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Introduction.

The first main result of this paper is a formula for the values of irreduci-
ble complex characters of finite Chevalley groups, of normal or twisted type,
on elements whose centralizers are contained in Levi factors of parabolic sub-
groups. The result is based on the organization, due to Harish-Chandra
and Springer [197]), of the character theory of these groups from the
point of view of cusp forms, and can be stated as follows.

THEOREM A. Let G be a finite group with a split (B, N)-pair of charac-
teristic p, and let (W, R) be the Coxeter system of G. Let { be an irreducible
complex-valued character of G, such that ({, $%)+0, where ¢ is an irreducible
cuspidal character of some Levi factor L, of a parabolic subgroup P, (for JSR),
and ¢ is the extension of ¢ to Py with O,(P;)<ker¢. Let x=G be an element
such that Cg(x)< Ly, for some Levi factor L; of another parabolic subgroup
Pj. Then {(x)=0 unless there exists a subset J” ] such that L, and L.
are conjugate by an element of the Coxeter group W. If this occurs, then the
value {(x) is given by

{(x) = 2L, 49A(x),

where the sum 1is taken over irreducible chavacters 2 of L;, such that 2e 7t/
for an irreducible cuspidal character n of L;., with J” S ], and L;. conjugate
to L; by an element of W,

A sharper version of A gives the value of the character {(x) on
an element x whose semisimple, or p-regular, part x; has L, as its centralizer,
in terms of certain decomposition numbers and the values of the characters 2
in A on the unipotent part x, of x. More precisely,

{x) = Zaghd(xy),

for certain algebraic integers aZ¥;, corresponding to x,, {, and the characters
¢

* This work was the subject of the author’s lecture at the International Sympo-
sium in Finite Group Theory, held in Sapporo from Sept. 1-7, 1974 (See [107).
** This research was supported in part by NSF Contract GP 37982 X.
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{4} as in the statement of This theorem is somewhat analogous
in appearance to Brauer’s Second Main Theorem ([15]), where the value of an
irreducible character belonging to a given p-block, on an element x, is given in
terms of values of characters belonging to corresponding blocks of the cen-
tralizer of the p-part of x. In our situation, the block theory is replaced by
the description of the characters due to Harish-Chandra and Springer.

The second main result is a reduction formula for characters in 1§, which
can be stated as follows.

THEOREM B. Let {G(q)} be a system of finite groups with split (B, N)-pairs
of characteristic p|q, as in [1], with {q} a set of prime powers containing all
primes, and let (W, R) be the common Coxeter system of the groups {G(q)}. For
each q, the irreducible characters in 1@ are in a natural bijective correspon-
dence with the characters of W. Let {,,<1%% be the irreducible character of
G(q) corresponding to a character ¢ of W. Let x= G(q) be an element whose
centralizer Cgpy(x) < Ls(q) for some JS R, with L;(q) a Levt factor of the para-
bolic subgroup P,(q) of G(q). Then for each irreducible character {, < 143,

Cgo,q(x) = E (C‘P!Q’ ﬁgf?)vgb,q(x) ’

where the iy, are characters in 1373, corresponding to characters {¢} of W,
extended to P,(q) as in Theorem A. The multiplicities ({,,q, 75'%) are independ-
ent of q, and are equal to the multiplicities (¢, ¢%) of the corresponding
characters of the Coxeter groups.

It follows from B that the values of the characters in 1§ on p-
regular elements whose centralizers are Levi factors of parabolic subgroups,
are given generically, as polynomials in ¢. This result, in turn, implies that
if € is the conjugacy class of such an element, then |€& NBwB| is given
generically, as a polynomial in q. The formulas for the class intersection
numbers |€ "BwB| can be used to show that the values of the irreducible
characters in 1% on certain semi-simple elements not necessarily conjugate to
elements in the split torus, are given generically, as polynomials in ¢ (see [107]).

The paper is organized into two chapters. The first contains an exposi-
tion of the work of Harish-Chandra and Springer in the setting of finite groups
with split (B, N)-pairs of characteristic . This approach starts from an axio-
matic description of the Chevalley groups and their twisted analogues, in the
language of finite groups. The results in § 1-3 are known, for finite groups
of K-rational points on reductive algebraic groups defined over finite fields
(133, [18], [19]. The first main result appears in §4. The second chapter
is concerned with a reduction theorem for 1§ and generic character values on
elements of the standard torus T=BnN\N. The appropriate set-up for this
topic is furnished by a system of (B, N)-pairs, of type (W, R), where (W, R)
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is a given Coxeter system (1], [7D.

The author wishes to acknowledge help received from Leonard Scott at
several points in both chapters. The paper was written during a sabbatical
leave spent at the Universities of Warwick, Oxford, and Virginia, and the
author expresses to the mathematicians at each of these universities his appre-
ciation of their hospitality and assistance.

Chapter I. Reduction theorems for finite groups
with split (B, N)-pairs

1. Preliminary results. The Levi decomposition.

Standard notation from finite group theory will be used. In particular
H=G means that H is a subgroup of G, while XS G means X is a subset. It
will be convenient to write a’'=%a=bab"!, for a, b G. Similarly X°*'=°X
=bXb"!, for XS G. (A, B) denotes the set of commutators (a, b)=a"'b~'ab,
for ac A, be B. 0,(G) is the unique maximal normal p-subgroup of G, for a
prime p.

We begin by recalling some facts about finite groups with split (B, N)-pairs
of characteristic p, for some prime p, ((16], [6]). Such a group G has, first of
all, a (B, N)-pair {B, N}, associated with a Coxeter system {W, R}, where
R={w,, -+, w,} is the set of distinguished generators of the finite Coxeter
group W. We shall set T=BN\N; then TN, and N/T=W. It is assumed
that the following conditions hold.

1.1) The group B is the semidirect product B=UT, with
U=0,B), and UNnT={1}.

(1.2) T is an abelian p’-group.
(1.3) T= N B".

neN
Included in the definition is the special case of an abelian p’-group T, viewed
as a split (B, N)-pair of characteristic p, with B=N=T, W={1}, R=6, and
U={1}.

Let {G, B, N, W, R} denote a finite group with a split (B, N)-pair of
characteristic p. There exists a root system 4 in euclidean space E®, such
that (W, R) can be identified with the Weyl group of 4. This means that
R={w,, ---, w,} is identified with the reflections corresponding to a set of
fundamental roots I ={a,, ---, a,} in 4. We denote by [(w) the length of w
as an element of the Coxeter system (W, R). The set of positive roots deter-
mined by II is denoted by 4,; 4. denotes the negative roots. For each
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weW, put dg=4d,.NwXd4.), 4;=4,.nwd,). Let wgp denote the unique
element of W of maximal length.

