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Introduction.

Let k& be a quadratic field over Q. As usual, we write 2&=Q(y) with p*=m
where m is a square free rational integer. By the Cayley-Dickson process we
can make a quaternion algebra A out of the vector space 2Xk over Q. Let
A, be the subspace of A formed by quaternions of trace zero. By the Hopf
map belonging to k, we shall mean the map:

h:i A— A, defined by h(z)=zpz,

where Z is the conjugate of z. When we identify A, with the space QX k
using the quaternion units, we obtain another expression of the Hopf map:

h(z)=(Nx—Ny, 2uxy), z=(x, A,

where Nx=Z2x, the norm in k.

When 2=Q(%), the Gaussian field, the map 4 is the restriction on Q* of the
map R*— R® which induces the classical Hopf fibration: S*—S? where each
fibre is a great circle of S*® ([3, §5]).

Back to a general quadratic field &, the Hopf map & again maps “3-sphere”
to “2-sphere” where each fibre is a “circle”. Since one can view the theory
of representation of integers by binary quadratic forms as an arithmetic of
the “circle”, it is natural to ask how one can extend the results of Gauss and
Dirichlet to the case of “circle” bundles.

In this paper, we shall obtain a formula for a Hopf map (the formula
(3.12)) which can be considered as an analogue of the Dirichlet formulas [2.4),
(2.5)] on the total number of representations of integers by a complete system
of non-equivalent binary quadratic forms of a given discriminant. The case
where #=Q(®i) has been treated in [4].

Notation and conventions.

The symbols N, Z,Q, R denote the set of natural numbers, the ring of
rational integers, the field of rational numbers, the field of real numbers,
respectively. For an associative ring R with the identity, we denote by R*
the group of invertible elements of R. For an algebraic number field 2 of



Quadratic fields and Hopf fibrations 63

finite degree over @, we denote by p, the ring of integers of %, by I, the
group of fractional ideals of &, by I} the set of non-zero integral ideals of %;

we shall often make the natural identification I§=N. For an n-tuple (a,, -+, a,)
of elements a;€k, 1<1<n, where some a;#0, we denote by id(a,, --+, a,) the
ideal in I, generated by a,, ---, a,. For a non-zero polynomial f=£(X,, ---, Xn)

ek[X,, -+, Xn], we denote by c(f) the content of f, i.e. the ideal of & gener-
ated by the coefficients of f. We know that c(fg)=c(f)c(g) ([2, §28]). For
a set S, we denote by [S] its cardinality. For a map f, we denote by Im f
the image of f.

§1. Cayley-Dickson process.

Let K be a quadratic field over a field F of characteristic not two. For
each x€ K, we write its conjugate, trace and norm by %, Tx=X+x and Nx=Zxx,
respectively. Define a multiplication on the space A=K*?*=KXK by

2,2, = (X1 X,—Y1 5, X1V, F0:1 %), z;= (X4 ¥s), 1=12.

Then 1,=(1, 0) is the identity of A and we imbed K in A through the identi-
fication 1,=1. The element j=(0, 1) satisfies j°=—1. Call ¢ a generator of K
over F, K=F(y), such that p’=meF*. Then one verifies easily that A is a
quaternion algebra over F with quaternion units 1, g, j, ¢j, with the relations
pi=m, j*=—1, pj+jpe=0. For an element z=(x, y)=x+YyjEA, its conjugate,
trace and norm are defined by 2=(%, —y)=X—yJ, Tz=Z+z and Nz=2Z2z, respec-
tively. The map z—Z is an involution of the algebra A and we have Tz=Tx,
Nz=Nx+Ny. We shall denote by A, the subspace of A consisting of z such
that Tz=0; A, is of rank 3 over F, spanned by g, j, #j. We shall often make
the following natural identifications:

K=F+Fp=F*, A=K+Kj=K*=F*,
Ay=Fp+Fj+Fuj=F*=Fu+Kj=FXK.
By the Hopf map, we shall mean the map:
h: A— A, defined by h(z)=zuz,

here we have used that T'(h(z))=0 for all z€ A. The choice of g in the defini-
tion of 4 is inessential because for any other generator p’ like ¢ we have g’
=ay, acF*, A simple calculation shows that

h(z)=(Nx—Ny)p+Q2pxy)j=(Nx—Ny, 2uxy) e Ay=F X K.

