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Amitsur ([TI]) determined all finite multiplicative subgroups of division
algebras, We try to determine, more generally, all finite multiplicative sub-
groups of simple algebras of fixed degree. In we characterized p-groups
contained in the full matrix algebras M,(4) of fixed degree n, where 4 is a
division algebra of characteristic 0. In this paper we will study multiplicative
subgroups of M,(4).

In §2 we will determine all finite nilpotent subgroups of M,(4), and in §3
all finite subgroups of M,(4) with abelian Sylow 2-groups. Finally, in §4, we
will give some additional remarks.

§ 1. Preliminaries.

All division algebras considered in this paper are of characteristic 0. As
usual @, R, C and H denote respectively the rational number field, the real
number field, the complex number field, and the quaternion algebra over R.

Let 4 be a division algebra. We denote by M,(d4) the full matrix algebra
of degree n over 4. By a subgroup of M,(4) we mean a finite multiplicative
subgroup of M,(4). Further let K be a field contained in the center of 4 and
let G be a subgroup of M,(4). We define Vi(G)={Za;g;| a;€K, g;=G}.
Then Vx(G) is a K-subalgebra of M,(4) and there is a natural epimorphism
KG—Vg(G). Hence Vi(G) is a semi-simple K-subalgebra of M,(4).

Let m, r be relatively prime integers, and put s=(r—1, m), {=m/s; n=the
minimal positive integer satisfying r"=1mod m. Denote by G, , the group
generated by two elements a, b with the relations; a™=1, b"=a’ and bab™'=a".
Let {,, be a fixed primitive m-th root of unity and let 6=0, be the automor-
phism of Q({,) determined by the mapping {,—{,". Let {as .} be the factor
set of (o) in Q({,) defined by

1 when i+j<n
Agigj =

o=t when i+j=n,

and denote by A, the crossed product of Q({,) and <o) by {@i.i}.
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Here we recall the results in Amitsur [I].

1.1 ([[T]). Let G be a finite group and let 4 be a division algebra. If GZ4,
then G is one of the following types:

(1) All Sylow subgroups of G are cyclic.

(2) The odd Sylow subgroups of G are cyclic and the even Sylow subgroup
of G is a generalized quaternion group of order 2°', a=2.

1.2 ([1). A group G is of type (1) in (1, 1) if and only if G=G,,, for some
relatively prime integers m, v with (n,t)=1. A group G of type (1) or (2) in
(1, 1) is metacyclic if and only if G=G,, for some relatively prime integers m, r.

1.3 ((ID). A group G, can be embedded in a division algebra if and only
if An, is a division algebra; then we have Vo (Gp,,)= Ay, and the isomorphism
is obtained by the correspondence a—{,, b—ao,.

The group G,,,-, are called the binary dihedral groups. We define 7%=
{a, b, ¢ | a*=1, a®=b? aba'=b"?, cac'=b, cbc'=ab, *=1), O*={a, b, c | a’=1,
a*=b*=c* cba=1) and I*=SL(2, 5).

14 ([I]). The finite subgroups of the quaternion algebra H are the cyclic
group of any order, the binary dihedral group of ovder 4m, the groups T*, O*
and I*,

We remark that the group G, _; means the ordinary quaternion group of
order 8 and that the crossed product 4, _, means the ordinary quaternion
algebra over Q. The splitting fields for 4,,_, can be determined by the fol-
lowing :

1.5 ([3]). Let K be an algebraic number field. Then K is a splitting field
for A, if and only if K is totally imaginary and the local degrees of K at all
primes of K extending the rational prime (2) arve even. In particular, if 4|n,
then Q(C,) is a splitting field for A, _,, and, if n=2m, m odd, then Q({,)=Q({n)
is a splitting field for A, _, if and only if the order of 2 (mod m) is even.

Next we recall the results in [5].

