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The purpose of this paper is first, to classify and determine the equations
of compact Riemann surfaces of genus 3 and 4 with non-trivial automorphisms
and second, to investigate the analyticity, as functions of moduli, of the co-
efficients which appear in these equations by applying the results which were
introduced in the previous papers $[5, 6]$ . Namely, in [5], we introduced a
family $\Omega(g^{\prime}, n, \{\nu_{i}\})$ of Riemann surfaces with non-trivial automorphisms and
we gave a necessary and sufficient condition for $\Omega$ to be non-empty and we
constructed a generalized Teichm\"uller space of $\Omega(g^{\prime}, n, \{\nu_{i}\})$ . In [6], we proved
a lemma which gave the number of elements of $\Omega(g^{\prime}, n, \{\nu_{i}\})$ when we fixed
the $r$ points arbitrarily on the Riemann surface of genus $g^{\prime}$ . In this Paper,

using these lemmas, we obtain equations of Riemann surfaces of genus 3 and
4 with non-trivial automorphisms. In $\Omega(g^{\prime}, n, \{\nu_{i}\})$ , if $g^{\prime}=0$ then the forms of
equations are quite simple (Theorem (2.2.2)). If $g^{\prime}=1$ and $g=3$ , then we have
two types of the equations (Theorems (3.1.4), (3.3.7)):

(i) $y^{2}=ax^{2}+bx+c+(x-\delta)\{x(x-1)(x-\beta)\}^{1/2}$

(ii) (1) $y^{3}=(x-\xi_{1})(x-\xi_{2})+c\{x(x-1)(x-\beta)\}^{1/2}$

(2) $y^{3}=ax^{2}+bx+c+(x-\delta)\{x(x-1)(x-\beta)\}^{1/2}$ .

Here, in each case, $a,$ $b,$ $c,$
$\delta,$ $\beta,$ $\xi_{1},$ $\xi_{2}$ are suitable constants, which are related

algebraically. If $g^{\prime}=2$ and $g=3$ , we have two types of equations (Theorem

(3.5.2)):

(i) $y^{2}=(x-\beta_{t})(a(x)+b(x)\{(x-\beta_{1})\cdots(x-\beta_{5})\}^{1/2})^{2}$ $(1\leqq i\leqq 5)$

(ii) $y^{2}=(x-\beta_{l})(x-\beta_{j})(a(x)+b(x)\{(x-\beta_{1})\cdots(x-\beta_{5})\}^{1/2})^{2}$ $(1\leqq i, j\leqq 5;i\neq j)$ .

Here, in each case, $a(x)$ and $b(x)$ are arbitrary polynomials. The same con-
struction goes in the case of Riemann surfaces of genus 4 with non-trivial
automorphisms. However, in the case of Riemann surfaces of genus 5, even
if it has non-trivial automorphisms, we cannot any longer expect to obtain, in
general, the above form of equations by our method. In fact, in this case, we
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may have many Riemann surfaces of genus 3 which have no non-trivial auto-
morphisms on the base space. These are contents of \S 2 and \S 3.

In \S 4, we give some theorems which show the analyticity of the coeffici-
ents of the equations of Riemann surfaces of our family, as functions on the
generalized Teichm\"uller space. The coefficients in (3.1.4) or (4.5.3), and (3.3.7)

or (4.5.4) are single-valued holomorphic functions on the generalized Teichm\"uller

spaces (Theorems (4.5.19), (4.5.21)). We give also explicit representations of
these functions by the quotients of Theta constants (Theorem (4.6.7)). Here
we considered the Siegel space. However, it would be interesting to study
the space which Shimura has introduced in [9] instead of the Siegel space.

The author wishes to thank Professor Shoji Koizumi for his generous
assistance at several points in this paper and also thank Professor Kotaro
Oikawa who taught an intelligible proof of Lemma 4.5.7 to him.

\S 1. Preliminaries.

1.1. Let $R$ be a compact Riemann surface of genus $g(\geqq 2)$ . Let $G$ be a
subgroup of the group of all automorphisms of $R$ , whose order is finite $(\geqq 2)$ .
We shall denote by $V$ the complex vector space of all differentials of the first
kind on $R$ . Every element $\sigma$ of $G$ induces a linear mapping of $V$ onto $V$ ; and
fixing a basis of $V$ , we obtain a matrix representation $\Phi$ of $G$ . If $G$ is a
cyclic group of order $n$ , then $\Phi$ can be determined by $\Phi(\sigma)$ for a generator $\sigma$

of $G$ . Further, we can transform $\Phi(\sigma)$ into a diagonal form:

$\Phi(\sigma)=\left\{\begin{array}{ll}\alpha_{1} & 0\\0 & \alpha\end{array}\right\}$

where $\alpha_{1},$
$\cdots$ , $\alpha_{g}$ are n-th roots of unity. Let $g^{\prime}$ be the number of indices $k$

for which $\alpha_{k}=1$ . It is obvious that $g^{\prime}$ is equal to the genus of $R^{\prime}=R/G$ . Let
$K$ (resp. $K^{\prime}$ ) be the algebraic function field of $R$ (resp. $R^{\prime}$ ). Then $K$ is a Galois
extension of $K^{\prime}$ whose Galois group can be identified with $G$ .

1.2. Let $n$ be a prime number, $g$ a positive integer $>1$ , and $\Phi$ a complex
$g\times g$ matrix such that $\Phi^{n}=I_{g}$ . Let us consider a couple $(R, \sigma)$ formed by a
compact Riemann surface of genus $g$ and an automorphism $\sigma$ of order $n$ such
that the representation of $\sigma$ in the vector space $V$ is equivalent to $\Phi$ . We
say that $(R, \sigma)$ and $(R^{\prime}, \sigma^{\prime})$ are isomorphic if there exists a holomorphic bijec-
tion $f:R\rightarrow R^{\prime}$ such that $f\sigma=\sigma^{\prime}f$. We denote by $\langle R, \sigma\rangle$ the isomorphism class
of $(R, \sigma)$ with given $n$ and $\Phi$ , and we denote by $\Omega(n, \Phi)$ the set of all classes
$\langle R, \sigma\rangle$ .

1.3. In order to obtain all Riemann surfaces of genus $g$ with non-trivial
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automorphisms, we need only to find all non-emPty $\Omega(n, \Phi)$ for every prime
number $n$ . In fact, if a prime number $n$ divides the order of $G$ , then $G$ has
a subgroup of order $n$ . Therefore, we will give the conditions for $\Omega(n, \Phi)$ to
be non-empty.

1.4. For that purpose, we introduce subfamilies $\Omega(n, g^{\prime}, \{\nu_{1}, \cdots , \nu_{r}\})$ of
$\Omega(n, \Phi)$ as follows. Let $n$ be as before a prime number and $\{\nu_{1}, \cdots , \nu_{r}\}$ be a
set of positive integers such that $1\leqq\nu_{i}<n(1\leqq i\leqq r)$ . We denote by $\Omega(g^{\prime},$ $n$ ,
$\{\nu_{1}, \cdots , \nu_{r}\})$ the set of all isomorphism classes of $(R, \sigma)$ satisfying the following
conditions:

(1.4.1) $\sigma$ is an automorphism of order $n$ with $r$ fixed points.
(1.4.2) $R/G$ is of genus $g^{\prime}$ , where $G$ is the cyclic group generated by $\sigma$ .
(1.4.3) $\sigma$ can be represented as $t_{i}\rightarrow\zeta^{\nu_{i}}t_{i}+\cdots(\zeta=\exp(2\pi i/n))$ , where $t_{i}$ is a

local parameter at $q_{i}$ , a fixed point of $\sigma$ and $i$ runs from 1 to $r$ . It is obvious
that the coefficient $\zeta^{\nu_{i}}$ does not depend on the choice of local parameter.

1.5. There is a relation between the exponents $\{\nu_{1}, \cdots , \nu_{r}\}$ and the repre-
sentation $\Phi(\sigma)$ as follows.

(1.5.1) Let tr $\Phi(\sigma)$ be the trace of the matrix $\Phi(\sigma)$ . Then, we have the
formula

tr $\Phi(\sigma)=1+\sum_{i=1}^{r}\zeta^{\nu_{i}}/(1-\zeta^{\nu_{i}})$ .

PROOF. See [3; pp. 267-298].

1.6. Now, the representation $\Phi(\sigma)$ is completely determined by $\{\nu_{1}, \cdots , \nu_{r}\}$ .
Therefore, it is sufficient for our purpose to give conditions for $\Omega(g^{\prime},$

$n,$ $\{\nu_{1}$ ,

, $\nu_{r}$ }) to be non-empty. For that we need one more lemma from Galois
theory.

(1.6.1) Let $K$ be a Galois extension of a field $K^{\prime}$ . Suppose that the Galois
group is cyclic of order $n$ and $K^{\prime}$ contains a primitive n-th root of unity $\zeta$ .
Then for every generator $\sigma$ of the Galois group, there exists an element $y$ of
$K$ such that $\sigma(y)=\zeta y,$ $K=K^{\prime}(y)$ and $y^{n}\in K^{\prime}$ .

1.7. We shall apply (1.6.1) to the field of algebraic functions which are
considered above. Let $R,$ $R^{\prime},$ $K,$ $K^{\prime},$

$\sigma,$

$\Phi$ be as above. Let $\zeta$ be exp $(2\pi i/n)$

and $t_{i}$ be a local parameter at the fixed point $q_{i}$ of $\sigma$ . Let the expansion of
$y$ at the point $q_{i}$ be $y=c_{i}t_{i}^{k_{i}}+\cdots(c_{i}\neq 0)$ . Then we have $k_{i}\nu_{i}\equiv 1(mod n)$ for
$i=1,$ $\cdots$ , $r$. We can state the conditions for $\Omega(g^{\prime}, n, \{\nu_{1}, \cdots , \nu_{\gamma}\})$ to be non-
empty in terms of these integers $k_{1},$ $\cdots$ , $k_{n}$ as follows.

(1.7.1) A necessary and sufficient conditions for $\Omega(g^{\prime}, n, \{\nu_{i}\})$ to be non-
empty is $\sum_{i=1}^{r}k_{i}\equiv 0(mod n)$ .

PROOF. See [5; pp. 134-135].

Now, let $R^{\prime}$ be an arbitrarily fixed Riemann surface of genus $g^{\prime}$ and let
$q_{1}^{\prime},$ $\cdots$ , $q_{r}^{\prime}$ be an arbitrarily fixed set of $r(\geqq 0)$ points on $R^{\prime}$ . We wish to count
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the number of elements $\langle R, \sigma\rangle$ of the family $\Omega(g^{\prime}, n, \{\nu_{i}\})$ which are ramified
only on these points $\{q_{i}^{\prime}\}$ . This number comes from the following lemma.

(1.7.2) If $r\geqq 1$ , then the number of elements $\langle R, \sigma\rangle$ of $\Omega(g^{\prime}, n, \{\nu_{i}\})$ which
satisfy our condition is exactly $n^{2g}$

’ ; and if $r=0$ , then the number is exactly
$n^{2g^{1}}-1$ .

The proof has appeared in [6], but we will outline in this paper.
PROOF. Let $\langle R, \sigma\rangle$ of $\Omega$ be ramified only on these points $\{q_{i}^{\prime}\}$ on $R^{\prime}$ . Let

$(R, \sigma)$ be a representative of $\langle R, \sigma\rangle$ . Then, using the notations as above, there
exists an element of $y$ of Ksuch that $K=K^{\prime}(y),$ $z=y^{n}\in K^{\prime}$ and $\sigma(y)=\zeta y$ . The

element $z$ is a meromorphic function on $R^{\prime}$ and we have $div_{R^{\prime}}(z)=\sum_{i=1}^{r}k_{i}q_{i}^{\prime}+nD^{\prime}$ .

Here $D^{\prime}$ is a divisor on $R^{\prime}$ . Then, by (1.7.1) we have $\sum_{i=1}^{\tau}k_{i}\equiv 0(mod n)$ . Hence

we may put $\sum_{i=1}^{r}k_{i}=nl$ (1 is an integer). Let $q_{0}^{\prime}$ be an arbitrary point distinct

from $\{q_{t}^{\prime}\}$ on $R^{\prime}$ . Then we have deg $(\sum_{i=1}^{\tau}k_{i}q_{i}^{\prime}-nlq_{0}^{\prime})=0$ and deg $(-D^{\prime}-lq_{0}^{\prime})=0$ .
The divisor class group of degree $0$ of $K^{\prime}$ is isomorphic to its Jacobian variety
$J^{\prime}$ . Therefore, the divisor class of $-D^{\prime}-lq_{0}^{\prime}$ determines a point $\tau$ of $J^{\prime}$ . Thus
we can associate $\tau$ with $K=K^{\prime}(y)$ of $\Omega$ . It is easy to see that is independent
of the choice of the function $y$ .

