Sylow 2-subgroups.
Let $\Delta$ be a division algebra and $K$ a field contained in the center of $\Delta$ . Assume
that $G$ can be embedded in $M_{2}(\Delta)$ in the form that $V_{K}(G)=M_{2}(\Delta)$ . Then $G$

satisfies one of the following conditions (a), (b);
(a) $G$ has a subgroup $G_{0}$ of index 2. Put $G/G_{0}=\{G_{0}, gG_{0}\}$ . Then there

exist normal subgroups $T_{1},$ $T_{2}(\neq\{1\})$ of $G_{0}$ and two integers $m,$ $r$ such that
$T_{1}\cap T_{2}=\{1\},$ $T_{1}^{g}=T_{2},$ $G_{0}/T_{1}\cong G_{m,r}$ and $ K\otimes_{Z}\Lambda_{m,r}\cong\Delta$ , where $Z$ is the center of
$\Lambda_{m,r}$ .

(b) There exist a positive integer $s$ , an odd number $m$ and a group homo-
morphism $\sigma$ from $G$ to Gal $(K(\zeta_{2^{S}m})/K(\zeta_{2^{S}}))$ , which satisfy the following con-
ditions;

(1) Ker $a$ can be embedded in $K(\zeta_{2}s_{m})$ in the form $V_{K}(Ker\sigma)=K(\zeta_{2}s_{m})$ .
(2) Put $G/Kera=$ { $g_{1}$ Ker $\sigma,$

$\cdots$ , $g_{k}$ Ker $\sigma$ } and $\alpha_{\sigma(g_{\mathcal{T}})\sigma(g_{s)}}=g_{t}^{-1}g_{r}g_{s}$ for
$g_{r}g_{s}$ Ker $a=g_{t}$ Ker $\sigma$ . Then the crossed pr0duct $(K(\zeta_{2^{S}m}), G/Ker\sigma, \{a_{\sigma(g_{r})\sigma(g_{S})}\})$

$\cong M_{2}(\Delta)$ .
Conversely, if $G$ satisfies the condition (a) or (b), then $G$ can be embedded

in $M_{2}(\Delta)$ in the form that $V_{K}(G)=M_{2}(\Delta)$ .
PROOF. Let $V$ be an irreducible $M_{2}(\Delta)$ -module. Then we may regard $V$

as a KG-module. Denote by $G_{1}$ the normal 2-complement of $G$ . So, it follows
from (2.3) that the number $m$ of all isomorphism classes of irreducible $KG_{1^{-}}$
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submodules of $V$ is 1 or 2. In the case where $m=2$ , again by (2.3) there exists
a subgroup $G_{0}$ of $G$ of index 2 with normal subgroups $T_{1},$ $T_{2}(\neq\{1\})$ such that
$T_{1}\cap T_{2}=\{1\},$ $T_{1^{g}}=T_{2},$ $ G_{0}/T_{1}\subseteqq\Delta$ and $ V_{K}(G_{0}/T_{1})=\Delta$ , where $\{1, g\}$ is a set of
representatives of $G/G_{0}$ in $G$ . Since any Sylow subgroup of $G_{0}/T_{1}$ is abelian,
it follows from (1.1), (1.2) and (1.3) that $G_{0}/T_{1}\cong G_{m,r}$ for some integers $m,$ $r$

and $\Delta\cong K\otimes_{Z}\Lambda_{m,r}$ . Conversely if $G$ satisfies the condition (a), then by (2.2)
$G\subseteqq M_{2}(K\otimes_{Z}\Lambda_{m,r})$ and $V_{K}(G)=M_{2}(K\otimes_{Z}\Lambda_{m,r})$ .