Let P,=<g) be a cyclic group of order p. Let G, G’ be finite groups and
let Gi, G, -+, G, be the copies of G’. We call G a simple (1-fold) p-extension
of G’ if G is an extension of GiXG;X -+ XGp by P, such that G{?s=Gj, -,
G,4=G}, Gyé=G] where o, denotes the automorphism of G{XG}x -+ XG), cor-
responding to g. More generally, a finite group G is called an n-fold p-exten-
sion of a finite group G’ if there exist finite groups G,=G’, G,, -, G,_;, G,=G
such that, for each 0=i<n—1, G,,, is a simple p-extension of G;. Now we
put
{all cyclic p-groups} when p+#2

Ty:{
{all generalized quaternion 2-groups} when p=2,

and 7‘}9):{2111 cyclic p-groups} for any prime p. An element of T (resp. ’T‘%”)
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is called a p-group of O-type (resp. a-type). A finite p-group P is said to be
of n-type (resp. #i-type) if P is an n-fold p-extension of a p-group of O-type
(resp. E-type). We denote by T (resp. T(™) the set of all p-groups of n-type
(resp. #i-type).

1.6 ([51). Let n be a fixed positive integer and let P be a finite p-group.
Then the following conditions are equivalent:

(1) P is a subgroup of M, (H) (resp. M,(C)).

(2) P is a subgroup of M,(4) (resp. M (K)) for a division algebra 4 (resp.
commutative field K).

(3) There exist non-negative integers t, my, -+, m, with 1‘Zto;bimi§n and P®,

t m; .
PP, . P T$ (resp. TY), 0Zi<t, such that P< II TI P¢.

i=0 j=1

1.7 ([5]). Let P be a finite non-abelian p-group, 4 a division algebra and K
a field contained in the center of 4. Assume that PSM,(4) and V ¢(P)=M,(4).

(1) If P is a 2-group which is not of type 0 and 4 is non-commutative,
then there exists a subgroup P, of P of index 2 such that V(Py)=M,,(4)
DB Mn(4). _

(2) If 4 is commutative, then we have Vg(P)=M,(K) and there exists a
subgroup P, of P of index p such that

p
V(Po) = My p(K)D +++ @ Myyp(K)

where K is the algebraic closure of K.

(In [5], we proved (1.7) for K=Q. But that proof holds good for any field
K contained in the center of 4.)

§2. Nilpotent groups.

We begin with

LEMMA 2.1. Let 4 be a division algebra (of characteristic 0) and let K be
a field contained in the center of 4. Let G be a finite subgroup of My(4).
Then we have Vi (G)=d, M,(d,) or 4,54, where 4; 1=i<4, are division
algebras.

Proor. This is evident, because Vx(G) is semi-simple.

Here we give the following basic lemmas.

LEMMA 2.2. Let 4 be a division algebra and K be a subfield of the center
of 4. Let H, J be finite groups and G,, o€ H, be normal subgroup of J. Let
G be an extension of J by H. Assume the following conditions;

(1) NG,=1 and G,+G. for any e+t in H.

gEH

(2) Let {u}.cy be a set of representatives of H in G. Then G,*~=G,. for
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any g, t<H.

(3) J/GiEM(4) and V(J/G)=M,(4).

Then we have GE M, (4) and Vx(G)=M,,(4), where h is the order of H.

ProoF. Let V be an irreducible M,(4)-module. Then V can be regarded
as a K[ J/G,]-module because Vg(J/G,)=M,(4). Let ¢; J—-J/G, be the natural
homomorphism. Then we may further regard V as a KJ-module through ¢.
Now we have VG:KG(X)KJV:(T%}H@u;lV. Since Keru;'V={ge]| gu,'v=uz'v

forallveVi={ge]| gv=v for all ve V}*=Ker V*%=G,*=G, by our assump-
tions (2), (3), we have u;'V=u;'V as KJmodule for any o+#z. Therefore
Homge(VE, V&) =Homg,(u;'V, VE)=Homg,(u;'V, u;'V)=4°°. Because dimyV ¢
=hdimgV, the simple component of KG corresponding to V¢ is M,,(4). As
is easily seen, V¢ is G-faithful. Hence GS M,,(4) and V x(G)= M, ,(4).