Let {n,} be a fixed set of coset representatives of T in N, such that »n,7T
corresponds to the element we W. We write H" instead of H"®, for subgroups
H of G normalized by T.

We let U- = U"®, and put

Urp=UNU», Uyz=UNU"YR", weW,
and
Uyy=UNUYRYE 1<ign.

(14) PROPOSITION. a) U -nB={1}.

b) U=UzxUy, and UgNnUf={1} for all we W.

¢) There exists a bijection a— U, between the roots {a} in 4 and the set
of N-conjugates of {Ugy, +++, Ug,}, such that for allweW and acd, *U,=Uyw-

d) For each weW, there exists an ordering {B,, B., ---} of the roots in 4,
such that Ugz="UgUg,, -+, and similarly for U},

e) (Strong form of the Bruhat decomposition.) FEach (B, B)-double coset
BwB=Bn,Ug,. Moreover, G=\) Bn,Ug, and each element x G can be ex-

wew
pressed uniquely in the form x=bn,u, with be B, we W, and ue Uy,
f) (Commutator Relations.) If {a, 8} are independent roots in 4, then

(Ua Ug) 11]10 Uiatjp

where the product is taken over all roots of the form ia+jB, with i,7>0, in
some order.

The proofs of statements a)-e) are given in[16 ] and [6]. The commutator
relations f) are proved in [12]

Let J be a subset of the set of distinguished generators R of W. We
denote by W, the parabolic subgroup of W generated by J, and by P; the
corresponding parabolic subgroup of G, given by P;=BW;B. We let Il ; be
the set of fundamental roots corresponding to J, and 4; the root system gener-
ated by II,. Put 4,,=4,n4,;, 4, =4_N4,. Letw, denote the element of
W, of maximal length. The pair {W,, J} is also a Coxeter system.

(1.5) PROPOSITION. Let J#0, and put L;=<T,U,; ac d,),V,=Uy;a e
4,—4;.>. Then the following statements hold.

a) Vis=0,(P)).

b) P;=L;V,; and L;n\V;={1}.

c) P;=Ng(V,).

d) The subgroup L; is a finite group with a split (B, N)-pair of charac-
teristic p, {By, Ng, U;, Wy, J}, with B,=BN\L;, Ny =NNL,;, U;=UNL;=Uy,,
and Coxeter system {Wy, J}.
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PROOF. The proof is similar to the proof given in [6], §85. As 4,.=
dp,; V,Z2US,;. By (1.4) (d), Us,=V,, and hence V,=U},. Let
acdy, and Bed,. For all (i, j) such that >0, 7>0, and ia+jBd, we have
ia+jBed;,. The commutator relations (1.4) (f) imply that L, < Ng(V,).

By the strong form of the Bruhat [Theorem| (Proposition| (1.4) (e)), P,=
UJUanU,;. By (1.4) (d), Uy < Ly, for allweW,. We require now the facts,

w=w

first communicated to the author by Richen, and proved in [5], that for each

a;€ll, UyyT\ I Uy Ty Uy, is a subgroup of G, and that 7, TN\ UsU_g;Ua # 9.

It follows that n,eL; for all weW,. Apply (14) (b) to obtain P,=
U Uy, U, Tr,U,.  As Vy=Us;,, and Uy, Tn, U, S L, for all we W, it fol-

weEW g

lows that P,=7V,L,. Using the commutator relations and the fact that
UyTVU U, Tny, Uy, is a subgroup of G, it can be proved in the usual way (cf.
Chapter 8) that L, has a (B, N)-pair (B, N,) with Borel subgroup B;=
Up;T, and N,= U n,T. Therefore BNL,=B;, and V,NL;=B;N\V,;=

wewg

Up,; TN U ;= {1}, by the uniqueness part of (1.4) (b).

As P,=V,L;, and L, normalizes V,, V,<0,(P;). By (1.4) (e), U is a p-
Sylow subgroup of P; and hence O,(P;,)<U. Suppose x<O,(P;). Then
x=w, veV,, v e Uy, and x™7=1v""7v""s= U, Therefore v"7€UNU",
and hence v"=1 by (1.4) (a). This completes the proof of parts a) and b) of
(1.5).

For part ¢), we have P, < Ng4V,). If the inclusion is proper, then Ng(V,)
= P,., for some subset J’ of R such that /D J. For some a,ll ,—II; U<V,
and n,,€ P;,=NgV,). Then U%<V,NU", which is impossible. Therefore
c¢) holds.

It has been noted that L, has a (B, N)-pair with Borel subgroup B,=U,,-T.
Evidently U,,=0,(B,). Moreover, szJB?é Up; TN Uy, TY=T. It follows

that L, has the required split (B, N)-pair, and (1.5) is proved.

(1.6) DEFINITION. The subgroup L, defined in Proposition (1.5), for J+ 9, is
called a standard Levi factor of the parabolic subgroup P;. The standard Levi
factor Lg of the parabolic subgroup B= Py is defined to be 7. The parabolic
subgroups P;,=BW ;B containing the given Borel subgroup B are called
standard parabolic subgroups of G. The factorization P;=L;V; is called a
Levi decomposition of Pj.

(1.7) PrOPOSITION. Let P;=L;V; be a standard parabolic subgroup of G.
For '], let P; s =L;N\Py, and V4 p=L;N\Vy. Then P, ;. is a standard
parabolic subgroup of Lj; containing the Borel subgroup B;=BNL,, and has
the Levi decomposition Py ;o =L;V; ;. The map P;—P; ;0 is a bijection of
the set of all standard parabolic subgroups contained in P, with the set of
standard parabolic subgroups of L. '
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PrROOF. L;N\ P, contains B,, and is a standard parabolic subgroup of L.
Because V,=V,, V,=V,V,, (semi-direct) and P, =L, V;=(LsV; )V,
Moreover L; V; ;< L, It follows that P; ,=L;V, , is a Levi decomposi-
tion of P, ,. If P, ,=P;; for J,J’< ], then V; =V, ;, and V,; =V,
By (1.5) (c), we have P, =P,.. Finally, if P is a standard para-
bolic subgroup of L, then P Vs is a subgroup containing B, and ﬁVJ mLJ:ﬁ.
This completes the proof.

2. Intersections of parabolic subgroups.

In §3, it will be necessary to compute the scalar product (¢¢, ¢%), for
characters ¢ and ¢ of parabolic subgroups P; and P,. By Mackey’s [Theoreml
([(11], (9.8)), this problem involves subgroups of the form P, NP3, where x is
a (P;, P;)-double coset representative. This section contains results on these
intersections, in finite groups with split (B, N)-pairs, which correspond to results
proved by Harish-Chandra and Springer (18], in the context of
algebraic groups.

