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§1. Introduction.

Let Z2 be the set of 2.-dimensional lattice points with nonnegative co-
ordinates and let {Z*(n); n=0,1, 2, ---}, N=1, 2, ---, be a sequence of time
homogeneous Markov chains taking values in Z%, each of which is a generali-
zation of direct product branching process. Let Z¥V(n)=(Z{(n), Z{¥(n)) and
let

P =P(ZN¥(n+1)=(k, N=k) | Z¥(n)=(j, N—j), Z¥(n+1)+Z"(n+1)=N)

for j, k=0,1,--, N. Consider a Markov chain {X¥(n); n=0,1,2, -} on
{0,1, -+, N} with one-step transition probability (P%’), which we call the
induced Markov chain. When {Z¥’(n)} is a direct product branching process,
{X™(n)} is the Markov chain introduced by Karlin and McGregor [3] The
main purpose of this paper is to show that, for an appropriate class of {Z‘V(n)},
the sequence of the induced Markov chains (suitably normalized) converges to
a diffusion process on the interval [0, 1] having a backward Kolmogorov equa-
tion of the form

(D = =D T (-G

The convergence is in the sense of weak convergence of probability measures
in the space of continuous sample functions. Equations of the form [1.1)
appear in diffusion approximation to Markov chain models with selection in
population genetics (cf. [1]). Especially the following four cases are important
in genetics:

(i) 7(x) is a constant function,

() 7 =awx,

Qi) 700 =—a(1—x),

(iv) r(0)=ax—ay(1—x),
where «,, a, are constants. Consider Z{¥(n) and Z{»(n) as the numbers of
individuals of types 1 and 2 (alleles A, and A,), respectively. Existence of
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selection force corresponds to difference in fertility. In Case (i) we choose
{Z¥(n)} as a direct product branching process, making fertility differ between
types 1 and 2 (see [2] for examples), but, in other cases, we make fertility
depend on the existing proportion of types, so that {Z¥*’(n)} is not a branch-
ing process. ‘ : ,

We will give our results in general d type cases. When d=3, however,
we have the proof of convergence to diffusion processes only in some special
case (this is the case in which only one type has different fertility from the
other types). A difficulty arises in connection with the uniqueness of the
solution of the martingale problem of the limiting diffusion. This is the same
circumstance that we encounter in when we deal with convergence of
the Markov chains induced by direct product branching processes with muta-
tion and migration. In one dimension (that is, d=2) the uniqueness theorem
of Yamada and S. Watanabe applies, since the square root of the diffusion
coefficient is Holder continuous with exponent 1/2 and since we assume the
drift coefficient to be Lipschitz continuous. But, in higher dimensions, they
show [8] that the same continuity moduli do not imply the uniqueness in
general.

In Section 2 we will precisely define our class of {Z‘¥(n)} and state our
results. A lemma on asymptotic estimate of some integrals is given in Section
3. After this lemma is established, the proof in Section 4 of our results is
analogous to the discussion in [6]. It would not be difficult to extend the
results of this paper to the case involving selection, mutation and migration,
using the methods in [6].

A work having some relation with this paper is Kushner’s [4], in which
he gives an invariance principle in the space D with an application to a genetics
model with selection.

§2. Results.

Let {Z¥(n); n=0, 1, 2, ---}, N=1, 2, -+, be a sequence of time homogeneous
Markov chains taking values in Z¢, the set of d-dimensional lattice points with

nonnegative coordinates, and let fy ;(s;, --*, s;) be the generating function of
the one-step transition probability from j=(j,, -, Ja):
@D fulsy o, s0= B PEZO(D)=k | Z0m)=])st sk,

kEZ+

d .
Let |j|=3Jj, for j=(j;, -+, jo) and let J(N) be the set of points j€Z% such
=1

that |j|=N. We make the following assumptions.
ASSUMPTION 2.1. (i) If N is sufficiently large, then, for each j€J(N), fv,;
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1s of the form