LEMMA 23. Let G be a finite group and let N be a normal subgroup of
G. Let 4 be a division algebra and let K be a field contained in the center of
4. Assume that GSM,(4) and Vg(G)=Myd4). Let V be an irreducible M,(4)-
(so, KG-) module. Further let W be an irreducible KN-submodule of V and let
U be the sum of all KN-submodules of V which are isomorphic to W. Define
H={geG | gU=U}. Then the number m of all isomorphism classes of irre-
ducible KN-submodules of V is1or 2. Inthe case where m=2, we have [G: H]
=2 and Vg(H)=dP4. Moreover H has normal subgroups H, H, satisfying
H.NH,={1}, H*=H, and H/H,=p(H), where {1, g} is a set of representative
of G/H in G and p is the projection of Vg(H) on the first component of ABA.
In the case where m=1, we have Vx(N)=My,4’) or 4’ for a division algebra
47, and, especially, if |N| is odd, then Vg(N) is a division algebra.

Proor. By Clifford’s theorem (e. g. [2]) U isirreducible as a KH-module,
V=U¢% and m=[G: H]. Let M, 4’) be the simple component of KH corre-
sponding to U. Let V=U¢=UQU,PD --- PU, be a decomposition of V into
irreducible KH-modules. By the assumption on U, UxU; as KN-module for
all 1<i<k. Therefore UxU,; as KH-module, so we have 4°°=Homg(V, V)=
Homgu(U, U)=4’°?, Since 2dimgd=dimgV=m dimzU=mr dimgd’=mr dimg4,
we have mr=2 and so m=2.

We now assume that m=2. Then r=1and so Vx(H)=4®P4. Since [G: H]
=2, H is a normal subgroup of G. Let G=H\UgH be the decomposition of G
into cosets of H. Then V=U®g 'U and Uzxg'U as KH-modules. And we
may assume that U (resp. gU) is the irreducible Vx(H)-module corresponding
to the first (resp. second) component of 4P4. Put H,=Kerp and H,=H/* =
(Ker p)?. Because V=UPg 'U is H-faithful, I=Ker(UPg 'U)={hesH|hu+hg'u
=u+g'u for all ueU}={h=sH | hu=u for alueU}N{heH | hg'u=g 'u for
all ueU}=Ker pn\(Ker p)*=H,NH,. Furthermore since Vx(H)=4@4, we have

H,#{1} and so H,+H,.
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Assume m=1. Then it is easily shown that Vx(N)=M,4’) or 4’ for a

division algebra 4’. Let K be the algebraic closure of K. Then we have
S

KRQeMy(4") = M(KRQ x4 = M (KD - ®M,,(K) for some integers s and t.
Therefore, if Vx(N)=M,(4"), then we have 2t| |N]|.

Now we will determine all finite nilpotent subgroups of simple algebras
M,(4) where 4 are division algebras.

LEMMA 2.4. Let 4 be a division algebra and let K be a field contained in
the center of 4. Let G be a finite nilpotent subgroup of M,(d). For each prime
PG| let S, be the Sylow p-subgroup of G, and let |S,|=2" and IILIZSplzm.
Assume that Vg(G) is simple. Then EZSP 1s cyclic, VK(};&IZS”);K@’”)’ V(S,)
is stimple and Vi (S,)=Vg(G), where L is the center of Vx(S,). Further assume
that Vg(S,) is a division algebra. Then one of the following conditions is
satisfied:

(1) S, is a cyclic group and Vg (G)=K(L,,,)-

(2) S, is a generalized quaternion group and Vg(G)= K({,i-,+ it Cn)
Qe s,

Proor. By (1.6) gzsp is abelian. Then VK(pIq;[ZSp) is contained in the

center of Vx(G), and therefore Vg( I;[Sp) is a field. Hence gsp is cyclic and
pF2 D£2
V k( E[SP)EK(C,,L). Further we easily see that the center of Vx(S,) is contained
pFE2

in the center of Vx(G). Therefore Vg(S,) is simple and Vi, (S,)S V(G).
On the other hand it clearly holds that Vx(G)S Vi, (S,). Hence Vi  (S,)=
Vk(G). Now assume that Vg(S,) is a division algebra. Then by (1.1) S, is a
cyclic group or a generalized quaternion group. If S, is cyclic, then we have
V(S:)=K(L,), and so Vx(G)=K({,,). On the other hand, if S, is a generalized
quaternion group, i.e., if S,=G,_,_, then we have by (1.3) V(S))=4,,_, _,.
The center of Ay, is Qi+ Lt 50 V(S) = K®ac,, et ValSs)=
K(C21_1+C2{_11)®Q/14,_1. Therefore we get VK(G)zK(§21_1+C2;31, Cm)®9A4,—1-
This completes the proof of the lemma.