Now, let the point of $J^{\prime}$ determined by the divisor class of $\sum_{i=1}^{f}k_{i}q_{i}^{\prime}-nq^{\prime}$ be

$\mu$ . For the fixed $\mu$ , consider $M=\{\tau\in J^{\prime}|n\tau=\mu\}$ . We see easily that the above
$as_{3}^{\neg}o_{\vee}^{\wedge}iation$ is surjective. We will check that it is injective. Let $K=K^{\prime}(y)$ ,
$K_{1}=K^{\prime}(y_{1})$ be two algebraic function fields to which the same $\tau$ is associated.
Then we have

$div_{R^{\prime}}(z)=nD^{\prime}+\sum_{i=1}^{\tau}k_{i}q_{i}^{\prime}$ ,

$div_{R}(z_{1})=nD_{1}^{\prime}+\sum_{i=1}^{r}k_{i}q_{i}^{\prime}$ ,

deg $(-D^{\prime}-lq_{0}^{f})=0$ ;

deg $(-D_{1}^{\prime}-lq_{0}^{\prime})=0$ ,

and $(-D^{\prime}-lq_{0}^{\prime})$ is linearly equivalent to $(-D_{1}^{\prime}-lq_{0}^{\prime})$ . Hence we have $div_{R^{\prime}}(z)-$

$div_{R^{\prime}}(z_{1})=n(D^{\prime}-D_{1}^{\prime})$ . Therefore, $div_{R^{\prime}}(z)-div_{R^{\prime}}(z_{1})$ is linearly equivalent to
$n$ div $(u)(u\in K^{\prime})$ . Thus, we can conclude that $K=K_{1}$ .

It is easy to see that the number of elements of Mis equal to $n^{2g^{\prime}}$ if $r\geqq 1$ .
If $r=0$ , we must exclude the case $\tau=0$ ; and then the number is equal to $n^{2g^{\prime}}-1$ .
Here we should keep in mind that we count the number in $\Omega$ . If we count
the isomorphic function fields in usual sense, then it becomes $(n^{2g^{\prime}}-1)/(n-1)$ .
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\S 2. A classification of Riemann surfaces by means
of $\Omega(g^{\prime}, n, \{\nu_{1}, \nu_{\gamma}\})$ .

2.1. By the formula of Riemann-Hurwitz, $i$ . $e$ . $2g-2=n(2g^{\prime}-2)+(n-1)r$,

we can classify the Riemann surfaces of genus 3 as follows;
(2.1.1) $g^{\prime}=0$ . We see that only the following three cases may take place ’

(i) $n=2,$ $r=8$ ; (ii) $n=3,$ $r=5$ ; (iii) $7l=7,$ $r=3$ .

In each case, $\Omega(g^{\prime}, n, \{\nu_{i}\})$ is actually non empty.
(2.1.2) $g^{\prime}=1$ . Here only the following three cases may take place:

(i) $n=2,$ $r=4$ ; (ii) $n=3,$ $r=2$ ; (iii) $n=5,$ $r=1$ .

However, by (1.5.1) the case (iii) cannot happen. On the other hand, by ( $ 1.7.1\rangle\$ $

the cases (i) and (ii) do in fact occur. In the former, we have $v_{1}=\nu_{2}=\nu_{3}=\nu_{4}=1$

and in the latter, we have $\nu_{1}=1,$ $\nu_{2}=2$ or $\nu_{1}=2,$ $\nu_{2}=1$ .
(2.1.3) $g^{\prime}=2$ . Here the Riemann-Hurwitz formula only allows

(i) $n=2,$ $r=0$ .

In this case, $R$ is an unramified covering surface of $R^{\prime}$ and clearly the case
(i) can take place.

2.2. In (2.1.1), all the Riemann surfaces are considered as n-sheeted cover-
ing surfaces of the Riemann sphere $R_{0}$ ; and we may assume that one of the
points of $R$ which are fixed by $\sigma$ is over the point $\infty$ of $R_{0}$ . By (1.6.1), we
can write the equation of $R$ in the form

(2.2.1) $y^{n}=(x-a_{1})^{m_{1}}$ $(x-a_{s})^{m_{s}}$ , $n\nmid m_{1}+\cdots+m_{s}$

with distinct complex numbers $a_{1},$
$\cdots$ , $a_{s}$ over which we have all fixed points of

$R$ except for the one over the point at infinity and with positive integers
$m_{1},$

$\cdots$ , $m_{s}$ less than $n$ . Therefore, we obtain the following theorem.
(2.2.2) THEOREM. In (2.2.1), the equations of Riemann surfaces of genus

3 are given by

(i) $y^{2}=(x-a_{1})\cdots(x-a_{7})$ ,

(ii) $y^{3}=(x-a_{1})^{m_{1}}\cdots(x-a_{4})^{m_{4}}$ , $3\nmid m_{1}+\cdots+m_{4}$ ,

(iii) $y^{7}=(x-a_{1})^{m_{1}}(x-a_{2})^{m_{2}}$ , $7\nmid m_{1}+m_{2}$ .
In (2.1.2), $R$ is considered as an n-sheeted covering surface of $R^{\prime}$ whose

genus is one. On the other hand, $R^{\prime}$ is considered as a two-sheeted covering
surface of the Riemann sphere $R_{0}$ . Therefore, in (2.1.2) (i), $R$ is considered
as a four-sheeted covering surface of $R_{0}$ ; and in (2.1.2) (ii), $R$ is considered
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as a six-sheeted covering surface of $R_{0}$ . In each case, we may assume that
the equation of $R^{\prime}$ is given by $v^{2}=x(x-1)(x-\beta)$ . If we put $K^{\prime}=C(x, v),$ $v^{2}=$

$x(x-1)(x-\beta)$ , then in (i), by (1.6.1) there exists a $y\in K$ such that $K=K^{\prime}(y)$ ,
$y^{2}\in K^{\prime}$ and $\sigma(y)=-y$ . Hence $C$ is a complex number field. Hence, we can
write the equation of $R$ in the form

(2.2.3) $y^{2}=a_{0}(x)+a_{1}(x)\{x(x-1)(x-\beta)\}^{1/2}$

where $a_{0}(x)$ and $a_{1}(x)$ are rational functions in $x$ . Similarly, in (ii), there exists
a $y\in K$ such that $K=K^{\prime}(y),$ $y^{3}\in K^{\prime}$ and $\sigma(y)=\zeta y(\zeta=\exp(2\pi i/3))$ . Thus, we
can write the equation of $R$ in the form

(2.2.4) $y^{3}=b_{0}(x)+b_{1}(x)\{x(x-1)(x-\beta)\}^{1/2}$ ,

where $b_{0}(x)$ and $b_{1}(x)$ are rational functions in $x$ . In the next section, we shall
determine these functions $a_{0}(x),$ $a_{1}(x)$ and $b_{0}(x),$ $b_{1}(x)$ in the explicit form.

In (2.1.3), $R$ is considered as a two-sheeted covering surface of $R^{\prime}$ whose
genus is two. On the other hand, $R^{\prime}$ is a two-sheeted covering surface of $R_{0}$ .
In this case, we have no fixed point on $R$ and we may assume that the equa-
tion of $R^{\prime}$ is given by $v^{2}=(x-\beta_{1})\cdots(x-\beta_{5})$ with distinct complex numbers
$\beta_{1},$ $\cdots$ , $\beta_{5}$ . In the same manner as in (2.1.2), we can write the equation of $R$

in the form

(2.2.5) $y^{2}=c_{0}(x)+c_{1}(x)\{(x-\beta_{1})\cdots(x-\beta_{5})\}^{1/2}$ ,

where $c_{0}(x)$ and $c_{1}(x)$ are rational functions in $x$. We shall consider these func-
tions in the next section.

2.3. Quite similarly we can classify the Riemann surfaces of genus 4 with
non-trivial automorphisms.

(2.3.1) $g^{\prime}=0$ . We see that only the following three cases may take place:

(i) $n=2,$ $r=10$ ; (ii) $n=3,$ $r=6$ ; (iii) $n=5,$ $r=4$ .

In each case, $\Omega(g^{\prime}, n, \{\nu_{i}\})$ is actually non-empty.
(2.3.2) $g^{\prime}=1$ . Here only the following three cases may take place:

(i) $n=2,$ $r=6$ ; (ii) $n=3,$ $r=3$ ; (iii) $n=7,$ $r=1$ .

However, by (1.5.1) we see that the case (iii) cannot happen. On the other
hand, by (1.7.1) the cases (i) and (ii) do in fact occur. In the former, we have
$\nu_{1}=\ldots=\nu_{6}=1$ and in the latter, we have $\nu_{1}=\nu_{2}=\nu_{3}=1$ and $\nu_{1}=\nu_{2}=\nu_{3}=2$ .

(2.3.3) $g^{\prime}=2$ . Here only the following two may take place:

(i) $n=2,$ $r=2$ ; (ii) $n=3,$ $r=0$ .
By (1.7.1), the case (i) does occur and we have $\nu_{1}=\nu_{2}=1$ . In the case (ii), $R$
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is an unramified covering surface of $R^{\prime}$ and clearly the case (ii) can take place.
We shall give in the next section the equations of these Riemann surfaces.

\S 3. Equations of Riemann surfaces of genus 3 and 4.

3.1. Now, we are in a position to solve the problems in \S 3. Let us start
with (2.1.2). For this purpose, we consider the divisors of the adjoint func-
tions (2.2.3) and (2.2.4) on $R^{\prime}$ . In (2.1.2) (i), we have $div_{R^{\prime}}(y^{2})=k_{1}q_{1}^{\prime}+k_{2}q_{2}^{\prime}+k_{3}q_{3}^{\prime}$

$+k_{4}q_{4}^{\prime}+2D$ . Here $D$ is a divisor on $R^{\prime}$ , and for each $i=1,$ $\cdots$ , 4, $k_{i}$ is an integer
such that the Laurent expansion of $y$ at $q_{i}$ in the local parameter $t_{i}$ is $y=$

$c_{i}t_{i}^{k_{i}}+\cdots(c_{i}\neq 0)$ . In (2.1.2) (ii), we have $div_{R^{\prime}}(y^{3})=k_{1}q_{1}^{\prime}+k_{2}q_{2}^{\prime}+3D$ . Here $D$ is
again a divisor on $R^{\prime}$ and $k_{1},$ $k_{2}$ are integers similar to those in (i).

In each case by the theorem of Abel, we can assume that one of the
fixed points, say $q_{4}^{\prime}$ in (i), and $q_{2}^{\prime}$ in (ii), is equal to $q_{\infty}^{\prime}$ which is over the point
at infinity.

In (i), we may put $k_{1}=k_{2}=k_{3}=1$ . We consider points $q_{\alpha}^{\prime}$ such that
$-(q_{1}^{\prime}+q_{2}^{\prime}+q_{3}^{\prime})+3q_{\infty}^{\prime}$ is linearly equivalent to $2(q_{a}^{f}-q_{\infty}^{\prime})$ . There are four distinct
such points. We denote these points by $q_{a_{1}}^{\prime},$ $q_{a_{2}}^{f},$ $q_{a_{3}}^{\prime}$ and $q_{\alpha_{4}}^{\prime}$ . Consider the
divisors on $R^{\prime}$

(3.1.1) $q_{1}^{\prime}+q_{2}^{\prime}+q_{3}^{\prime}-5q_{\infty}^{\prime}+2q_{a_{i}}^{\prime}$ $(1 \leqq i\leqq 4)$ .
Any such divisor is the divisor of a function on $R^{\prime}$ . We denote these func-
tions by $z_{\alpha_{1}},$ $z_{\alpha_{2}},$ $z_{a_{3}}$ and $z_{\alpha_{4}}$ . We see that $div_{R^{\prime}}(z_{\alpha_{i}}/z_{\alpha_{j}})=2(q_{\alpha_{i}}^{\prime}-q_{a_{j}}^{\prime})$ for $i\neq j$

$(1\leqq i, j\leqq 4)$ . Obviously there is no function $f$ on $R^{\prime}$ that satisfies the relation
$div_{R’}(f)=q_{a_{i}}^{\prime}-q_{a_{j}}^{\prime}$ . On the other hand, it is easy to show that $K^{\prime}(y_{1})=K^{\prime}(y_{2})$

if and only if $y_{2}$ is equal to $by_{1}$ , where $b$ is ane lement of $K^{\prime}$ . Therefore, we
can conclude that $K^{\prime}(z_{a_{i}}^{1/2})\neq K^{\prime}(z_{\alpha_{j}}^{1/2})$ if $i\neq j(1\leqq i, j\leqq 4)$ . Consequently, by (1.7.2)

we see that the desired function fields are nothing but $K^{\prime}(z_{a_{i}}^{1/2})(1\leqq i\leqq 4)$ .
Now, the function $z_{\alpha i}(1\leqq i\leqq 4)$ is represented by $z_{\alpha_{i}}=r_{0}(x)+r_{1}(x)\{x(x-1)$