@2) Frfss s 59 =1

Cnsn)jp(1+N—1;'p(\ Jrm1
p
0

n=

for 0<s,=1 (p=1, -, d), where ¢, and y, satisfy the following conditions.
(ii) {c,} is a probability distribution on the nonnegative integers independent
of N, j and p with ¢,>0 and with maximum span 1 (that is, there is no pair

of y>1 and 0 such that X cuis=1). Let a= i}oncn (mean), f(w):g)ocnw“

(generating function), M’(w):f‘,cne"w (moment generating function), F(w)=
n=0

M(w)e™, b=sup {w; M(w)<co}. Then, one of the following holds:

(a) 1<as+o0;
(b) a=1 and b>0;

(¢) a<l and lim F"(w)>0, where F’(w):___jg )
(iii) 7,(x), p=1, -+, d, are continuous functions of x defined on {x=(x,, =+, xq)
d
€R"; 1,20, -, 4,20, 3 1,=1}.
p=1

The above assumption implies that, for big N, individuals of a type p in
a generation reproduce their children of the same type p independently of
each other according to a common distribution, but the distribution may vary
with types and with the composition of the present generation. Fertility may
thus vary.

Condition (ii) is common with and [6], and hence the following can
be proved: 1° b>0 in Case (¢). 2° If a<l1, >0 and 1101?; M(w)=o00, then (c)
holds. 3° There exists a unique S&(—oo, b) such that F’(8)=0. 4° j is nega-
tive, zero, positive in Cases (a), (b), (c), respectively. Let K(w)=log M(w) for
w<b. 5° K'(B)=1 and K”(8)>0. Let o=+~/K’(B). 6° The associated distri-
bution {&,} of {c,} defined by &,=c,e™*/M() has mean 1 and variance o2

For j, k<J(N), let

2.3) PP =PZV(n+1)=k| ZNV0)=j, Z¥V(n+1)eJ(N)),

which can be defined for sufficiently large N by the following lemma.
LEMMA 2.1. If N s large enough, then

P(Z¥(n+1)eJ(N) | Z¥n)=7)>0  for all j=J(N).

For a fixed N, let {X“¥(n)=(X{¥(n), ---, X (n)); n=0, 1, ---} be a Markov
chain defined on a probability space (2, Q¥°), taking values in J(N) with
one-step transition probability (P3’) and arbitrary initial distribution. We call
{X¥(n)} the induced Markov chain. The state space is essentially (d—1)-
dimensional, since the sum of components is N. Let
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YWty =(NX{¥(n), -, N X¥(n))  for t=N-'n

and make linear interpolation:
Y®() =n+1-N)Y M (N 'n)+(Nt—n)Y P (N (n+1))

for N''n<t<N'(n+1).

Let K be the set of points x=(x,, ---, x,_;)€R?! such that x,=0, ---, x4.,=0,
d—1

1_12 x,=0. Then Y¥()eK for any t and sample functions of Y (t) are
=1

broken lines. Let £ be the space of continuous paths w: [0, co)—K with the
usual topology (that is, the topology of uniform convergence on compact sets
of [0,00)). Let # be the topological o¢-algebra of £ and let M, be the o-
algebra generated by x(s, w)=w(s), s<t. The process (YM(¢), Q¥ QW ; 0=
t<oo) induces a probability measure P™ on (2, H).

Let a(x)=(a,o(%))p,q=1,-ya-1 and O(x)=(b,(x))p=y,,a-1 be (d—1)x(d—1)-matrix
and (d—1)-vector, respectively, defined on K by

(2.4) ap(x)=0*x,(1—x,),

(2.5) ap(x)=—0*xpx, (p#4q),

(26) by(5) = 2,750~ & 17 () — (1= 2 )70}
where

d—
Tr(x)zr'r(xlv y Xa-1 1_ lzlxl) for ?’:17 Tty d .
=1
For each =R let

2.7) My(t, w)=exp{<0. x(t, @)—x(0, w)) — j 0‘<0, b(x(u, w))>du

—% j:<a, ax(u, )Bydul.