We now give

THEOREM 2.5. Let G be a finite nilpotent group and for each prime p||G|
let S, be the Sylow p-subgroup of G. Let |S,|=2° and lpl;[ZSp]:m. Let 4 be
a division algebra and K a field contained in the center of 4. Assume that G
can be embedded in My,(4)in the form that Vg(G)=My4). Then G satisfies the
following conditions (a) and (b).

(a) S, has a subgroup S of index 2 and S has two normal subgroups T,,
T, (#{1}) of S such that T\N\T,={1} and T.*=T,, where {1, g} is a set of
representatives of S,/S in S,.
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(b) S/T, and I;ISP satisfy one of the following conditions:
PF2

(1) S/T, and ILSP are cyclic groups.
D

(2) S/T, is a quaternion group of order 2', I1S, is a cyclic group and
K14+, Ln)@edy,-1 1s a division algebra. .

Conversely, assume that G satisfies the condition (a). Let |S/T,|=2'. Further-
more if G satisfies the condition (1) in (b), then GSMy(K((,,)) and Vi(G)=
My(K(,.,,)- If G satisfies the condition (2) in (b), then GS My(K({ -1+t Cn)
®QA4,—1) and VK(G):M2(K(C2l—1+C2l_—}17 Cm)®QA4,—1)~

Proor. By (2.4) };IZSP is cyclic. First assume that Vg(S;) is a division

algebra. Because Vi (G)=M,(4), again by (2.4) S, is a generalized quaternion
group and V(S,)=K({,;-1+{,:1)Qeds,-1. Therefore S,S K({,5-1+{,:1)Rey,-1
CKRq i, 1=My(K) and Vz(S,)=M,(K), where K is the algebraic closure of K.
By (1.7) there exists a subgroup S of S, of index 2 such that V(S)=K®K.
Hence by (2.3) S has normal subgroups T}, T, satisfying the condition (a) such
that S/T, is the subgroup of K. So G satisfies the conditions (a) and (1) in
(b). Next assume that Vg(S,)=M,(4’) for a division algebra 4’. If 4’ is com-
mutative, then, by the same reason as above, G satisfies the conditions (a) and
(1) in (b). On the other hand, if 4’ is non-commutative, then S, is not of type
0. Therefore by (1.7) there exists a subgroup S of S, of index 2 such that
Ve(S)=4’@&4’. Then by virtue of (2.3) S has normal subgroups T;, T, satis-
fying (a), S/T, is a subgroup of 4’ and V(S/T,)=4'. 1t follows from (2.4)
that S/T, is a generalized quaternion group and A’:VK(S/Tl)sK(Czl_l—i—sz_‘l)
®QA4,—1- Therefore again by (2.4), My(4d)= VK(G):K(C21—1+C2¢1y Cm)@QMz(A4,—1)-
Hence G satisfies the conditions (2) in (b).

Finally we prove the converse. If G satisfies the condition (a), then G is
an extension of Sxpl;&IzSp by S,/S and G satisfies the conditions (1), (2) in (2.2).

So, if S/T,X I}S], is a subgroup of a division algebra 4 and Vx(S/T,X ]_;!Sp)
DF2 pPF2

=4, then we have by (2.2) GEM,(4) and Vx(G)=M,4). Therefore it remains
only to prove that S/T,X 1¢ISZ, satisfies the above condition. First assume
pF2

that G satisfies the condition (1) in (b). Since S/T,X I;EZSp is a cyclic group
D
of order 2'm, S/T,X I;tIgSp can be embedded in K(,,,
o
V&(S/T, X I;tIZSp):K(CQZm). If G satisfies the condition (2) in (b), we have by
p

(1.2) S/T, is a subgroup of A, ., _ =Q({,-1+{,i1)Red,,-1 such that V(S/T))
=A,-y,.,. Then S/T,x I;IZSP can be embedded in K({,;-:+&,i %, (m)Qes,-1 and
V4

V(S/T,x I;IS;,,):K(CZH%—C;LL, {m)ReAs,-1. Thus the proof of the theorem is
pPF2

) in the form that

completed.
COROLLARY 2.6. Let G be a finite nilpotent group and for each prime
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plIG|, let S, be the Sylow subgroup of G. Assume that G can be embedded in
M(4) for a division algebra 4 in the form that Vo(G)=My4). Then G satisfies
the following condition (a) and one of the following conditions (b-1)~(b-3).