$(x-\beta)\}^{1/2}$ with rational functions $r_{0}(x)$ and $r_{1}(x)$ . However, it is easy to show
that these are polynomials. In fact, by the form of $div_{R^{\prime}}(z_{a_{i}}^{1/2}),$

$z_{\alpha_{i}}$ is holomor-
phic at any points except for $q_{\infty}^{\prime}$ . Then, we see that $r_{0}(x)-r_{1}(x)\{x(x-1)(x-\beta)\}^{1/2}$

is also holomorphic at any points except for $q_{\infty}^{\prime}$ . Therefore, $r_{0}(x)$ is a poly-
nomial and $r_{1}(x)\{x(x-1)(x-\beta)\}^{1/2}$ is holomorphic except at $q_{\infty}^{\prime}$ , $i$ . $e.,$ $r_{1}(x)^{2}x(x-1)$

$\langle x-\beta$) is holomorphic except at $q_{\infty}^{\prime}$. This shows $r_{1}(x)$ is a polynomial. Hence,
we may denote $z_{ai}(1\leqq i\leqq 4)$ by $z_{\alpha_{i}}=a_{0}(x)+a_{1}(x)\{x(x-1)(x-\beta)\}^{1/2}$ with poly-
nomials $a_{0}(x)$ and $a_{1}(x)$ . Then it follows that $a_{0}(x)$ is of at most degree 2 and
$a_{1}(x)$ is of degree 1. Because $div_{R^{\prime}}(z_{\alpha_{i}})$ is represented by (3.1.1). Thus, we
can write

(3.1.2) $z_{\alpha_{i}}=ax^{2}+bx+c+(x-\delta)\{x(x-1)(x-\beta)\}^{1/2}$
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with complex numbers $a,$ $b,$ $c$ and $\delta$ . It remains to be seen what these com-
plex numbers are. To solve this question, consider how $R$ covers the Riemann
sphere $R_{0}$ . Let the projections of $q_{1},$ $q_{2},$ $q_{3}$ and $q_{\infty}$ on $R_{0}$ be $t_{1},$ $t_{2},$ $t_{3}$ and $\infty$

respectively. Here, $q_{t}$ is the point of $R$ over $q_{i}^{\prime}$ of $R^{\prime}$ and $q_{\infty}$ is the point of
$R$ over $q_{\infty}^{f}$ of $R^{\prime}$ . If any of $t_{1},$ $t_{2},$ $t_{3}$ does not coincide with any of $0,1,$ $\beta$ , then
each of $q_{1},$ $q_{2},$ $q_{3}$ must be a ramification point whose index is one. There are
no other ramification points on $R$ except for those points which are over the
points $\infty,$ $\beta,$ $0,1,$ $t_{1},$ $t_{2}$ and $t_{3}$ . Then we have an identity

(3.1.3) $(x-\delta)^{2}x(x-1)(x-\beta)-(ax^{2}+bx+c)^{2}$

$=(x-t_{1})(x-t_{2})(x-t_{3})(x-\alpha_{i})^{2}$

for any $x$ of $R_{0}$ . Here $\alpha_{i}$ is the projection of $q_{\alpha_{i}}$ on $R$ . Hence, we obtain the
following theorem.

(3.1.4) THEOREM. In (2.1.2) (i), choosing $a,$ $b,$ $c$ and $\delta$ which satisfy the
identity (3.1.3) for each $\alpha_{i}(1\leqq i\leqq 4)$ , we obtain the equation of $R$ as follows:

$y^{2}=ax^{2}+bx+c+(x-\delta)\{x(x-1)(x-\beta)\}^{1/2}$

Here we should keep in mind that $a,$ $b,$ $c$ and $\delta$ can be considered as functions
of four parameters $t_{1},$ $t_{2},$ $t_{3}$ and $\beta$ .

3.2. REMARK. If $t_{1},$ $t_{2},$ $t_{3}$ coincide with $0,1,$ $\beta$ respectively, then we have
$a=b=c=0$ and $\delta=\alpha$ . Obviously, we have $0,1,$ $\beta,$ $\infty$ as the values of four $\alpha’ s$ .
Thus, we obtain as a special case of (3.1.4)

(3.2.1) (i) $y^{2}=\{x(x-1)(x-\beta)\}^{1/2}$

(ii) $y^{2}=x\{x(x-1)(x-\beta)\}^{1/2}$

(iii) $y^{2}=(x-1)\{x(x-1)(x-\beta)\}^{1/2}$

(iv) $y^{2}=(x-\beta)\{x(x-1)(x-\beta)\}^{1/2}$ .

3.3. In 2.1.2 (ii), we may put $k_{1}=1$ or $k_{1}=2$ . For $k_{1}=1$ , we consider points
$q_{a}^{f}$ such that $-q_{1}^{\prime}+q_{\infty}^{\prime}$ is linearly equivalent to $3(q_{\alpha}^{\prime}-q_{\infty}^{\prime})$ . There are nine such
points. We denote these points by $q_{\alpha_{1}}^{\prime},$ $\cdots$ , $q_{\alpha_{Q}}^{f}$ . Consider the divisor on $R^{\prime}$

(3.3.1) $q_{1}^{\prime}-4q_{\infty}^{\prime}+3q_{\alpha_{i}}^{f}$ $(1 \leqq i\leqq 9)$ .
Any such divisor is the divisor of a function on $R^{\prime}$ . We denote these func-
tions by $z_{\alpha_{1}},$

$z_{\alpha_{q}}$ . By the same manner as in 2.1.2 (i), we can conclude
that $K^{\prime}(z_{\alpha_{i}}^{1/3})\neq K^{\prime}(z_{\alpha_{j}}^{1/3})$ if $i\neq j(1\leqq i, j\leqq 9)$ . We see that the desired function fields
are nothing but $K^{\prime}(z_{\alpha_{i}}^{1/3})(1\leqq i\leqq 9)$ .

Now, the function $z_{\alpha_{i}}(1\leqq i\leqq 9)$ is represented by $z_{\alpha i}=r_{0}(x)+r_{1}(x)\{x(x-1)$

\langle $ x-\beta$ ) $\}^{1/2}$ with rational functions $r_{0}(x)$ and $r_{1}(x)$ . As in (2.1.2) (i), it is easy to
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see that $r_{0}(x)$ and $r_{1}(x)$ are polynomials. Hence, we may denote $z_{\alpha i}$ by $z_{\alpha i}=$

$b_{0}(x)+b_{1}(x)\{x(x-1)(x-\beta)\}^{1/2}$ with polynomials $b_{0}(x)$ and $b_{1}(x)$ . Then it follows
$b_{0}(x)$ is of degree 2 and $b_{1}(x)$ is of degree $0$ . Thus we can write

(3.3.2) $z_{\alpha_{i}}=(x-\xi_{1})(x-\xi_{2})+c\{x(x-1)(x-\beta)\}^{1/2}$

with complex numbers $\xi_{1},$ $\xi_{2}$ and $c$ . We must show what these complex num-
bers are. As in (i), let the projections of $q_{1}$ and $q_{\infty}$ on $R_{0}$ be $t_{1}$ and $\infty$ respec-
tively. If $t_{1}$ does not coincide with any of $0,1,$ $\beta,$ $\infty$ , then $q_{1}$ must be a rami-
fication points whose index is two. There are no other ramification points
except for those points which are over the points $\infty,$ $0,1,$ $\beta$ and $t_{1}$ . Then we
have an identity

(3.3.3) $(x-\xi_{1})^{2}(x-\xi_{2})^{2}-c^{2}x(x-1)(x-\beta)=(x-t_{1})(x-\alpha_{i})^{3}$

for any $x$ of $R_{0}$ . Here $\alpha_{i}$ is the projection of $q_{\alpha_{i}}$ on $R$ .
For $k_{1}=2$ , we consider points $q_{\alpha}^{\prime}$ such that $-2q_{1}^{\prime}+2q_{\infty}^{\prime}$ is linearly equivalent

to $3(q_{\alpha}^{\prime}-q_{\infty}^{\prime})$ and consider the divisors on $R^{\prime}$

(3.3.4) $2q_{1}^{\prime}-5q_{\infty}^{\prime}+3q_{\alpha_{i}}^{\prime}$ $(1 \leqq i\leqq 9)$ .

Any such divisor is the divisor of a function on $R^{\prime}$ . We denote these func-
tions by $z_{\alpha_{1}},$

$\cdots$ , $z_{\alpha_{q}}$ . Then we have

(3.3.5) $z_{\alpha\ell}=ax^{2}+bx+c+(x-\delta)\{x(x-1)(x-\beta)\}^{1/2}$

with complex numbers $a,$ $b,$ $c$ and $\delta$ which satisfy an identity

(3.3.6) $(x-\delta)^{2}x(x-1)(x-\beta)-(ax^{2}+bx+c)^{2}=(x-t_{1})^{2}(x-\alpha_{i})^{3}$

for any $x$ of $R_{0}$ . Hence, we obtain the following theorem.
(3.3.7) THEOREM. In (2.1.2) (ii), for $k=1$ choosing $\xi_{1},$ $\xi_{2}$ and $c$ which satisfy

the identity (3.3.3) for each $\alpha_{i}(1\leqq i\leqq 9)$ , we obtain the equation of $R$ as follows:
$y^{3}=(x-\xi_{1})(x-\xi_{2})+c\{x(x-1)(x-\beta)\}^{1/2}$ .

Here we should $keeP$ in mind that $\xi_{1},$ $\xi_{2}$ and $c$ can be considered as functions
of two parameters $t_{1}$ and $\beta$ . For $k=2$ , choosing $a,$ $b,$ $c$ and $\delta$ which satisfy the
identity (3.3.6) for each $\alpha_{i}(1\leqq i\leqq 9)$ , we obtain the equation of $R$ as follows:

$y^{3}=ax^{2}+bx+c+(x-\delta)\{x(x-1)(x-\beta)\}^{1/2}$ .
Here we should keep in mind that $a,$ $b,$ $c$ and $\delta$ can be considered as functions
of two parameters $t_{1}$ and $\beta$ .

3.4. REMARK. In (3.3.1), if $t_{1}$ coincides with any one of $0,1,$ $\beta$ , say $t_{1}=0$ ,

then we may put $\xi_{1}=0$ in (3.3.2). It is interesting to investigate the locus of
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the points $q_{\alpha_{i}}(1\leqq i\leqq 9)$ . We have an equation in $\alpha$ :

(3.4.1) $\alpha^{6}-6\beta\alpha^{4}+4\beta\alpha^{3}+4\beta^{2}\alpha^{3}-3\beta^{2}\alpha^{2}=0$ .
This equation has five distinct solutions $\alpha_{0},$ $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ and $\alpha_{4}$ . Here $\alpha_{0}=0$ and
$\alpha_{1},$ $\alpha_{2},$ $\alpha_{3},$ $\alpha_{4}$ are distinct from both 1 and $\beta$ . We have two points of $R^{\prime}$ over
each $\alpha_{i}(1\leqq i\leqq 4)$ . We denote these points by $q_{\alpha_{i_{1}}}^{\prime},$ $q_{a_{i2}}^{\prime}$ . For each $\alpha_{i}$ , we can
determine $c$ and $\xi_{2}$ . The unknown $c$ has two solutions, say $k$ and $-k$ . Thus,
we obtain

(3.4.2) (i) $div_{R^{\prime}}(z_{\alpha_{i1}})=q_{1}^{\prime}-4q_{\infty}^{\prime}+3q_{\alpha_{i1}}^{\prime}$ ,

$y_{\alpha_{i_{1}}}^{3}=x(x-\xi_{2})+k\{x(x-1)(x-\beta)\}^{1/2}$ .

(ii) $di_{V_{R^{\prime}}}(z_{\alpha i2})=q_{1}^{\prime}-4q_{\infty}^{\prime}+3q_{a_{i2}}^{\prime}$ ,

$y_{\alpha_{i2}}^{3}=x(x-\xi_{2})-k\{x(x-1)(x-\beta)\}^{1/2}$ .
As in 2.1.2 (i), we can show that the eight function fields $K^{\prime}(y_{\alpha i_{1}})$ and $K^{\prime}(y_{\alpha_{i2}})$

$(1\leqq i\leqq 4)$ are distinct from each other. For $\alpha_{0}=0$ , we have $c=0$ and $\xi_{2}=0$ .
Therefore, the equation is

(3.4.3) $y^{3}=x^{2}$ .
We can replace this equation with

(3.4.5) $y^{3}=(x-1)(x-\beta)\{x(x-1)(x-\beta)\}^{1/2}$ .