In the case where $m=1$ , because $|G_{1}|$ is odd, it follows from (2.3) that
$V_{K}(G_{1})$ is a division algebra. Therefore by (1.2) we have that $G_{1}\cong G_{m,r}$ for
some relatively prime integers $m,$ $r$ and that $V_{K}(G_{1})\cong K\otimes_{Z}\Lambda_{m,r}$ , where $Z$ is the
center of $\Lambda_{m,r}$ . We recall the notation of $G_{m,r}$ . $G_{m,r}=\langle a,$ $b|a^{m}=1,$ $b^{n}=a^{t}$ and
bab $=a^{\gamma}\rangle$ , where $s=(r-1, m),$ $t=m/s;n=the$ minimal positive integer satisfy-
ing $r^{n}\equiv 1$ mod $m$ . Let $S_{2}$ be a Sylow 2-subgroup of $G$ . And put $S_{2}^{\prime}=S_{2}\cap C_{G}(\langle a\rangle)$ .
Since $G=S_{2}G_{m,r}$ and $(|S_{2}|, |G_{m,r}|)=1$ , we have $C_{G}(\langle a\rangle)=\langle a\rangle\times S_{2}^{\prime}$ . So, the fact
that $\langle a\rangle\triangleleft G$ implies $S_{2}^{\prime}\triangleleft G$ . Therefore $C_{G}(S_{2}^{\prime})$ contains $S_{2}$ and $G_{m,r}$ and we have
$Z(G)\supseteqq S_{2}^{\prime}$ . Hence $V_{K}(S_{2}^{\prime})$ is contained in the center of $M_{2}(\Delta)=V_{K}(G)$ . So, if
we put $|S_{2}^{\prime}|=2^{s}$ and $ S_{2}^{\prime}=\langle c\rangle$ , then we have $V_{K}(S_{2}^{\prime})\cong K(\zeta_{2}s),$ $V_{K}(C_{G}(\langle a\rangle))\cong K(\zeta_{2}s_{m})$

and the isomorphism is obtained by the correspondence $a\leftrightarrow\zeta_{m},$ $c\leftrightarrow\zeta_{2}s$ . Denote
by $\phi$ the above isomorphism from $V_{K}(C_{G}(\langle a\rangle))$ to $K(\zeta_{2}s_{m})$ . For $g\in G$ , we con-
struct an automorphism $a(g)$ of $K(\zeta_{2}s_{m})$ , by mapping $\zeta_{2}s\rightarrow\zeta_{2}s$ and $\zeta_{m}\rightarrow\zeta_{m}^{\tau}$ ,

where $a^{g}=a^{r}$ . Since $K(\zeta_{2}s)=V_{K}(S_{2}^{\prime})$ is contained in the center of $V_{K}(G),$ $\sigma(g)$

is an element of Gal $(K(\zeta_{2}s_{m})/K(\zeta_{2}s))$ , so $\sigma$ is a group homomorphism from $G$

to Gal $(K(\zeta_{2}s_{m})/K(\zeta_{2}s))$ and Ker a $=C_{G}(\langle a\rangle)=\langle a\rangle\times\langle c\rangle$ . We recall that $\Lambda=$

$(K(\zeta_{2}s_{m}), G/Ker\sigma, \{\alpha_{\sigma(g)\sigma(g_{S})}r,\})$ is a simple algebra with the following structure;
$\Lambda=u_{\sigma(g_{1})}K(\zeta_{2}s_{m})\oplus\cdots\oplus u_{\sigma(g_{k})}K(\zeta_{2}s_{m})$ as $K(\zeta_{2}s_{m})$ -space; $au_{\sigma(g_{i})}=u_{\sigma(g_{i})}a^{\sigma(g_{i})}foI^{\leftarrow}$

$a$ in $K(\zeta_{2}s_{m})$ and $u_{\sigma(g\gamma)}u_{\sigma(g_{s)}}=u_{\sigma(g_{r})\sigma(g_{S})}a_{\sigma(g_{\mathcal{T}})\sigma(g_{s)}}$ . In the above notations the $\cdot$

mapping $\sum f_{i}u_{\sigma(g_{i})}\rightarrow\sum\phi^{-1}(f_{i})g_{i}$ determines a homomorphism from $\Lambda$ onto $V_{K}(G)$ ,

where $f_{i}\in K(\zeta_{2}s_{m})$ . Since $\Lambda$ is simple and $V_{K}(G)\neq 0$ , this is an isomorphism.
Therefore $\Lambda=M_{2}(\Delta)$ . Conversely, if $G$ satisfies the condition (b), then the $\cdot$

factor set $\{a_{\sigma(g_{\gamma})o(g_{s})}\}$ defines an extension of Ker $\sigma$ by $ G/Ker\sigma$ , which is iso-
morphic to $G$ . Hence $G$ can be embedded in $M_{2}(\Delta)$ in the form $V_{K}(G)=M_{2}(\Delta)$ .