As in [6], we call the following problem the martingale problem (K, a, b, x):
to find a probability measure P, on (£, #) such that P, (x(0)=x)=1 and
(My(t), M,, P,; 0<t<0) is a martingale for each = R**.

We will prove the following results.

LEMMA 2.2. For any set of o® and 7, l=1,---,d, the martingale problem
(K, a, b, x) has a solution for each x=K.

Let Y“¥(0)=x‘", non-random.

THEOREM 2.1. Let d—1=1 and suppose that (y(xy, 1—x1)—7(x1, 1—x1))
x,(1—x,) is Lipschitz continuous. Then, for each x, the solution P, of the mar-
tingale problem (K, a, b, x) is unique. If x‘¥—x, then the sequence of proba-
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bility measures {P¥’} weakly converges to P, as N—oo.

THEOREM 2.2. Suppose that y(x)=rs(x)= - =y x) and that (y,(x)—7ry(x))
x,(1—x,) is a function of x, alone and is Lipschitz continuous. Then, the solu-
tion P, of the martingale problem (K, a, b, x) is unique for each x€ K, If x@®
—x, then PN’ weakly converges to P, as N—oo,

THEOREM 2.3. If the solution P, of the martingale problem (K, a, b, x) is
unique, then P¥° weakly converges to P, as N—co, provided that x‘V—zx.,

However, we do not know whether the uniqueness holds for general a, b
given by (2.4)—(2.6).

If the uniqueness holds, then (x(t), 2, M, P,; xK) is a strong Markov

process (see Stroock and Varadhan [7]). Let d—1=1 and consider the case
of [Theorem 2.1 Then, the backward Kolmogorov equation of the limiting
diffusion is

ou

2 2
@8 = (1) G (i, 1)~ I m)BA— )2

0=x=1.
The boundaries 0 and 1 are of pure exit type, acting as traps. The case
where 7, and 7, are constant functions corresponds to gametic selection; y,>7,
(resp. 7,<7.) means that type 1 has greater (resp. smaller) fertility than type
2. The case where y,—7, is a linear function corresponds to zygotic selection.
Namely, if genotypes A,A,, A;A, A,A, have selective advantages 1+N"'2,,
1+N"2, 1+N-'2,, respectively, then, let y,(x;, 1—x,)=2Ax+4,(1—x,) and

7o(x, 1—x)=2,x,4+24,(1—x,). It is natural to use these 7, and 7, in be-
cause the exponents in become

N7 (717D =A+N"2) 1517+ A+ N2 15 e,
1+ N7y (1175) = A N2 1k (N2 1

which can be considered as the fertilities of an A,-individual and an A,-
individual, respectively, in a population consisting of j; A;-individuals and j,
A,-individuals. The drift coefficient in (2.8) is now {(4;,—2,)x;—(4;—4,)(1—x)}
x,(1—x,), which gives an interpretation to the cases (ii), (iii), (iv) in Section 1.

§3. A lemma on asymptotic estimate of some integral.

The following lemma is an extension of [5] Lemma 3.1 and [6]

4.3. Assumption 2.1 (ii) is essential to these lemmas. The moment generating

function M(w) extends to an analytic function M(z)= icne“ of complex z
n=0

with Rez<b. K(w) extends to a function analytic in a neighborhood of j.
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Let
K(2)= 3 k(2= B)".

(n Nk, is the semi-invariant of order n of the associated distribution {¢,}. We
have k,=K(B), k=1, k,=0?%/2.

