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Introduction.

The first main result of this paper is a formula for the values of irreduci-
ble complex characters of finite Chevalley groups, of normal or twisted type,
on elements whose centralizers are contained in Levi factors of parabolic sub-
groups. The result is based on the organization, due to Harish-Chandra [13]

and Springer ([18], [19]), of the character theory of these groups from the
point of view of cusp forms, and can be stated as follows.

THEOREM A. Let $G$ be a fmite group with a split $(B, N)$ -pair of charac-
teristic $p$ , and let $(W, R)$ be the Coxeter system of G. Let $\zeta$ be an irreducible
comPlex-valued character of $G$ , such that $(\zeta,\tilde{\varphi}^{G})\neq 0$ , where $\varphi$ is an irreducible
cuspidal character of some Levi factor $L_{J}$ of a Parabolic subgroup $P_{J}$ (for $J\subseteqq R$),

and $\tilde{\varphi}$ is the extension of $\varphi$ to $P_{J}$ with $O_{p}(P_{J})\leqq ker\tilde{\varphi}$ . Let $x\in G$ be an element
such that $C_{G}(x)\leqq L_{J^{\prime}}$ , for some Levi factor $L_{J^{\prime}}$ of another Parabolic subgroup
$P_{J^{\prime}}$ . Then $\zeta(x)=0$ unless there exists a subset $J^{\prime\prime}\subseteqq J^{\prime}$ such that $L_{J}$ and $L_{J^{\prime}}$

are conjugate by an element of the Coxeter group W. If this occurs, then the
value $\zeta(x)$ is given by

$\zeta(x)=\sum(\zeta,\tilde{\lambda}^{G})\lambda(x)$ ,

where the sum is taken over irreducible characters $\lambda$ of $L_{J^{\prime}}$ , such that $\lambda\in\eta^{L_{J}}$ ,

for an irreducible $cusPidal$ character $\eta$ of $L_{J^{\prime}}$ , with $J^{\prime}\subseteqq J^{\prime}$ , and $L_{J^{\prime}}$ conjugate
to $L_{J}$ by an element of $W$ .

A sharper version of Theorem A gives the value of the character $\zeta(x)$ on
an element $x$ whose semisimple, or $p$ -regular, part $x_{s}$ has $L_{J^{\prime}}$ as its centralizer,
in terms of certain decomposition numbers and the values of the characters $\lambda$

in Theorem A on the unipotent part $x_{u}$ of $x$ . More precisely,

$\zeta(x)=\Sigma\alpha_{\zeta.\lambda}^{x_{S}}\lambda(x_{u})$ ,

for certain algebraic integers $\alpha_{\zeta,\lambda}^{x_{s}}$ , corresponding to $x_{s},$
$\zeta$ , and the characters
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$\{\lambda\}$ as in the statement of Theorem A. This theorem is somewhat analogous
in appearance to Brauer’s Second Main Theorem ([15]), where the value of an
irreducible character belonging to a given $P$ -block, on an element $x$ , is given in
terms of values of characters belonging to corresponding blocks of the cen-
tralizer of the $P$-part of $x$ . In our situation, the block theory is replaced by
the description of the characters due to Harish-Chandra and Springer.

The second main result is a reduction formula for characters in $1_{B}^{G}$ , which
can be stated as follows.

THEOREM B. Let $\{G(q)\}$ be a system of finite grouPs with split $(B, N)$ -Pairs
of characteristic $p|q$ , as in [1], with $\{q\}$ a set of prime powers containing all
$p\uparrow\dot{\tau}mes$ , and let $(W, R)$ be the common Coxeter system of the grouPs $\{G(q)\}$ . For
each $q$ , the irreducible characters in $1_{B}^{G}\{q$

)
$q$ ) are in a natural $bijec\Gamma ive$ corresPon-

dence with the characters of W. Let $\zeta_{\varphi,q}\in 1_{B(q}^{G(q}$ } be the irreducible character of
$G(q)$ cowesPonding to a character $\varphi$ of W. Let $x\in G(q)$ be an element whose
centralizer $C_{G(q)}(x)\leqq L_{J}(q)$ for some $J\subseteqq R$ , with $L_{J}(q)$ a Levi factor of the Para-
bolic subgroup $P_{J}(q)$ of $G(q)$ . Then for each irreducible character $\zeta_{\varphi,q}\in 1_{G}^{G}\{Q$

)
$q$),

$\zeta_{\varphi,q}(x)=\Sigma(\zeta_{\varphi,q}, \eta_{\psi.q}^{G(q)})\eta_{\psi,q}(x)$ ,

where the $\eta_{\psi,q}$ are characters in $1_{BJ(q)}^{LJ(q)},$ corresponding to characters $\{\psi\}$ of $W_{J}$ ,
extended to $P_{J}(q)$ as in Theorem A. The multiPlicities $(\zeta_{\varphi,q}, \eta\theta_{q}(q))$ are indePend-
ent of $q$ , and are equal to the multiplicities $(\varphi, \psi^{W})$ of the corresponding
characters of the Coxeter groups.

It follows from Theorem $B$ that the values of the characters in $1_{B}^{G}$ on p-
regular elements whose centralizers are Levi factors of parabolic subgroups,
are given generically, as polynomials in $q$ . This result, in turn, implies that
if $\mathfrak{C}$ is the conjugacy class of such an element, then $|\mathfrak{C}\cap BwB|$ is given
generically, as a polynomial in $q$ . The formulas for the class intersection
numbers $|\mathfrak{C}\cap BwB|$ can be used to show that the values of the irreducible
characters in $1_{B}^{G}$ on certain semi-simple elements not necessarily conjugate to
elements in the split torus, are given generically, as polynomials in $q$ (see [10]).

The paper is organized into two chapters. The first contains an exposi-
tion of the work of Harish-Chandra and Springer in the setting of finite groups
with split $(B, N)$ -pairs of characteristic $p$ . This approach starts from an axio-
matic description of the Chevalley groups and their twisted analogues, in the
language of finite groups. The results in \S 1-3 are known, for finite groups
of K-rational points on reductive algebraic groups defined over finite fields
([13], [18], [19]). The first main result appears in \S 4. The second chapter
is concerned with a reduction theorem for $1_{B}^{G}$ and generic character values on
elements of the standard torus $T=B\cap N$. The appropriate set-up for this
topic is furnished by a system of $(B, N)$ -pairs, of type $(W, R)$ , where $(W, R)$
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is a given Coxeter system ([1], [7]).

The author wishes to acknowledge help received from Leonard Scott at
several points in both chapters. The paper was written during a sabbatical
leave spent at the Universities of Warwick, Oxford, and Virginia, and the
author expresses to the mathematicians at each of these universities his appre-
ciation of their hospitality and assistance.

Chapter I. Reduction theorems for finite groups
with split $(B, N)$-pairs

1. Preliminary results. The Levi decomposition.

Standard notation from finite group theory will be used. In particular
$H\leqq G$ means that $H$ is a subgroup of $G$ , while $X\subseteqq G$ means $X$ is a subset. It
will be convenient to write $a^{b-1}=^{b}a=bab^{-1}$ , for $a,$ $b\in G$ . Similarly $X^{b-1}=^{b}X$

$=bXb^{-1}$ , for $X\subseteqq G$ . $(A, B)$ denotes the set of commutators $(a, b)=a^{-1}b^{-1}ab$ ,
for $a\in A,$ $b\in B$ . $O_{p}(G)$ is the unique maximal normal $p$ -subgroup of $G$ , for a
prime $p$ .

We begin by recalling some facts about finite groups $wi$th split $(B, N)- P$airs
of characteristic $p$ , for some prime $p$ , ([16], [5]). Such a group $G$ has, first of
all, a $(B, N)- pair\{B, N\}$ , associated with a Coxeter system $\{W, R\}$ , where
$R=\{w_{1}, \cdots , w_{n}\}$ is the set of distinguished generators of the finite Coxeter
group $W$. We shall set $T=B\cap N$ ; then $T\underline{\triangleleft}N$, and $N/T\cong W$ . It is assumed
that the following conditions hold.

(1.1) The group $B$ is the semidirect product $B=UT$, with
$U=O_{p}(B)$ , and $U\cap T=\{1\}$ .

\langle 1.2) $T$ is an abelian $p^{\prime}$ -group.

(1.3) $T=\bigcap_{n\in N}B^{n}$

Included in the dePnition is the special case of an abelian $p^{\prime}$ -group $T$, viewed
as a split $(B, N)$ -pair of characteristic $p$ , with $B=N=T,$ $W=\{1\},$ $ R=\emptyset$ , and
$U=\{1\}$ .

Let $\{G, B, N, W, R\}$ denote a finite group with a split $(B, N)$ -pair of
characteristic P. There exists a root system $\Delta$ in euclidean space $E^{n}$ , such
that $(W, R)$ can be identified with the Weyl group of $\Delta$ . This means that
$R=\{w_{1}, \cdots , w_{n}\}$ is $id^{\alpha}.ntified$ with the reflections corresponding to a set of
fundamental roots $\Pi=\{\alpha_{1}, \cdots , \alpha_{n}\}$ in $\Delta$ . We denote by $l(w)$ the length of $w$

as an element of the Coxeter system $(W, R)$ . The set of positive roots deter-
mined by $\Pi$ is denoted by $\Delta_{+};$ $\Delta_{-}$ denotes the negative roots. For each
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$w\in W$ , put $\Delta_{w}^{-}=\Delta_{+}\cap w^{-1}(\Delta_{-}),$ $\Delta_{w}^{+}=\Delta_{+}\cap w^{-1}(\Delta_{+})$ . Let $w_{R}$ denote the unique
element of $W$ of maximal length.

Let $\{n_{w}\}$ be a fixed set of coset representatives of $T$ in $N$, such that $n_{w}T$

corresponds to the element $w\in W$ . We write $H^{w}$ instead of $H^{n_{w}}$ , for subgroups
$H$ of $G$ normalized by $T$ .

We let $U^{-}=U^{w_{R}}$ , and put

$U_{w}^{+}=U\cap U^{w}$ , $U_{w}^{-}=U\cap U^{w_{R}w}$ , $w\in W$ ;
and

$U_{\alpha_{i}}=U\cap U^{w_{R}w_{i}}$ , $1\leqq i\leqq n$ .

(1.4) PROPOSITION. a) $U^{-}\cap B=\{1\}$ .
b) $U=U_{w}^{-}U_{w}^{+}$ , and $U_{w}^{-}\cap U_{w}^{+}=\{1\}$ for all $w\in W$ .
c) There exists a bijection $\alpha\rightarrow U_{\alpha}$ between the roots $\{\alpha\}$ in $\Delta$ and the set

of N-conjugates of $\{U_{\alpha_{1}}, \cdots , U_{a_{n}}\}$ , such that for all $w\in W$ and $\alpha\in\Delta_{1}wU_{a}=U_{w(a)}$ .
d) For each $w\in W$ , there exists an ordering $\{\beta_{1}, \beta_{2}, \}$ of the roots in $\Delta_{w}^{-}$ ,

such that $U_{w}^{-}=U_{\beta_{1}}U_{\beta_{2}},$ $\cdots$ , and similarly for $U_{w}^{+}$ .
e) (Strong form of the Bruhat decomposition.) Each $(B, B)$ -double coset

$BwB=Bn_{w}U_{w}^{-}$ . Moreover, $G=\bigcup_{w\in W}Bn_{w}U_{w}^{-}$ , and each element $x\in G$ can be ex-

Pressed uniquely in the form $x=bn_{w}u$ , with $b\in B,$ $w\in W$, and $u\in U_{w}^{-}$ .
f) (Commutator Relations.) If $\{\alpha, \beta\}$ are independent roots in $\Delta$ , then

$(U_{a}, U_{\beta})\subseteqq\prod_{i_{J}>0}U_{i\alpha+j\beta}$ ,

where the prOduct is taken over all roots of the form $ i\alpha+j\beta$ , with $i,$ $j>0$ , in
some order.