For teF, put
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S.H={ze A, Nz=t}, S4)={z€ A, Nz=1t}.
Since N(h(z))=(Np)(Nz)?=—m(Nz)?, h maps S,(f) into S,,(—mt?).
Along with the map h, we shall need later the maps f, ¢ defined as follows:

f(z)=(Nx, xy, Ny),  ¢(z)=Nx, T(xy), Ny), z=(x,3).
We put

S={o=(a, B c)e FXxKxF, Ng=ac},
and define maps g and 7 by
g(a) = (a—c, 2fuﬁ) ’ T(U) = (a; Tﬁ’ C) .

It is clear that the diagram (1.1) is commutative.

A=Kx K
h ®
(1.1) A=Fx K f Fs
g T
|
)

§2. Representation of integers by the norm function.

In order to fix notations and to motivate the method in § 3, we shall collect
here some relevant results on binary quadratic forms due to Gauss and Diri-
chlet ([1, Vierter Abschnitt & Finfter Abschnitt]).

Let 2 be a quadratic field over Q. Denote by P,, P} the group of principal
ideals and its subgroup of principal ideals id(«) with Na>0, respectively. We
denote by h, h* the order of the groups I,/P, I./Pji, respectively. Hence,
h*=h if k is imaginary or % is real and contains a unit of norm —1 and At=
2h otherwise. In this paper, we say that two ideals a and b are equivalent
and write a~b only when a and b belong to the same class modulo P ; this
is usually called the strict equivalence of ideals.

For each ideal a=I,, we denote by N, the function

N:a—>Z defined by N,x=(Na)"'Nx, xea.
Suppose that a~b with b=id(p)a, Np>0. Since N(id(p))=Np, we have
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(2.1) Ny(px)= N,x, x€a.
For ne N, put
Ifn)={ie I}, Ni=n},

Xim)=(Np)'(n)={xcqa, Nux=n}.
Call d, the map:

Xy(n) —> I (n) defined by d.(x)=a"td(x).
These maps d,, a=,, have the following properties:
d, 1 a~b > Imd,=Imd,,
, 2) a*b > Imd.N\Imd, =0,

(d, 3) for any jeI{(n), there is an ideal ac I, such that j€Imd,.

In fact, let b=id(p)a, Np>0. For any xe X.(n), we have pxeX,(n) from
and di(x)=a"'id(x)=0""d(p)id(x) =dy(px), which proves that Imd,<=
Imd,. Similarly, we have Imd,SImd, and (d,1) is proved. Next, suppose
that there is an ideal { in Imd,"\Imd,; hence j=ad(x)=0b"d(y), x€ X.(n),
ye Xy(n) and so b=id(p)a with p=y/x, No>0, which proves (d,2). Finally,
for a given jeIf(n), put a=j~'. Since j is integral, a=j"! contains 1 and N1
=(Na)"'=Nj=n, which shows that 1= X,(n). Now, we have j=a'=d,(1), and
hence j€Im d,, which proves (d, 3).

From now on, call aj, ---, az+ a complete set of representatives of I./Py{.
From (d, 1), (4, 2), (d, 3), we see that Ij(n) is the disjoint union of Imd,,,
1<i<h*. Now, put

of={eco;, Ne=1}.

This group acts on X,(n). Let X¥(n) be the quotient of X,(n) with'respect to
the equivalence relation defined by the action of o¥. Since d,(x)=d.(x") if and
only if x’=e¢x for some e=o¥, we have the relation

22 L] = E X5,

On the other hand, from the well-known relation {.(s)={qe(s)L(X, s), X being
the character of 2/Q, it follows that

23) [im]= 2 Ud),
and so we have
2.4 = XEmI= T 1),

If, in particular, 2 is imaginary, then A*=h, oFf=0}, [071=2, 4 or 6, and we
obtain the formula
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25) 2 (X ()] =[] S 1),

which gives the total number of representations of # by a complete system

of non-equivalent positive definite binary quadratic forms whose discriminant
is the discriminant of k.

§3. Representation of integral vectors by the Hopf map.

Let £=Q(y) be a quadratic field. We may assume that m=pg*® is a square

free rational integer. We shall maintain notations in § 1 except putting K=&,
F=q.

Consider the Hopf map % belonging to %:
h: A=kXk—>A=QXE,
h(z)=(Nx—Ny, 2uxy), z=(x,y)eA.
For an ideal a=[,, we denote by h, the map:

he: aXa—> Z X0,
defined by

ho(z) = (Nox—N,y, 2u(Na) *zy) , z=(x,y)=axa.
Notice that 2p(Na)-'Xy<1d(2y). For an integer t€Z, {+0, put
S (= {z=(x,y)=aXxa, Nx+Ny=t},
S.Di={w=(u,v)e Zxid2y), Nw=t}.
Since N(h(z))=(Na)"?N(zpz)= —m((Na)"'Nz)? the map k. induces the map
hay: Sa(t)y —> Sa(—mt®)E.