LEMMA 3.1. Let £ be a bounded set of real numbers such that, if N is
sufficiently large, then, for each E=E&, the function fw)¥*, 0<w<l1, is the

generating function of some distribution on Z'. For every large N, let

3.1) AN, &)=

| : MY Vdz, £,

where the integral is along the line segment from B—izx to f+im, v is a fixed
integer, and M(z) is a bounded continuous function on the segment. Suppose
that 1\71(2) is analytic in a neighborhood of B and let

M) Ml(2)= 5 fu(z— )"
there. Then, as N—oo,
3.2) ﬁ(N, £) = A et E(p,+ Na(€)+0(N?)) uniformly in £ 5,
where

3.3) dy =0 2aN) V2eNEH-p

~ 4 2 § 5 3 b 3 ~
(34) a@)=po( - DS By (B £y 5L

REMARK. It follows from the assumption on & and Assumption 2.1 (ii)
that, for any large N, M(w)¥**=f(¢*)"*% can be extended to an analytic func-
tion of complex z with Re z<b. We denote the extension by M(z)"*. We
have used M(z)¥*¥-" in [(3.1) in this sense.

PrROOF. Since M(z)=eX® near z=J5, we have, for small ¢>0,

(35) AN, &= exp (N B walin)"+ EK(5+i2)

- M(B+iy) " M(B+iy)dy+],
B 1 f—tie prix Nicor S Nz
]_WUﬁ‘i:Jrlee)M(z) -1V (2)eVdz,
using x,=1. Let ¢(N)=N""2log N and write the integral in as I,+1,,
where [, is the integral over [y|<¢@(N) and I, is the integral over ¢(N)=
|v] <e. Denoting by B any function bounded uniformly in N and é€ 5, we
have
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11 - -fly|<¢(1V)e—N0272/2 eXp{N 2 xn(ly)n+5 Z ﬁn(ly) } { 2 Pn(ly)" B (loj\gfsz/\zf) }dy

_E® j- e "2g () g,(u)g,(u)du
" 0vN Jucoign FREAS: ’

where

gl(u)=exp{n§*ﬁ%z*(%‘~)n}, gz(u)—eXp{EE on(C2))

: n 1 N 7
g(u)= 2 Nn/z ( ZZ ) +B ((}\%5/2) .
Noting that |u|<olog N, we get

& 1 iu (log N)*
giw) = 3 i Pa( )+ B— R »

P(v)=1, P)=&2",  Pv)=r0'+2760°,

If n is odd (resp. even), P, is a polynomial having odd (resp. even) order
terms only. Similarly,

OB SUSE'S SFAC S0

0,=1, 0,=¢k,, 922552+(21)_152I€%,
0= Ery+(21)7126%k,k,+(3 1) 7161,

0, = Ery+(2 D) E( 20ty 1)+ (3 D) I3E K, +(4 1) 64K
Hence,

(W) g,(u)gs(u) = 2 Nn/z 2 P, m( >( )"‘ i"} /-~ r+B(l—3§5‘/}Y—)

with some integer v. By integration the terms with odd »n vanish, since they
are odd functions of u. Since we have, for any fixed &,

[~ ewmutdu=k—1)1v27,  (2k—1)11=(2k—1)(2k—3) 31

- 1
J.lu\\alog Ne "t du :0< N™ ) for any n,

we get
I,=(2m) Vg N6 ® 5+ N7a(§) + O(N %))
with

a(§)=

| e {oP ()4 @i+ P )

+(02ﬁ0+ 61A51+152)(l&u—>2}du .
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Here O(N%) is uniform in £<5Z, since & is bounded. The above a(¢) is
identical with (3.4).
Estimation of I, is simple because

L] < le exp {Re (Nné £, ()M} dy < Czj. e~ NIy

PNy I<e Iy (> ()
=o(N"") for any =,

if ¢ is chosen small enough. Here C, and C, are constants independent of
£ Z. Let us examine J. For large N we have

| M(B+iy)" | M(pV*, ¢£€B.