The proofs of statements $a$) $-e$) are given in [16] and [5]. The commutator
relations f) are proved in [12].

Let $J$ be a subset of the set of distinguished generators $R$ of $W$ . We
denote by $W_{J}$ the parabolic subgroup of $W$ generated by $J$, and by $P_{J}$ the
corresponding parabolic subgroup of $G$ , given by $P_{J}=BW_{J}B$ . We let $\Pi_{J}$ be
the set of fundamental roots corresponding to $J$, and $\Delta_{J}$ the root system gener-
ated by $\Pi_{J}$ . Put $\Delta_{J,+}=\Delta_{+}\cap\Delta_{J},$ $\Delta_{J,-}=\Delta_{-}\cap\Delta_{J}$ . Let $w_{J}$ denote the element of
$W_{J}$ of maximal length. The pair $\{W_{J}, J\}$ is also a Coxeter system.

(1.5) PROPOSITION. Let $ J\neq\emptyset$ , and Put $L_{J}=\langle T, U_{a} ; \alpha\in\Delta_{J}\rangle,$ $V_{J}=\langle U_{a}$ ; $\alpha\in$

$\Delta_{+}-\Delta_{J,+}\rangle$ . Then the following statements hold.
a) $V_{J}=O_{p}(P_{J})$ .
b) $P_{J}=L_{J}V_{J}$ , and $L_{J}\cap V_{J}=\{1\}$ .
c) $P_{J}=N_{G}(V_{J})$ .
d) The subgroup $L_{J}$ is a finite group with a split $(B, N)$ -Pair of charac-

teristic $p,$ $\{B_{J}, N_{J}, U_{J}, W_{J}, J\}$ , with $B_{J}=B\cap L_{J},$ $N_{J}=N\cap L_{J},$ $U_{J}=U\cap L_{J}=U_{wJ}^{-}$ ,
and Coxeter system $\{W_{J}, J\}$ .
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PROOF. The proof is similar to the proof given in [6], \S 8.5. As $\Delta_{J,+}=$

$\Delta_{w_{J}}^{-},$ $V_{J}\leqq U_{w_{J}}^{+}$ . By Proposition (1.4) (d), $U_{w_{J}}^{+}\leqq V_{J}$ , and hence $V_{J}=U_{w_{J}}^{+}$ . Let
$\alpha\in\Delta_{w_{J}}^{+}$ and $\beta\in\Delta_{J}$ . For all $(i, j)$ such that $i>0,$ $j>0$ , and $ i\alpha+j\beta\in\Delta$ , we have
$i\alpha+j\beta\in\Delta_{w_{J}}^{+}$ . The commutator relations (1.4) (f) imply that $L_{J}\leqq N_{G}(V_{J})$ .

By the strong form of the Bruhat Theorem (Proposition (1.4) $(e)$), $P_{J}=$

$w\in W_{J}UUTn_{w}U_{w}^{-}$ . By (1.4) (d), $U_{w}^{-}\leqq L_{J}$ , for all $w\in W_{J}$ . We require now the facts,

first communicated to the author by Richen, and proved in [5], that for each
$\alpha_{i}\in\Pi,$ $U_{\alpha_{i}}T\cup U_{\alpha_{i}}Tn_{w_{i}}U_{a_{i}}$ is a subgroup of $G$ , and that $ n_{w_{i}}T\cap U_{\alpha_{i}}U_{-\alpha_{i}}U_{\alpha_{i}}\neq\emptyset$ .
It follows that $n_{w}\in L_{J}$ for all $w\in W_{J}$ . Apply (1.4) (b) to obtain $P_{J}=$

$w\in W_{J}UU_{w_{J}}^{+}U_{wf}^{-}Tn_{w}U_{w}^{-}$ . As $V_{J}=U_{wJ}^{+}$ , and $U_{wJ}^{-}Tn_{w}U_{w}^{-}\subseteqq L_{J}$ for all $w\in W_{J}$ , it fol-

lows that $P_{J}=V_{J}L_{J}$ . Using the commutator relations and the fact that
$U_{\alpha_{i}}T\cup U_{\alpha_{i}}Tn_{w_{i}}U_{a_{i}}$ is a subgroup of $G$ , it can be proved in the usual way (cf.

[6], Chapter 8) that $L_{J}$ has a $(B, N)$ -pair $(B_{J}, N_{J})$ with Borel subgroup $B_{J}=$

$U_{w_{J}}^{-}T$, and $N_{J}=\bigcup_{w\in W_{J}}n_{w}T$ . Therefore $B\cap L_{J}=B_{J}$ , and $V_{J}\cap L_{J}\leqq B_{J}\cap V_{J}=$

$U_{w_{J}}^{-}T\cap U_{w_{J}}^{+}=\{1\}$ , by the uniqueness part of Proposition (1.4) (b).

As $P_{J}=V_{J}L_{J}$ , and $L_{J}$ normalizes $V_{J},$ $V_{J}\leqq 0_{p}(P_{J})$ . By (1.4) (e), $U$ is a p-
Sylow subgroup of $P_{J}$ , and hence $O_{p}(P_{J})\leqq U$ . SuPpose $x\in O_{p}(P_{J})$ . Then
$x=vv^{\prime},$ $v\in V_{J},$ $v^{\prime}\in U_{w_{J}}^{-}$ , and $x^{n_{w_{J}}}=v^{n_{w_{J}}}v^{\prime^{n_{w_{J}}}}\in U$ . Therefore $v^{\prime^{n_{w_{J}}}}\in U\cap U^{-}$ ,

and hence $v^{\prime}=1$ by (1.4) (a). This completes the proof of parts a) and b) of
Proposition (1.5).

For part c), we have $P_{J}\leqq N_{G}(V_{J})$ . If the inclusion is proper, then $N_{G}(V_{J})$

$=P_{J^{\prime}}$ , for some subset $J^{\prime}$ of $R$ such that $J^{\prime}\supset I$ For some $\alpha_{i}\in\Pi_{J^{\prime}}-\Pi_{J},$ $U_{a_{i}}\leqq V_{J}$ ,

and $n_{w_{i}}\in P_{J^{\prime}}=N_{G}(V_{J})$ . Then $U_{\alpha_{i}}^{wi}\leqq V_{J}\cap U^{-}$ , which is impossible. Therefore
c) holds.

It has been noted that $L_{J}$ has a $(B, N)$ -pair with Borel subgroup $B_{J}=U_{w_{J}}^{-}\cdot T$.
Evidently $U_{w_{J}}^{-}=O_{p}(B_{J})$ . Moreover, $\bigcap_{w\in W_{J}}B_{J}^{w}\leqq U_{wJ}^{-}T\cap(U_{w_{J}}^{-}T)^{w_{J}}=T$. It follows

that $L_{J}$ has the required split $(B, N)$ -pair, and Proposition (1.5) is proved.
(1.6) DEFINITION. The subgroup $L_{J}$ defined in Proposition (1.5), for $ J\neq\emptyset$ , is

called a standard Levi factor of the parabolic subgroup $P_{J}$ . The standard Levi
factor $L_{\emptyset}$ of the parabolic subgroup $B=P_{\emptyset}$ is defined to be $T$ . The parabolic
subgroups $P_{J}=BW_{J}B$ containing the given Borel subgroup $B$ are called
standard Parabolic subgroups of $G$ . The factorization $P_{J}=L_{J}V_{J}$ is called a
Levi decomposition of $P_{J}$ .

(1.7) PROPOSITION. Let $P_{J}=L_{J}V_{J}$ be a standard parabolic subgroup of $G$ .
For $J^{\prime}\subset J$, let $P_{J,J^{\prime}}=L_{J}\cap P_{J^{\prime}}$ , and $V_{J,J^{\prime}}=L_{J}\cap V_{J^{\prime}}$ . Then $P_{J,J^{\prime}}$ is a standard
parabolic subgroup of $L_{J}$ containing the Borel subgroup $B_{J}=B\cap L_{J}$ , and has
the Levi decompOsjtjOn $P_{J,J^{\prime}}=L_{J^{\prime}}V_{J,J^{\prime}}$ . The map $P_{J^{\prime}}\mapsto P_{J,J^{\prime}}$ is a bijection of
the set of all standard parabolic subgrouPs contained in $P_{J}$ with the set of
standard parabolic subgroups of $L_{J}$ .
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PROOF. $L_{J}\cap P_{J^{\prime}}$ contains $B_{J}$ , and is a standard parabolic subgroup of $L_{J}$ .
Because $V_{J}\leqq V_{J^{\prime}},$ $V_{J^{\prime}}=V_{J}V_{J,J^{\prime}}$ (semi-direct) and $P_{J^{\prime}}=L_{J^{\prime}}V_{J^{\prime}}=(L_{J^{\prime}}V_{J,J^{\prime}})V_{J}$ .
Moreover $L_{J^{\prime}}V_{J,J^{\prime}}\leqq L_{J}$ . It follows that $P_{J,J^{\prime}}=L_{J^{\prime}}V_{J,J^{\prime}}$ is a Levi decomposi-
tion of $P_{J,J^{\prime}}$ . If $P_{J,J^{\prime}}=P_{J,J^{\prime}}$ for $j^{\prime},$ $J^{\prime\prime}\subseteqq J$, then $V_{J,J^{\prime}}=V_{J,J^{\prime}}$ , and $V_{J^{\prime}}=V_{J}.$ .
By Proposition (1.5) (c), we have $P_{J^{\prime}}=P_{J^{\prime}}$ . Finally, if $\tilde{P}$ is a standard para-
bolic subgroup of $L_{J}$ , then $\tilde{P}V_{J}$ is a subgroup containing $B$ , and $\tilde{P}V_{J}\cap L_{J}=\tilde{P}$ .
This completes the proof.

2. Intersections of parabolic subgroups.

In \S 3, it will be necessary to compute the scalar product $(\varphi^{G}, \psi^{G})$ , for
characters $\varphi$ and $\psi$ of parabolic subgroups $P_{J}$ and $P_{J^{\prime}}$ . By Mackey’s Theorem
([11], (9.8)), this problem involves subgroups of the form $P_{J}\cap P_{J^{\prime}}^{x}$ , where $x$ is
a $(P_{J}, P_{J^{\prime}})$ -double coset representative. This section contains results on these
intersections, in finite groups with split $(B, N)$ -pairs, which correspond to results
proved by Harish-Chandra [13] and Springer ([18], [19]) in the context of
algebraic groups.

Let $\{G, B, N, W, R\}$ be as in \S 1. Let $J_{1},$ $J_{2}\subseteqq R$ . Then

(2.1) $G=_{w\in W_{J_{1},J_{2}}}UP_{J_{1}}wP_{J_{2}}=\bigcup_{w\in W_{J_{1}\cdot J_{2}}}BW_{J_{1}}wW_{J_{2}}B$

where $W_{J_{1},J_{2}}$ is the set of distinguished $(W_{J_{1}}, W_{J_{2}})$ -double coset representatives
of the subgroups $W_{J_{1}}$ and $W_{J_{2}}$ of $W$ ([4], Example 3, p. 37).

(2.2) PROPOSITION (Kilmoyer [14]). Let $J_{1},$ $J_{2}\subseteqq R$ , and let $w\in W_{J_{1},J_{2}}$ . Then
$W_{J_{1}}\cap^{w}W_{J_{2}}=W_{K}$ , where $K=J_{1}\cap^{w}J_{2}$ .

All the results in this section are based on the preceding result.
(2.3) COROLLARY. Let $J_{1},$ $J_{2}\subseteqq R$ . Then

$\Pi_{J_{1^{\cap}}}w(\Pi_{J_{2}})=\Pi_{K}$ , $\Delta_{J_{1}}\cap w(\Delta_{J_{2}})=\Delta_{K}$ .
For the rest of the section, $J_{1},$ $J_{2},$ $w\in W_{J_{1},J_{2}}$ , and $K$ will be as in Proposi-

tion (2.2).