COROLLARY 3.4. Let $G$ be a finite group with abelian Sylow 2-groups..
Then the following conditions are equivalent;

(1) $G$ can be embedded in $M_{2}(H)$ in the form $V_{R}(G)=M_{2}(H)$ .
(2) $G$ has a subgroup $G_{0}$ of index 2 with normal subgroups $T_{1},$ $T_{2}(\neq\{1\})^{y}$

such that $T_{1}\cap T_{2}=\{1\},$ $T_{1}^{g}=T_{2}$ and $G_{0}/T_{1}\cong G_{2m,-1}$ for some integer $m$ , where
$\{1, g\}$ is a set of representatives of $G/G_{0}$ in $G$ .

PROOF. Since by (1.3) $G_{2m,-1}$ can be embedded in $\Lambda_{2m,-1}$ in the form
$V_{Q}(G_{2m,- 1})=\Lambda_{2m,- 1},$ $G_{2m,- 1}$ can be embedded in $\Lambda_{2m,- 1}\otimes_{Q(+\zeta)}’-1R=H$ in the
form $V_{R}(G_{2m,-1})=H$. Therefore if $G$ satisfies the condition (2), then it follows
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from (2.2) that $G$ can be embedded in $M_{2}(H)$ in the form $V_{R}(G)=M_{2}(H)$ .
Assume that $G$ satisfies the conditions (1). So, $G$ satisfies one of the con-

ditions (a) and (b) for $K=R$ in (3.3). Since Gal $(R(\zeta_{2}s_{m})/R(\zeta_{2}s))|\leqq 2$ , we have
$\dim_{R}(R(\zeta_{2}s_{m}), G/Ker\sigma, \{a_{\sigma(g_{r})\sigma(g_{S})}\})\leqq 4$ . On the other hand $\dim_{R}M_{2}(H)=16$ , and
it implies that $G$ satisfies the conditions (a). Because $R\otimes_{Z}\Lambda_{m,r}=H,$ $G_{m,\tau}$ is a
subgroup of $H$. Hence it follows from (1.4) that $G_{m,r}$ is the binary dihedral
group of order 41. This completes the proof of the corollary.

\S 4. Additional results.

LEMMA 4.1. Let $\Delta$ be a division algebra. Let $P$ be a 2-subgroup of $M_{2}(\Delta)$

and $N$ a normal subgroup of P. Then any elementary abelian subgroup of
$P/N$ has order $\leqq 2^{4}$ .

PROOF. By (1.6) $P$ is a subgroup of $P_{1}\times P_{2}$ for some $P_{1},$ $P_{2}\in T_{2}^{(0)}$ , or a
subgroup of $\tilde{P}$ for some $\tilde{P}\in T_{2}^{(1)}$ . Since $P_{i}$ is a cyclic group or a generalized
quaternion group, there exists a generalized quaternion group $P_{3}$ which con-
tains $P_{i},$ $i=1,2$ . It follows from the definition of the 2-group of l-type that
for some $\tilde{P}\in T^{(1)}\lrcorner\gamma P\subseteqq P_{1}\times P_{2}\subseteqq P_{3}\times P_{3}\subseteqq\tilde{P}$ . Therefore $P$ is a subgroup of a 2-
group of l-type $\tilde{P}$ . So, there exist generalized quaternion groups of order
$2^{n+1},$ $ P^{\prime}=\langle x, y|x^{2^{n}}=1, y^{2}=x^{2}n-1y^{-1}xy=x^{-1}\rangle$ , and $P^{\prime\prime}=\langle s,$ $t|s^{2^{n}}=1,$ $t^{2}=s^{2^{n- 1}},$ $t^{-1}st$

$=s^{-1}\rangle$ such that $P^{\prime}\times P^{\prime}$ is a subgroup of $\tilde{P}$ of index 2 and for some $g\in\tilde{P}-(P^{\prime}$

$\times P^{\nu})x^{g}=s,$ $y^{g}=t$ .
Let $Q/N$ be an elementary abelian subgroup of $P/N$. Since $N\supseteqq[Q, Q]$ , we

only need to prove rank $(Q/[Q, Q])\leqq 4$ . Let $Q_{0}=(P^{\prime}\times P^{\prime\prime})\cap Q$ . Then $ Q/Q_{0}\subseteqq$