Let {G, B, N, W, R} be as in §1. Let J;, ;& R. Then
(2.1) G= U P,wP;,,= U BW,wW,B

weW gy, Jg weW i, Jg
where W, s, is the set of distinguished (W,,, W,,)-double coset representatives
of the subgroups W, , and W,, of W (4], Example 3, p. 37).

(2.2) ProposITION (Kilmoyer [14]). Let [, [, S R, and let we W ;,,7,. Then
WanN\"W =Wy, where K= ], N\"*];.

All the results in this section are based on the preceding result.

(2.3) COROLLARY. Let J,,J,S R. Then

HJ1mw(HJz):”K; AJlmu}(AJz):AK-

For the rest of the section, Ji, J,, we Wy, s, and K will be as in Proposi-
tion (2.2).

(2.4) PROPOSITION. Px=(P;N\"P;)Vs,.

PROOF. As [w;w)=I(w), for all w;]J,, we have w'(d,,,)S4,. There-
fore 4,,,.Sw(d,), B;;S"P;,N\P;,, and BE(P;,N\YPy,)V,y, so that (PyyN\YPr)V
= P,, for some JS R. Suppose 7n,bn,,b" =b;n, bin,, for w,eW,, w,eW,,, b, t’,
.- € B. Then Bww,B N\ Bw,wB + 0, because we W, ;,, and l(ww,)=(w)+I(w,),
etc. Then ww,=w,w, and hence

(PJ1meJ2>VJ1§B(WJlmeJz)B:PK,

by (2.2). The reverse inclusion is clear.
(2.5) PROPOSITION. a) Vg=V,,(P;;N\*V ).
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b) PJlf\wVJzz(LJlﬂwVJg)(VJlﬂwVJz)-
c) L, N\"P,, is a standard parabolic subgroup of L,,; in fact, L;y \"Py,
:PKﬂLJl-
d) O(L; N"P;)=L; N\"Vy, and a Levi decomposition of L;, N\*V,, is
given by L; N\YPr,=Lg(L;yN\"Vys,).
PrROOF. a) We have U= V=V, and

Ve=Uqs: ac die) .

Suppose some U, such that a € 4;,, is not contained in V,;. Then a4,
S4d;, and, as a& dg, wi@)E d,, by (2.3). Moreover wa)e 4,
because we Wy, s, and a4, ,, so that Uy-1y =V, by the definition of V,,
in (1.5). Therefore U,="V,;,NP,,, and as V,, is normalized by
P; N\"V,, so that V,(P;,\"V,,) is a group, we have Vg <V, (P;yN"V,).
As the right side belongs to O,(Pg), we have a), by (1.5) (a).

b) By the proof of part a), each U,, ac4}, , which is not contained in
Vs, is contained in P; N\*V,,. Moreover, (Uy Ug) E Vs for Us =V, Ug=Vg
because V;, < Pg, by (2.4). Let x€P;;N\"V,;,; as x& Vg, we have
x=1Ixq x.€U, aeA;K. Using the commutator formulas and the above
remarks, we can rearrange the factors to obtain x=x,,-x’/, with x,,€V,,, and
x' =Tl xs with Bedy , Ug<P; NV, and & d},,. Theneach xz= L, N\"V,,,
and hence x,€V,; N“Vys, and P; N\"V,=LiNVi)(Viin®Vy,). The
reverse inclusion is clear.

c) and d). By the proof of [Proposition| (2.4), B, <*P,,, so that L, "\"P,,
is a standard parabolic subgroup of L;,. Evidently L, N\“P;,<Pg. On the
other hand, P\ L,, is a standard parabolic subgroup of L, with Levi factor
Ly, and O)(PxnN\L;)=VgNL;, by (1.7). By parts a) and b),
VenLy=L; N\"Vy,. It follows that PeN\L, =Lg(L;yyN*Vi)=LyyNYPy,.
These statements, taken together, establish ¢) and d).

The next two propositions are the important ones for the applications to
character theory.

(2.6) PROPOSITION. The following statements are equivalent.

a) Px=P,;,

b) Pun®V,=V,,

c) Ly =%L,,.

PROOF. a) implies b), by part a) of (2.5). Conversely, b) implies
Vg=V,, and hence Px=P; by (1.5) (¢). Next, a) implies Wx=
Wy, hence dgy=4d,;,. As dg=4;,, nw(d;,) by (2.3), it follows that
L; £*L,, Conversely, L;;="L,, implies L,,\*V,;,={1}, and P,;N\"V,;,=
VNV, =V, by (2.5) (b). Thus c) implies b), and the proposi-

tion is proved.
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(2.7) PROPOSITION. P, N“Ps,=Lg(P; NV, )(ViiN"Py,).
PROOF. As Py=LyVg, x€ P;,N\"P,;, can be expressed in the form

x=Ivv,,

for some [ Lg, v, P;y\"Vy4y, and v,€ V,,, by (25) (a). Then
v,eV;,N*P;,, and we have the inclusion one way. For the reverse inclusion,
Li=AUu4 T: acdy) <P, N"P;,, because dx=4,,n*4,, by (2.3).
The rest is clear.

3. Cuspidal characters.

The discussion in this section is taken from [197], with the changes neces-
sary to adapt the material to the context of finite groups with split (B, N)-
pairs.

All characters and representations are taken in the complex field C. The
set of all irreducible complex characters of a group G will be denoted by &(G).

(3.1) DEFINITIONS. Let G be a finite group with a split (B, N)-pair of
characteristic p, and Coxeter system (W, R). An irreducible character { of G
is called cuspidal if for all JE R, J# R,

=7, 3,4 =0

for all x&G. The set of irreducible cuspidal characters will be denoted by
°&(G). All characters of an abelian p’-group T are said to be cuspidal, so that
*e(T)=¢&(T).

(3.2) PROPOSITION. An irreducible character { < &(G) is cuspidal if and
only if (¢, 1$,)=0, for all proper subsets JC R.

PROOF. In case G is an abelian p’-group, the proposition is true because
all characters are cuspidal, and the condition is vacuously satisfied. Assume
now that G has Coxeter system (W, R), R+0. If {is cuspidal, then {p,(1)=0,
for JC R, implies ({|y,, 1y;,)=0, and hence ({, 1¢,) =0 by Frobenius reciprocity.
Now let {=&(G) satisfy the hypothesis of the and let Z be an
irreducible representation of CG affording {. For JER, let e,=|V,|™* EJv.

vevV

Then (¢, 1§,)=0 implies Z(e,)=0, therefore, for all xG, Z(xe;)=0. Taking
the trace, we obtain |V |~} EEV {(xv)=0. This completes the proof.
tEV g

(3.3) PrROPOSITION. Let {=&(G). There exists a standard parabolic sub-
group P, of G, with 0 S JS R, and an irreducible character o=°&(L,), such that
(&, $%)#0, where ¢ 1is the irreducible character of P, defined by ¢(mv)=¢p(m),
mel, veV,.