Our problem is to study the fibres of the map ha, a<I,. To do this, we
shall first modify the diagram (1.1) as follows. We put

fo(2) = (Nox, (Na)™*Xy, Nuy) ,
SDa(Z): (Nax, Ta(xy); Nay) ,

where T(a)=(Na)*Ta, a=k. Then, (1.1) induces the commutative diagram
(3.1) where
Yy={o=(q, B c)e2N(ZXo, X Z)}

and gz 7z are restrictions of g, = in (1.1), respectively. Note that Im g, is
contained in ZX1id(2y).
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Next, we shall consider the portion of (3.1) corresponding to t=Z, t=+0, as
follows. We put
Z1(1‘)22 {0-: (a: ‘By C) & EZ, a+c: t} ’

St)z=1{s=(a, b, c)eZ? atc=t}.

Then, f., ¢. induce the maps, f.: ¢.: respectively. It is almost trivial to
check that the diagram (3.2) is well-defined and commutative. The only non-
trivial map is gz, and we shall focus our attention on this map.

axa SAU)a
A, \ / La,e
Z X 0 Ja VA SAO(—mt2)§ fa,t ‘S(t)l
&z / 8z Tz
\ Y
Zz Z(t)l
(3.1) (3.2)

First of all, gz, is well-defined. In fact, take an element 0=(q, §, ¢)=2(?);.
Then, gz(0)=(a—c, 2puB)=(a—c)u+@2up)j. Hence N(g(o))=N({(a—c)u)+NQ2up)
= —m(a—c)*>—4mNB= —m((a—c)*+4ac)= —m(a+c)*=—mt>. Now, we shall
prove that gz, is bijective. Suppose first that gz,.(0)=gz,(0’) with o=(a, B, ¢),
o’'=(a’, p', ¢’). Then we have B=p and a—c=a’—c’, but since o, 0’3 (t),,
we have a+c=a'+c’'=t, and so o=0’, i.e. gz, is injective. Next, take an
element w=(u, v)=uptvjeS,,(—mt*}% usZ, veid2y). We have, then

(3.3) —mt?=Nw=—mu*+Nv.

Now, put a:%(H—u), ‘32%‘(1’11}, c:—%—(t—u). Then, S0, since veid(2y).

Substituting v=2g8 in [3.3), we get t*=u*+4NB, hence q, ce Z, a+c=t and
NfB=ac. Thus, we see that o=(q, 3, ¢)= X(t),. Finally, we have gz.(0)=
(a—c, 2u8)=(u, v)=w, which proves that g5, is bijective. Therefore, the study
of the map h,, is reduced to the study of the map f,,.

Here, we can make one more reduction in view of the following:

(3.4)% fallo)=fa' (o), o€2(i);.
It is enough to show that f;'(¢)Cf:i(0). So, take z=f;'(s). Then fi(z)

1) The similar equality for the map h, i.e. the equality hgi(w)=hs}(w) for we
S4,(—mt?)% is not true unless £ is imaginary.
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=(N,x, (Na)'Xy, N,y)=o0, hence N.x+N,y=a+c=1t, which implies that z e
fal o) NS (D= f7}o) which proves (3.4).

Hence, after having taken a 6= 2(t);, we can forget about ¢ and we only
have to consider the simpler diagram

fa T
(3.5) AXa—> 3, — Z°

| )
©a
and the fibre f%(o), o=(a, B, c)e 2, with a+c+0.
The map f, will play the role of N, in §2. In accordance with the nota-
tion in § 2, we shall put

X(o)y=fNo)={z=(x,y) €aXaq, fu(z)=0}

and look for a map d,: X«(o)— I{(n,), where n, being determined by ¢ in a
certain way, so that the properties (d, 1), (d, 2), (d, 3) will hold for this map.
For these purposes, let us consider the following diagram

D,
axa—{0} — I}
(3.6) %i y lN

Z’—{0} ——> N

where ¢.(2)=(Nyx, To(%y), Noy) for z=(x, y), id is to take the greatest common
divisor of three integers, N is the norm of ideals and D, is to be defined so
that the diagram is commutative. Namely, we put

Dy(z)=a"Yd(x, y) for z=(x, y)eaxa—{0} .
Then, we have

N(D(z))= (Na)™"id(x, y)1d(X, 7)
= (No)"'e(x X+yY ) c(EX+FY)
= (Na) 'e((xX+yY N EX+FY)
= (Na)?c(Nx)X*+T(Xy) XY +(N»)Y'?)
= (Na)~Yd(Nx, T(Zy), N)
= id(N,x, To(%Y), Noy)
=1d(pd(2)),

i.e. (3.6) is commutative. Therefore, if we call n, the greatest common divisor
of three integers a, T8, ¢ for g=(a, B, c)=2; then, for ze X, (o), we have
N(D(2))=1d(pu(2))=1d(z s fo(2))=1d(z 5 (0))=1d(a, T, c)=n,, and so we can define
the map
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do: Xio(a) —> I (n,)
by restricting D, on X,(6). We shall now prove the three properties:
(d, 1) a~b > Imd,=Imd,,
(4, 2) a*bd > ImdinNImd,=0,
(d, 3) for any j< If(n,), there is an ideal a such that iImd,.