$\tilde{P}/P^{\prime}\times P^{\prime\prime}$ , so we have $|Q/Q_{0}|\leqq 2$ . Also $ Q_{0}/Q_{0}\cap\langle x, s\rangle\subseteqq P^{\prime}\times P^{\prime\prime}/\langle x, s\rangle$ implies
$|Q_{0}/Q_{0}\cap\langle x, s\rangle|=1,2$ or 4. In the case where $|Q_{0}/Q_{0}\cap\langle x, s\rangle|\leqq 2$ or $Q=Q_{0},$ $Q$

is generated by at most 4 elements, for $ Q_{0}\cap\langle x, s\rangle$ is generated by at most 2
elements. It means rank $(Q/[Q, Q])\leqq 4$ .

Assume that $|Q_{0}/Q_{0}\cap\langle x, s\rangle|=4$ and $Q\neq Q_{0}$ . Since $P^{\prime h}=P^{\prime\prime}$ for any $ h\in$

$Q-Q_{0}$ , by changing $s,$ $t,$ $g$ into $x^{h},$ $y^{h},$ $h$ respectively, if it is necessary, we
may assume that $g\in Q-Q_{0}$ . Because $|P^{\prime}\times P^{\prime\prime}/\langle x, s\rangle|=4,$ $ Q_{0}/Q_{0}\cap\langle x, s\rangle\cong P^{\prime}\times$

$ P^{r}/\langle x, s\rangle$ , and this means $Q_{0}\ni yx^{i}s^{j}$ for some integers $i,$ $j$ . Using the fact that
$ s^{g}=x^{g2}\in\langle x\rangle$ , we have $g^{-1}(yx^{i}s^{j})g(yx^{i}s^{j})^{-1}=tyx^{m}s^{n}$ for some integers $m,$ $n$ . Let
$\rho$ be the natural homomorphism from $Q$ onto $Q/[Q, Q]$ . Then $Q/[Q, Q]$ is
generated by $\rho(g),$ $\rho(yx^{i}s^{j})$ and $\rho(Q_{0}\cap\langle x, s\rangle)$ . Therefore rank $(Q/[Q, Q])\leqq 4$ .

PROPOSITION 4.2. Let $G$ be a solvable subgroup of $M_{2}(\Delta)$ . Let $\pi=\{2,3,5,7\}$ .
Then $G$ has a normal Hall $\pi^{\prime}$ -subgroup.

PROOF. Let $G=H_{0}\supseteqq H_{1}\supseteqq\ldots\supseteqq H_{\gamma}=\{1\}$ be a chain of normal subgroups of
$G$ such that $H_{i}/H_{i+1}$ is a non-trivial elementary abelian group for each $ 0\leqq i\leqq$

$r-1$ . We shall prove this proposition by induction on $|G|$ . Since $G=H_{0}\neq H_{1}$ ,
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$H_{1}$ has a normal Hall $\pi^{\prime}$ -subgroup $N$. If $H_{0}/H_{1}$ is an elementary $p$-group for
some $ p\in\pi$ , then our proof is done. Therefore we may assume that $ p\not\in\pi$ . Let
$D$ be a 2’-group of $G$ . By (3.1) $D$ has a normal Hall $\pi^{\prime}$ -subgroup $D^{\prime}$ . Let $P$

be a Sylow $p$-subgroup of $D^{\prime}$ . Then $P$ is a Sylow $p$-subgroup of $G$ . We shall
prove that $D^{\prime}N=PN$. Let $Q$ be a Sylow $q$ -group of $D^{\prime}$ for any $q\neq p$ and $Q^{\prime}$ a
Sylow $q$-group of $N$. Since $Q$ and $Q^{\prime}$ are Sylow $q$ -groups of $G$ , there exists
an element $g$ of $G$ such that $Q=Q^{\prime g}$ . So $N\triangleleft G$ means $Q=Q^{\prime g}\subseteqq N$ and $D^{\prime}N\subseteqq PN$.
Moreover, it is easily seen that $D^{\prime}N\supseteqq PN$. Hence $D^{\prime}N=PN$.