(a) S, has a subgroup S of index 2 with normal subgroups T,, T, (#{1})
such that T,N\T,={1} and T2 =T,, where {1, g} is a set of representatives of
S,/S in S,.

(b-1) S/T, and 2)l;h[zSp are cyclic groups.

(b-2) S/T, is a quaternion group of order 8, I1S, is a cyclic group and
the order of 2 (mod m) is odd. v

(b-3) S/T, is a generalized quaternion group of order >8 and pl;[zSp:{l}.

Conversely, assume that G satisfies the condition (a). Let | I;ISZ,] =m, |S/T,|
PF2

=2, Furthermore if G satisfles the condition (b-1), then GS My(Q(,.,,)) and
Vo(G)=MyQ(,.,)). If G satisfies the condition (b-2), then GS My(Q({n)Res,-1)
and Vo(G)=My(Q(Ln)ReAs,-1). And if G satisfies (b-3), then GEMy(A,_,_,)
and Vo(G)=My(A, -1, _,).

PrOOF. We may only check this when Q({,:-,+C,i, En)Redy,-1 is a divi-
sion algebra. Let |S/T,|=2". According to (1.5), if /=3, then the order of 2
(mod m) is odd, if />3, then m=1.

We conclude this section with the following

COROLLARY 2.7. Let G be a finite nilpotent group. Then the following
conditions are equivalent;

(1) G can be embedded in My,(H) in the form that Vx(G)=M,(H).

(2) Gis a 2-group. And G has a subgroup S of index 2 with normal sub-
groups T,, T, (£{1}) such that T, "\T,={1} and T.f=T,, where {1, g} is a set
of representatives of G/S in G, and S/T, is a generalized quaternion group.

PROOF. Assume that G satisfies the condition (1). For each prime p||G|
let S, be the Sylow p-subgroup of G. Then by (2.5) plgzsp is cyclic, so Vg( HZSZ,)

is a field contained in the center of Vx(G)=M,(H). Therefore VR(I;ISP)-——R
D¥F2
and pI}zSp:{l} i.e.,, G=S,. It follows from (1.8) and (2.2) that G satisfies the

condition (2).

§3. Groups with abelian Sylow 2-subgroups.

In this section we will study subgroups of M,(4) with abelian Sylow 2-
subgroups.

Let G be a group and let H be a subgroup of G. As usual Ng(H), Co(H),
Z(G) denote respectively the normalizer of H in G, the centralizer of H in G,
and the center of G.

LEMMA 3.1. Let G be a finite group which can be embedded in M,(4) for



744 M. HikaRri

a division algebra 4. Let p be the minimal prime divisor of |G]|.

(1) If p is odd, then G has a normal p-complement.

(2) If p=2 and the Sylow 2-subgroup of G is abelian, then G has a normal
2-complement.

Proor. If p is odd, then by (1.6) the Sylow p-subgroup of G is abelian.
Therefore in both cases the Sylow p-subgroup of G is abelian. Let P be a
Sylow p-subgroup of G and put N=DNg(P). Now it suffices by Burnside’s
theorem ([4], (20.13)) to prove that PSZ(N). By (2.1) we have Vyo(N)=4,,
M,(d,) or 4,54, for some division algebras 4,. If Vo(N)=4,, then P is cyclic,
and therefore, by ([4], (20.14)), we have PS Z(N). If Vo(N)=M,(4,), then, by
the proof of (2.3), 2| |N| and so p=2. Because 2 /[N : P], it follows from (2.3)
that V¢(P) is a division algebra. Then P is cyclic. Therefore again by ([4],
{20.14)) we have PSZ(N). Assume that Vo(N)=4,P4, and let p; be the pro-
jection of V4(N) on 4,, i=3,4. Since p(P)S4;, p,(P) is cyclic, and so p,(P)
SZ(py(N)). Hence ps(P)Xp,(P)SZ(ps(N)Xp,N)). Thus we get PSZ(N),
and this completes the proof of the lemma.