The assumption that the distribution {c,} has maximum span 1 implies that,
for each ¢>0, there is an >0 such that

IM(B+iy)|= M(B)X(1—7)  for es|y|=m.
Fix N, sufficiently large. Then, for N=N,,
| M(2)V+5- "M (2)e™ Ve | = | M(2)Y Yo M(z)V o+~ M(2)e V7 |
< Co(M(B)Y1—n) Y Mo M(B)Noté-Te N2
< Coo¥ KD P(L—p)¥~Io

for z=p+1iy such that e<|y|=z. Here C, and C, are constants independent
of & Hence
J=eVE®-Bo(N™™) for any =n,

and the proof is complete.

§4. Proof of results.

Given N and jeJ(N), let x=(x, -, x)=|j] G=N"F=(N", -, Ny,
7r=72(0)=7(N7')), y=élxprp:N'léljprp(N“j). N is supposed to be large
so that holds. Thus

S+, 5= TLfs,0:70.
We use the following functions:
hy(w) = fw)V*Y,
hy(w) = f)¥*¥= f(ww,
hy(w) = fw)¥*¥=*f"(w)*w*
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hy(w) = fw)" =1 (wyw®,
hy(w) = fw)" V= f (wy'w?,
ho(w) = fw)" v f (w)f” (wyw?
ha(w) = fw)" = f"(wiw,
he(w) = fw)Y V= f (w) w* ,
hy(w) = fw)** =2 (w)* " (wyw*
hao(w) = fQw)¥ =2 f" (w) w*
hy(w) = fw)¥* =2/ (w)f"(wyw*
hyp(w) = fw) V=27 (wyw*
These are power series of w. Let

A (N)=coefficient of w¥ in hy,(w).

Since
(4.1) P(Z®(n+1)edJ(N) | Z¥(n)=j)=A(N),
we have
P = A(N) *(coefficient of sft---s§¢ in fy ;(s5, -+, Sq))
= A,(N) *(coefficient of w¥sk --- sk¢ in O(w, s,, -+, 54)),
where
d
@(wy Sly Tty Sd): Hf(wsp)jp"'x,ﬂ't) i
p=1
Let
G(Sl, ...,sd): 2 PY):I)S{QI cen s(}id’
EETN)
Cp1~-~pm:Dp1-'-pmG(lr -, 1),
where
am
Dpl‘ DPm aspl vee aspm
‘We have
G(s,, -+, sg) = A (N)*(coefficient of w¥ in O(w, s;, -+, Sq)
and
(4.2) Cpropp = AN ) H(coefficient of w¥ in Dy ., @(w, 1, -+, 1)).

We will use
Chrom= 2 kp - kp, P

EEJ(N)
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also. What we would like to estimate are

b (x) = b(N)( 1 )_ ke_,\N) kp _J —>P}ZZ’ ’
apq’(x)——a§,2’>< ) keJ(N) kP - >< - )P},}” ’
&M (x) _euv)( ) — ke_,(N) :0 _ ) P,

By Assumption 2.1, A,(e*) has an analytic extension £,(¢?) for complex z with
Re z<b and it is easy to prove the following lemma.
LEmMMA 4.1. For each v

1
271

Btim .
43) AN = hleer iz

and this expression satisfies the condition for (3.1) in Lemma 3.1.
ProOF OF LEMMA 2.1. By [emma 3.1l and 4.1,

(4.4) A(N)= 2m j M( ¥4 Nidz = Ay er R (14 1 +0( )
(4.5) a=S5 L _y 2. B
uniformly in y. Hence follows from (4.1).
LEMMA 4.2.
(4.6) Cp=1Jp+x,(yp—3)+O(N) untformly in jeJ(N),
(4.7) bp"(0) = xp(1p,—3)+FONY)  uniformly in jeJ(N).

What we mean by (4.6) is

h%l_:f’,up sup N|Cp—(Jptxp(yp—yN <o,

We use the phrase uniformly in jeJ(N) in this way.
PrROOF. We have

D,®(w, sy, -, Sq)
= Jws Y e (gt (s )T f ws ) e fwsgersare,
D @(w, 1, -, 1)=(Jp+xp7p)he(w) .
Hence by (4.2)
(4.8) Co =t 27 p) AL(N) T A(N) .
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By Lemma 4.1,
1

27t

A (7\[ — p+i7tM N+y-1£7(,p2\,2 —de
2(V) e (2) fe®)efeNidz .