(2.4) PROPOSITION. $P_{K}=(P_{J_{1}}\cap^{w}P_{J_{2}})V_{J_{1}}$ .
PROOF. As $l(w_{j}w)\geqq l(w)$ , for all $w_{j}\in J_{1}$ , we have $w^{-1}(\Delta_{J_{1,+}})\subseteqq\Delta_{+}$ . There-

fore $\Delta_{J_{1},+}\subseteqq w(\Delta_{+}),$ $B_{J_{1}}\subseteqq wP_{J_{2}}\cap P_{J_{1}}$ , and $B\subseteqq(P_{J_{1}}\cap^{w}P_{J_{2}})V_{J_{1}}$ , so that $(P_{J_{1}}\cap^{w}P_{J_{2}})V_{J_{1}}$

$=P_{J}$ , for some $J\subseteqq R$ . Suppose $n_{w}bn_{w_{2}}b^{\prime}=b_{1}n_{w_{1}}b_{1}^{\prime}n_{w}$ , for $w_{1}\in W_{J_{1}},$ $w_{2}\in W_{J_{2}},$ $b,$ $b^{\prime}$ ,
$...\in B$ . Then $ Bww_{2}B\cap Bw_{1}wB\neq\emptyset$ , because $w\in W_{J_{1},J_{2}}$ , and $1(ww_{2})=l(w)+l(w_{2})$ ,

etc. Then $ww_{2}=w_{1}w$ , and hence

$(P_{J_{1}}\cap^{w}P_{J_{2}})V_{J_{1}}\leqq B(W_{J_{1}}\cap^{w}W_{J_{2}})B=P_{K}$ ,

by Proposition (2.2). The reverse inclusion is clear.
(2.5) PROPOSITION. a) $V_{K}=V_{J_{1}}(P_{J_{1}}\cap^{w}V_{J_{2}})$ .
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b) $P_{J_{1}}\cap^{w}V_{J_{2}}=(L_{J_{1}}\cap^{w}V_{J_{2}})(V_{J_{1}}\cap^{w}V_{J_{2}})$ .
c) $L_{J_{1}}\cap^{w}P_{J_{2}}$ is a standard parabolic subgrouP of $L_{J_{1}}$ ; in fact, $L_{J_{1}}\cap^{w}P_{J_{2}}$

$=P_{K}\cap L_{J_{1}}$ .
d) $O_{p}(L_{J_{1}}\cap^{w}P_{J_{2}})=L_{J_{1}}\cap^{w}V_{J_{2}}$ , and a Levi decompOsitiOn of $L_{J_{1}}\cap^{w}V_{J_{2}}$ is

glven by $L_{J_{1}}\cap^{w}P_{J_{2}}=L_{K}(L_{J_{1}}\cap^{w}V_{J_{2}})$ .
PROOF. a) We have $U\geqq V_{K}\geqq V_{J_{1}}$ , and

$ V_{K}=\langle U_{\alpha} : \alpha\in\Delta_{w_{K}}^{+}\rangle$ .
Suppose some $U_{\alpha}$ such that $\alpha\in\Delta_{w_{K}}^{+}$ , is not contained in $V_{J_{1}}$ . Then $\alpha\in\Delta_{w_{J_{1}}}^{-}$

$\subseteqq\Delta_{J_{1}}$ , and, as $\alpha\not\in\Delta_{K},$ $w^{-1}(\alpha)\not\in\Delta_{J_{2}}$ by Corollary (2.3). Moreover $w^{-1}(\alpha)\in\Delta_{+}$

because $w\in W_{J_{1},J_{2}}$ and $\alpha\in\Delta_{J_{1},+}$ , so that $U_{w^{-1}(a)}\leqq V_{J_{2}}$ by the definition of $V_{J_{2}}$

in Proposition (1.5). Therefore $U_{\alpha}\leqq^{w}V_{J_{2}}\cap P_{J_{1}}$ , and as $V_{J_{1}}$ is normalized by
$P_{J_{1}}\cap^{w}V_{J_{2}}$ so that $V_{J_{1}}(P_{J_{1}}\cap^{w}V_{J_{2}})$ is a group, we have $V_{K}\leqq V_{J_{1}}(P_{J_{1}}\cap^{w}V_{J_{2}})$ .
As the right side belongs to $O_{p}(P_{K})$ , we have a), by Proposition (1.5) (a).

b) By the proof of part a), each $U_{a},$ $\alpha\in\Delta_{w_{K}}^{+}$ , which is not contained in
$V_{J_{1}}$ is contained in $P_{J_{1}}\cap^{w}V_{J_{2}}$ . Moreover, $(U_{a}, U_{\beta})\subseteqq V_{J_{1}}$ for $U_{\alpha}\leqq V_{J_{1}},$ $U_{\beta}\leqq V_{K}$

because $V_{J_{1}}\underline{\triangleleft}P_{K}$ , by Proposition (2.4). Let $x\in P_{J_{1}}\cap^{w}V_{J_{2}}$ ; as $x\in V_{K}$ , we have
$x=\prod x_{a},$ $x_{\alpha}\in U_{a},$ $\alpha\in\Delta_{w_{K}}^{+}$ . Using the commutator formulas and the above
remarks, we can rearrange the factors to obtain $x=x_{J_{1}}\cdot x^{\prime}$ , with $x_{J_{1}}\in V_{J1}$ , and
$x^{\prime}=\Pi x_{\beta}$ , with $\beta\in\Delta_{w_{K}}^{+},$ $U_{\beta}\leqq P_{J_{1}}\cap^{w}V_{J_{2}}$ , and $\beta\not\in\Delta_{w_{J_{1}}}^{+}$ . Then each $x_{\beta}\in L_{J_{1}}\cap^{w}V_{J_{2}}$ ,
and hence $x_{J_{1}}\in V_{J_{1}}\cap^{w}V_{J_{2}}$ , and $P_{J_{1}}\cap^{w}V_{J_{2}}\leqq(L_{J_{1}}\cap^{w}V_{J_{2}})(V_{J_{1}}\cap^{w}V_{J_{2}})$ . The
reverse inclusion is clear.

c) and d). By the proof of Proposition (2.4), $B_{J_{1}}\leqq wP_{J_{2}}$ , so that $L_{J_{1}}\cap^{w}P_{J_{2}}$

is a standard parabolic subgroup of $L_{J_{1}}$ . Evidently $L_{J_{1}}\cap^{w}P_{J_{2}}\leqq P_{K}$ . On the
other hand, $P_{K}\cap L_{J_{1}}$ is a standard parabolic subgroup of $L_{J_{1}}$ , with Levi factor
$L_{K}$ , and $O_{p}(P_{K}\cap L_{J_{1}})=V_{K}\cap L_{J_{1}}$ , by Proposition (1.7). By parts a) and b),
$V_{K}\cap L_{J_{1}}=L_{J_{1}}\cap^{w}V_{J_{2}}$ . It follows that $P_{K}\cap L_{J_{1}}=L_{K}(L_{J_{1}}\cap^{w}V_{J_{2}})\leqq L_{J_{1}}\cap^{w}P_{J_{2}}$ .
These statements, taken together, establish c) and d).

The next two propositions are the important ones for the applications to
character theory.

(2.6) PROPOSITION. The following statements are equivalent.
a) $P_{K}=P_{J_{1}}$ ,

b) $P_{J_{1^{\cap^{w}}}}V_{J_{2}}\leqq V_{J_{1}}$ ,

c) $L_{J_{1}}\leqq wL_{J_{2}}$ .
PROOF. a) implies b), by part a) of Proposition (2.5). Conversely, b) implies

$V_{K}=V_{J_{1}}$ , and hence $P_{K}=P_{J_{1}}$ by Proposition (1.5) (c). Next, a) implies $W_{K}=$

$W_{J_{1}}$ , hence $\Delta_{K}=\Delta_{J_{1}}$ . As $\Delta_{K}=\Delta_{J_{1}}\cap w(\Delta_{J_{2}})$ by Corollary (2.3), it follows that
$L_{J_{1}}\leqq^{w}L_{J_{2}}$ . Conversely, $L_{J_{1}}\leqq^{w}L_{J_{2}}$ implies $L_{J_{1}}\cap^{w}V_{J_{2}}=\{1\}$ , and $P_{J_{1}}\cap^{w}V_{J_{2}}=$

$V_{J_{1}}\cap^{w}V_{J_{2}}\leqq V_{J_{1}}$ , by Proposition (2.5) (b). Thus c) implies b), and the proposi-

tion is proved.
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(2.7) PROPOSITION. $P_{J_{1}}\cap^{w}P_{J_{2}}=L_{K}(P_{J_{1}}\cap^{w}V_{J_{2}})(V_{J_{1}}\cap^{w}P_{J_{2}})$ .
PROOF. As $P_{K}=L_{K}V_{K},$ $x\in P_{J_{1}}\cap^{w}P_{J_{2}}$ can be expressed in the form

$x=lv_{1}v_{2}$ ,

for some $l\in L_{K},$ $v_{1}\in P_{J_{1}}\cap^{w}V_{J_{2}}$ , and $v_{2}\in V_{J_{1}}$ , by Proposition (2.5) (a). Then
$v_{2}\in V_{J_{1}}\cap^{w}P_{J_{2}}$ , and we have the inclusion one way. For the reverse inclusion,
$L_{K}=\langle U_{a}, T:\alpha\in\Delta_{K}\rangle\leqq P_{J_{1}}\cap^{w}P_{J_{2}}$ , because $\Delta_{K}=\Delta_{J_{1}}\cap^{w}\Delta_{J_{2}}$ by Corollary (2.3).

The rest is clear.

3. Cuspidal characters.

The discussion in this section is taken from [19], with the changes neces-
sary to adapt the material to the context of finite groups with split $(B, N)-$

pairs.
All characters and representations are taken in the complex field $C$. The

set of all irreducible complex characters of a group $G$ will be denoted by $\mathcal{E}(G)$ .
(3.1) DEFINITIONS. Let $G$ be a finite group with a split $(B, N)$ -pair of

characteristic $p$ , and Coxeter system $(W, R)$ . An irreducible character $\zeta$ of $G$

is called cuspidal if for all $J\subseteqq R,$ $J\neq R$ ,

$\zeta_{P_{J}}(x)=\frac{1}{|V_{J}|}\sum_{v\in V_{J}}\zeta(xv)=0$

for all $x\in G$ . The set of irreducible cuspidal characters will be denoted by
$\circ \mathcal{E}(G)$ . All characters of an abelian $p^{\prime}$ -group $T$ are said to be cuspidal, so that
$0_{\mathcal{E}(T)=\mathcal{E}(T)}$

(3.2) PROPOSITION. An irreducible character $\zeta\in \mathcal{E}(G)$ is $cusPidal$ if and
only if $(\zeta, 1_{VJ}^{G})=0$ , for all Proper subsets $J\subset R$ .

PROOF. In case $G$ is an abelian $p^{\prime}$ -group, the proposition is true because
all characters are cuspidal, and the condition is vacuously satisfied. Assume
now that $G$ has Coxeter system $(W, R),$ $ R\neq\emptyset$ . If $\zeta$ is cuspidal, then $\zeta_{p_{J}}(1)=0$ ,
for $J\subset R$ , implies $(\zeta|_{V_{J}}, 1_{VJ})=0$ , and hence $(\zeta, 1_{VJ}^{G})=0$ by Frobenius reciprocity.
Now let $\zeta\in \mathcal{E}(G)$ satisfy the hypothesis of the Proposition, and let $Z$ be an
irreducible representation of $CG$ affording $\zeta$ . For $J$ gi $R$ , let $e_{J}=|V_{J}|^{-1}\sum_{v\in V_{J}}v$ .
Then $(\zeta, 1_{VJ}^{G})=0$ implies $Z(e_{J})=0$ , therefore, for all $x\in G,$ $Z(xe_{J})=0$ . Taking
the trace, we obtain $|V_{J}|^{-1}\sum_{\iota\in V_{J}}\zeta(xv)=0$ . This completes the proof.