As a direct consequence of (3.1) we get

PROPOSITION 3.2. Let G be a finite group with abelian Sylow 2-subgroups.
Assume that GSM,(d) for a division algebra 4. Then G s solvable.

We now give, as a main result in this section,

THEOREM 3.3. Let G be a finite group with abelian Sylow 2-subgroups.
Let 4 be a division algebra and K a field contained in the center of 4. Assume
that G can be embedded in My 4) in the form that Vi(G)=My4). Then G
satisfies one of the following conditions (a), (b);

(a) G has a subgroup G, of index 2. Put G/G,={G,, gG,}. Then there
exist normal subgroups T, T, (¥{1}) of G, and two integers m, v such that
TiN\T,={1}, T\*=T,, G,/T:=GCG,, and KQzAn,,=4, where Z is the center of
Ao .

(b) There exist a positive integer s, an odd number m and a group homo-
morphism o from G to Gal(K(,,)/K(L,), which satisfy the following con-
ditions;

(1) Kero can be embedded in K({,,,) in the form Vg(Ker o)=K({,,,).

(2) Put G/Kero={g, Kero, -, g.Kero} and 000 = 8:'8:8s Jor
g:8;Kero=g,Kero. Then the crossed product (K({,,,), G/Ker o, {@Qugp,ocep})
= M,(d).

Conversely, if G satisfies the condition (a) or (b), then G can be embedded
in My,(4) in the form that Vx(G)=M,(4).

PrROOF. Let V be an irreducible M,(4)-module. Then we may regard V
as a KG-module. Denote by G, the normal 2-complement of G. So, it follows
from (2.3) that the number m of all isomorphism classes of irreducible KG,-
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submodules of V is 1 or 2. In the case where m=2, again by (2.3) there exists.
a subgroup G, of G of index 2 with normal subgroups T, T, (#{1}) such that
T N\T,={1}, T.,=T,, G,/T.=4 and Vx(G,/T,)=4, where {1, g} is a set of
representatives of G/G, in G. Since any Sylow subgroup of G,/T, is abelian,
it follows from (1.1), (1.2) and (1.3) that G,/T,=G,,, for some integers m, 1
and 4=KQzA,, Conversely if G satisfies the condition (a), then by (2.2)
GEM(KRzA,,) and Vi(G)=My(KQzAn ).

In the case where m=1, because |G,| is odd, it follows from (2.3) that
Vk(G,) is a division algebra. Therefore by (1.2) we have that G,=G,, for
some relatively prime integers m, r and that V(G,)=K® 4, where Z is the
center of A4,, We recall the notation of G,,,. Gn,=<a,b| a"=1, b"=ad" and
bab-*=a"y, where s=(r—1, m), t=m/s; n=the minimal positive integer satisfy-
ing r"=1 mod m. Let S, be a Sylow 2-subgroup of G. And put S;=5,"\C¢({a)).
Since G=S,G,, and (|S,!, |Gn,.1)=1, we have Cgs({a))=<ayx S5 So, the fact
that <{a><IG implies S;<G. Therefore C4(S3) contains S, and G,,,, and we have
Z(G)2S;. Hence Vg(Sj) is contained in the center of M,(4)=Vx(G). So, if
we put |S;|=2° and S;={c), then we have V(S =K({,:s), Vx(Ce(ad))=K(LSm)
and the isomorphism is obtained by the correspondence a«{,, c—{,s. Denote
by ¢ the above isomorphism from Vx(Cs(<a))) to K({.Sn). For geG, we con-
struct an automorphism o(g) of K({,Sn.), by mapping {,s—s and {,—n",
where a®=a". Since K(&,5)=Vx(S}) is contained in the center of Vi(G), o(g)
is an element of Gal (K(&,s,,)/K(&,s)), so o is a group homomorphism from G
to Gal(K(&,8m)/K(Zs)) and Ker 0=Cq4({ad)=(a)x{c). We recall that A=
(K(&oSm), G/Ker o, {045,000} ) i a simple algebra with the following structure;