Since $H_{1}$ contains a normal Hall $\pi^{\prime}$ -subgroup, we may assume that $H_{1}/H_{2}$

is a q-group for some $ q\in\pi$ . If we can prove that $PH_{2}\triangleleft G$ and $G/PH_{2}$ is a
non-trivial q-group, then by the induction hypothesis $PH_{2}$ has a normal Hall
$\pi^{\prime}$ -subgroup $N^{\prime}$ , implying $G$ has a normal Hall $\pi^{\prime}$ -subgroup $N^{\prime}$ . Therefore we
only need to prove that $PH_{2}\triangleleft G$ and $G/PH_{2}$ is a non-trivial q-group. In the
case where $q=2,$ $H_{1}/H_{2}$ is an elementary abelian 2-group of order $\leqq 2^{4}$ by (4.1).
It implies Aut $(H_{1}/H_{2})\subseteqq GL(4,2)$ , and so Aut $(H_{1}/H_{2})||2^{6}\cdot 3^{2}\cdot 5\cdot 7$ . Since
$ p\nmid$ Aut $(H_{1}/H_{2})|$ and $PH_{2}/H_{2}/C_{PH_{2}/H_{2}}(H_{1}/H_{2})\subseteqq Aut(H_{1}/H_{2})$ , we have $PH_{2}/H_{2}=$

$C_{PH_{2}/H_{2}}(H_{1}/H_{2})$ . On the otber hand $PH_{1}/H_{2}=G/H_{2}$ , which implies that $ G/H_{2}\triangleright$

$PH_{2}/H_{2}$ and $G/PH_{2}$ is a non-trivial 2-group. In the case where $q\in\{3,5,7\}$ ,
$H_{0}/H_{2}=DH_{2}/H_{2}\triangleright D^{\prime}H_{2}/H_{2}=PH_{2}/H_{2}$ means $H_{0}\triangleright PH_{2}$ and $H_{0}/PH_{2}$ is a non-trivial
q-group. This completes the proof of the proposition.

Finally we give a remark on nilpotent subgroups of $M_{n}(K)$ over an alge-
braically closed field $K$ of characteristic $0$ .

In case $n=1$ , a group $N$ is a subgroup of $K$ if and only if $N$ is cyclic.
We assume $n>1$ . Suppose that we can determine the nilpotent subgroups of
$M_{r}(K)$ for $r<n$ . Let $N$ be a nilpotent subgroup of $M_{n}(K)$ . If $V_{K}(N)\neq M_{n}(K)$ ,

then $V_{K}(N)=M_{r_{1}}(K)\oplus\cdots\oplus M_{r_{t}}(K)$ for some integers $r_{1},$ $\cdots$ , $r_{t}$ such that $\sum_{i=1}^{t}r_{i}$

$\leqq n$ and $r_{i}<n$ . By our assumption, we can determine the subgroup of $M_{r_{i}}(K)$ ,
$i=1,$ , , $t$ and we can determine $N$ as a subgroup of a direct product of such
groups. Conversely if $N_{i}$ is a nilpotent subgroup of $M_{\gamma}i(K)$ , then $N_{1}\times\cdots\times N_{t}$

is a subgroup of $M_{n}(K)$ . Assume tbat $V_{K}(N)=M_{n}(K)$ . In this case $N$ is not
abelian, and let $S_{p}$ be a non-abelian Sylow $p$-subgroup of $N$. Since $V_{K}(S_{p})$ is
a semi-simple subalgebra of $V_{K}(1V)=M_{n}(K)$ , by the Schur’s commutation
theorem $V_{K}(S_{p})\cong\prod_{i=1}^{r}M_{n}^{m_{i^{i}}}(K)$ and the commutant of $V_{K}(S_{p})$ is isomorphic to

$\prod_{i=1}^{r}M_{m_{i}^{i}}^{n}(K)$ , where $\sum_{t=1}^{f}n_{i}m_{i}=n$ and

$M_{n_{i}}^{m_{i}}(K)=\{\left(\begin{array}{ll}A. & 0\\0 & A\end{array}\right)\in M_{ni^{m}i}(K)|A\in M_{n_{i}}(K)\}$ .

Since $S_{p}$ is not abelian, we have $n_{i}>1$ for at least one $1\leqq i\leqq r$. Hence



748 M. HIKARI

$V_{K}(O_{p^{\prime}}(N))\neq M_{n}(K)$ , so such groups can be determined by the assumption. On
the other hand by (1.6) we can determine $S_{p}$ . Hence the nilpotent subgroups
of $M_{n}(K)$ can be determined inductively.
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