PrOOF (Springer [19]). Let M be an irreducible CG-module affording .
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There exist subsets /S R such that ({, 1,) #0, for example /=R, since Vz=
0,(G)={1}. Let /S R be a subset which is minimal with respect to this pro-
perty. Let N=<M be the subspace of M affording the representation 1,,;
then N+#0. Since P, normalizes V, N is a CP,-module. Let 6 be the
character of P, afforded by N; then V,=<ker @, and 6§ =30,, where the {6}
are irreducible characters of L;. Moreover, they are all cuspidal characters
of L,, because if, in the language of (1.7), for some proper para-
bolic subgroup P, of L, (0;|L;, ly,,,;)#0, there exists a vector w+0 in
N fixed by V,,,V,=V,, for J'CJ, contrary to the minimality of /. We have
also (¢, )0, and as 0 =30,, where {f,} are the characters of P, defined
by 0, (mv)=0,(m), meL,, veV, we have ({, 6%+ 0 for some i, and 0.=°&(L,),
as required.

(3.4) DEFINITION. The notation # will be used consistently for the character
g of a parabolic subgroup P, obtained from a character 6 of L, by setting
domv)=0(m), me L,, ve V,.

For the next result, introduce the subgroup Ny (L, ={weW :"L,=L,}.
Note that W, <INw(L,), for each subset JS R, because the inverse image N,
of W, in N satisfies N;=NL,, and the inverse image N’ of Nw(L,) in N
clearly normalizes N,, so that N'/N,= Ny(L,)/W,.

(3.5) THEOREM. Let G be a finite group with a split (B, N)-pair of charac-
teristic p, and Coxeter system (W, R). Let |, J,E R, and let p,€°&(L;,), 1=1, 2.
Then (¢f, ¢§)=0, unless L;,=%"L,, and ¢;="¢,, for some we W. If these
conditions are satisfied, then ¢¢=¢$§, and

(@8, ¢7) = > (1 “o1) .

u’ENW(LJl)/WJl
PrROOF (Springer [19], §5.2). By Mackey’s [I1], (9.9)),

(95?7 ¢g): b (9517 w¢2>PJlﬂwPJ2 .

wWEW Jy,J9

For a fixed weW,,;,, the subgroup P;, N*P;, can be factored, according to

(2.7) and (2.5) (b), with uniqueness of expression, as
PyN¥Pry=Lg(Lyy Vi)V NYLy)(Viy m%UVJ2>-

Note that (2.5) applies to both P;,N\*V,, and V,; N"“P,, because
wlte Wi, sy

We prove next that (@, “@.)p,,nwps,# 0 implies L;,=%L,,, and ¢,="¢,.
The scalar product

(61, “Po) =1 Py Py | 7 2 01(xy20)" Go((xy20) ™),

where the sum is taken over x€ Ly, ye L, N\"Vy, z€ V"L, and ve
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Vyn®V,,. As V, N\"V,, is contained in the kernels of both characters
involved, the scalar product is equal to a multiple of

x%) G (xyz) ' P((xyz) 1) = rzy:Z@l(xyz>w¢2<(xzz—lyz)—l) ’
which in turn is a multiple of

(36) x§z§01(xy>w€02(<x2)-1) .

By (2.5)(d), L,,n\"V,;, and V, N\"L,, are the O,-subgroups of
parabolic subgroups of L, and “L,,, respectively. Therefore, if either sub-
group is different from {1}, and the expression is different from zero, we
contradict the assumption that ¢, & °&(L,)) and ¢, € °€(L,,). Therefore both
subgroups are {1}, and by [Proposition] (2.5)(b), P;,N\*V,;, =V, and ¥V, NP,
<V,, By (2.6), it follows that L, <*L,, and L,,<" 'L,,. Hence
L, =%L,, ¢,="¢, and the proof of the first part of the theorem is com-
pleted.

In order to derive the expression for (¢f, ¢f), fix weW,, ;, such that
L, ="L,, and ¢,="9¢,. Then W, ="W,,. We now introduce the terminology
(A, B)-transversal for subgroups A, B of H to denote a set of (A, B)-double
coset representatives in H. It follows that right multiplication by w induces
a bijection of the (W,, W, )-transversals with the (W, W,,)-transversals.
Using the bijection between W, \W/W,, and P,\G/P,, it follows that the
W,y W, )-transversals, are among the (P,,"P,,)transversals. We have
(@7, 5) = (8¢, (*¢,)¢), where ¢, is the conjugate character of ¢, on “P,,. The
multiplicity (&f, (¥$,)%) is given, by Mackey’s formula, by

ZA:T (P4 wlwsbz)PJlnw'wPJz ’

where {w’} is a (W, , W, )-transversal in W, because of the discussion above,
chosen in such a way that {w'w}=W, . From the proof of the first part
of the theorem, all summands are zero except those for which L, ="""L,,
or w' e Ny(L,,). Because W, I Ny(L,)) the elements of a (W, , W, )-transversal
belonging to Nw(L,,) correspond to distinct elements of Ny(L,,)/W,,, and we
have

(91, )= > (P, 'Py) .

w Ny (Lg /Wy

The same formula holds also for (¢f, ¢7), and hence, by symmetry, for (¢§, &5).
It follows that ¢f=¢¢, and the theorem is proved.
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4. First reduction theorem.

Throughout this section {G, B, N, W, R, etc.} denotes a finite group with
a split (B, N)-pair of characteristic p, as in §1-3.

(4.1) DerINITIONS. For each JS R, the J-series of G, £,(G), is defined to
be the set of irreducible characters { < &(G) such that (¢, $6)+0 for some
ve°&(L;). We set char (G):CE§6)ZC, and ﬂJ(G):C > ZL.

efr@
Note that €x(G)="°&(G). Irreducible characters belonging to °&€(G), and

&3(G), are sometimes said to belong to the discrete series, and the principal
series, respectively, of G.

Theorem (3.5) asserts that #,(G) L M, (G) (where 1. means orthogonality
with respect to the usual scalar product of char (G)), for J, /'S R, unless
L,="L, for some weW, ;.

(4.2) DEFINITION. Let J, /S R. The subsets J and J' are called equi-
valent, with respect to W=Wpg, if L,="L, for some weW, and the notation
J~zrJ’ will be used to denote this occurrence.