(3.3) PROPOSITION. Let $\zeta\in \mathcal{E}(G)$ . There exists a standard parabolic sub-
group $P_{J}$ of $G$ , with $\emptyset\subseteqq J\subseteqq R$ , and an irreducible character $\varphi\in\circ \mathcal{E}(L_{J})$ , such that
$(\zeta,\tilde{\varphi}^{G})\neq 0$ , where $\tilde{\varphi}$ is the irreducible character of $P_{J}$ defined by $\tilde{\varphi}(mv)=\varphi(m)_{r}$

$m\in L_{J},$ $v\in V_{J}$ .
PROOF (Springer [19]). Let $M$ be an irreducible CG-module affording $\zeta$ .
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There exist subsets $J\subseteqq R$ such that $(\zeta, 1_{VJ}^{G})\neq 0$ , for example $J=R$ , since $V_{R}=$

$O_{p}(G)=\{1\}$ . Let $J\subseteqq R$ be a subset which is minimal with respect to this pro-
perty. Let $N\leqq M$ be the subspace of $M$ affording the representation $1_{VJ}$ ;
then $N\neq 0$ . Since $P_{J}$ normalizes $V_{J},$ $N$ is a $CP_{J}$ -module. Let $\theta$ be the
character of $P_{J}$ afforded by $N$ ; then $ V_{J}\leqq ker\theta$ , and $\theta=\sum\theta_{i}$ , where the $\{\theta_{i}\}$

are irreducible characters of $L_{J}$ . Moreover, they are all cuspidal characters
of $L_{J}$ , because if, in the language of Proposition (1.7), for some proper para-
bolic subgroup $P_{J,J^{\prime}}$ of $L_{J},$ $(\theta_{i}|L_{J^{\prime}}, 1_{V_{J,J^{\prime}}})\neq 0$ , there exists a vector $w\neq 0$ in
$N$ fixed by $V_{J,J^{\prime}}V_{J}=V_{J^{\prime}}$ , for $J^{\prime}\subset J$, contrary to the minimality of $J$. We have
also $(\zeta, \theta^{G})\neq 0$ , and as $\theta=\sum\tilde{\theta}_{i}$ , where $\{\tilde{\theta}_{i}\}$ are the characters of $P_{J}$ defined
by $\theta_{i}(mv)=\theta_{i}(m),$ $m\in L_{J},$ $v\in V_{J}$ , we have $(\zeta,\tilde{\theta}_{\ell}^{G})\neq 0$ for some $i$ , and $\theta_{i}\in\circ \mathcal{E}(L_{J})$ ,
as required.

(3.4) DEFINITION. The notation $\tilde{\theta}$ will be used consistently for the character
$\tilde{\theta}$ of a parabolic subgroup $P_{J}$ obtained from a character $\theta$ of $L_{J}$ by setting
$\tilde{\theta}(mv)=\theta(m),$ $m\in L_{J},$ $v\in V_{J}$ .

For the next result, introduce the subgroup $N_{W}(L_{J})=\{w\in W:^{w}L_{J}=L_{J}\}$ .
Note that $W_{J}\underline{\triangleleft}N_{W}(L_{J})$ , for each subset $J\subseteqq R$ , because the inverse image $N_{J}$

of $W_{J}$ in $N$ satisfies $N_{J}=N\cap L_{J}$ , and the inverse image $N^{\prime}$ of $N_{W}(L_{J})$ in $N$

clearly normalizes $N_{J}$ , so that $N^{\prime}/N_{J}\cong N_{W}(L_{J})/W_{J}$ .
(3.5) THEOREM. Let $G$ be a finite group with a split $(B, N)- p$air of charac-

teristic $p$ , and Coxeter system $(W, R)$ . Let $J_{1},$ $J_{2}\subseteqq R$ , and let $\varphi_{i}\in^{o}\mathcal{E}(L_{J_{i}}),$ $i=1,2$ .
Then $(\tilde{\varphi}_{1}^{G},\tilde{\varphi}_{2}^{G})=0$ , unless $L_{J_{1}}=^{w}L_{J_{2}}$ and $\varphi_{1}=^{w}\varphi_{2}$ , for some $w\in W$ . If these
conditions are satisfied, then $\tilde{\varphi}_{1}^{G}=\tilde{\varphi}_{2}^{G}$ , and

$(\tilde{\varphi}_{1}^{G},\tilde{\varphi}_{1}^{G})=\sum_{J_{1}w\in N_{W}(L)/W_{J_{1}}}(\varphi_{1}, w\varphi_{1})$ .

PROOF (Springer [19], \S 5.2). By Mackey’s Theorem ([11], (9.8)),

$(\tilde{\varphi}_{1}^{G},\tilde{\varphi}_{2}^{G})=\sum_{w\in W_{J_{1},J_{2}}}(\tilde{\varphi}_{1}, w\tilde{\varphi}_{2})_{PJ_{1}\cap w_{P_{J_{2}}}}$ .

For a fixed $w\in W_{J_{1},J_{2}}$ , the subgroup $P_{J1}\cap^{w}P_{J_{2}}$ can be factored, according to
Proposition (2.7) and (2.5) (b), with uniqueness of expression, as

$P_{J1}\cap^{w}P_{J_{2}}=L_{K}(L_{J_{1}}\cap^{w}V_{J_{2}})(V_{J_{1}}\cap^{w}L_{J_{2}})(V_{J_{1}}\cap^{w}V_{J_{2}})$ .

Note that Proposition (2.5) applies to both $P_{J1}\cap^{w}V_{J_{2}}$ and $V_{J_{1}}\cap^{w}P_{J_{2}}$ , because
$w^{-1}\in W_{J_{2},J_{1}}$ .

We prove next that $(\tilde{\varphi}_{1}, w\tilde{\varphi}_{2})_{P_{J_{1}}\cap w_{P_{J_{2}}}}\neq 0$ implies $L_{J_{1}}=^{w}L_{J_{2}}$ , and $\varphi_{1}=^{w}\varphi_{2}$ .
The scalar product

$(\tilde{\varphi}_{1}, w\tilde{\varphi}_{2})=|P_{J_{1^{\cap^{w}}}}P_{J_{2}}|^{-1}\sum\tilde{\varphi}_{1}(xyzv)^{w}\tilde{\varphi}_{2}((xyzv)^{-1})$ ,

where the sum is taken over $x\in L_{K},$ $y\in L_{J_{1}}\cap^{w}V_{J_{2}},$ $z\in V_{J_{1}}\cap^{w}L_{J_{2}}$ , and $ v\in$
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$V_{J_{1}}\cap^{w}V_{J_{2}}$ . As $V_{J_{1}}\cap^{w}V_{J_{2}}$ is contained in the kernels of both characters
involved, the scalar product is equal to a multiple of

$\sum_{x,y,z}\tilde{\varphi}_{1}(xyz)^{w}\tilde{\varphi}_{2}((xyz)^{-1})=\sum_{x,yz}.\tilde{\varphi}_{1}(xyz)^{w}\tilde{\varphi}_{2}((xzz^{-1}yz)^{-1})$ ,

which in turn is a multiple of

(3.6) $\sum_{x.y,z}\varphi_{1}(xy)^{w}\varphi_{2}((xz)^{-1})$ .

By Proposition (2.5)(d), $L_{J_{1}}\cap^{w}V_{J_{2}}$ and $V_{J_{1}}\cap^{w}L_{J_{2}}$ are the $O_{p}$ -subgroups of
parabolic subgroups of $L_{J_{1}}$ and $wL_{J_{2}}$ , respectively. Therefore, if either sub-
group is different from {1}, and the expression (3.6) is different from zero, we
contradict the assumption that $\varphi_{1}\in\circ \mathcal{E}(L_{J_{1}})$ and $\varphi_{2}\in\circ \mathcal{E}(L_{J_{2}})$ . Therefore both
subgroups are {1}, and by Proposition (2.5)(b), $P_{J_{1}}\cap^{w}V_{J_{2}}\leqq V_{J_{1}}$ and w-l

$V_{J_{1}}\cap P_{J_{2}}$

$\leqq V_{J_{2}}$ . By Proposition (2.6), it follows that $L_{J_{1}}\leqq wL_{J_{2}}$ and $L_{J_{2}}\leqq w- 1L_{J_{1}}$ . Hence
$L_{J_{1}}=^{w}L_{J_{2}},$ $\varphi_{1}=^{w}\varphi_{2}$ , and the proof of the first part of the $\llcorner theorem$ is com-
pleted.

In order to derive the expression for $(\tilde{\varphi}_{1}^{G},\tilde{\varphi}_{2}^{G})$ , fix $w\in W_{J_{1}J_{2}}$ such that
$L_{J_{1}}=^{w}L_{J_{2}}$ and $\varphi_{1}=^{w}\varphi_{2}$ . Then $W_{J_{1}}=^{w}W_{J_{2}}$ . We now introduce the terminology
$(A, B)$ -transversal for subgroups $A,$ $B$ of $H$ to denote a set of $(A, B)$ -double
coset representatives in $H$. It follows that right multiplication by $w$ induces
a bijection of the $(W_{J_{1}}, W_{J_{1}})$ -transversals with the $(W_{J_{1}}, W_{J_{2}})$ -transversals.
Using the bijection between $W_{J_{1}}\backslash W/W_{J_{2}}$ and $P_{J_{1}}\backslash G/P_{J_{2}}$ , it follows that the
$(W_{J_{1}}, W_{J_{1}})$ -transversals, are among the $(P_{J_{1}}, wP_{J_{2}})$ -transversals. We have
$(\tilde{\varphi}_{1}^{G},\tilde{\varphi}_{2}^{G})=(\tilde{\varphi}_{1}^{G}, (^{w}\tilde{\varphi}_{2})^{G})$ , where $w\tilde{\varphi}_{2}$ is the conjugate character of $\tilde{\varphi}_{2}$ on $wP_{J_{2}}$ . The
multiplicity $(\tilde{\varphi}_{1}^{G}, (^{w}\tilde{\varphi}_{2})^{G})$ is given, by Mackey’s formula, by

$\sum_{w^{\prime}}(\tilde{\varphi}_{1}, w^{\prime}w\tilde{\varphi}_{2})_{P_{J_{1}}\cap^{w^{t}w_{PJ_{2}}}}$ ,

where $\{w^{\prime}\}$ is a $(W_{J_{1}}, W_{J_{1}})$ -transversal in $W$ , because of the discussion above,
chosen in such a way that $\{w^{\prime}w\}=W_{J_{1},J_{2}}$ . From the proof of the first part
of the theorem, all summands are zero except those for which $L_{J_{1}}=^{w^{l}w}L_{J_{2}}$ ,
or $w^{\prime}\in N_{W}(L_{J_{1}})$ . Because $W_{J_{1}}\underline{\triangleleft}N_{W}(L_{J_{1}})$ the elements of a $(W_{J_{1}}, W_{J_{1}})$ -transversal
belonging to $N_{W}(L_{J_{1}})$ correspond to distinct elements of $N_{W}(L_{J_{1}})/W_{J_{1}}$ , and we
have

$(\tilde{\varphi}_{1}^{G},\overline{\varphi}_{2}^{G})=\sum_{w^{\prime}\in N_{W}(L_{J_{1}})/W_{J_{1}}}(\varphi_{1}, w^{\prime}\varphi_{1})$ .

The same formula holds also for $(\tilde{\varphi}_{1}^{G},\tilde{\varphi}_{1}^{G})$ , and hence, by symmetry, for $(\tilde{\varphi}_{2}^{G},\tilde{\varphi}_{2}^{G})$ .
It follows that $\tilde{\varphi}_{1}^{G}=\tilde{\varphi}_{2}^{G}$ , and the theorem is proved.
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4. First reduction theorem.