631

Since M(z)7'f"(e*)e’ = M(2)*M'(z2)=K'(z2)=1+0%(z— )+ 3k,(z—f3)*+ -+ near z=33,

we get
(4.9) AN)=dye 91+ N0, 20N, a,=a,~y
by and [45). It follows from [(4.4), [4.8), (4.9) that

Cp=(pt 27 p)(L=N"3+O0N%) =Jp+x,(7,—3) +ON)

uniformly in jeJ(N). Since b¥(x)=C,—j,, we get (4.7).
LEMMA 4.3.

(4.10) Cpe=JplatipXeratioxprp—N Jpjo(0*+20)+01)  for p#q,

(4.11) Cpp =73 +i (0 —=1—=x,(0*+2y—27,))+0(1),
(4.12) af(x)=—0"x,x,+O0(N) for p#q,
(4.13) ay(x)=0cx,(1—x,)+O(N).

All O signs here are uniform in jeJ(N).
Proor. Let p+g. We have

qu¢(W, Syttt Sg) = flws,) 1+ . {(jp+xprp)f<w5p)j‘0+xm.p—lf/(wsp>w}

oo (gt Xer M 100 0 (wsw) -+ fwsg)etzare
for p<q and a similar expression for p>¢. Hence
Dyp@w, 1, -+, 1)=(Jp+%p7p)(Ja ¥y hs(w) ,
(4.14) Cpqa=(JpT 257 0)(JaF X7 ) AN ) T A((N) .
By Lemmas B.J, £.1 and (4.5),

(4.15) ANy =5 [ T by enyette ez

=Adye?®B(1+N"ta,+0O(N?)), ag=a,—2y—o*,

since M(2)™f/(¢")e* =K'(2)*=1+20%z— B) +(6r,+0*)(z— )+ -
(4.4), (4.14), (4.15) that

Cpq = (jqu+jpxq7‘q+jqxprp>(l'_N_1<2y+0'2))+0<1> ,

which is (4.10). In order to get [(4.11), we have

It follows from
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Dyp@(1, 53, -+, 50) = fWs Y5111 oo (G Xy ) f00s, Y0 =T~ f1(ws )
Ut T )P, Y5107 (s ) - flwsgyereare,
Dpp@(w, 1, -+, 1) =(Jp+ 17 p):hs(W0)+(pt 27 p)hu(w)
(4.16) Cpp=(pt%p7 )2 Ax(N) T As(N)+(Jp+ 2,7 ) Ax(N) T ALN)
Here we are using the notation (x),=x(x—1)--- (x—n-+1) for real x. We have

417 AN = : " M2 (e N dz = Ay B (oL O(N)

since M(z)"'f"(e*)e* =M (M"—M")=K"*4+K"—K'=¢* at z=0. It follows from
(4.15), (4.16), [(4.17) that

Cop = (Us—Jpt27pXp7p)1—=N"'(2y+0%))+7,0°+0(1),

which is [4.11). Since afP(x)=N"Y(C¥,—j,C¥—i,C¥+j,J,) for p=q or p+#gq, we
have

agy () = N7 Cpq—7pCq—7sCrptipia) for p+gq,
agP(x) =N Cppt+Cp—25,Cpt73).

Hence [(4.12) and [4.13) follow from (4.6), (4.10), (4.11)
LEMMA 4.4.

(4.18) Copp=Ja+315(0*=1—=xp(0*+y—7 N+OWN) uniformly in jeJ(N).
PROOF. Since
D@, 1, -+, 1)= Ut i p)ssw) 4 305+ o p)eto ) Gt 27 p) (),
we have

(419)  Cony= Ut Kot =N st BT o+ Uit 7 420003

= (15375 +315%7 ) AE%% +355 Ag\\;g +O(N).