We remark that ~p is, in fact, an equivalence relation. Moreover J~gzJ
if and onmly if L,="L, for some distinguished double coset representative
weW,, ;, since the subgroups W, and W,, and T, normalize the subgroups
L, and L,, respectively. Suppose now that weW, ;, L,=%YL,, and ¢’ is a
cuspidal character of L,. We wish to show that ¢ ="¢’ is a cuspidal character
of L,. Let J”CJ,and V,. ., =0,P,,NL;). As®J =], *]J"C], and considera-
tion of the root subgroups involved shows that *V,. .=V, ,»=0,(Py;NL,).
It follows that ¢ °&(L,), and by Theorem (3.5), $¢=¢’¢, This discussion,
combined with Proposition (3.3), proves the following result.

(4.3) PROPOSITION. The character ring of G, char(G), is the orthogonal
direct sum of the Z-submodules {M,(G)}, where {];} is a set of representatives
of the equivalence classes of subsets of R. In particular, J~gr] implies &€,(G)
=&,(G).

For /S R, the preceding discussion can be applied to the group L, so
that char (L J):J%Jﬂ (L), etc. The equivalence relation ~ has to be used

with care in this situation, because for subsets J/, /Y &S JS R, it may happen
that J'~zJ”, but J +*,J’. For example, if (W, R) is of type A, with R=
{wy, w,y, ws}, let J'={w,}, J ={w,}, J={w,, w,;}, and the notation arranged so
that w,w;=w,w,. Then J'~zJ’, but J/+ ;).

(4.4) FIRST REDUCTION THEOREM. Let {€&,(G), and let x=G be such
that Ce(x)= L., for some subsets J, 'S R. Then {(x)=0 unless there exists at

least one subset J" S ]’ such that J"~g]. If this occurs, let J” S ] be a repre-
sentative of the R-equivalence class of J; then
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(=_ % (€I,
eggnLyr)
Jh~pd

Proor. By Frobenius reciprocity, it follows that

=3 (& IO+ > (4 E9Ex).
ieeLyn Ee&(Pyn)
Vg <Lker §
By ([I1], (6.8)), &x)=0 for all characters in the second sum. As &(L,)=
Jg,’ &,{L,), it suffices to prove that, for 2€&,.(L,), (£, 1¢)#0 implies J’ ~x].

The proof is based on the following

(45) LEMMA. Let J”S]JSR. Then Pp=L,-V, ;.V,, where V; ;=
L, N\Vy;and P, =L, V,. Let pc&(L,.); then gFs has V, iniis kernel, and
gPs | L, = pry, where fi is the character of P, j=L;.-V, ;. defined by A(lv)
=ul), €L, vEV 0 40

ProoF. The facts about the Levi decompositions of P,. and P, were
proved in §1 (L5) and (1.7)). As V, <kerf, and is normal in
P,., V, <ker (#fr). From Mackey’s Subgroup [Theorem|, as there is only one
(P, L;)-double coset in P,., we obtain

gt ‘LJ':A&IPJ”OLJ'L"' :pLJ' ’
as required.

The proof of (4.4) is now completed as follows. Suppose (, 1¢)
+0, for 2€&,{L,), and some subset /” S J'. By (4.5), (4, gPr)+0, for
some irreducible character pg=°&(L,.). Therefore A6 is a component of /C,
and hence (g, #¢)#0. It follows that {€&,(G)N&,.(G), and hence by
(3.5), J~gJ". This completes the proof of the theorem.

The first is related to conjectures about characters in °&(G), due
to MacDonald (18], (6.7)), and was proved in a different way by Springer
(18], (6.8)), for semi-simple elements in reductive algebraic groups.

(4.6) COROLLARY. Let {=°&(G), and let x€G be such that Co(x)< L,, for
some proper subset JCR. Then {(x)=0.

(4.7) DEFINITION. An element {7 is said to have a parabolic centralizer
if Co(t)=L,, for some JS R.

We note that the concept of parabolic centralizer is a rather natural gener-
alization of the familiar concept of a regular element t=T, which satisfies the
condition Cg(t)=T.

(4.8) COROLLARY. Let {=&,(G), for some JS R. Let teT have a parabolic
centralizer L;. There exist algebraic integers {at,} depending on t, { and
A€&y(L,), such that, all at =0 unless J” ~gr] for some J” S J', and in that case,

Lu)y=_ 3 agAu),

&eg Ly
Jr~pJ
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for all p-elements uesCy(t).
PrROOF. For each p-element u<Cy(t), we have Cg(tu)<Cy(t)=L,. By
(4.4),
L(tu) =L, A9)A(tu)

with 2€&,.(J’), and J"~g/, or {(tu)=0. As t=Z(C4t)), A(tu)=A()A(1) " A(u), with
A®)A(1)"'ealg.int. {C}. Setting at=({, A)A()A(1)™?, the corollary follows.

As noted in the introduction, there is analogy between the form of Corol-
lary (4.8) and Brauer’s Second Main Theorem ((15]). Following this analogy,
we shall call the algebraic integers defined in (4.8) decomposition numbers.
For characters {<1§, it is shown in Chapter II that the decomposition numbers
{at;:} are computable in terms of the Coxeter group. Further information
about the decomposition numbers {af,;} seems to be lacking in the general
case, as is information about values of irreducible characters £=&(G) on p-
elements, to which (4.8) reduces us in certain cases.

Chapter II. Reduction theorems for characters in 1§
5. Second reduction theorem.

The main result of this section is a version of [Theorem| (4.4) for characters
in 1§, which is sharper in two ways: the decomposition numbers {ai;} are
rational integers computable in terms of the Coxeter group W ; and the only
characters A of L, for which (g, 46) #0, are components 1< 1%7'.

Throughout Chapter II, the following assumptions will be in force. We
shall consider a system S of finite groups with (B, N)-pairs of type (W, R)
{71 [1]. We assume the set {g} of prime powers associated with S contains
almost all primes. For each ¢, it is assumed that the corresponding group
with a (B, N)-pair G(g)S is a finite group with a split (B, N)-pair of charac-
teristic plg. There exist positive integers {c;} corresponding to the distin-
guished generators R = {w,, -+, w,}, such that ¢;=c; if w; and w; are conjugate
in W. For each g, it is assumed that |B(q)w;B(q)/B(q)|=¢‘, 1=i=<n, where
B(gq) denotes the Borel subgroup of G(q). Let N(g), T(q), P,(q), L(q), V,(q),
etc. denote the subgroups of G(q) considered in Chapter . We let B,{g)=
B(g)n\L,(g), and view B,(q) as a standard minimal parabolic subgroup of L,(g).