Throughout this section { $G,$ $B,$ $N,$ $W,$ $R$ , etc.} denotes a finite group with
a split $(B, N)$ -pair of characteristic $p$ , as in \S 1-3.

(4.1) DEFINITIONS. For each $J\subseteqq R$ , the J-series of $G,$ $\mathcal{E}_{J}(G)$ , is defined to
be the set of irreducible characters $\zeta\in \mathcal{E}(G)$ such that $(\zeta,\tilde{\varphi}^{G})\neq 0$ for some
$\varphi\in^{o}\mathcal{E}(L_{J})$ . We set char $(G)=\sum_{\zeta\in \mathcal{E}(G)}Z\zeta$ , and $\mathcal{M}_{J}(G)=\sum_{\zeta\in 8J(G)}Z\zeta$ .

Note that $\mathcal{E}_{R}(G)=\circ \mathcal{E}(G)$ . Irreducible characters belonging to $\circ \mathcal{E}(G)$ , and
$\mathcal{E}\emptyset(G)$ , are sometimes said to belong to the discrete series, and the Principal
series, respectively, of $G$ .

Theorem (3.5) asserts that $\mathcal{M}_{J}(G)\perp \mathcal{M}_{J^{\prime}}(G)$ (where $\perp$ means orthogonality
with respect to the usual scalar product of char $(G))$ , for $J,$ $J^{\prime}\subseteqq R$ , unless
$L_{J}=^{w}L_{J^{\prime}}$ for some $w\in W_{J,J^{\prime}}$ .

(4.2) DEFINITION. Let $J,$ $J^{\prime}\subseteqq R$ . The subsets $J$ and $J^{\prime}$ are called equi-
valent, with resPect to $W=W_{R}$ , if $L_{J}=^{w}L_{J^{\prime}}$ for some $w\in W$ , and the notation
$J\sim {}_{R}J^{\prime}$ will be used to denote this occurrence.

We remark that $\sim_{R}$ is, in fact, an equivalence relation. Moreover $I\sim_{R}I^{\prime}$

if and only if $L_{J}=^{w}L_{J^{\prime}}$ for some distinguished double coset representative
$w\in W_{J,J^{\prime}}$ , since the subgroups $W_{J}$ and $W_{J^{\prime}}$ , and $T$ , normalize the subgroups
$L_{J}$ and $L_{J^{\prime}}$ , respectively. Suppose now that $w\in W_{J,J^{\prime}},$ $L_{J}=^{w}L_{J^{\prime}}$ , and $\varphi^{\prime}$ is a
cuspidal character of $L_{J^{\prime}}$ . We wish to show that $\varphi=^{w}\varphi^{\prime}$ is a cuspidal character
of $L_{J}$ . Let $J^{\prime}\subset J^{\prime}$ , and $V_{J^{\prime},J^{\prime}}=O_{p}(P_{J^{\prime}}\cap L_{J^{\prime}})$ . As $wJ^{\prime}=J,$ $wJ‘‘\subset J$, and considera-
tion of the root subgroups involved shows that $wV_{J^{\prime},J^{\prime}}=V_{J,wJ^{\prime}}=O_{p}(P_{wJ^{\prime}}\cap L_{J^{\prime}})$ .
It follows that $\varphi\in\circ \mathcal{E}(L_{J})$ , and by Theorem (3.5), $\tilde{\varphi}^{G}=\tilde{\varphi}^{\prime_{G}}$ . This discussion,
combined with Proposition (3.3), proves the following result.

(4.3) PROPOSITION. The character ring of $G$ , char $(G)$ , is the orthogonal
direct sum of the Z-submodules $\{\mathcal{M}_{Ji}(G)\}$ , where $\{J_{i}\}$ is a set of $reP$resentatives
of the equivalence classes of subsets of R. In particular, $I\sim RI^{\prime}$ imPlies $\mathcal{E}_{J}(G)$

$=\mathcal{E}_{J^{\prime}}(G)$ .
For $J\subseteqq R$ , the preceding discussion can be applied to the group $L_{J}$ , so

that char $(L_{J})=\sum_{JJ^{\prime\subseteqq}}\mathcal{M}_{J^{\prime}}(L_{J})$ , etc. The equivalence relation $\sim$ has to be used

with care in this situation, because for subsets $J^{\prime},$ $I^{\prime\prime}\subseteqq J\subseteqq R$ , it may happen
that $1^{\prime}\sim_{R}1^{\prime\prime}$ , but $J^{\prime_{\eta_{J}^{6}}}J^{\prime\prime}$ . For example, if $(W, R)$ is of type $A_{3}$ , with $R=$

$\{w_{1}, w_{2}, w_{3}\}$ , let $J^{\prime}=\{w_{1}\},$ $J^{\prime\prime}=\{w_{3}\},$ $J=\{w_{1}, w_{3}\}$ , and the notation arranged so
that $w_{1}w_{3}=w_{3}w_{1}$ . Then $J^{\prime}\sim_{R}J^{\nu}$ , but $J^{\prime}’\rho_{J}J^{r}$ .

(4.4) FIRST REDUCTION THEOREM. Let $\zeta\in \mathcal{E}_{J}(G)$ , and let $x\in G$ be such
that $C_{G}(x)\leqq L_{J^{\prime}}$ , for some subsets $J,$ $J^{\prime}\subseteqq R$ . Then $\zeta(x)=0$ unless there exists at
least one subset $1^{\prime}\subseteqq J^{\prime}$ such that $J^{\prime}\sim_{R}I$ If this occurs, let $J^{\prime}\subseteqq J^{\prime}$ be a rePre-
sentative of the R-equivalence class of $J$ ; then
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$\zeta(x)=\sum_{\lambda\in 8_{J}’(L_{J^{\prime}})}(\zeta,\tilde{\lambda}^{G})\lambda(x)$ .

PROOF. By Frobenius reciprocity, it follows that

$\zeta(x)=\sum_{\lambda\in \mathcal{E}(L_{J^{\prime}})}(\zeta,\tilde{\lambda}^{G})\lambda(x)+\sum_{\xi\in \mathcal{E}(P_{J^{\prime}})}(\lambda, \xi^{G})\xi(x)$ .
$ V_{J^{J}}\underline{\{}ker\xi$

By ([11], (6.8)), $\xi(x)=0$ for all characters in the second sum. As $\mathcal{E}(L_{J^{\prime}})=$

$J^{\prime}\subseteqq U,\mathcal{E}_{J^{\prime}}(L_{J^{\prime}})J$ it suffices to prove that, for $\lambda\in \mathcal{E}_{J^{\prime}}(L_{J^{\prime}}),$ $(\zeta,\tilde{\lambda}^{G})\neq 0$ implies $I^{\prime\prime}\sim_{R}I$.
The proof is based on the following Lemma.

(4.5) LEMMA. Let $1^{\prime}\subseteqq J^{\prime}\subseteqq R$ . Then $P_{J}.=L_{J^{\prime}}\cdot V_{J^{\prime},J^{\prime}}V_{J^{\prime}}$ , where $V_{J^{\prime}J^{\prime}}=$

$L_{J^{\prime}}\cap V_{J^{\prime}}$ ; and $P_{J^{\prime}}=L_{J^{\prime}}V_{J},$ . Let $\mu\in \mathcal{E}(L_{J^{\prime}})$ ; then $\tilde{\mu}^{P}J^{\prime}$ has $V_{J^{\prime}}$ in its kernel, and
$\tilde{\mu}^{P_{J^{\prime}}}|L_{J^{\prime}}=\beta^{L}J^{\prime}$ where $\beta$ is the character of $P_{J^{\prime},J^{\prime}}=L_{J^{\prime}}\cdot V_{J^{\prime}J^{\prime}}$ defined by $\beta(lv)$

$=\mu(l),$ $l\in L_{J^{\prime}},$ $v\in V_{J^{\prime},J^{\prime}}$ .
PROOF. The facts about the Levi decompositions of $P_{J^{\prime}}$ and $P_{J^{\prime}}$ were

proved in \S 1 (Proposition (1.5) and (1.7)). As $V_{J^{\prime}}\leqq ker\tilde{\mu}$ , and is normal in
$P_{J^{\prime}},$ $V_{J^{\prime}}\leqq ker(\tilde{\mu}^{P_{J^{\prime}}})$ . From Mackey’s Subgroup Theorem, as there is only one
$(P_{J^{\prime}}, L_{J^{\prime}})$ -double coset in $P_{J^{\prime}}$ , we obtain

$\overline{\mu}^{P_{J^{\prime}}}|L_{J^{\prime}}=\tilde{\mu}|_{P_{J^{\prime}}\cap LJ^{\prime}}^{L_{J^{\prime}}}=\hat{\mu}^{L_{J^{\prime}}}$

as required.
The proof of Theorem (4.4) is now completed as follows. Suppose $(\zeta,\tilde{\lambda}^{G})$

$\neq 0$ , for $\lambda\in \mathcal{E}_{J^{\prime}}(L_{J^{\prime}})$ , and some subset $J^{\prime\prime}\subseteqq J^{\prime}$ . By Lemma (4.5), $(\tilde{\lambda},\tilde{\mu}^{P_{J^{\prime}}})\neq 0$ , for
some irreducible character $\mu\in\circ \mathcal{E}(L_{J^{\prime}})$ . Therefore $\tilde{\lambda}^{G}$ is a component of $\tilde{\mu}^{G}$ ,
and hence $(\zeta,\tilde{\mu}^{G})\neq 0$ . It follows that $\zeta\in \mathcal{E}_{J}(G)\cap \mathcal{E}_{J^{\prime}}(G)$ , and hence by Theorem
(3.5), $1\sim_{R}I^{\prime}$ This completes the proof of the theorem.

The first Corollary is related to conjectures about characters in $\circ \mathcal{E}(G)$ , due
to MacDonald ([18], (6.7)), and was proved in a different way by Springer
([18], Proposition (6.8)), for semi-simple elements in reductive algebraic groups.

(4.6) COROLLARY. Let $\zeta\in\circ \mathcal{E}(G)$ , and $letx\in G$ be such that $C_{G}(x)\leqq L_{J}$ , for
some Proper subset $J\subset R$ . Then $\zeta(x)=0$ .

(4.7) DEFINITION. An element $t\in T$ is said to have a parabolic centralizer
if $C_{G}(t)=L_{J}$ , for some $J\subseteqq R$ .

We note that the concept of parabolic centralizer is a rather natural gener-
alization of the familiar concept of a regular element $t\in T$ , which satisfies the
condition $C_{G}(t)=T$ .

(4.8) COROLLARY. Let $\zeta\in \mathcal{E}_{J}(G)$ , for some $J\subseteqq R$ . Let $t\in T$ have a parabOlic
centralizer $L_{J},$ . There exist algebraic integers $\{\alpha_{\zeta.\lambda}^{t}\}$ dePending on $t,$ $\zeta$ and
$\lambda\in \mathcal{E}_{J^{\prime}}(L_{J^{\prime}})$ , such that, all $\alpha_{\zeta.\lambda}^{t}=0$ unless $I^{\prime}\sim_{R}J$ for some $I^{\prime}\subseteqq J^{\prime}$ , and in that case,

$\zeta(tu)=\sum_{\lambda\in \mathcal{E}J(L_{J^{\prime}})}\alpha_{\zeta.\lambda}^{t}\lambda(u)$ ,
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for all $p$ -elements $u\in C_{G}(t)$ .
PROOF. For each $p$ -element $u\in C_{G}(t)$ , we have $C_{G}(tu)\leqq C_{G}(t)=L_{J^{\prime}}$ . By

Theorem (4.4),
$\zeta(tu)=\sum(\zeta,\tilde{\lambda}^{G})\lambda(tu)$

with $\lambda\in \mathcal{E}_{J^{\prime}}(J^{\prime})$ , and $J^{\prime\prime}\sim_{R}J$, or $\zeta(tu)=0$ . As $t\in Z(C_{G}(t)),$ $\lambda(tu)=\lambda(t)\lambda(1)^{-1}\lambda(u)$ , with
$\lambda(t)\lambda(1)^{-1}\in alg$ . int. $\{C\}$ . Setting $\alpha_{\zeta.\lambda}^{t}=(\zeta,\tilde{\lambda}^{G})\lambda(t)\lambda(1)^{-1}$ , the corollary follows.