In fact, we have $div_{R^{\prime}}(y^{3})=4q_{0^{\prime}}^{\prime}-4q_{\infty}^{\prime}$ and $div_{R^{\prime}}(Y^{3})=q_{0}^{\prime},$ $-7q_{\infty}^{\prime}+3q_{1}^{\prime},+3q_{\beta}^{\prime},$ . Thus,
we must have $div_{R^{\prime}}(y^{3}/Y^{3})=3(q_{0^{\prime}}^{\prime}+q_{\infty}^{\prime}-q_{1}^{\prime}, -q_{\beta^{\prime}}^{\prime})$ . On the other hand, obviously
$q_{0}^{\prime},-q_{1}^{f}-q_{\beta^{\prime}}^{\prime}+q_{\infty}^{\prime}$ is linearly equivalent to zero. In (3.3.4), if $t_{1}$ coincides with
any one of $0,1,$ $\beta$ , then we have a similar result.

3.5. Now, we investigate equations in (2.1.3). By the classification in \S 2,
we have $n=2$ and $r=0$ and if we put $K^{\prime}=C(x, v),$ $v^{2}=(x-\beta_{1})$ $(x-\beta_{5})$ , then
there exists an element $y$ of $K$ such that $K=K^{\prime}(y),$ $y\in K^{\prime}$ and $\sigma(y)=-y$ . We
can construct two kinds of functions on $R^{\prime}$ such that

(3.5.1) (i) $y^{2}=(x-\beta_{\ell})$ $(1 \leqq i\leqq 5)$

(ii) $y^{2}=(x-\beta_{i})(x-\beta_{j})$ $(1\leqq i, j\leqq 5, i\neq j)$ .

If $y_{a},$
$y_{a}^{f}$ are two functions of (3.5.1) (i), then we see that $K^{\prime}(y_{a})$ is not equal

to $K^{\prime}(y_{a}^{\prime})$ as before. If $y_{b},$
$y_{b}^{\prime}$ are two of (3.5.1) (ii), then we can write

$div_{R^{\prime}}(y_{b}^{2}/y_{b^{2}}^{\prime})=2q_{\beta_{k}}^{f}+2q_{\beta\iota}^{\prime}-2q_{\beta i}^{\prime}-2q_{\beta_{j}}^{\prime}$ . Here, $k,$ $1,$ $i,$ $j$ are integers from 1 to 5 and
$k\neq l,$ $i\neq j$ , and $\{k, l\}$ is not equal to $\{i, j\}$ . If we put $D=q_{\beta\iota}^{\prime}+q_{\beta_{j}}^{\prime}$ , then we
have $l(D)=l(W-D)+1$ by the theorem of Riemann-Roch. On the other hand,

we see that $div_{R}(dx)=q_{\beta 1}^{\prime}+\cdots+q_{\beta_{5}}^{\prime}-3q_{\infty}^{\prime}$ and $div_{R^{\prime}}(v)=q_{\beta_{1}}^{\prime}+\cdots+q_{\beta_{5}}^{\prime}-5q_{\infty}^{\prime}$ . Hence
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we obtain $W=2q_{\infty}^{f}$ and $W-D=2q_{\infty}^{\prime}-q_{\beta i}^{\prime}-q_{\beta_{j}}^{\prime}$ . If there were a non-zero function
$f$ on $R^{\prime}$ such that $div_{R^{2}}(f)+W-D>0$ , then we would have $div_{R}(f)=q_{\beta i}^{\prime}+q_{\beta_{j}}^{f}-2q_{\infty}^{\prime}$ .
This is a contradiction. Hence we have $l(W-D)=0$ and we cannot have
$q_{\beta_{k}}^{\prime}+q_{\beta l}^{f}-q_{\beta i}^{\prime}-q_{\beta_{j}}^{f}\sim 0$ . This shows that $K^{\prime}(y_{b})$ is not equal to $K^{\prime}(y_{b}^{\prime})$ . If $y_{a}$ is
any one of (3.5.1) (i) and $y_{b}$ is any one of (ii), then we can write $div_{R}(y_{a}^{2}/y_{b}^{2})j$

$=2q_{\infty}^{\prime}+2q_{\beta i}^{f}-2q_{\beta_{j}}^{\prime}-2q_{\beta_{k}}^{\prime}$ . Here $i,$ $j$ and $k$ are integers from 1 to 5 and $j\neq k$ .
Again we cannot have $q_{\infty}^{\prime}+q_{\beta i}^{\prime}-q_{\beta_{j}}^{\prime}-q_{\beta_{k}}^{\prime}\sim 0$ . Thus, we have five $y_{a}’ s$ from (i)

and ten $y_{b}’ s$ from (ii). If we denote these by $y_{a_{1}},$
$\cdots$ , $y_{a_{s}}$ and $y_{b_{1}},$

$\cdots$ , $y_{b_{10}}$ , then
it follows that $K^{\prime}(y_{a_{1}}),$ $\cdots$ , $K^{\prime}(y_{a_{5}})K^{\prime}(y_{b_{1}}),$ $\cdots$ , $K^{\prime}(y_{b_{10}})$ are distinct from each
other. Hence, we can conclude that besides these there are no other our func-
tion fields. Consequently we have the following theorem.

(3.5.2) THEOREM. In (2.1.3), we have as the desired form of equations

(i) $y^{2}=(x-\beta_{i})[a(x)+b(x)\{(x-\beta_{1})\cdots(x-\beta_{5})\}^{1/2}]^{2}$ $(1\leqq i\leqq 5)$ .

(ii) $y^{2}=(x-\beta_{i})(x-\beta_{j})[a(x)+b(x)\{(x-\beta_{1})\cdots(x-\beta_{5})\}^{1/2}]^{2}$

$(1\leqq i, j\leqq 5, i\neq j)$ .

Here, in each case, $a(x)$ and $b(x)$ are arbitrary polynomials.
3.6. By the same method as in genus 3, we obtain the equations of Rie-

mann surfaces of genus 4 with non-trivial automorphisms.
(3.6.1) THEOREM. In (2.3.1), the equations of Riemann surfaces of genus

4 are given by

(i) $y^{2}=(x-a_{1})\cdots(x-a_{9})$ .
(ii) $y^{3}=(x-a_{1})^{m_{1}}\cdots(x-a_{5})^{m_{5}}$ , $3\nmid m_{1}+\cdots+m_{5}$ .

(iii) $y^{5}=(x-a_{1})^{m_{1}}\cdots(x-a_{3})^{m_{3}}$ , $5\nmid m_{1}+m_{2}+m_{3}$ .

(3.6.2) THEOREM. In (2.3.2) (i), choosing $a,$ $b,$ $c,$
$d$ and $\delta_{1},$ $\delta_{2}$ which satisfy

the identity
$(x-\delta_{1})^{2}(x-\delta_{2})^{2}x(x-1)(x-\beta)-(ax^{3}+bx^{2}+cx+d)^{2}$

$=(x-t_{1})(x-t_{2})\cdots(x-t_{5})(x-\alpha_{i})^{2}$

for each $\alpha_{i}(1\leqq i\leqq 4)$ , we have the desired equation of $R$ as follows:
$y^{2}=ax^{2}+bx^{3}+cx+d+(x-\delta_{1})(x-\delta_{2})\{x(x-1)(x-\beta)\}^{1/2}$

(3.6.3) THEOREM. In (2.3.2) (ii), we have two $tyPes$ of equations.

(i) $y^{3}=(x-\xi_{1})(x-\xi_{2})+c\{x(x-1)(x-\beta)\}^{1/2}$

Here $\xi_{1},$ $\xi_{2}$ and $c$ are constants which satisfy the identity

$(x-\xi_{1})^{2}(x-\xi_{2})^{2}-c^{2}x(x-1)(x-\beta)=(x-t_{1})(x-t_{2})(x-\alpha_{i})^{3}$
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for each $\alpha_{i}(1\leqq i\leqq 9)$ .
(ii) $y^{3}=ax^{3}+bx^{2}+cx+d+(x-\delta_{1})(x-\delta_{2})\{x(x-1)(x-\beta)\}^{1/2}$ .

Here $a,$ $b,$ $c,$ $d,$ $\delta_{1}$ and $\delta_{2}$ are constants which satisfy the identity

$(x-\delta_{1})^{2}(x-\delta_{2})^{2}x(x-1)(x-\beta)-(ax^{3}+bx^{2}+cx+d)^{2}$

$=(x-t_{1})^{2}(x-t_{2})^{2}(x-\alpha_{i})^{3}$

for each $\alpha_{i}(1\leqq i\leqq 9)$ .
(3.6.4) THEOREM. In (2.3.3) (i) we have $k_{1}=k_{2}=1$ . Let the points of order

2 for the divisor $-(q_{1}+q_{2})+2q_{\infty}$ on the Jacobian variety $J(R^{f})$ be $Q_{i}(1\leqq i\leqq 2^{4})$ .
We have two Points $q_{\alpha_{i1}},$ $q_{\alpha i2}$ on $R^{\prime}$ corresponding to cach $Q_{i}$ . Then each of
the divisors $q_{1}+q_{2}-6q_{\infty}+2(q_{\alpha i1}+q_{\alpha_{i2}})$ is the divisor of a function on $R^{\prime}$ . If we
denote these functions by $z_{\ell xi}(1\leqq i\leqq 2^{4})$ , then we see that the function fields
$K^{\prime}(z_{\alpha_{i}}^{1/2})(1\leqq i\leqq 2^{4})$ are distinct. Choosing $\xi_{1},$ $\xi_{2},$ $\xi_{3}$ and $k$ which satisfy the identity

$(x-\xi_{1})^{2}(x-\xi_{2})^{2}(x-\xi_{3})^{2}-k^{2}(x-\beta_{1})(x-\beta_{2})\cdots(x-\beta_{5})$

$=(x-t_{1})(x-t_{2})(x-\alpha_{i1})^{2}(x-\alpha_{i2})^{2}$

for each pair $\alpha_{i1},$ $\alpha_{i_{2}}(1\leqq i\leqq 2^{4})$ , we have the desired equation of $R$ as follows:
$y^{2}=(x-\xi_{1})(x-\xi_{2})(x-\xi_{3})+k\{(x-\beta_{1})(x-\beta_{2})\cdots(x-\beta_{5})\}^{1/2}$ .

(3.6.5) THEOREM. In (2.3.3) (ii), we have the equation of $R$ as follows:
(i) $y^{3}=(x-\beta_{i})$ , $y^{3}=(x-\beta_{i})^{2}$ , $(1\leqq i\leqq 5)$ .

(ii) $y^{3}=(x-\beta_{i})(x-\beta_{j})$ , $y^{3}=(x-\beta_{i})^{2}(x-\beta_{j})^{2}$ , $(1\leqq i, j\leqq 5, i\neq j)$ .
(iii) $y^{3}=(x-\beta_{i})(x-\beta_{j})(x-\beta_{k})(x-\beta_{l})$ ,

$y^{3}=(x-\beta_{i})^{2}(x-\beta_{f})^{2}(x-\beta_{k})^{2}(x-\beta_{l})^{2}$ .
Here $i,$ $j,$ $k,$ $1$ runs from 1 to 5 and they are distinct from each other.

(iv) $y^{3}=(x-\beta_{i})^{2}(x-\beta_{j})(x-\beta_{l})(x-\beta_{k})$ ,

$y^{3}=(x-\beta_{i})^{2}(x-\beta_{j})^{2}(x-\beta_{l})^{2}(x-\beta_{k})$ .
Here $i,$ $j,$ $k,$ $l$ runs from 1 to 5 and they are distinct from each other.

The number of these equations is 80 in all. However, if we consider the
isomorphic function fields in usual sense, then we can select 40 equations from
these 80 equations.

\S 4. Analyticity of the coefficients.

4.1. In [8], Riemann stated the problem of describing algebraic functions
as a product of Theta functions times an exponential function. Hurwitz also
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treated this problem in [4]. As an application of our theory, we shall express
the functions which are to be adjoint to the algebraic function field $K^{\prime}$ of a
Riemann surface $R^{\prime}$ (in \S 1) explicitly as a product of Theta functions times
an exponential function.