Let A be the generic ring of S, over the polynomial ring in one indeter-
minate 0=Q[ X7, as in [1], p. 252. Let K=Q(X), and K a finite extension
field of K, such that K is a splitting field for A. Let o* denote the integral
closure of o in K. For each g, there is a bijection ¢—L,,, between the irre-
ducible characters ¢ €&(W), and the irreducible characters {,, € 1%%. The
map ¢—{, , is defined in terms of the irreducible characters {X,},ccqr) of AKX,
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and depends on the choice of homomorphisms f*:0*—(Q, extending the homo-
morphisms f:0—Q given by X—g¢, for each ¢. For each JE R, {P,(q)} is a

system of type (W,, J), with generic ring A4,= ZW 0a,. We assume that the
weWw g

correspondences between characters {¢} of W, and characters p,,<155%, for
each JS R, are defined by a fixed extension f*:o0¥*—Q. Finally, for each
JER, L,(qg) is also a system of (B, N)-pairs of type (W, J), and the lift n—7,
defined in (3.4), sets up a bijection between the characters of 1373 and the
characters in 1575°.

Let IND: A—o be the homomorphism given by IND (a,,) =X, 1<i=<n,
where {a,},ew is the basis of A over o defined in p. 252. We shall also
need the Poincare polynomial P(X) of (W, R), given by P(X):wé]WIND (ay).

Because of the assumption that {g} contains almost all primes,
(2.6) of can be applied. By that theorem, for each ¢=&(W), there exists
a generic degree d,(X)eo, such that d,(q)={, (1), for all g={q}, and d,(1)=
(D).

All these considerations apply also to the systems of groups {L,(¢q)} of
type (W,, J), for each JSR.

(5.1) SECOND REDUCTION THEOREM. Let JS R, e=&(W), and g={q}. Let
xeG(q) be an element such that Cgp(x)=L,(q). Then
(5-2) Cgo,q(x): > (Cgo,q’ ﬁg.(?l))mb,q(x) ,

geeWw

where {ng,,} are the characters in 1558, whose extensions {#4 .} to P,(q) are
the characters in 153\® corresponding to the characters ¢ of W,. The multi-
plicities (L,,q, T42) are independent of q, and are given by

(6.3 (Lo Tp,) =(9, $%),

for all q, and e&(W), =W ).

The proof requires several lemmas.

(54) LEMmMA. Let ne&(L,(q) be such that (n, 1558)=0. Then (3¢, 1§3)
=0 (where 7 is defined according to Definition (3.4)).

PROOF. Suppose (7%, 1§%)+#0. Then there exists a distinguished double
coset representative we W, s such that (by Mackey’s

(5.5) (@, “1seey)Psconwaey # 0.

By (2.5), L,(9 """ B(g) is a standard parabolic subgroup of L,(g),
and hence contains B,(g). Let M be a CP,(g)-module affording 7; then V,(q)
acts trivially on M, and M can be viewed an L,(g)-module affording 7. By
(5.5), M contains a non-zero vector fixed by the elements in P,(¢)\*B(q) and
hence by the elements in B;(q). Therefore (9|5, 1as) #0, and by Frobenius
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reciprocity (n, 155%)+#0. This completes the proof of the
PROOF OF [5.2). As in the proof of (4.4), we have
Codx)= 2 (Lor 77‘;“”)7)(%)—{—‘f > (Lpyg EFO)E(x) .

P€EEWL (@) ETAGH ()
VvV g(@<Lker &

As Coy(x)NV,(@)={1}, by the hypothesis that Cg,(x)=<L,(q), &(x)=0 for
all £ in the second summand, by [1I], (6.8). By (5.4), all multiplicities
in the first sum vanish, except for those associated with characters p<157@.
This completes the proof of [(5.2).

An alternative proof of was communicated to the author by R. Kilmoyer,
for the case of a regular element x = 7T(g), i.e. for x such that Cg(x)=T(q).

The following proof of in the general case resulted from an attempt to
generalize Kilmoyer’s idea. Let p=&(L,(q)); then

(556) Coar T =1Po@) 7 3, Lol S)I(™)
=1L@I17 B (VD1 5 Coan™,

using the Levi decomposition P,(q)=L;(q¢)V (¢), and the fact that 7(lv)= (),
le L,q), veV,(q). The function ¢ defined by

— -1
(6.7 0(x)=1V (] ve% (q)@,q(xv)
is a class function on L,(g), and combined with (5.4) imply that

(5.8) 0 =2(Cp,0, 797

where the sum is taken over p=154%. Because Cq(x) =< L,(g), the map v—(x, v),
for xeL,(q), veV,(q), is a bijection of V,(g), and hence every element in the
coset xV,(¢) is conjugate to x. Therefore 0(x)={, (%), by and
follows by substitution in [5.8).

We now take up the proof of [5.3). The method is suggested by the work
of Scott [17]. Let g={q}\J {1} be fixed, and let © be the valuation ring in
K, containing o* associated with a prime ideal in o* containing X—¢. Then
£ is a discrete valuation ring, and a principal ideal domain with quotient field
K. The homomorphism f:0—Q given by X—¢ extends to a homomorphism
f*:Q—Q. For each irreducible character X of A%, X(a,)=Q for all we W,
and Xp: a,y—f*(X(ay), weW, is an irreducible character of A9, where Ay is
the specialized algebra A®,Q, by [1], (2.2).

(5.9) LEMMA. Let X be an irreducible character of AX, Then there exists

a primitive idempotent ec A¥ affording X, such that X(ea,)eQ, for all standard
basis elements {a,}uew of A.
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PrOOF. Let V be an irreducible AX-module affording X, and let V, be an
A-submodule such that V, is a free O-module with the property that a Q-basis
for V, is a K-basis of V. (The existence of V, is guaranteed because L is a
principal ideal domain with quotient field K) Let {v,, -, vy} be this Q-basis
of V,. For all a€ A, the matrix of a,: v—av, ve V, with respect to {v,, ---, v4}
is in M,Q). The matrix representation of AX with respect to this basis,
faithfully represents the Wedderburn component corresponding to X. Moreover,
X(a)=Xay, if ap=(a;;), a;;€Q. Let e be the primitive idempotent in AE
corresponding to the matrix unit E,. If ac A%, ar =(ay;), then the matrix
corresponding to ea is

<a11 aln)
0 .

Therefore, for all ac A, X(ea)=a,; =0 as required.