By Lemmas B.d, .1 and (4.5),

(4.20) b 5(N):~—— _ M(z)N‘“y f(e?)e* eV dz

:ANe”K<5>(1+N‘105+0(N"2)) . a,=a,—3y—30°,

(4.21) A(N)=

271

jﬂHIJW(Z)Nﬂ;—Zf/(ez>f//(ez)eszg—dez
f—ixn

=dye®P(a*+O0(N™)),
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because

M(z)"*f (e =K'(2) =1430z—B)+(9,+ 30" z— B)*+
and

M(2)2F(e?)f" ()¢ = MM/ (M7 — M) = K(K"*+ K" — K') = 0*+ -
(4.4), (4.19), [4.20) and [(4.21) imply

Cppp = (3313137327 )1 —=N"(3y+30%))+3j30°+O(N)

and hence (4.18).
LEMMA 4.5.

(4.22) Coppp = Ja+73(60°—6—x,(602+4y—47,))+O(N?)

uniformly in jeJ(N).
Proor. This time we have

Dpppr(wy 1, Tty 1):(jp"_"cprp)4hs(w)+6<jp+xp7’p)3h9(w)

+3(jp+xp7’p)2h1o(w>+4(jp+xpr)2h11(w)+(jp+xp7p)h12(w) ,
and hence, by (4.2),

AfN) AfN)

] N
A,(N) +6(Jp X0 p)s— 4 N A,(N) +3(Jp+xp7p)e (N ((

(4.23) Coppr=UpH 207 D)s =1y

ALN) A(N)
ANy TR A N

+4(Tp+Xp7 p)e

= (i3 A7) A+ 67342 +O).

As before, we have

Af(N)= ij "My It e Y dz
=dyevEB(1+Nta;+0(N™?)), as=a,—4y—60*,

AN = [ T M@y e fr etz

? 2m1 ,aqu

=Aye?®B(¢*+0(N™)),
because

M(z) *f/(e?)'et = K'(2)* =1+40%(z—pB)+(12k;+60*)(z— B)°+
and :

M(Z) 3f/<ez)2f//(ez>e4z ]\/[ 3M/2< M// M/):K/Z(K/2+K//_K/):02+
Hence A,(N)AyN)=1—N"'4y+60)+0(N7?) and A,(N)'A(N)=c*+O(N™).
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Thus [(4.22) follows from (4.23).
LEMMA 4.6.

{4.24) eV (x)=0(N™) uniformly in jeJ(N).

ProOF. Using e,V (x)=N"*(C3ppp—47,Chop+673C3—475CH+75) and express-
ing C¥, -, Copp bY Cp, -+, Crppp, We get

eV (x) = N"{Cppppt+(—47p+6)Cppp+(675—127,+7)Cpyp

(47346734, DCp i)

Use (4.6), [(4.1T), (4.18) and of the preceding four lemmas in this expres-
sion. Then all terms cancel except terms of O(N™").

ProoF OF LEMMA 2.2. By the definitions (2.4)—(2.6) of a(x) and b(x),
Lemmas 4.2 and 3 imply that, for any p and ¢

R C SRIC SIC SNIIEIC SRNC I E S
uniformly in j€J(N). Here we have identified (j,, -+, jo) in J(N) with (7, -+,
Ja-1) and denoted them by the same letter j. By an invariance principle in
[6], Theorem 3.1, these estimates combined with Lemma 4.6 prove that the
sequence of the probability measures P*Y’ on (£, H) is relatively compact and
that the limit of any convergent subsequence is a solution of the martingale
problem (K, a, b, x), provided that Y (0)=x"?¥—x, In order to show the
existence of a solution of the martingale problem (K, a, b, x) for any set of
0°>0 and continuous y, p=1,--,d, we can assume o’=1 without loss of
generality. Note that if a=const>0, then a solution of the problem (K, aa,
ab, x) is easily obtained from a solution of the problem (X, aq, b, x) by change
of time scale. Suppose that y,, p=1, -, d, are arbitrary continuous functions
and let C be the bound of |y,|, p=1, ---, d. Let {c¢,} be an arbitrary Poisson
distribution. Then o0°=1 and the right-hand side of is the generating
function of a distribution on Z%, provided that N=C. Hence a solution of the
problem (K, a, b, x) exists.