4.2. First, we shall give a brief account of the Theta function together
with an explanation of notations. Let $R$ be a Riemann surface of genus $g$

and $A_{k},$ $B_{k}(1\leqq k\leqq g)$ be a canonical dissection of $R$ . Let $p_{0}$ be a common
point of all $A_{k},$ $B_{k}(1\leqq k\leqq g)$ . The point $p_{0}$ is also the initial point for inte-
gration. Let $dw_{1},$ $\cdots$ , $dw_{g}$ be a basis of the differentials of the Prst kind of $R$

and let

(4.2.1) $w_{l}(p)=\int_{p_{0}}^{p}dw_{l}$ $(1 \leqq l\leqq g)$ , $\mathfrak{w}(p)=\int_{p_{0}}^{p}dr\mathfrak{v}$ ,

where $p$ is the variable point on $R$ and the integration paths are to be selected
on the canonically dissected Riemann surface $R^{*}$ . We assume that with this
basis the period matrix has the form $[E, Z]$ , where $E$ is the unit matrix of
size $g$, and $Z=X+iY$ satisfies the Riemann’s relation: $X=^{t}X,$ $Y={}^{t}Y$ and $Y>0$ .
The Theta function formed with $Z$ is defined by

(4.2.2) $\theta(@)=\theta(\mathfrak{s}, Z)=\sum_{\mathfrak{n}}$ exp $(\pi i^{t}\mathfrak{n}Z\mathfrak{n}+2\pi i^{t}\mathfrak{n}@)$

and \mbox{\boldmath $\theta$}(@) satisfies the functional relation

(4.2.3) $\theta(\mathfrak{s}+\mathfrak{g}+Z\mathfrak{h})=\theta(@)$ exp $(-\pi i^{t}\mathfrak{h}Z\mathfrak{h}-2\pi i^{t}\mathfrak{h}\mathfrak{s})$ ,

where $t\mathfrak{g}=(g_{1}, \cdots , g_{g}),$ $t\mathfrak{h}=(h_{1}, \cdots , h_{g})$ are arbitrary integer vectors. We put
$f(p)=\theta(r\mathfrak{v}(p)-\mathfrak{s})$ , where ${}^{t}t\mathfrak{v}(p)=(w_{1}(p), \cdots , w_{g}(p))$ and ${}^{t}e=(s_{1}, \cdots , s_{g})$ . With a
circuit of $P$ along a closed curve on $R,$ $\mathfrak{w}(p)$ –@ changed by a summand of the
form $\mathfrak{g}+Z\mathfrak{h}$ , and $f(p)$ is multiplied by the non-zero factor exp $(-i\pi^{t}\mathfrak{h}Z\mathfrak{h}-$

$2\pi i^{t}\mathfrak{h}(|\mathfrak{v}(p)-\mathfrak{s}))$ . If, for a fixed \S , $f(p)$ does not vanish identically in $p$ , then it
has exactly $g$ zeros on $R$ . Let $\mathfrak{c}$ be the vector consisting of the $g$ quantities

(4.2.4) $c_{k}=\sum_{l=1}^{g}\int_{Al}w_{k}(p)dw_{\iota}-(1/2)z_{kk}$ $(1 \leqq k\leqq g)$ .

Now, if we choose vector 9 such that the function $f(p)=\theta(\mathfrak{w}(p)-@+\mathfrak{c})$ does
not vanish identically in $p$ , then its $g$ zeros $q_{1},$

$\cdots$ , $q_{g}$ satisfy the congruence

(4.2.5) $\sum_{\iota=1}^{g}\mathfrak{w}(q_{t})\equiv \mathfrak{s}$ .

It is known that $\theta(\iota \mathfrak{v}(p)-\mathfrak{s}+\mathfrak{c})$ does not vanish identically in $p$ , if and only if
the inverse problem for the vector 5 is uniquely determined, $i$ . $e.$ , the equation
(4.2.5) has a unique solution $q_{1},$ $q_{g}$ . In this case, the divisor $D=q_{1}+\cdots+q_{g}$

is general. We shall call an integral divisor $D=p_{1}+\cdots+p_{m}$ general if there
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are no non-constant meromorphic functions $f$ on $R$ with the property div $(f)$

$+D>0$ .
4.3. Now, for our investigation the following lemma [10] is useful.
(4.3.1) Let $f(p)$ be a meromorphic function on $R$ with the zeros $a_{1},$

$\cdots$ , $a_{m}$

and the poles $b_{1},$ $\cdots$ , $b_{m}$ . We choose a general integral divisor $x_{1}+\cdots+x_{g- 1}$

of degree $g-1$ such that $x_{1},$ $\cdots$ , $x_{g-1}$ are different from the points $a_{1},$
$\cdots$ , $a_{m}$

and $b_{1},$ $\cdots$ , $b_{m}$ . Then, after suitable choice of paths of integration, we have

(i) $\sum_{k=1}^{m}\mathfrak{n}_{f}(a_{k})=\sum_{k=1}^{m}\mathfrak{w}(b_{k})$

and

$f(p)=\eta\prod_{k=1}^{m}\frac{\theta(tt)(p)+\sum_{l=1}^{q-1}t\mathfrak{v}(x_{l})-t\mathfrak{v}(a_{k})-\mathfrak{c})}{\theta(|()(p)+\sum_{\iota\Leftarrow 1}^{g-1}\mathfrak{n})(x_{l})-|\mathfrak{v}(b_{k})-\mathfrak{c})}$ .

Here, $\eta$ is a quantity independent of $p$ , and $\mathfrak{c}$ is defined in (4.2.4).

We can obtain from (4.3.1) directly a fact if $p_{1}$ and $p_{2}$ are both neither
zero nor poles of $f(p)$ , then we have a representation

(4.3.2)

$\frac{f(p_{1})}{f(p_{2})}=\prod_{k=1}^{m}\frac{\theta(\mathfrak{w}(p_{1})+\sum_{l=1}^{g-1}\mathfrak{w}(x_{l})-\kappa(a_{k})-\mathfrak{c})}{\theta(\mathfrak{w}(p_{1})+\sum_{l=1}^{g-1}\mathfrak{l}\mathfrak{v}(x_{l})-\mathfrak{w}(b_{k})-\mathfrak{c})}\cdot\prod_{k=1}^{m}\frac{\theta(1(\}(p_{2})+\sum_{l=1}^{g-1}\mathfrak{w}(x_{l})-x(b_{k})-\mathfrak{c})}{\theta(\mathfrak{w}(p_{2})+\sum_{l=1}^{g-1}\mathfrak{w}(x_{t})-\mathfrak{w}(a_{k})-\mathfrak{c})}$ .

This connotes that there is a space of moduli in the rearwards.
We must remark that $\mathfrak{c}$ is also a quantity such that $2\mathfrak{c}\equiv\sum_{l=1}^{2g-2}\mathfrak{w}(y_{l})$ with

zeros $y_{1},$
$\cdots$ , $y_{2g-2}$ of an arbitrary differential of the first kind.

Now, we consider in the case (2.1.1). We can write the equation of $R$ in
the form (2.2.1). The divisor of the function $y$ on $R$ is

(4.3.3) $div_{R}(y)=m_{1}q_{1}+$ $+m_{s}q_{S}-(m_{1}+\cdots+m_{s})q_{\infty}$ ,

where $q_{1},$
$\cdots$ , $q_{s},$ $q_{\infty}$ are points on $R$ which are over the points $a_{1},$

$\cdots$ , $a_{s},$
$\infty$ on

the Riemann sphere $R_{0}$ . Therefore, by (4.3.1) we have

(4.3.4) $y(p)=\eta\prod_{i=1}^{1}\prod_{q_{i}}^{m_{i}}\frac{\theta(\mathfrak{w}(p)+\sum_{l=1}^{g-1}t\mathfrak{r}^{\gamma}(x_{l})-\mathfrak{w}(q_{i})-\mathfrak{c})}{\theta(\kappa(p)+\sum_{l=1}^{q-1}t\mathfrak{v}(x_{l})-\mathfrak{w}(q_{\infty})-\mathfrak{c})}$

We consider in the case (2.1.2) (i). The other case can be done similarly.
The divisor of the function $y^{2}$ on $R^{\prime}$ is written by

(4.3.5) $div_{R}(y^{2})=q_{1}^{f}+q_{2}^{f}+q_{3}^{f}-5q_{\infty}^{\prime}+2q_{\alpha}^{f}$ .
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Therefore, by (4.3.1) we have

(4.3.6) $y^{2}(p)=\eta\prod_{l=1}^{5}\frac{\theta(\mathfrak{w}(p)-\mathfrak{w}(q_{i}^{\prime})-\mathfrak{c})}{\theta(\mathfrak{w}(p)-\mathfrak{w}(q_{\infty})-\mathfrak{c})}$ .

Here, $q_{4}^{\prime}=q_{6}^{f}=q_{\alpha}^{\prime}$ . We consider in the case (2.1.3). The divisor of $y^{2}$ is

(4.3.7) $div_{R^{\prime}}(y^{2})=2q_{\beta i}^{\prime}-2q_{\infty}^{\prime}$ .
The other case can be done similarly. We have by (4.3.1)

(4.3.8) $y^{2}(p)=\eta\prod_{\iota=\downarrow}^{2}\frac{\theta}{\theta}\frac{n)(}{\mathfrak{w}}\frac{)+1\mathfrak{v}}{)+t\mathfrak{v}}\frac{x}{x}1\frac{-\mathfrak{n}j}{-\mathfrak{w}}\frac{-\mathfrak{c}}{-\mathfrak{c}}-(p((\overline{p}()(1)(q_{\infty}))(q\beta i’))$ .

Here, we should keep in mind that $\mathfrak{w}(q_{\beta i}^{\prime})+\mathfrak{w}(q_{\beta i}^{\prime})=t\mathfrak{r}(q_{\infty}^{\prime})+\downarrow\iota(q_{\infty}^{\prime})$ .
Now, we proceed further in the case (2.1.2) (i). We can denote (4.3.6) by

(4.3.9)

$y^{2}(p)=\eta I^{3}I\frac{\theta(\int_{x_{0}}^{x}v^{-1}dx-\int_{x_{0}}^{t_{i}}v^{-1}dx+\mathfrak{c})}{\theta(\int_{x_{0}}^{x}v^{-1}dx-\int_{x_{0}}^{\infty}v^{-1}dx+\mathfrak{c})}i=1^{\cdot}$ $\prod_{\alpha}^{2}\frac{\theta(\int_{x}^{x}v^{-1}dx-\int_{\sim}^{\alpha_{0}}v^{-1}dx+c)0\rightarrow}{\theta(\int_{x_{0}}^{x}v^{-1}dx-\int_{x_{0}}^{\infty}v^{-1}dx+c)}$ .

Here we must notice that $\alpha$ is determined by

(4.3.10) $\int_{\infty}^{t_{1}}v^{-1}dx+\int_{\infty}^{t_{2}}v^{-1}dx+\int_{\infty}^{t_{3}}v^{-1}dx+2\int_{\infty}^{\alpha}v^{-1}dx\equiv 0$ ,

and $c$ is determined by $\beta$ analytically. Hence, we can put the right side of
(4.3.9) in the form $\eta F(x;t_{1}, t_{2}, t_{3}, \beta)$ , where $F$ is analytic in $x,$ $t_{1},$ $t_{2},$ $t_{3}$ and $\beta$ .
Furthermore, considering our assumption we have

$c=\eta F(0 ; t_{1}, t_{2}, t_{3}, \beta)$ ,

$a+b+c=\eta F(1 ; t_{1}, t_{2}, t_{3}, \beta)$ ,

$a\beta^{2}+b\beta+c=\eta F(\beta;t_{1}, t_{2}, t_{3}, \beta)$ ,
(4.3.11)

$at_{1}^{2}+bt_{1}+c+(t_{1}-\delta)\{t_{1}(t_{1}-1)(t_{1}-\beta)\}^{1/2}=\eta F(t_{1} ; t_{1}, t_{2}, t_{3}, \beta)$ ,

$at_{2}^{2}+bt_{2}+c+(t_{2}-\delta)\{t_{2}(t_{2}-1)(t_{2}-\beta)\}^{1/2}=\eta F(t_{2} ; t_{1}, t_{2}, t_{3}, \beta)$ ,

$at_{3}^{2}+bt_{3}+c+(t_{3}-\delta)\{t_{3}(t_{3}-1)(t_{3}-\beta)\}^{1/2}=\eta F(t_{3} ; t_{1}, t_{2}, t_{3}, \beta)$ .
Since the family of Riemann surfaces $\Omega(1,2, \{\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\})$ has four parameters,
there is a relation in $a,$ $b,$ $c$ and $\delta$ as we can see in (4.3.11).

Now, the function $y^{2}$ is also a meromorphic function on $R$ . The divisor
of $y^{2}$ on $R$ is written by

(4.3.12) $div_{R}(y^{2})=2q_{1}+2q_{2}+2q_{3}-10q_{\infty}+2q_{\alpha}^{1}+2q_{\alpha}^{2}$ .
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Therefore, by (4.3.1) we have

(4.3.13) $y^{2}(p)=\eta\prod_{l}\prod_{\alpha}\frac{\Theta(1\mathfrak{v}(p)+\sum_{l=1}^{2}\mathfrak{w}(x_{l})-\mathfrak{n}_{j}(q_{i})-\mathfrak{c})}{\Theta(\mathfrak{w}(p)+\sum_{\iota=1}^{2}\mathfrak{w}(x_{l})-\mathfrak{w}(q_{\infty})-\mathfrak{c})}$ .

Then, we can obtain a relation between $\theta$ of $R^{\prime}$ and $\Theta$ of $R$ by comparing
(4.3.6) with (4.3.12).