A:ua<g1)K(C25m)@ “+ Blhoeg i K(CoSm) as K(LySm)-space; autr(gi):uo(gi)aa(gi) for
a in K(&s,) and Uselocgy =Uotepocgn Qo oeo- 10 the above notations the
mapping X fillogp—2 ¢ '(f:)g; determines a homomorphism from 4 onto Vi(G),
where f;€K({,s,). Since A is simple and Vg(G)+#0, this is an isomorphism.
Therefore A=M,(4). Conversely, if G satisfies the condition (b), then the
factor set {000} defines an extension of Ker o by G/Ker ¢, which is iso-
morphic to G. Hence G can be embedded in M,(4) in the form Vx(G)=M,(4).

COROLLARY 34. Let G be a finite group with abelian Sylow 2-groups.
Then the following conditions are equivalent;

(1) G can be embedded in M,(H) in the form Vg(G)=M,(H).

(2) G has a subgroup G, of index 2 with normal subgroups T,, T, (#{1})
such that T\NT,={1}, T\*=T, and G,/T=G,,,., for some integer m, where
{1, g} is a set of representatives of G/G, in G.

PrOOF. Since by (1.3) Gyp,-; can be embedded in A,,,-; in the form
Vo(Gem,-1)=Asm,-1, Gam,-1 can be embedded in Aym,-1RecrymecshbR=H in the
form Vg(Gum,-1)=H. Therefore if G satisfies the condition (2), then it follows.
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from (2.2) that G can be embedded in M,(H) in the form Vg(G)=M,(H).

Assume that G satisfies the conditions (1). So, G satisfies one of the con-
ditions (a) and (b) for K=R in (3.3). Since |Gal (R({:S»)/R(£,5))| <2, we have
dimp(R(;Sm), G/Ker 6, {000} )=4. On the other hand dimzM,(H)=16, and
it implies that G satisfies the conditions (a). Because RQ;A,,=H, G, is a
subgroup of H. Hence it follows from (1.4) that G, , is the binary dihedral
group of order 4{. This completes the proof of the corollary.

§4. Additional results.

LEMMA 4.1. Let 4 be a division algebra. Let P be a 2-subgroup of M,(d)
and N a normal subgroup of P. Then any elementary abelian subgroup of
P/N has order <2*.

Proor. By (1.6) P is a subgroup of P,XP, for some P, P,eTi{, or a
subgroup of P for some PeT. Since P; is a cyclic group or a generalized
quaternion group, there exists a generalized quaternion group FP; which con-
tains P;, i=1,2. It follows from the definition of the 2-group of 1-type that
for some ﬁeTg“, PgPlengsnggﬁ. Therefore P is a subgroup of a 2-
group of 1-type P. So, there exist generalized quaternion groups of order
2" Pr=(x, y | x*=1, y2=x2""1 y~lxy=x", and P7={(s, t|s*"=1, t?=s>""}, t~Is¢
=s""> such that P’X P” is a subgroup of P of index 2 and for some gePN—(P’
X P") x8=gs, y¥E=t.

Let @/N be an elementary abelian subgroup of P/N. Since N2[Q, Q], we
only need to prove rank(Q/[Q, @])=<4. Let Q,=(P'XP")NnQ. Then Q/Q,=
B/P'x P, so we have |Q/Q,|<2. Also Q,/Q,N{x, sYSP'XP"/{x, sy implies
[Qo/Qo<x, sD|=1, 2 or 4. In the case where |Q,/Q,N{x, sD|<2 or Q=Q,, Q
is generated by at most 4 elements, for Q,N<{x, s) is generated by at most 2
elements. It means rank (Q/[Q, Q1)=4.

Assume that |Q,/Q,N<x, s)|=4 and Q+#Q, Since P*=P” for any he
Q—Q,, by changing s, t, g into x*, »", h respectively, if it is necessary, we
may assume that g=@Q—Q, Because |P’'XP”/{x, sy|=4, Q,/Qu{x, sd=P’x
P?/{x, s), and this means Q,=yx’s’ for some integers i, . Using the fact that
sf=xf2e(x), we have g ' (yx’s))g(yxts?)"'=tyx™s" for some integers m, n. Let
p be the natural homomorphism from Q@ onto Q/[Q, @]. Then Q/[Q, Q] is
generated by p(g), p(yx's?) and p(Q,N<x, s)). Therefore rank (Q/[Q, Q1)<4.