As noted in the introduction, there is analogy between the form of Corol-
lary (4.8) and Brauer’s Second Main Theorem ([15]). Following this analogy,
we shall call the algebraic integers defined in (4.8) decompositiOn numbers.
For characters $\zeta\in 1_{B}^{G}$ , it is shown in Chapter II that the decomposition numbers
$\{\alpha_{\zeta,\lambda}^{t}\}$ are computable in terms of the Coxeter group. Further information
about the decomposition numbers $\{\alpha_{\zeta.\lambda}^{t}\}$ seems to be lacking in the general
case, as is information about values of irreducible characters $\zeta\in \mathcal{E}(G)$ on p-
elements, to which Corollary (4.8) reduces us in certain cases.

Chapter II. Reduction theorems for characters in $1_{B}^{G}$

5. Second reduction theorem.

The main result of this section is a version of Theorem (4.4) for characters
in $1_{B}^{G}$ , which is sharper in two ways: the decomposition numbers $\{\alpha_{\zeta.\lambda}^{t}\}$ are
rational integers computable in terms of the Coxeter group $W$ ; and the only
characters $\lambda$ of $L_{J^{\prime}}$ for which $(\zeta,\overline{\lambda}^{G})\neq 0$ , are components $\lambda\in 1_{B_{J^{\prime}}^{J^{\prime}}}^{L}$ .

Throughout Chapter II, the following assumptions will be in force. We
shall consider a system $S$ of finite groups with $(B, N)$ -pairs of type $(W, R)$

([7], [1]). We assume the set $\{q\}$ of prime powers associated with $S$ contains
almost all primes. For each $q$ , it is assumed that the corresponding group
with a $(B, N)$ -pair $G(q)\in S$ is a finite group with a split $(B, N)$ -pair of charac-
teristic $p|q$ . There exist positive integers $\{c_{\ell}\}$ corresponding to the distin-
guished generators $R=\{w_{1}, \cdots , w_{n}\}$ , such that $c_{i}=c_{j}$ if $w_{i}$ and $w_{j}$ are conjugate
in $W$ . For each $q$ , it is assumed that $|B(q)w_{i}B(q)/B(q)|=q^{c_{i}},$ $1\leqq i\leqq n$ , where
$B(q)$ denotes the Borel subgroup of $G(q)$ . Let $N(q),$ $T(q),$ $P_{J}(q),$ $L_{J}(q),$ $V_{J}(q)$ ,

etc. denote the subgroups of $G(q)$ considered in Chapter I. We let $B_{J}(q)=$

$B(q)\cap L_{J}(q)$ , and view $B_{J}(q)$ as a standard minimal parabolic subgroup of $L_{J}(q)$ .
Let $A$ be the generic ring of $S$ , over the polynomial ring in one indeter-

minate $0=Q[X]$ , as in [1], p. 252. Let $K=Q(X)$ , and $\overline{K}$ a finite extension
field of $K$, such that $\overline{K}$ is a splitting field for $A$ . Let $0^{*}$ denote the integral
closure of $0$ in $\overline{K}$. For each $q$ , there is a bijection $\varphi\rightarrow\zeta_{\varphi,q}$ between the irre-
ducible characters $\varphi\in \mathcal{E}(W)$ , and the irreducible characters $\zeta_{\varphi,q}\in 1_{B(q)}^{G(q)}$ . The
map $\varphi\rightarrow\zeta_{\varphi,q}$ is defined in terms of the irreducible characters $\{\chi_{\varphi}\}_{\varphi\in \mathcal{E}(W)}$ of $A^{\overline{K}}$,



Reduction theorems for characters 679

and depends on the choice of homomorphisms $f^{*}:$ $0^{*}\rightarrow\overline{Q}$ , extending the homo-
morphisms $f:0\rightarrow Q$ given by $X\rightarrow q$ , for each $q$ . For each $J\subseteqq R,$ $\{P_{J}(q)\}$ is a
system of type $(W_{J}, J)$ , with generic ring $A_{J}=\sum_{w\in W_{J}}oa_{w}$ . We assume that the

correspondences between characters $\{\psi\}$ of $W_{J}$ and characters $\mu_{\psi,q}\in 1_{B(q)}^{P_{J(q)}}$ , for
each $J\subseteqq R$ , are defined by a fixed extension $f^{*}:$ $0^{*}\rightarrow\overline{Q}$ . Finally, for each
$J\subseteqq R,$ $L_{J}(q)$ is also a system of $(B, N)$ -pairs of type $(W_{J}, J)$ , and the lift $\eta\rightarrow\tilde{\eta}$ ,

defined in (3.4), sets up a bijection between the characters of $1_{B_{J}(q)}^{LJ(q)}$ and the
characters in $1_{B(q)}^{P_{J(q)}}$ .

Let IND: $A\rightarrow 0$ be the homomorphism given by IND $(a_{w_{i}})=X^{c_{i}},$ $1\leqq i\leqq n$ ,
where $\{a_{w}\}_{w\in W}$ is the basis of $A$ over $0$ defined in [1], p. 252. We shall also
need the Poincare Polynomial $P(X)$ of $(W, R)$ , given by $P(X)=\sum_{w\in W}IND$

$(a_{w})$ .
Because of the assumption that $\{q\}$ contains almost all primes, Theorem

(2.6) of [1] can be applied. By that theorem, for each $\varphi\in \mathcal{E}(W)$ , there exists
a generic degree $d_{\varphi}(X)\in 0$ , such that $d_{\varphi}(q)=\zeta_{\varphi,q}(1)$ , for all $q\in\{q\}$ , and $d_{\varphi}(1)=$

$\varphi(1)$ .
All these considerations apply also to the systems of groups $\{L_{J}(q)\}$ of

type $(W_{J}, J)$ , for each $J\subseteqq R$ .
(5.1) SECOND REDUCTION THEOREM. Let $J\subseteqq R,$ $\varphi\in \mathcal{E}(W)$ , and $q\in\{q\}$ . Let

$x\in G(q)$ be an element such that $C_{G(q)}(x)\leqq L_{J}(q)$ . Then

(5.2)
$\zeta_{\varphi,q}(x)=\sum_{\phi\in \mathcal{E}(W_{J})}(\zeta_{\varphi,q}, \eta_{\psi.q}^{G(q)})\eta_{\psi,q}(x)$ ,

where $\{\eta_{\psi,q}\}$ are the characters in $1_{B_{J(q}}^{LJ^{(q}}$}, whose extensions $\{\eta_{\psi,q}\}$ to $P_{J}(q)$ are
the characters in $1_{B(q)}^{P_{J(q)}}$ corresp0nding to the characters $\psi$ of $W_{J}$ . The multi-
plicities $(\zeta_{\varphi,q}, \eta\theta_{q}(q))$ are independent of $q$ , and are given by

(5.3) $(\zeta_{\varphi,q}, \eta_{\psi,q})=(\varphi, \psi^{W})$ ,

for all $q$ , and $\varphi\in \mathcal{E}(W),$ $\psi\in \mathcal{E}(W_{J})$ .
The proof requires several lemmas.
(5.4) LEMMA. Let $\eta\in \mathcal{E}(L_{J}(q))$ be such that $(\eta, 1_{B_{J^{(q)}}}^{LJ(q)})=0$ . Then $(\eta G1_{B(q)}^{G(q)})$

$=0$ (where $\tilde{\eta}$ is defined according to Definition (3.4)).
PROOF. Suppose $(\tilde{\eta}^{G}, 1_{B(q)}^{G(q)})\neq 0$ . Then there exists a distinguished double

coset representative $w\in W_{J,\emptyset}$ such that (by Mackey’s Theorem)

(5.5) $($ii, $w1_{B(q)})_{PJ(q)\cap w_{B(q)}}\neq 0$ .
By Proposition (2.5), $L_{J}(q)\cap^{w}B(q)$ is a standard parabolic subgroup of $L_{J}(q)$ ,
and hence contains $B_{J}(q)$ . Let $M$ be a $CP_{J}(q)$ -module affording $\tilde{\eta}$ ; then $V_{J}(q)$

acts trivially on $M$, and $M$ can be viewed an $L_{J}(q)$ -module affording $\eta$ . By
(5.5), $M$ contains a non-zero vector fixed by the elements in $P_{J}(q)\cap^{w}B(q)$ and
hence by the elements in $B_{J}(q)$ . Therefore $(\eta|_{B(q)}, 1_{BJ(q)})\neq 0$ , and by Frobenius
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reciprocity $(\eta, 1_{B_{J}(q)}^{LJ(q)})\neq 0$ . This completes the proof of the Lemma.
PROOF OF (5.2). As in the proof of Theorem (4.4), we have

$\zeta_{\varphi,q}(x)=\sum_{\eta\in 8(L_{J}(q))}(\zeta_{\varphi,q}, \eta^{G(q)})\eta(x)+\sum_{\xi\in 8(P_{J}(q))}(\zeta_{\varphi,q}, \xi^{G(q)})\xi(x)$ .
$ V_{J}(q)-\{ker\xi$

As $C_{G(q)}(x)\cap V_{J}(q)=\{1\}$ , by the hypothesis that $C_{G(q)}(x)\leqq L_{J}(q),$ $\xi(x)=0$ for
all $\xi$ in the second summand, by [11], (6.8). By Lemma (5.4), all multiplicities
in the Prst sum vanish, except for those associated with characters $\eta\in 1_{B_{J}(q)}^{LJ(q)}$ .
This completes the proof of (5.2).

An alternative proof of (5.2) was communicated to the author by R. Kilmoyer,
for the case of a regular element $x\in T(q),$ $i$ . $e$ . for $x$ such that $C_{G}(x)=T(q)$ .
The following proof of (5.2) in the general case resulted from an attempt to
generalize Kilmoyer’s idea. Let $\eta\in \mathcal{E}(L_{J}(q))$ ; then

(5.6) $(\zeta_{\varphi,q},\overline{\eta}^{G})=|P_{J}(q)|^{-1}\sum_{s\in P_{J}(q)}\zeta_{\varphi,q}(s)\tilde{\eta}(s^{-1})$

$=|L_{J}(q)|^{-1}\sum_{\iota\in L_{J}(q)}(|V_{J}(q)|^{-1}\sum_{v\in V_{J}(q)}\zeta_{\varphi,q}(lv))\eta(l^{-1})$ ,

using the Levi decomposition $P_{J}(q)=L_{J}(q)V_{J}(q)$ , and the fact that $\tilde{\eta}(lv)=\eta(l)$ ,
$l\in L_{J}(q),$ $v\in V_{J}(q)$ . The function $\theta$ defined by

(5.7) $\theta(x)=|V_{J}(q)|^{-1}\sum_{v\in V_{J}(q)}\zeta_{\varphi,q}(xv)$

is a class function on $L_{J}(q)$ , and (5.6) combined with Lemma (5.4) imply that

(5.8) $\theta=\sum(\zeta_{\varphi,q}, \eta G)\eta$ ,

where the sum is taken over $\eta\in 1_{B_{J}(q)}^{LJ(q)}$ . Because $C_{G}(x)\leqq L_{J}(q)$ , the map $v\rightarrow(x, v)$ ,
for $x\in L_{J}(q),$ $v\in V_{J}(q)$ , is a bijection of $V_{J}(q)$ , and hence every element in the
coset $xV_{J}(q)$ is conjugate to $x$ . Therefore $\theta(x)=\zeta_{\varphi,q}(x)$ , by (5.7), and (5.2)

follows by substitution in (5.8).