(5.10) LEMMA. Let e be an arbitrary primitive idempotent in A¥ affording
X. Then
d(X) X(ea,,-1)

=P A IND(a)

where d,(X) is the generic degree associated with the irreducible character ¢ of
W corresponding to X, and P(X)=3IND (a,) is the Poincare polynomial of A.
ProOOF. We first introduce the function

p: AX —> K
given by
p= % dy (X)X .
By specialization it follows that
0 w#1
P(aw) = { ’
P(X) w=1

as P(q)=|G(g): B(g)| for all ¢, and X(a,)=degree X is the multiplicity of .,
in 1§3. Another specialization argument yields

0 ww’ #1

p(awaw') - { .
P(X)IND (a,), ww' =1

Now let e:wgwlwaw; then
ey, -1= 2 Ay -1 .
Applying p to both sides we obtain
dy(X)X(ey,-1) = A4, P(X) IND (ay,) ,
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and the is proved.

(5.11) LEMMA. Let f*:Q—Q extend f: u—q. Then f* defines a homo-
morphism of Q-algebras A— A}, where A;=QQ A is the specialized algebra
associated with f (see [1], p. 252). Let e be a primitive idempotent in A¥ afford-
ing X, and satisfying Lemmas (5.9) and (5.10). Then f*(e) is a primitive idem-
potent in AY affording X;..

PrROOF. We have X(¢)==1. As P(X)IND (a,) is a unitin £ for all weW,
the idempotent ¢ in (5.10) belongs to A, f*(e) is defined, and is an
idempotent in A; such that X.(f*(e))=1. Finally, f*(¢) is primitive, because
eA%e=Ke implies ¢A%e=Qe, and hence f*(e)AJ-f*(e)= Q- f*(e).

ProOF OF [5.3). Let J be as in the hypothesis of (5.1), and let
A; be the subring of A generated by {a,}wew,. Then A, is a generic ring
of the system S,={P,(q)} of type (W, J). Let ec A¥ correspond to the
character of A¥ associated with ¢=&(W,), and let X be the irreducible character
of AX associated with {o,e- Then, for a given ¢, we may assume e is as in
(5.11). Then X(e)=m, a non-negative integer, which is independent of
g, because all primitive idempotents affording a given irreducible character of

¥ are conjugate in AX. Apply f*, and obtain X,.(f*(e))=m. It follows that
m=(Cp,q 74.0) if ¢+ 1, and that m=(9, ¢*) if ¢=1, by (5.11), because,
for example, if g#1, f*(e)EAg_?f corresponds to a primitive idempotent & in
H(P,(q), B(g)) affording 74,,, and m=2%(e)=X;.(f*(€))={0,s(&) = o, 73:8). As
m is independent of ¢, the proof of (5.1) is completed.

As in the case of the First Reduction [Theoreml, there is a sharp form of
(5.1), for elements t=T(q) of parabolic centralizer in the sense of
(4.7).

(5.12) THEOREM. Let G(g) =S, as in Theorem (5.1). Let teT(q) have a
parabolic centralizer L,(q), for some JS R. Then there exist rational integers
{a3,4} depending on JS R, ec&(W) and ¢=&W,), and independent of q, such
that for each p-element ueCq, (1),

— J
Ci"’q(tu) Mgbeé"A(TWJ) a¢,¢77¢,,q(u) .

Moreover, the decomposition numbers are given by af ,=(¢, %), for ¢ € &W),
dee(W,).
PROOF. As Cg(tu) = Ce(t)= L ,(q), (5.1) can be applied, and gives

tu) = aj tu
Csﬂ;q( ) ¢ES§VJ) ¢,¢77¢,q( ),

with af,,=(@, ¢*). As Ce(t)=L (@), ng,d(01) = (0g,d()/N¢,d(1))(0g,¢w)). Finally,
Z(L,(9)) = B,(g), and 74,,<155@. It follows that gy () =74 1), and
(5.12) is proved.
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6. Generic character values on elements of T(g).

We continue to work with a system S of finite groups {G(q)} with split
(B, N)-pairs, such that {q} contains almost all primes, so that the generic de-
grees d,(X)=Q[X] are available.
(6.1) THEOREM. For each pair {J, ¢}, with JS R and ¢=&W), there exists
a polynomial vy (X)eQ[LX] such that if teT(q) has the centralizer Cgy(t)=
L,(qg), then
Cga,q(t) = vJ,(p(Q) .

The polynomial v, (X) 1s given by
— W
V)= 3 (9, $MdyX),

where dy(X) is the generic degree associated with ¢ge&W ).
PrROOF. By (5.12), taking u=1, we have

Cgo,q(t>:¢ E (907 Sbw)vgb,q(l) ’

eew )

and 74,(1)=dy(q), for all ¢=&(W,). This completes the proof.
An element teT(q) is called regular if Cgy(t)=T(q). The first
of (6.1) has been proved independently by Kilmoyer, Seitz, and the

author [9].

(6.2) COROLLARY. Let t=T(q) be a regular element, such that Cgpy(t) =T(q).
Then for ee(W),
qu,q(ﬂ - go(l) .

PrROOF. In this case, /=0, W,= {1}, and
LoD =15,,(q)= (¢, 1)1 =¢(1),

because 1Y, is the regular character of W, and the multiplicity of ¢ in the
regular character is equal to its degree.

REMARK. Another statement of (6.2) is that, for a regular ele-
ment t=T(q),

(6.3) Loy =Ly, 153) .

It is always interesting to set ¢=1 in various polynomials in ¢ associated
with groups of Lie type. For example, if d,(X) is a generic degree, d,(1)=
¢©(1), the degree of the corresponding character of W.

(6.4) COROLLARY. Let J=R, and o= &W). Then

vJ,go(l) == vﬁ,go(q) ’
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the value of the character {,, on a regular element of T(q).
Proor. From (6.1), we have
v )= 3 )(SD, P™)dy(1)

pseWy

= 2 (P, ¢")(1)

p=eW )

=@, ( % $M)h)™)

geew
=(¢, p¥)
=(9, pr) =9P(1)=vp(q),

where p; and pp are the regular characters of W, and W, respectively.

The next result shows the connection between the character values C%q(t)
on elements t=7T(q) having parabolic centralizers, and the class intersections
€N\ B(g)wB(g), where & is the conjugacy class in G(¢) containing ¢ In [10]
information about the class intersections € "\ B(qQ)wB(q) was used to obtain
information about the character values (, (t), for p’-elements ! which are not
necessarily conjugate to elements of the standard torus TY(g).

For the discussion to follow, we adopt the set-up introduced immediately
before the proof of (5.1). Then A denotes the generic ring of &,
with basis {@,}eew over 0=Q[X]. We have K=Q(X), and K a finite exten-
sion of K which is a splitting field for A. For each ¢, Q& denotes a valuation
ring in K associated with a prime ideal in o* containing X—¢q, where o* is the
integral closure of o in K. We denote by f*:Q—(Q an extension of f: X—q.