PROPOSITION 4.2. Let G be a solvable subgroup of M,(d). Let x={2, 3,5, 7}.
Then G has a normal Hall n’-subgroup.

Proor. Llet G=H,2H,2 --- 2H,={1} be a chain of normal subgroups of
G such that H;/H,,, is a non-trivial elementary abelian group for each 0<i<
r—1. We shall prove this proposition by induction on |G|. Since G=H,+*H,,
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H, has a normal Hall n’-subgroup N. If H,/H, is an elementary p-group for
some pem, then our proof is done. Therefore we may assume that pex. Let
D be a 2’-group of G. By (3.1) D has a normal Hall z’-subgroup D’. Let P
be a Sylow p-subgroup of D’. Then P is a Sylow p-subgroup of G. We shall
prove that D’N=PN. Let @ be a Sylow ¢-group of D’ for any ¢+#p and Q' a
Sylow g¢-group of N. Since @ and Q' are Sylow g¢-groups of G, there exists
an element g of G such that Q=0Q’%. So N<G means Q=Q’*<N and D'NZPN.
Moreover, it is easily seen that D’N2FPN. Hence D'N=PN,

Since H, contains a normal Hall n’-subgroup, we may assume that H,/H,
is a g-group for some ¢g<w. If we can prove that PH,<G and G/PH, is a
non-trivial g-group, then by the induction hypothesis PH, has a normal Hall
n’-subgroup N/, implying G has a normal Hall n’-subgroup N’. Therefore we
only need to prove that PH,<G and G/PH, is a non-trivial ¢-group. In the
case where ¢=2, H,/H, is an elementary abelian 2-group of order =<2* by (4.1).
It implies Aut(H,/H,)SGL(4,2), and so |Aut(H,/H,)||2%-3%.5-7. Since
Pt |Aut (H,/H,)| and PH,/H,/Cpuyn,(Hi/H,)E Aut (H,/H,), we have PH,/H,=
Cpuyu.(H;/H,). On the other hand PH,/H,=G/H,, which implies that G/H,>
PH,/H, and G/PH, is a non-trivial 2-group. In the case where ¢={3,5, 7},
H,/H,=DH,/H,>>D'H,/H,=PH,/H, means H,>> PH, and H,/PH, is a non-trivial
g-group. This completes the proof of the proposition.

Finally we give a remark on nilpotent subgroups of M,(K) over an alge-
braically closed field K of characteristic 0.

In case n=1, a group N is a subgroup of K if and only if N is cyclic.
We assume n>1. Suppose that we can determine the nilpotent subgroups of
M,(K) for r<n. Let N be a nilpotent subgroup of M,(K). If Vg(N)+*M,(K),
then Vg(N)=M, (K)® - ©M,(K) for some integers 7, ---, 7, such that i_él s
=n and 7;<n. By our assumption, we can determine the subgroup of M,,(K),
1=1, .-+, t and we can determine N as a subgroup of a direct product of such
groups. Conversely if N; is a nilpotent subgroup of M, ,(K), then N;X --- XN,
is a subgroup of M,(K). Assume that Vx(N)=M_,(K). In this case N is not
abelian, and let S, be a non-abelian Sylow p-subgroup of N. Since Vi(S,) is
a semi-simple subalgebra of Vx(N)=M,(K), by the Schur’s commutation

theorem VK(S,,)E]:IMZ‘;(K) and the commutant of Vg(S,) is isomorphic to
i=1

fIM,Zg(K), where rEnimizn and
i=1 i=1

A 0
Mmi(K)= ( B )eMnime)lAeMm(K) :

0 A

Since S, is not abelian, we have 7n;>1 for at least one 1=<i=<7. Hence
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V(O (N))#=M,(K), so such groups can be determined by the assumption. On
the other hand by (1.6) we can determine S,. Hence the nilpotent subgroups
of M,(K) can be determined inductively.
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