We now take up the proof of (5.3). The method is suggested by the work
of Scott [17]. Let $q\in\{q\}\cup\{1\}$ be Pxed, and let $\mathfrak{Q}$ be the valuation ring in
$\overline{K}$, containing 0*, associated with a prime ideal in $\mathfrak{o}^{*}$ containing $X-q$ . Then
$\mathfrak{Q}$ is a discrete valuation ring, and a principal ideal domain with quotient field
$\overline{K}$. The homomorphism $f:0\rightarrow Q$ given by $X\rightarrow q$ extends to a homomorphism
$f^{*}:$ $\mathfrak{Q}\rightarrow\overline{Q}$ . For each irreducible character $\chi$ of $A^{\overline{K}},$ $\chi(a_{w})\in \mathfrak{Q}$ for all $w\in W$,

and $x_{J^{*}};$ $a_{wf}\rightarrow f^{*}(\chi(a_{w})),$ $w\in W$, is an irreducible character of $A_{f}^{\overline{Q}}$, where $A_{f}$ is
the specialized algebra $A\otimes_{0}Q$ , by [1], Proposition (2.2).

(5.9) LEMMA. Let $\chi$ be an irreducible character of $A^{\overline{K}}$. Then there exists
a primitive idempotent $e\in A^{\overline{K}}$ affording $\chi$ such that $\chi(ea_{w})\in \mathfrak{Q}$ , for all standard
basis elements $\{a_{w}\}_{w\in W}$ of $A$ .
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PROOF. Let $V$ be an irreducible $A^{\overline{K}}$-module affording $\chi$ and let $V_{0}$ be an
A-submodule such that $V_{0}$ is a free Q-module with the property that a Q-basis

for $V_{0}$ is a K-basis of V. (The existence of $V_{0}$ is guaranteed because $\mathfrak{Q}$ is a
principal ideal domain with quotient field $\overline{K}.$) Let $\{v_{1}, \cdots , v_{a}\}$ be this $\mathfrak{Q}$ -basis
of $V_{0}$ . For all $a\in A$ , the matrix of $a_{L}$ : $v\rightarrow av,$ $v\in V$, with respect to $\{v_{1}, v_{d}\}$

is in $M_{d}(\mathfrak{Q})$ . The matrix representation of $A^{\overline{K}}$ with respect to this basis,
faithfully represents the Wedderburn component corresponding to $\chi$ . Moreover,
$\chi(a)=\sum\alpha_{ii}$ , if $a_{L}=(\alpha_{ij}),$ $\alpha_{ij}\in \mathfrak{Q}$ . Let $e$ be the primitive idempotent in $A^{K}-$

corresponding to the matrix unit $E_{11}$ . If $a\in A^{\overline{K}},$ $a_{L}=(\alpha_{ij})$ , then the matrix
corresponding to $ea$ is

$(^{\alpha_{11}}$ $\alpha_{1n})$ .
$0$

Therefore, for all $a\in A,$ $\chi(ea)=\alpha_{11}\in \mathfrak{Q}$ as required.
(5.10) LEMMA. Let $e$ be an arbitrary primitive idempotent in $A^{\overline{K}}$ affording

$\chi$ . Then

$e=\frac{d_{\chi}(X)}{P(X)}\sum_{w\in W}\frac{\chi(ea_{w^{-1}})}{IND(a_{w})}a_{w}$ ,

where $d_{\chi}(X)$ is the generic degree associated with the irreducible character $\varphi$ of
$W$ corresponding to $\chi$ and $ P(X)=\sum$ IND $(a_{w})$ is the Poincare p0lyn0mial of $A$ .

PROOF. We first introduce the function

$\rho:A^{\overline{K}}\rightarrow\overline{K}$

given by

$\rho=\sum_{\chi}d_{\chi}(X)\chi$ .

By specialization it follows that

$\rho(a_{w})=\left\{\begin{array}{ll}0 & w\neq 1\\P(X) & w=1’\end{array}\right.$

as $P(q)=|G(q):B(q)|$ for all $q$ , and $\chi(a_{1})=degree\chi$ is the multiplicity of $\zeta_{\varphi,q}$

in $1_{B(q)}^{G(q)}$ . Another specialization argument yields

$\rho(a_{w}a_{w^{\prime}})=\left\{\begin{array}{ll}0 & ww^{\prime}\neq 1\\P(X) IND (a_{w}) , & ww^{\prime}=1\end{array}\right.$

Now let $e=\sum_{w\in W}\lambda_{w}a_{w}$ ; then

$ea_{w_{1}^{-1}}=\Sigma\lambda_{w}a_{w}a_{w_{1}^{-1}}$ .

Applying $\rho$ to both sides we obtain

$d_{\chi}(X)\chi(ea_{w_{1}^{-1}})=\lambda_{w_{1}}P(X)$ IND $(a_{w_{1}})$ ,
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and the Lemma is proved.
(5.11) LEMMA. Let $f^{*}:$ $\mathfrak{Q}\rightarrow\overline{Q}$ extend $f:u\mapsto q$ . Then $f^{*}$ defines a homo-

morPhism of Q-algebras $A\rightarrow A_{f}^{f^{r}(\mathfrak{Q})}$ , where $A_{f}=Q\otimes A$ is the $sp$ecialized algebra
associated with $f$ (see [1], p. 252). Let $e$ be a primitive idempotent in $A^{\overline{R}}$ afford-
ing $\chi$ and satisfying Lemmas (5.9) and (5.10). Then $f^{*}(e)$ is a Primitive idem-

Potent in $A^{-}$? affording $\chi_{f_{*}}$ .
PROOF. We have $\chi(e)=1$ . As $P(X)$ IND $(a_{w})$ is a unit in $\mathfrak{Q}$ for all $w\in W$ ,

the idempotent $e$ in Lemma (5.10) belongs to $A,$ $f^{*}(e)$ is defined, and is an
idempotent in $A_{f}$ such that $\chi_{f}.(f^{*}(e))=1$ . Finally, $f^{*}(e)$ is primitive, because
$eA^{\overline{K}}e=\overline{K}e$ implies $eA^{\mathfrak{Q}}e\subseteqq \mathfrak{O}e$ , and hence $f^{*}(e)A\overline{\int}\cdot f^{*}(e)=\overline{Q}\cdot f^{*}(e)$ .

PROOF OF (5.3). Let $J$ be as in the hypothesis of Theorem (5.1), and let
$A_{J}$ be the subring of $A$ generated by $\{a_{w}\}_{w\in W_{J}}$ . Then $A_{J}$ is a generic ring

of the system $S_{J}=\{P_{J}(q)\}$ of type $(W_{J}, J)$ . Let $e\in A_{J}^{\overline{K}}$ correspond to the

character of $A_{J}^{\overline{K}}$ associated with $\psi\in \mathcal{E}(W_{J})$ , and let $\chi$ be the irreducible character
of $A^{\overline{K}}$ associated with $\zeta_{\varphi,q}$ . Then, for a given $q$ , we may assume $e$ is as in
Lemma (5.11). Then $\chi(e)=m$ , a non-negative integer, which is independent of
$q$ , because all primitive idempotents affording a given irreducible character of
$A_{J}^{\overline{K}}$ are conjugate in $A_{J}^{\overline{K}}$ . Apply $f^{*}$ , and obtain $\chi_{J^{*}}(f^{*}(e))=m$ . It follows that
$m=(\zeta_{\varphi,q}, \eta_{\psi.q}^{G})$ if $q\neq 1$ , and that $m=(\varphi, \psi^{w})$ if $q=1$ , by Lemma (5.11), because,

for example, if $q\neq 1,$ $f^{*}(e)\in A\overline{9}_{J}$ corresponds to a primitive idempotent $ e\sim$ in
$H(P_{J}(q), B(q))$ affording $\tilde{\eta}_{\psi,q}$ , and $m=x(e)=x_{f}.(f^{*}(e))=\zeta_{\varphi,q}(\tilde{e})=(\zeta_{\varphi,q},\tilde{\eta}_{\psi.q}^{G(q)})$ . As
$m$ is independent of $q$ , the proof of Theorem (5.1) is completed.

As in the case of the First Reduction Theorem, there is a sharp form of
Theorem (5.1), for elements $t\in T(q)$ of parabolic centralizer in the sense of
Definition (4.7).

(5.12) THEOREM. Let $G(q)\in S$ , as in Theorem (5.1). Let $t\in T(q)$ have a
parabolic centralizer $L_{J}(q)$ , for some $J\subseteqq R$ . Then there exist rational integers
$\{a_{\varphi.\psi}^{J}\}$ depending on $J\subseteqq R,$ $\varphi\in \mathcal{E}(W)$ and $\psi\in \mathcal{E}(W_{J})$ , and independent of $q$ , such
that for each $p$ -element $u\in C_{G(q)}(t)$ ,

$\zeta_{\varphi,q}(tu)=\sum_{\psi\in \mathcal{E}(W_{J})}a_{\varphi.\psi}^{J}\eta_{\psi,q}(u)$ .

Moreover, the decomposition numbers are given by $a_{\varphi.\psi}^{J}=(\varphi, \psi^{W})$ , for $\varphi\in \mathcal{E}(W)$ ,
$\psi\in \mathcal{E}(W_{J})$ .

PROOF. As $C_{G}(tu)\leqq C_{G}(t)=L_{J}(q)$ , Theorem (5.1) can be applied, and gives

$\zeta_{\varphi,q}(tu)=\sum_{\phi\in \mathcal{E}(W_{J})}a_{\varphi.\psi}^{J}\eta_{\psi,q}(tu)$ ,

with $a_{\varphi,\psi}^{J}=(\varphi, \psi^{W})$ . As $C_{G}(t)=L_{J}(q),$ $\eta_{\psi,q}(tu)=(\eta_{\psi,q}(t)/\eta_{\phi,q}(1))(\eta_{\psi,q}(u))$ . Finally,
$Z(L_{J}(q))\leqq B_{J}(q)$ , and $\eta_{\psi,q}\in 1_{B_{J}^{J}(q)}^{L(q)}$ . It follows that $\eta_{\psi,q}(t)=\eta_{\psi,q}(1)$ , and Theorem
(5.12) is proved.
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6. Generic character values on elements of $T(q)$ .
We continue to work with a system $S$ of finite groups $\{G(q)\}$ with split

$(B, N)$ -pairs, such that $\{q\}$ contains almost all primes, so that the generic de-
grees $d_{\varphi}(X)\in Q[X]$ are available.

(6.1) THEOREM. For each pair $\{J, \varphi\}$ , with $J\subseteqq R$ and $\varphi\in \mathcal{E}(W)$ , there exists
a p0lyn0mial $v_{J,\varphi}(X)\in Q[X]$ such that if $t\in T(q)$ has the centralizer $C_{G(q)}(t)=$

$L_{J}(q)$ , then
$\zeta_{\varphi,q}(t)=v_{J,\varphi}(q)$ .

The pOlynOmial $v_{J,\varphi}(X)$ is given by

$v_{J\varphi}(X)=\sum_{\phi\in 8(W_{J})}(\varphi, \psi^{W})d_{\psi}(X)$ ,

where $d_{\psi}(X)$ is the generic degree associated with $\psi\in \mathcal{E}(W_{J})$ .
PROOF. By Theorem (5.12), taking $u=1$ , we have

$\zeta_{\varphi,q}(t)=\sum_{\phi\in \mathcal{E}(W_{J})}(\varphi, \psi^{W})\eta_{\psi,q}(1)$ ,

and $\eta_{\psi,q}(1)=d_{\psi}(q)$ , for all $\psi\in \mathcal{E}(W_{J})$ . This completes the proof.
An element $t\in T(q)$ is called regular if $C_{G(q)}(t)=T(q)$ . The first Corollary

of Theorem (6.1) has been proved independently by Kilmoyer, Seitz, and the
author [9].