4.4. Now, we return to the problem stated at the beginning of this section.
The divisor of the function $z=y^{n}$ on $R^{\prime}$ is written by

(4.4.1) $div_{R^{\prime}}(z)=nD+\sum_{i=1}^{r}k_{i}q_{i}$ .

We can assume that $k_{i}(1\leqq i\leqq r)$ are all positive and $suppD$ contains no $q_{i}$

$(1\leqq i\leqq r)$ .
Let the zeros of the function $z=y^{n}bep_{1},$ $\cdots$ , $p_{s}$ . Then the points $q_{1},$

$\cdots$ , $q_{r}$

are contained in the set $\{p_{1}, \cdots , p_{s}\},$ $i$ . $e.,$ $q_{i}$ is contained $k_{i}$ times for all $i$

$(1\leqq i\leqq r)$ in $\{p_{1}, \cdots , p_{s}\}$ . We have $\sum_{i=1}^{r}k_{i}=nl$ , where $l$ is a positive integer. We

choose a sufficiently large integer $l_{1}$ such that $n|l_{1},$ $n^{2}\nmid l_{1}$ and $nl\equiv l_{1}g^{\prime}(mod n)$ .
Moreover, we may assume that the number of zeros of $z$ is equal to $l_{1}g^{\prime}$ .
Then, we divide the set $\{p_{1}, p_{s}\}$ into the $l_{1}$ blocks: $\{p_{1}^{(1)}, \cdots , p_{g’}^{(1)}\},$ $\cdots$

$\{p_{1}^{(l_{1})}, \cdots , p_{g^{\prime}}^{(t_{1})}\}$ , and we put

(4.4.2) $\mathfrak{e}^{(1)}=\mathfrak{w}(p_{1}^{(1)})+\cdots+\mathfrak{n})(p_{g^{\prime}}^{(1)}),$ $\mathfrak{e}^{(l_{1})}=\mathfrak{w}(p_{1}^{(l_{1})})+\cdots+\kappa(p_{g}(\dagger)$ .
Here we can assume that all the divisors $D_{k}=p_{1}^{(k)}+\cdots+p_{g}^{(k)}$ $(1\leqq k\leqq l_{1})$ are
general. In fact, we may put

(4.4.3) $p_{1}^{(1)}=$ $=p_{1}^{(k_{1})}=q_{1}$ ,

$p_{1}^{(k_{1}+1)}=$ $=p_{1}^{(k_{1}+k_{2)}}=q_{2},$ $p^{(k_{1}+\cdots+k_{r-1}+1)}=\ldots=p^{(k_{1}+\cdots+k_{r})}=q_{r}$ .
Hence, by the method of the choice of $l_{1}$ and the zeros we obtain our asser-
tion. If $g^{\prime}=1$ , then every prime divisor is general and so we need no con-
sideration as above.

Now put

(4.4.4) $f=(1/l_{1})\sum_{k\Leftarrow 1}^{\iota_{1}}e^{(k)}$

and consider the representation

(4.4.5) exp $(\pi(\mathfrak{v}(p)\cdot \mathfrak{h}l_{1})\prod_{k=1}^{\iota_{1}}\frac{\theta(1\iota(p)-\mathfrak{e}^{(k)}+\mathfrak{c})}{\theta(t\mathfrak{v}(p)-\mathfrak{f}+\emptyset+Z\mathfrak{h}+\mathfrak{c})\sim}$ .

Here the components of the vectors $t\tilde{\mathfrak{g}}=(\tilde{g}_{1}, \cdots , \tilde{g}_{g^{\prime}}),$ $t\mathfrak{h}=(\tilde{h}_{1}\sim, \cdots , \tilde{h}_{g^{l}})$ run tbrough
all the numbers $0,1/n,$ $\cdots$ , $(n-1)/n$ independently. Further we can assume that
each $\theta(\mathfrak{w}(p)-\mathfrak{f}+\mathfrak{g}+Z\mathfrak{h}+\mathfrak{c})$ does not vanish identically in $p$ . In fact, we can
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take $\{p_{2}^{(1)}, \cdots p_{g}^{(1)}\},$ $\cdots$ , $\{p_{2}^{(l_{1})}, \cdots , p_{g}^{(l_{1})}\}$ sufficiently arbitrary. If $g^{\prime}=1$ , then there
is no trouble.

Now, it is easy to show that the representation (4.4.5) is a single valued
meromorphic function on $R^{\prime}$ . We denote this function by $F(p)$ . The set of
all zeros of $F(p)$ coincides with the set $\{p_{1}, p_{s}\}$ . The number of poles of
$F(p)$ is, of course, $s=l_{1}g^{\prime}$ and so is a multiple of $n$ . Therefore, we can write

(4.4.6) $div_{R^{\prime}}(F)=nD_{0}+\sum_{i=1}^{r}k_{i}q_{i}^{\prime}$ ,

with a divisor $D_{0}$ on $R^{\prime}$ . Hence, if we adjoint $F^{1/n}$ to $K^{\prime}$ , then we can obtain
a desired function field. If we take another column vector $Q^{\prime},$

$\mathfrak{h}^{\prime}\sim$ and denote
by $F^{\prime}(p)$ the resulting function, then we have as above

(4.4.7) $div_{R^{\prime}}(F^{\prime})=nD_{0}^{\prime}+\sum_{i=1}^{r}k_{i}q_{i}^{f}$ ,

with a divisor D\’o on $R^{\prime}$ . Again, if we adjoint $F^{\prime 1\prime n}$ to $K^{\prime}$ , then we can obtain
another desired function field. We claim that $K^{\prime}(F^{1/n})\neq K^{\prime}(F^{J1/n})$ if $(\tilde{\mathfrak{g}},\mathfrak{h})\sim=$

$(\tilde{\mathfrak{g}}^{\prime},\mathfrak{h}^{\prime})\sim$ . In fact, let the zeros of $\theta(\mathfrak{w}(p)-\mathfrak{f}+\tilde{\mathfrak{g}}+Z\mathfrak{h}+\mathfrak{c})\sim$ be $s_{1},$
$\cdots$ , $s_{g^{\prime}}$ and the

zeros of $\theta(\mathfrak{w}(p)-f+\tilde{\mathfrak{g}}^{\prime}+Z^{\sim}\mathfrak{h}^{f}+c)$ be $s_{1}^{\prime},$ $\cdots$ , $s_{g^{\prime}}^{\prime}$ . By the assumption on $l_{1}$ , we have
with an integer $m$

(4.4.8) $l_{1}(s_{1}+ +s_{g^{\prime}})=nm(s_{1}+\cdots+s_{g^{\prime}})$ ,

$l_{\iota}(s_{1}^{\prime}+\cdots+s_{g’}^{\prime})=nm(s_{1}^{\prime}+\cdots+s_{g^{\prime}}^{\prime})$ .
Here we must note that $n$ cannot divide $m$ . By (4.4.6\sim 7), $D_{0}\sim D_{0}^{f}$ if and only
if $m(s_{1}+\cdots+s_{g^{\prime}})\sim m(s_{1}^{\prime}+\cdots+s_{g^{\prime}}^{\prime})$ . On the other hand, we have

(4.4.9) $\sum_{k=1}^{g^{\prime}}\mathfrak{w}(s_{k})\equiv\uparrow-\tilde{\mathfrak{g}}-Z\mathfrak{h}\sim$ , $\sum_{k=1}^{q^{\prime}}\mathfrak{w}(s_{k}^{\prime})\equiv f-\tilde{\mathfrak{g}}^{\prime}-Z\mathfrak{h}^{\prime}\sim$ .

Therefore, $D_{0}\sim D_{0}^{f}$ if and only if $ m(\emptyset+Z\mathfrak{h})=m(Q^{\prime}+Z\mathfrak{h}^{\prime})\sim\sim$ . However, the latter is
not possible if $(\emptyset,\mathfrak{h})\neq\sim(Q^{\prime},\mathfrak{h}^{\prime})\sim$ . Hence, if $(\emptyset,\mathfrak{h})\neq\sim(\tilde{\mathfrak{g}}^{\prime},\mathfrak{h}^{\prime})\sim$ , then $K^{\prime}(F^{1/n})\neq K^{\prime}(F^{\prime 1/n})$ .
Thus, by (1.7.2) we obtain the following lemma.

(4.4.10) If $r>0$ , then the functions given by (4.4.5) are nothing but the
n-th powers of the desired functions. The number of these functions is exactly
$n^{2g^{\prime}}$ .

If $r=0$ , then we consider the representation

(4.4.11) exp $(-2\pi i^{t}\mathfrak{w}(p)\cdot \mathfrak{h}n)\Pi^{\sim^{n}}\frac{\theta(\mathfrak{w}(p)-\mathfrak{s}+\mathfrak{c})}{\theta(tn(p)-\mathfrak{s}+\tilde{\mathfrak{g}}+Z\mathfrak{h}+\mathfrak{c})\sim}$ .

Here the notations are the same as in the representation (4.4.5), and $\mathfrak{s}$ is a
vector for which the inverse problem is uniquely determined and further
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$5-Q-Z\tilde{\mathfrak{h}}$ has the same property. Then, (4.4.11) is again a single valued mero-
morphic function on $R^{\prime}$ . We denote this function by $G(p)$ . By the same
method as in the case of $r>0$ , we obtain exactly $n^{2g^{\prime}}-1$ distinct function fields.
Indeed, we must exclude the case $(Q, \tilde{\mathfrak{h}})=(0,0)$ . Hence, by (1.7.2) we obtain
the following lemma.

(4.4.12) If $r=0$ , then the functions given by (4.4.11) are nothing but the
n-th powers of the desired functions. The number of these functions is exactly
$n^{2g^{\prime}}-1$ .

For a fixed $(Q,\mathfrak{h})\tilde$ , the cases of $(\emptyset, \mathfrak{h})\tilde,$ $(2\emptyset, 2\mathfrak{h})\tilde,$
$\cdots$ , $((n-1)\tilde{\mathfrak{g}}, (n-1)\mathfrak{h})\tilde$ give us

the isomorphic function field in the usual sence. However, in our case they
must be regarded as distinct.

4.5. Now, we shall investigate analyticity of the coefficients of equations.
For that purpose, we give a brief account of the generalized Teichm\"uller

space $\Lambda$ . We fix a couple $(R_{0}, \sigma_{0})$ such that $\langle R_{0}, \sigma_{0}\rangle$ belongs to $\Omega(g^{\prime},$
$n,$ $\{\nu_{1}$ ,

, $\nu_{r}$ }) and denote by $\Lambda(R_{0}, \sigma_{0})$ the set of all the elements $\langle R, \sigma\rangle$ of $\Omega(g^{\prime},$ $n$ ,
$\{\nu_{i}\})$ such that $(R, \sigma)$ is topologically equivalent to $(R_{0}, \sigma_{0}),$ $i$ . $e.$ , there exists a
topological mapping $f:R_{0}\rightarrow R$ such that $f\sigma_{0}=\sigma f$. We consider further a triple
$(R, \sigma, \alpha)$ formed by a couple $(R, \sigma)$ such that $\langle R, \sigma\rangle$ of $\Gamma(R_{0}, \sigma_{0})$ and a homo-
topy class $\alpha$ of topological mappings of $(R_{0}, \sigma_{0})$ onto $(R, \sigma)$ . We say that
$(R, \sigma, \alpha)$ is isomorphic to $(R^{\prime}, \sigma^{\prime}, \alpha^{\prime})$ if there exists an isomorphism of $(R, \sigma)$

onto $(R^{\prime}, \sigma^{\prime})$ which belongs to the homotopy class $\alpha^{\prime- 1}\alpha$ . We denote by $\langle R, \sigma, \alpha\rangle$

the isomorphism class of $(R, \sigma, \alpha)$ and the set of all classes $\langle R, \sigma, \alpha\rangle$ is denoted
by $\Lambda(g^{\prime}, n, \{\nu_{i}\} ; (R_{0}, \sigma_{0}))$ or briefly $\Lambda(R_{0}, \sigma_{0})$ . We can also define $\Lambda(R_{0}, \sigma_{0})$ by
using a canonical homotopy basis of $(R, \sigma)$ . These two definitions are equi-
valent.

The space $\Lambda(R_{0}, \sigma_{0})$ is a metric space with the distance function defined
as follows: For arbitrary $\langle R, \sigma, \alpha\rangle$ and $\langle R^{f}, \sigma^{\prime}, \alpha^{\prime}\rangle$ , consider all the quasi-
conformal mappings $f$ of $R$ onto $R^{\prime}$ which belongs to the homotopy class $\alpha^{\prime}\alpha^{-1}$

and are such that $f\sigma=\sigma^{f}f$. Define the distance between $\langle R, \sigma, \alpha\rangle$ and $\langle R^{\prime}, \sigma^{\prime}, \alpha^{\prime}\rangle$

by means of inf log $K_{f}$ , where $K_{f}$ is the maximum dilatation of $f$, and the
infimum is taken with respect to all the $f$ mentioned above. It is known
that the infimum is the minimum, and is attained by only one $f$, which will
be called the extremal quasi-conformal mapping. The space $\Lambda(R_{0}, \sigma_{0})$ carries
further an analytic structure and we have the following lemma [5].