There is an isomorphism between the specialized algebra A and the Hecke
algebra H(G(q), B(q)), with the basis element a,;=1&a, of A; corresponding

to d,;=|B(g)|™* > x, for each weW. The correspondence between irre-
rEB(QwWB(D

ducible characters ¢ of W, irreducible characters X, of AX and components
L0153 is such that
Cgo,q(dwf) - Xga,f'(aw,f) ’

where X, . is the character of A% defined by X,,;(au,s)=/*(X(a,)) 1], §2).

Suppose for the moment that (W, R) is indecomposable. By [Theorem (2.8)
of [1], corrected in [8], every irreducible character X, of A is rational, in the
sense that Z,(a,) €0, with the exception of two characters of degree 512=2°,
in case (W, R) is of type E,, and four characters of degree 4096=2'% in case
(W, R) is of type E,.

(6.5) THEOREM. For each subset JS R and element we W, there exists a
polynomial h; ,(X)=Q[X], such that if € is a conjugacy class in G(q)ES, con-
taining an element t=T(q) with parabolic centralizer Cgoy(t)=L;(q), then
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€N B(@QwB(@)| = hsw(g) .
The polynomial h;,(X) is given by

. IND (awg)
hJ,w(X) =7IND (an)_ P,(X) ¢€6’;WJ) d¢(X)a)¢(aw) ’

where
wgb: 2 (SD; ¢W)X¢ ’

pe&(W)

wg and wy are the elements of maximal length in W and W ,, respectively, and

P,(X)=_ 3 IND(a,)

s the Poincare polynomial of W,.

PrROOF. We shall first derive the formula for |€ " BwB|, and then prove
that it is given by a polynomial. Let { be an irreducible character of G(g).
Then, for we W,
x)=|B(QwB(g)NE| C(t)+@§6 | B(@)wB(g) N €| L(t)

r&B(QwB(Q)

with (€€, t'e6@’. If the left side is different from zero, then {(@ws)#0, and
hence {={,,,=1%%, because the only characters of G(¢) having a non-zero
restriction to the Hecke algebra H(G(g), B(¢)) are the components of the per-
mutation character 1§%. Multiply both sides of the equation by {(¢™%), and
sum over {€&(G(¢g)). By the second orthogonality relation ((11], (2.14)),

| Cacx(D 1 1 Bl@wB(@) N E|= pe,é?(w)cga,q(t")cw,q( | B(9)|@wy) ,

because of the remark above and the fact that @,;,=|B(g)|™* > x. Com-
xEB(Q)wWB(@

bining this formula with (6.1), and using the hypothesis that Cgg(t)
= Cacy(t™)= L,;(¢), we obtain

| B(@QwB(@) "€ |=|B(q)| |L;(g)]* Soe%.‘(vW)UJ,w(Q)Xsoyf‘(awf) .
We have | B(q)| =|T(q)| | U(¢)|=IT(g)| fAND (ayy)) and | LA (| =IT(D |1 Us()|Ps(q)
=|T(¢)| f(IND (ay,))P,(9). Consider

_ IND (awg)
hJ,w =~ IND (an)PJ(.X) ge > dt/:(X)wg/)(aw) ’

EW

with w,= Z%W)(so, ¢")X,.  As IND (ay,)|IND (a,,) in o, and P,;(g)=1 (mod g),
el
it follows that h, ,(X)ef, for each ¢, and that f*(h;(X))=|B(QwB(g)NE],
where f*:Q—@Q is an extension of f: X—q.
It remains to prove that %;, &0, and for this it is sufficient to prove that

hrw= 3 dyX)wyla,)eQ(X),
geEC(W )
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because h;,(X) is then a rational function taking integer values at infinitely
many positive integers {q}, and hence belongs to Q[X]. What has to be
shown is that if o< Galg, then a(};J,w)eK. We adopt the point of view
of the proof of following (5.11). Let {X} denote the irreducible
characters of A%, and {&} the irreducible characters of A¥. For each & let e:
be a primitive idempotent in A¥ affording &, chosen according to (5.11).
Then from the proof of [5.3),

= S (XS U,

where d:(X) is the generic degree corresponding to the character §.

The following proof that ﬁJ,weQ(X ) is independent of the discussion of
the rationality of the characters X in (2.8) of [1T]. For each auto-
morphism o, let X’ and &° denote the irreducible characters of AX and AK,
respectively, defined by

V(D ) = DApo(X(ay), <K,

and similarly for &°.
(6.6) LEMMA. Let o=Galgx. Then d:s=dg, for all irreducible characters

£ of W,
PrROOF. From the formula for a generic degree ([(1J, (2.4)) it is sufficient
to prove that

o3 IND (a,)6(@)8(@) = 33 IND (0) "4(8,)8(a.).

As {g} contains almost all primes, both expressions above belong to K, by
(2.6) of [1]. Therefore the expression on the left is invariant under
o, and as ¢ is an automorphism leaving the elements of K fixed, the right

side is the image of the left side under o.
(6.7) LEMMA. X%ezs)=2X(es), for each pair of irreducible characters X and
&, and all o= Galg.
PROOF. Let e:= gv Aw@p. Then ¢®1 is an automorphism of AZE, and
w J
(e®1)(ez) =X a0(Ap)a, is a primitive idempotent affording &%, as

§°(X0(Aw)aw) = L o(A,)0(5(ay))
= 0(2 Awé(aw))

=o(£(es)) #0.
We now have, as X(e;)e K,

X%(egs) = 3 a(2,)X%(a,) = o(X(ez)) = X(ez)
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and the is proved.
We can now complete the proof that ﬁJ,wEK. Let 0=Galg/x, and let

ws =2 X(e)X .
X

Then o(w:) = 3 X(e:)X’ = 3 X%(ez5)X’ = wes, by (6.7). As the generic de-
4 X

grees d:(X) are constant over <o) orbits {&, &%, &%, ---} it follows that 3 ds:(X)w:
is invariant under o, and hence

2de(X)we(ay)E K
for each we W, as required.

The following elegant expression for the polynomials 4,;,(X) in case /=0
is due to R. Kilmoyer. Note that /=0 is equivalent to the statement that ¢
is a regular element of T(q).

(6.8) COROLLARY (Kilmoyer). The polynomial h, ,(X), for ]=9, is given by

h¢,w<X) =IND (awR)pA(aw) ’
where py= ZEW)QD(I)XSﬂ is the regular character of the generic algebra A.
pEC

PrOOF. From the formula for A;,, in case /=0, in (6.5), we
have

hou(X)=IND (@) 3 v6,(X)1(a)
=IND (@up) 3, #(D,(a)

= IND (awR)PA(aw) ’
because Pg(X)=1, IND (a,g)=1, and vg,,(X)= ©(1) by (6.2).
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