In fact, let b=id(p)a with Np>0. We have then

f(pz)=rfu(z) for zeaxa.

Therefore, for any z€X.(0), we have pzeX,(o) and d,(pz)=">b""id(px, py)=
a~'id(x, y)=d,(z), which proves that Im d,SImd,. Similarly, we have Imd,&
Imd,, and (d,1) is proved. Next, suppose there is an ideal j€Im d,N\Im d.
Hence, j=d.(2)=a""1d(x, y)=d,({)=0""d(&, 5) for some z=(x, y)=aXa, {=(§, )
€bXb with fu(2)=/()=(Nax, (Na) £y, Noy)=(Ns§, (N6)~'&7, Nyy) =0=(a, B, c).
Since a+c+#0, either a#0 or ¢#0. Without loss of generality, we may assume
that a#0. Then, from the above equalities, we get y/x=n/§=f/a. Hence,
id(x, y) =1d(x, xBa™") = id(x)id(1, Ba™') and id(§, ) =1d(§)id(1, Ba~?). Since
a~id(x, y)=0""id(&, »), we have a~'id(x)=57'id(§), i.e. a~b because N(x/§)>0
by the equality N,x=N,&, which proves (d, 2). Finally, we must prove that
for a given j=I{(n,) there is an ideal a and an element z€a X a such that f,(z)
=¢ and that d,(z)=1]; here the latter condition forces us to put a=j"'d(x, »)
when z=(x, ). Now, for 6=(qa, B, ¢), we claim that x=a, y=7 satisfy our re-
quirement. In fact, since 1], a contains @ and 3, i.e. zeaXa. Next, we have
fa(z2)=(Nax, (Na) %y, Nyy)=(Na)~*(a? a8, NB)=(Na) ‘a(a, 8, c)=(Na)*ac. How-
ever, we have Na=(Nj)"!N(id(a, B))=n;'c(N(aX+BY))=n;'c(a*X*+(aTB)XY
+acY?®)=n;'an,=a; hence f.(z)=(Na)'ac=o0, which completes the proof of
(d, 3).

Therefore, if we call ay, -+, a,+ a complete set of representatives of I,/Pj,
we see that I7(n,) is the disjoint union of Imd,;, 1=i<h*. As in §2, the
group of acts on X,(0) by z—ez. Let X¥(o) be the quotient of X,(¢) with
respect to the equivalence relation defined by the action of of. We claim that

d(z)=d(2’) & z'=¢z for some ¢ =of.
In: fact, we only have to prove (=). Now, the assumption implies that
(3.7 d(x, y)=1d(x, y")  for z=(x,), 2=, ") € Xu(0) .

Since fi(2)=fu(2), we have Nx=Nx', Ny=Ny’, Xy=X%y’. Hence, there is a
psk* such that No=1 and that ¥'=px, y=py. Substituting these relations
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in [3.7), we get psof, which proves our assertion.
We have therefore the relation

(38) L) = ZIXA@)].
Using [(2.3), we can write as
(39) 2 X0)]1= T 1d).

It is easy to translate all these in terms of the Hopf map A:
hz)=2ZzZpz=(Nx—Ny, 2u%y) .

For any w=(u, v)=up+vj=uptv,j+v,uj€S,,(—mt*%, there is a unique o€
2 (t), such that gz.(0)=w. In fact, we see that

(3.10) o= (-(t+w), 5, S (t—w)).
A simple computation shows that

1
(3.11) T(5¢v)=v,.

Therefore, if we define n, to be n, we see from {(3.10), that n, is the

greatest common divisor of %(H—u), v, and —%—(t—u). Since we have A;i(w)

= foi(0) = fa'(0) = X.(0), if we denote by hgi(w)* the quotient of the fibre hzi(w)
with respect to the equivalence relation under the action of the group of, we
obtain the equality

(312) T tht@)l=, 3 1),

which can be considered as an analogue for the Hopf map of the Dirichlet
formula for binary quadratic forms.
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