(4.5.1) The generalized Teichm\"uller space $\Lambda(g^{\prime}, n, \{\nu_{1}, \nu_{r}\} ; (R_{0}, \sigma_{0}))$ is
a simply connected $3g^{\prime}-3+r$ dimensional complex analytic manifold. The
mapping $\iota$ of $\Lambda(R_{0}, \sigma_{0})$ into the ordinally Teichm\"uller space $T_{g}$ , defined by cor-
responding $\langle R, \sigma, \alpha\rangle$ to $\langle R, \alpha\rangle$ is isomorphic.

If $g^{\prime}$ is $0$ , then each member of $\Omega(g^{\prime}, n, \{\nu_{i}\})$ is of the form $\langle R, \sigma\rangle$ where
$R$ is given by the equation



730 A. KURIBAYASHI

(4.5.2) $y^{n}=(x-a_{0})^{m_{0}}(x-a_{1})^{m_{1}}$ $(x-a_{s+1})^{m_{s+1}}$ , $n\nmid m_{0}+\cdots+m_{s+1}$

with distinct complex numbers $a_{0},$ $a_{1},$
$\cdots$ , $a_{S+1}$ . Here, $r=s+3$ . In the equivalence

class, we can find a representative $(R, \sigma)$ such that the equation of $R$ is

(4.5.3) $y^{n}=x^{m_{0}}(x-z_{1})^{m_{1}}\cdots(x-z_{s})^{m_{S}}(x-1)^{m_{s+1}}$ .

We call this form a normal one and denote the Riemann surface defined by
this equation by $R(z)$ . It is easy to see that in the representation (4.5.3) for
$\langle R, \sigma\rangle,$

$z_{1},$
$\cdots$ , $z_{s}$ are determined as a set but not as a vector $(z_{1}, \cdots , z_{s}),$ $i$ . $e.$ ,

if $m_{i}=m_{j}$ then we cannot distinguish $z_{i}$ from $z_{j}$ . As we see later, we can
distinguish them at least in the generalized Teichm\"uller space $\Lambda,$ $i$ . $e.,$ $z_{1},$ $z_{s}$

are functions in $\Lambda$ . Here we must note that the dimension of $\Lambda$ is $s$ by (4.5.1).

If $g^{\prime}>0$ , for example in the case (2.1.2) (i), we obtain as the equation of $R$

(4.5.4) $y^{2}=ax^{2}+bx+c+(x-\delta)\{x(x-1)(x-\beta)\}^{1/2}$ .

We call this form a normal one for $\langle R, \sigma\rangle$ . By the same method as in (4.5.3)

we see that $a,$ $b,$ $c,$
$\delta$ and $\beta$ are determined uniquely for $\langle R, \sigma\rangle$ . Therefore,

it is a matter of course that they are functions in the generalized Teichm\"uller

space $\Lambda(R_{0}, \sigma_{0})$ . Here we must note that the dimension of $\Lambda(R_{0}, \sigma_{0})$ is 4 and
we have the relation (4.3.11).

Next, we give a brief account of the generalized upper half-plane $H_{g}$ .
Let $Z$ be a complex matrix of size $g$ and satisfy the Riemann’s relation:
$Z={}^{t}Z$ and ${\rm Im} Z>0$ . $H_{g}$ is defined by $\{Z\}$ and considered as a parameter space
of the family of polarized abelian varieties with the period matrix $[EZ]$ . It
is known that we have a holomorphic mapping of the Teichmuller space $T_{g}$

into $H_{g}[2]$ . By (4.5.1) we have a holomorphic mapping of the generalized
Teichm\"uller space into $H_{g}$ . Let $\mathfrak{G}$ be the Siegel modular group $Sp(2g, Z)$ .
Then, two polarized abelian varieties $A_{1}$ and $A_{2}$ with $Z_{1},$ $Z_{2}\in H_{g}$ are isomorphic
if and only if $Z_{1}$ and $Z_{2}$ are equivalent under G. We have the family of
abelian varieties of the quotient space $H_{g}/\mathfrak{G}$ . By the Torelli’s theorem we see
that there is an injection of the space of moduli of Riemann surfaces into
$H_{g}/\mathfrak{G}$ . Therefore, there is an injection of the quotient space $\Gamma(R_{0}, \sigma_{0})/\sim$ into
$H_{g}/\mathfrak{G}$ . Here the $relation\sim means$ ordinary conformal equivalence. We assume
that to a point $Z$ of $H_{g}$ there exists a point $\lambda$ of $\Lambda$ which corresponds to $Z$.
We denote the coordinates of $Z$ by $(\mathfrak{z}_{1}, \cdots , \mathfrak{z}_{N})$ , where $N=g(g+1)/2$ . In a
neighborhood of a point of $\Lambda,$

$\mathfrak{z}_{1},$
$\cdots$ , $\mathfrak{z}_{N}$ are holomorphic functions of $\lambda$ .

Now, we denote one of the normal form of $(R_{0}, \sigma_{0})$ by

(4.5.5) $y^{n}=x^{m_{0}}(x-z_{1^{0)}})^{m_{1}}$ $(x-z_{s}^{(0)})^{m_{S}}(x-1)^{m_{S+1}}$ , $n\nmid m_{0}+\cdots+m_{s+1}$ .
Let $\lambda_{0}$ be $\langle R_{0}, \sigma_{0}, \alpha_{0}\rangle$ and let $\lambda=\langle R, \sigma, \alpha\rangle$ be an arbitrary element of $\Lambda(R_{0}, \sigma_{0})$ .
In the homotopy class $\alpha\alpha_{0}^{-1}$ there exists one and only one extremal quasi-
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conformal mapping $ f:\lambda_{0}\rightarrow\lambda$ which has the property $f\sigma_{0}=\sigma f$. Then $f$ can be
considered as a mapping of the Riemann sphere to the Riemann sphere. Put
$f(O)=0,$ $f(1)=1,$ $ f(\infty)=\infty$ and $f(z_{i}^{(0)})=z_{i}(1\leqq i\leqq s)$ . We have as the equation
of $\lambda$

(4.5.6) $y^{n}=x^{m_{0}}(x-z_{1})^{m_{1}}\cdots(x-z_{s})^{m_{S}}(x-1)^{m_{S+1}}$ , $n\nmid m_{0}+\cdots+m_{s+1}$

with these $0,$ $z_{1},$
$\cdots$ , $z_{s}$ and 1. Obviously they are distinct from each other,

and the parameters $z_{i}(1\leqq i\leqq s)$ can be considered as functions on the gener-
alized Teichm\"uller space $\Lambda(R_{0}, \sigma_{0})$ . Then we have the following lemma.

(4.5.7) LEMMA. $z_{i}(1\leqq i\leqq s)$ are continuous on $\Lambda(R_{0}, \sigma_{0})$ .
PROOF. For arbitrary $\lambda=\langle R, \sigma, \alpha\rangle$ and $\lambda^{\prime}=\langle R^{\prime}, \sigma^{\prime}, \alpha^{\prime}\rangle$ , let $g$ be the extremal

quasi-conformal mapping of $\lambda$ to $\lambda$ ‘. As in the proof of (4.5.5), $g$ can be con-
sidered as a mapping of the Riemann sphere onto itself, and satisfies $g(O)=0$ ,
$g(1)=1,$ $ g(\infty)=\infty$ and $g(z_{i})=z_{i}^{\prime}(1\leqq i\leqq s)$ . On the other hand, $g$, as a mapping
of the Riemann sphere onto itself, satisfies the inequality

(4.5.8) $[g(z), z]\leqq C(K_{g}-1)/(K_{g}+1)$ .
Here $[, ]$ indicates the spherical distance, $C$ is a numerical constant, and $K_{g}$

is the maximal dilatation of $g$ ([1], p. 398, Formula (39)). Accordingly we
have $[g(z_{i}), z_{i}]\leqq C(e^{d}-1)/(e^{d}+1)$ , where $d=\log K_{g}$ is the distance between $\lambda$

and $\lambda^{\prime}$ . We conclude that $z_{i}^{\prime}\rightarrow z_{i}$ as $\lambda^{\prime}\rightarrow\lambda$ for $i=1,$ $\cdots$ , $s$ .
Now, we construct a basis of the first homology group of $(R, \sigma)$ as follows.

Let $x_{0}$ be an arbitrary point on the x-sphere different from $0,$ $z_{1},$
$\cdots$ , $z_{s},$

$1$ and
$\infty$ . We connect $x_{0}$ to these points by curves which have no intersection with
each other except for $x_{0}$ . Denote these curves by $\alpha_{0},$ $\alpha_{1},$

$\cdots$ , $\alpha_{s+1},$ $\alpha_{s+2}$ respec-
tively. Fix a point $p_{0}=(x_{0}, y_{0})$ on $R$ and denote by $\tilde{\alpha}_{i}$ the lift of $\alpha_{i}$ with the
initial point at $p_{0}$ . We put

(4.5.9) (i) $C_{i}=\tilde{\alpha}_{i}+\sigma^{m}{}^{t}\tilde{\alpha}_{i}+\cdots+\sigma^{m_{t^{(\nu}i^{-1)}}}\tilde{\alpha}_{i}$ $(0\leqq i\leqq s+2)$

(ii) $Z_{j}=C_{j-1}-C_{j}$ $(1 \leqq i\leqq s+1)$ .
Then we see easily that $C_{j}$ is a curve on $R$ connecting $p_{0}$ and $(x_{0}, \zeta y_{0})$ , and
that $Z_{j}$ is a closed curve. Moreover we can prove $Z_{1},$ $\cdots$ , $Z_{s+1}$ are a basis
over $K=Q(\zeta)$ and $Z_{1},$ $\sigma Z_{1},$ $\cdots$ , $\sigma^{n-2}Z_{1}$ ; $\ldots$ ; $Z_{S+1},$ $\sigma Z_{s+1},$ $\cdots$ , $\sigma^{n- 2}Z_{s+1}$ are a basis
over the ring of integers $Z$.

Take a point $z=(z_{1}, \cdots , z_{s})$ of $C^{s}$ . Here we assume that $z_{1},$
$\cdots$ , $z_{s},$

$0$ and 1
are distinct from each other. We denote by $\dot{C}^{s}$ the set which consists of such
points. Let $z=(z_{1}, \cdots , z_{s})$ be an arbitrary point of $c^{;_{s}}$ . We can associate
to $z$ a point $\langle R, \sigma\rangle$ of $\Gamma(R_{0}, \sigma_{0})$ by the equation (4.5.6). There exists a quasi-
conformal mapping of $(R_{0}, \sigma_{0})$ defined by (4.5.5) to $(R, \sigma)$ defined by (4.5.6) [5].

Therefore there exists at least one $\lambda$ of $\Lambda(R_{0}, \sigma_{0})$ such that the equation of $\lambda$
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is (4.5.6).

Take a point $z$ of $\dot{C}^{s}$ . Let $z^{\prime}=(z_{1}^{f}, \cdots , z_{s}^{\prime})$ be a point of $\dot{C}^{s}$ in a neighbor-
hood of $z$ . We denote by $R(z^{\prime})$ the Riemann surface defined by (4.5.3) with
this 2’. We can take a basis of differentials of $R(z^{\prime}),$ $\{\omega_{1}, \cdots , \omega_{g}\}$ , each of
which is a differential of the followg form:

(4.5.10) $\omega=x^{k_{0}}(x-z_{1}^{f})^{k_{1}}\cdots(x-z_{s}^{\prime})^{k_{s}}y^{-l}dx$ ,

where $0<l\leqq n-1,0\leqq k_{0},$ $\cdots$ , $k_{s}<n$ . On the other hand, we know that there
exists a basis of differentials

(4.5.11) $p_{1}(\zeta, \lambda)d\zeta,$ $ p_{g}(\zeta, \lambda)d\zeta$

and a canonical homology basis

(4.5.12) $A_{1}(\zeta, \lambda),$ $\cdots$ $A_{g}(\zeta, \lambda)$ ; $B_{1}(\zeta, \lambda),$ $B_{g}(\zeta, \lambda)$ ,

such that

(4.5.13) $\int_{\zeta}^{A_{t}(\zeta,\lambda)}p_{j}(\zeta, \lambda)d\zeta=\delta_{\ell j}$ , $\int_{\zeta}^{B_{i}(\zeta,\lambda)}p_{f}(\zeta, \lambda)d\zeta=z_{if}(\lambda)$ .