PROOF OF THEOREM 2.3. This is a consequence of (4.25) and
in view of [6], Theorem 3.2.

PROOF OF THEOREMS 2.1 AND 2.2. By [Theorem 2.3, it is enough to see
the uniqueness of the solution of the martingale problem (K, q, b, x) for each
x=K. This is proved in the same way as in Section 5 of [6] That is,
observe first that the uniqueness in question is equivalent to the uniqueness,
in the sense of law, of the solution of some stochastic differential equation,
and then, in case of d—1=1, use the result of Yamada and S. Watanabe [8].
In case of d—1=2 in the uniqueness is obtained by some reduc-
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tion to essentially one-dimensional cases, which is due to S. Watanabe. Note

that, under the assumption in[Theorem 2.2, b,(x)=(y,(x)—7(x))x,(1—x,), a func-
tion of x; alone, and, for p=2, b,(x)=—(y,(x)—7.(x))x,x, a function of x, and x,,.

Notes added on April 12, 1976.

1. Ethier [A2] proved uniqueness of the solution of the martingale prob-
lem (K, a,b, x) when a is defined by and b is of class C°® on K,
satisfying some conditions at the boundary of K. Thus the uniqueness was
proved if b is of the form and of class C°. Combining this result with
Theorem 213, we can now say that P’ weakly converges to P, as N—oo
provided that xy—ux, if & is of class C®. His paper [A2] contains also another
proof of the existence of the solution of the martingale problem which uses
the existence theorem in the whole Euclidean space.

2. We indicate that the induced Markov chains in this paper include
multi-allele Wright models as special cases. Suppose that the distribution {c,}
is Poisson with abitrary mean. It satisfies (ii) of Assumption 2.1, since b=co.
It is easy to see that o=1. Let

d
1) 7 (X, ..-,xd):qg,?pqxq, p=1,-,d,
where 2,, are real constants. Let N be so large that 1+N7'r,(x,, -+, x4)=0.

Then the function fy, ;(s,, -+, s4) defined by is a generating function. We
get, for |j|=|k|=N,

(2 Py = N‘H(k T

where

1 R DR [CE DE

If 2,,=24p, this is the multi-allele Wright model with zygotic selection. If we
assume (1) (even when the distribution {c,} is general), then has

d . -
1+1V_17'p(l]"-lj):qgl(1+N_1'2pq)lJl_1Jq
as the exponents, and it is natural to consider 14+N"'4,, as the relative

advantage of A, when it is found in the genotype 4,4, The drift coefficients
of the limiting diffusion are then

d d d—-1
bp(x) - xp( 2 quxq— lz lzqulxq) Where Xg= 1_ tzl X .
q=1 »q= =
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Likewise, if y,(x, ==+, x;) is a constant 4, for each p, then it is natural to
consider 1+N"!4, as the relative fertility of gene of allele A,. The drift co-
efficients are

1

d -
bp(x):xp(zp—qgl Ag%q) where xd:l“,; Xy

In this case, as is observed by Karlin and McGregor [3], we get (2) with

—(s AN Ja N4 Ae ) Jp
u=( 2 (15 )-%) ()
if {c,} is Poisson. This is the multi-allele Wright model with gametic selection.

3. As for the convergence of Wright models for d=2, there are several
papers (Norman [A4] for example) which deal with the convergence of finite-
dimensional distributions, and Guess [A3] should also be mentioned for the
weak convergence in the space D. For general d, convergence of finite-
dimensional distributions of Wright models and estimate of the speed of the
convergence are treated by Ethier [A1]. He proves also the weak convergence
in the space D.
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