Here $p_{j}(\zeta, \lambda)$ and $A_{j}(\zeta, \lambda),$ $B_{j}(\zeta, \lambda)(1\leqq j\leqq g)$ are holomorphic in $\lambda$ for every
fixed $\zeta$ in a bounded Jordan domain $D(\lambda)[2]$ .

For the canonical homology basis $\{\gamma_{1}(z), \cdots , \gamma_{2g}(z)\}$ such that

(4.5.14) $\int_{\gamma_{i}(z)}\omega_{j}(z)=\delta_{ij}$ $(1\leqq i, j\leqq g)$ ,

$\int_{\gamma_{i}(z)}\omega_{j}(z)=t_{tj}(z)$ $(1\leqq j\leqq g, g+1\leqq i\leqq 2g)$ ,

we have with a constant matrix $S$ in a neighborhood of $\lambda_{0}$

(4.5.15) $(\gamma_{1}(z), \gamma_{2g}(z))=(A_{1}(\zeta, \lambda),$ $B_{g}(\zeta, \lambda))S$ .

Then, we have

(4.5.16) $(\omega_{1}(z^{\prime}), \omega_{g}(z^{\prime}))=(p_{1}(\zeta, \lambda)d\zeta,$ $p_{g}(\zeta, \lambda)d\zeta)M(\lambda)$

with a holomorphic matrix $M(\lambda)$ in the neighborhood of $\lambda_{0}$ . In fact, put

$S=\left(\begin{array}{ll}S_{1} & S_{2}\\S_{3} & S_{4}\end{array}\right)$ . Then we have $M(\lambda)=(S_{1}+ZS_{3})^{-1}$ with $Z=(z_{ij}(\lambda))$ .
Now, we construct by the period vectors (4.5.14) the coordinates $G_{1}(z^{\prime})$ ,

, $G_{N}(z^{\prime})$ of a point of the Siegel domain $H_{g}$ . Here $G_{1},$ $\cdots$ , $G_{N}$ are holomor-
phic functions in $z^{\prime}$ in a neighborhood of $z$ which corresponds to $\lambda$ , and $N$ is
equal to $g(g+1)/2$ . Thus we have the following relation:

(4.5.17) $\mathfrak{z}_{1}(\lambda^{\prime})=G_{1}(z^{\prime}),$ $\mathfrak{z}_{N}(\lambda^{\prime})=G_{N}(z^{\prime})$
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in a neighborhood of $\lambda$ . Put $G(z^{\prime})=(F_{1}(z^{f}), \cdots , F_{N}(z^{\prime}))$ . Then we have

(4.5.18)

where $w,$ $\pi,$ $\pi_{2},$ $G,$ $\mu(=\pi_{2}G\pi^{-1})$ are holomorphic and $z,$ $\pi_{1}(=\pi z)$ are continuous
and each diagram is commutative. In fact the mapping $\mu$ is injective. The
notations used in (4.5.18) will need no explanations. By considering the fact
that $\mu$ is a holomorphic injection and the theorem of Riemann on the removable
singularity we can prove that $\pi_{1}$ is holomorphic. $\pi$ is a holomorphic covering
of $\dot{C}^{s}$ onto $\Gamma(R_{0}, \sigma_{0})/\sim$ , and $z$ is a continuous mapping of $\Lambda(R_{0}, \sigma_{0})$ into $\dot{C}^{s}$ .
Therefore, by the same method as above we obtain the following theorem.

(5.5.19) THEOREM. The parameters $z_{1},$
$\cdots$ , $z_{s}$ in (4.5.6) are single valued

holomorPhic functions on the generalized $Te$ ichmuller space $\Lambda(R_{0}, \sigma_{0})$ which is
constructed from $\Omega(g^{\prime}, n, \{\nu_{i}\})$ . Here $g^{\prime}=0$ .

If $g^{\prime}>0$ , for example in the case (2.1.2) (i), we obtain as the equation of
$\langle R, \sigma\rangle,$ $(4.5.4)$ . The quantities $a,$ $b,$ $c$ and $\delta$ are determined by four parameters
$t_{1},$ $t_{2},$ $t_{3}$ and $\beta$ . By the same method as in the case of $g^{\prime}=0$ , we see that the
parameters $t_{1},$ $t_{2},$ $t_{3}$ and $\beta$ are continuous functions in the generalized Teich-
m\"uller space $\Lambda(R_{0}, \sigma_{0})$ . Hence we can conclude that $a,$ $b,$ $c$ and $\delta$ are con-
tinuous in $\Lambda(R_{0}, \sigma_{0})$ . Now, we can take a basis of differentials of the first
kind, $\{\omega_{1}, \omega_{2}, \omega_{3}\}$ as follows:

$\omega_{1}=\{x(x-1)(x-\beta)\}^{-1/2}dx$

(4.5.20) $\omega_{2}=(x-\alpha)\{x(x-1)(x-\beta)\}^{-1/2}y^{-1}dx$

$\omega_{3}=(\{x(x-1)(x-\beta)\}^{1/2}-\{\alpha(\alpha-1)(\alpha-\beta)\}^{1/2})\{x(x-1)(x-\beta)\}^{-1/2}y^{-1}dx$ .

Here $\alpha$ is one of four $\alpha’ s$ in 3.1. Hence by the same method as above we
can get an analogous relation to (4.5.17) and we can conclude that $t_{1},$ $t_{2},$ $t_{3}$ and
$\beta$ are holomorphic functions on the generalized Teichm\"uller space. Thus we
have

(4.5.21) THEOREM. The coefficients in (4.5.4) are single valued holomorphic
functions of the generalized Teichmuller space.

4.6. Finally, we shall express the parameters of (4.5.3) by theta constants.
In (4.5.3), we apply (4.3.1) to a meromorphic function on $R$

(4.6.1) $f(p)=1-x(p)$ , $p=(x, y)$ .
Let the points on $R$ which are over the points $0,$ $z_{1},$

$\cdots$ , $z_{s},$ $1,$ $\infty$ on the x-sphere
be $q_{0},$ $q_{z_{1}},$

$\cdots$ , $q_{z_{S}},$ $q_{1},$ $q_{\infty}$ respectively. Then the zeros of $f(p)$ are $n$ points
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$q_{1},$
$\cdots$ , $q_{1}$ and the poles of $f(p)$ are $n$ points $q_{\infty},$

$\cdots$ , $q_{\infty}$ . Therefore, by (4.2.1)
we have

(4.6.2) $f(q_{0})=\eta\Pi^{n}\frac{\theta(t\mathfrak{v}(q_{0})+\sum_{l=1}^{g-1}\mathfrak{w}(x_{l})-\mathfrak{w}(q_{1})-\mathfrak{c})}{\theta(\mathfrak{w}(q_{0})+\sum_{\iota=1}^{g-1}\mathfrak{w}(x_{l})-\mathfrak{w}(q_{\infty})-\mathfrak{c})}$ ,

and

(4.6.3) $f(q_{z_{i}})=\eta\Pi\frac{\theta(\iota \mathfrak{v}(q_{z_{i}})+\sum_{l=1}^{q-1}\mathfrak{w}(x_{l})-\mathfrak{w}(q_{1})-\mathfrak{c})}{\theta(\mathfrak{w}(q_{z_{i}})+\sum_{l=1}^{g-1}\mathfrak{w}(x_{l})-t\mathfrak{v}(q_{\infty})-\mathfrak{c})}n$

Thus, we have the following formula.

(4.6.4) $1-z_{i}=\Pi\frac{\theta(\mathfrak{w}(q_{z_{i}})+\sum_{l=1}^{g-1}\mathfrak{w}(x_{\iota})-\mathfrak{w}(q_{1})-\mathfrak{c})}{\theta(\mathfrak{w}(q_{z_{i}})+\sum_{l=1}^{g-1}\mathfrak{w}(x_{l})-\mathfrak{w}(q_{\infty})-\mathfrak{c})}n$

. $\Pi\frac{\theta(\mathfrak{w}(q_{0})+\sum_{l=1}^{g-1}\mathfrak{w}(x_{l})-\mathfrak{w}(q_{\infty})-\mathfrak{c})}{\theta(\mathfrak{l}\mathfrak{v}(q_{0})+@^{-1},l=1\mathfrak{w}(x_{l})-\mathfrak{w}(q_{1})-\mathfrak{c})}n$ .

Now, we take (4.5.11) as the basis of differentials and take (4.5.12) as the
canonical homology basis in (4.6.4). First, we see that $\mathfrak{c}$ is holomorphic in $\lambda$

by (4.2.4). Second, we have for $j(1\leqq j\leqq g)$

(4.6.5) $ w_{j}(q_{z_{i}})-w_{j}(q_{1})=\int_{q_{1}}^{qz_{i}}p_{j}(\zeta, \lambda)d\zeta$ ,

$ w_{j}(q_{0})-w_{j}(q_{\infty})=\int_{q_{\infty}}^{q_{0}}p_{j}(\zeta, \lambda)d\zeta$ .
These are half periods along the closed curves which can be represented by
linear combinations of $A_{1}(\zeta, \lambda),$ $\cdots$ , $B_{g}(\zeta, \lambda)$ with constants coefficient respec-
tively in a neighborhood of $\lambda_{0}$ . Therefore they are holomorphic in $\lambda$ . Third,
put

$t\mathfrak{p}(\zeta, \lambda)=(p_{1}(\zeta, \lambda),$ $p_{g}(\zeta, \lambda))$ .
Then we can select a general divisor $D=x_{1}+\cdots+x_{g-1}$ such that the integral

(4.6.6) $\mathfrak{w}(x_{l})=\int_{p_{0}}^{x_{l}}\mathfrak{p}(\zeta, \lambda)d\zeta$ $(1 \leqq l\leqq g-1)$

is holomorphic in a neighborhood of $\lambda_{0}$ . Because we know that if

$\tilde{D}=x_{1}+\cdots+x_{g-1}+x_{g}$

is general, then $D=x_{1}+$ $+x_{g-1}$ is general. We assume that $x_{1},$ $\cdots$ , $x_{g}$ are
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distinct $g$ points on the Riemann surface. A necessary and sufficient condi-
tion for $\tilde{D}$ to be general is that the determinant

det $(p_{i}(\zeta_{j}, \lambda))$ $(1 \leqq i, j\leqq g)$

does not vanish. Here, $\zeta_{1},$ $\cdots$ , $\zeta_{g}$ are the coordinates of $x_{1},$
$\cdots$ , $x_{g}$ in the domain

$D(\lambda)$ respectively. Then, det $(p_{i}(\zeta_{j}, \lambda))$ is a holomorphic function in $\zeta_{1},$ $\cdots$ , $\zeta_{g}$ ,
$\lambda_{1},$ $\cdots$ , $\lambda_{s}$ . Here $\lambda=(\lambda_{1}, \cdots , \lambda_{s})$ . Therefore, if this function does not vanish at
$ x_{0^{=(\zeta_{1^{0)}}^{(}}}\ldots$ , $\lambda_{s}^{(0)}$ ), then it does not vanish at all points $x=(\zeta_{1}, \cdots , \lambda_{s})$ in a neigh-
borhood of $x_{0}$ . Hence we get the assertion.

Summarizing, we obtain the following theorem.
(4.6.7) THEOREM. The single valued holomorPhic functions which we have

obtained in (4.5.21) can be expressed in the form (4.6.4).

We may say that (4.6.4) is an extension of the representation of the Lambda
function by Theta constants.

4.7. REMARK. We shall give a remark on the formulas (4.5.17) and (4.6.4).

We know that the function
$1-z$

from the parameter $z$ of the family of Riemann surfaces defined by

(4.7.1) $y^{2}=x(x-1)(x-z)$ , $z\in C-\{0,1\}$

is the Lambda function on the upper half plane and is represented by a quo-
tient of Theta constants. (4.6.4) is surely its extension.

In the family of Riemann surfaces defined by (4.7.1), the differential of
the first kind is given by $y^{-1}dx$ and the integral

(4.7.2) $\int_{g}^{h}y^{-1}dx$ ,

where $g$ and $h$ are two quantities of $0,1,$ $\infty$ , are solutions of the differential
equation of the second order:

(4.7.3) $z(z-1)\frac{d^{2}w}{dz^{2}}+(2z-1)\frac{dw}{dz}+\frac{w}{4}=0$ .

Let $w_{1}(z),$ $w_{2}(z)$ be two suitable independent solutions of (4.7.3), and denote
the ratios of $w_{1}(z)$ and $w_{2}(z)$ by

(4.7.4) $\tau=w_{1}(z)/w_{2}(z)$ .

Then $z(\tau)$ is a holomorphic function on the upper half plane ${\rm Im}\tau>0[7]$ .
(4.5.17) is surely an extension of (4.7.4) and (4.5.21) is an extension of $z(\tau)$ .

In this case we have a partial differential equation of Appellian type instead
of (4.7.3). It would be interesting to investigate (4.5.4) from the view-point of
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the differential equation as above.
We shall discuss these problems in another place.
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