(6.2) COROLLARY. Let $t\in T(q)$ be a regular element, such that $C_{G(q)}(t)=T(q)$ .
Then for $\varphi\in \mathcal{E}(W)$ ,

$\zeta_{\varphi,q}(t)=\varphi(1)$ .
PROOF. In this case, $J=\emptyset,$ $W_{J}=\{1\}$ , and

$\zeta_{\varphi,q}(t)=v_{\Phi,\varphi}(q)=(\varphi, 1_{\{1\}}^{W})1=\varphi(1)$ ,

because $1_{\{1\}}^{W}$ is the regular character of $W$ , and the multiplicity of $\varphi$ in the
regular character is equal to its degree.

REMARK. Another statement of Corollary (6.2) is that, for a regular ele-
ment $t\in T(q)$ ,

(6.3) $\zeta_{\varphi,q}(t)=(\zeta_{\varphi’ q}, 1_{B(q)}^{G(q)})$ .
It is always interesting to set $q=1$ in various polynomials in $q$ associated

with groups of Lie type. For example, if $d_{\varphi}(X)$ is a generic degree, $d_{\varphi}(1)=$

$\varphi(1)$ , the degree of the corresponding character of $W$ .
(6.4) COROLLARY. Let $J\subseteqq R$ , and $\varphi\in \mathcal{E}(W)$ . Then

$v_{J,\varphi}(1)=v_{\emptyset,\varphi}(q)$ ,
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the value of the character $\zeta_{\varphi,q}$ on a regular element of $T(q)$ .
PROOF. From Theorem (6.1), we have

$v_{J,\varphi}(1)=\sum_{\phi\in 8(W_{J})}(\varphi, \psi^{W})d_{\psi}(1)$

$=\sum_{\phi\in 8(W_{J})}(\varphi, \psi\eta\psi(1)$

$=(\varphi, (\sum_{\psi\in 8(W_{J})}\psi(1)\psi)^{W})$

$=(\varphi, \rho_{J}^{W})$

$=(\varphi, \rho_{R})=\varphi(1)=v_{\emptyset\varphi}(q)$ ,

where $\rho_{J}$ and $\rho_{R}$ are the regular characters of $W_{J}$ and $W$ , respectively.
The next result shows the connection between the character values $\zeta_{\varphi,q}(t)$

on elements $t\in T(q)$ having parabolic centralizers, and the class intersections
$\mathfrak{C}\cap B(q)wB(q)$ , where $\mathfrak{C}$ is the conjugacy class in $G(q)$ containing $t$. In [10]

information about the class intersections $\mathfrak{C}\cap B(q)wB(q)$ was used to obtain
information about the character values $\zeta_{\varphi,q}(t)$ , for $p^{\prime}$ -elements $t$ which are not
necessarily conjugate to elements of the standard torus $T(q)$ .

For the discussion to follow, we adopt the set-up introduced immediately
before the proof of Theorem (5.1). Then $A$ denotes the generic ring of $S$ ,

with basis $\{a_{w}\}_{w\in W}$ over $0=Q[X]$ . We have $K=Q(X)$ , and $\overline{K}$ a finite exten-
sion of $K$ which is a splitting field for $A$ . For each $q,$

$\mathfrak{Q}$ denotes a valuation
ring in $\overline{K}$ associated with a prime ideal in $\mathfrak{o}^{*}$ containing $X-q$ , where $0^{*}$ is the
integral closure of $\mathfrak{o}$ in $\overline{K}$. We denote by $f^{*}:$ $\mathfrak{Q}\rightarrow\overline{Q}$ an extension of $f:X\mapsto q$ .

There is an isomorphism between the specialized algebra $A_{f}^{c}$ and the Hecke
algebra $H(G(q), B(q))$ , with the basis element $a_{wf}=1\otimes a_{w}$ of $A_{f}$ corresponding
to $\tilde{a}_{wf}=|B(q)|^{-1}\sum_{x\in B(q)wB(q)}x$ , for each $w\in W$. The correspondence between irre-

ducible characters $\varphi$ of $W$, irreducible characters $\chi_{\varphi}$ of $A^{\overline{K}}$, and components
$\zeta_{\varphi’ q}\in 1_{B(q)}^{G(q)}$ is such that

$\zeta_{\varphi,q}(\tilde{a}_{wf})=x_{\varphi,f^{*}}(a_{w,f})$ ,

where $\chi_{\varphi’ f^{s}}$ is the character of $A\oint^{-}$ defined by $\chi_{\varphi’ f}.(a_{w,f})=f^{*}(\chi_{\varphi}(a_{w}))$ ([1], \S 2).
Suppose for the moment that $(W, R)$ is indecomposable. By Theorem (2.8)

of [1], corrected in [8], every irreducible character $\chi_{\varphi}$ of $A$ is rational, in the
sense that $\chi_{\varphi}(a_{w})\in 0$ , with the exception of two characters of degree $512=2^{9}$ ,
in case $(W, R)$ is of type $E_{7}$ , and four characters of degree $4096=2^{12}$ , in case

\langle $W,$ $R$) is of type $E_{8}$ .
(6.5) THEOREM. For each subset $J\subseteqq R$ and element $w\in W$ , there exists a

Polynomial $h_{J,w}(X)\in Q[X]$ , such that if $\mathfrak{C}$ is a conjugacy class in $G(q)\in S,$ con-
taining an element $t\in T(q)$ with parabOlic centralizer $C_{G(q)}(t)=L_{J}(q)$ , then
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$|\mathfrak{C}\cap B(q)wB(q)|=h_{J,w}(q)$ .
The polynomial $h_{J,w}(X)$ is given by

$h_{J,w}(X)=\frac{IND(a_{w_{R}})}{IND(a_{w_{J}})\cdot P_{J}(X)}\sum_{\phi\in \mathcal{E}(W_{J})}d_{\psi}(X)\omega_{\psi}(a_{w})$ ,

where
$\omega_{\psi}=\sum_{\varphi\in \mathcal{E}(W)}(\varphi, \psi^{W})\chi_{\varphi}$

$w_{R}$ and $w_{J}$ are the elements of maximal length in $W$ and $W_{J}$ , respectively, and

$P_{J}(X)=\sum_{w\in W_{J}}$ IND $(a_{w})$

is the Poincare polynomial of $W_{J}$ .
PROOF. We shall first derive the formula for $|\mathfrak{C}\cap BwB|$ , and then prove

that it is given by a polynomial. Let $\zeta$ be an irreducible character of $G(q)$ .
Then, for $w\in W$ ,

$\zeta(\sum_{x\in B(q)wB(q)}x)=|B(q)wB(q)\cap \mathfrak{C}|\zeta(t)+\sum_{\mathfrak{C}’\neq \mathfrak{C}}|B(q)wB(q)\cap \mathfrak{C}^{\prime}|\zeta(t^{\prime})$

with $t\in \mathfrak{C},$
$t^{\prime}\in \mathfrak{C}^{\prime}$ . If the left side is different from zero, then $\zeta(\tilde{a}_{w_{f}})\neq 0$ , and

hence $\zeta=\zeta_{\varphi’ q}\in 1_{B(q)}^{G(q)}$ , because the only characters of $G(q)$ having a non-zero
restriction to the Hecke algebra $H(G(q), B(q))$ are the components of the per-
mutation character $1_{B(q)}^{G(q)}$ . Multiply both sides of the equation by $\zeta(t^{-1})$ , and
sum over $\zeta\in \mathcal{E}(G(q))$ . By the second orthogonality relation ([11], (2.14)),

$|C_{G(q)}(t)||B(q)wB(q)\cap \mathfrak{C}|=\sum_{\varphi\in \mathcal{E}(W)}\zeta_{\varphi,q}(t^{-1})\zeta_{\varphi,q}(|B(q)|\tilde{a}_{wf})$ ,

because of the remark above and the fact that $\tilde{a}_{wf}=|B(q)|^{-1}\sum_{x\in B(q)wB(q)}x$ . Com-

bining this formula with Theorem (6.1), and using the hypothesis that $C_{G(q)}(t)$

$=C_{G(q)}(t^{-1})=L_{J}(q)$ , we obtain

$|B(q)wB(q)\cap \mathfrak{C}|=|B(q)||L_{J}(q)|^{-1}\sum_{\varphi\in \mathcal{E}(W)}v_{J,\varphi}(q)\chi_{\varphi’ f^{s}}(a_{wf})$ .

We have $|B(q)|=|T(q)||U(q)|=|T(q)|f(IND(a_{w_{R}}))$ and $|L_{J}(q)|=|T(q)||U_{J}(q)|P_{J}(q)$

$=|T(q)|f(IND(a_{w_{J}}))P_{J}(q)$ . Consider

$h_{J,w}=\frac{IND(a_{w_{R}})}{IND(a_{w_{J}})P_{J}(X)}\sum_{\psi\in 6^{}(W_{J})}d_{\psi}(X)\omega_{\psi}(a_{w})$ ,

with $\omega_{\psi}=\sum_{\varphi\in \mathcal{E}(W)}(\varphi, \psi^{W})\chi_{\varphi}$ . As IND $(a_{wJ})|IND(a_{w_{R}})$ in $0$ , and $P_{J}(q)\equiv 1(mod q)$ ,

it follows that $h_{J,w}(X)\in \mathfrak{Q}$ , for each $q$ , and that $f^{*}(h_{J,w}(X))=|B(q)wB(q)\cap \mathfrak{C}|$ ,

where $f^{*}:$ $\mathfrak{Q}\rightarrow\overline{Q}$ is an extension of $f:X\rightarrow q$ .
It remains to prove that $h_{J,w}\in 0$ , and for this it is sufficient to prove that

$\hat{h}_{J,w}=\sum_{\psi\in \mathcal{E}(W_{J})}d_{\psi}(X)\omega_{\psi}(a_{w})\in Q(X)$ ,
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because $h_{J,w}(X)$ is then a rational function taking integer values at infinitely
many positive integers $\{q\}$ , and hence belongs to $Q[X]$ . What has to be
shown is that if $\sigma\in Ga1_{\overline{K}/K}$ , then $\sigma(\hat{h}_{J,w})\in K$. We adopt the point of view
of the proof of (5.3), following Lemma (5.11). Let $\{\chi\}$ denote the irreducible
characters of $A^{\overline{K}}$, and $\{\xi\}$ the irreducible characters of $A_{J}^{\overline{K}}$ . For each $\xi$ let $e_{\xi}$

be a primitive idempotent in $A_{J}^{K}-$ affording $\xi$ , chosen according to Lemma (5.11).

Then from the proof of (5.3),

$\hat{h}_{J,w}=\sum_{\xi}d_{\xi}(X)(\sum_{\chi}\chi(e_{\xi})\chi(a_{w}))$ ,

where $d_{\xi}(X)$ is the generic degree corresponding to the character $\xi$ .
The following proof that $\hat{h}_{J,w}\in Q(X)$ is independent of the discussion of

the rationality of the characters $\chi$ in Theorem (2.8) of [1]. For each auto-
morphism $\sigma$ , let $x^{\sigma}$ and $\xi^{\sigma}$ denote the irreducible characters of $A^{\overline{K}}$ and $AJ$ ,
respectively, dePned by

$x^{\sigma}(\Sigma\lambda_{w}a_{w})=\sum\lambda_{w}\sigma(\chi(a_{w}))$ , $\lambda_{w}\in\overline{K}$ ,

and similarly for $\xi^{\sigma}$ .
(6.6) LEMMA. Let $\sigma\in Ga1_{\overline{K}/K}$ . Then $d_{\xi^{\sigma}}=d_{\xi}$ , for all irreducible characters

$\xi$ of $W_{J}$ .
PROOF. From the formula for a generic degree ([1], (2.4)) it is sufficient

to prove that

$\sum_{w\in W_{J}}IND(a_{w})^{-1}\xi(\hat{\text{{\it \^{a}}}}_{w})\xi(a_{w})=,\sum_{u\in W_{J}}IND(a_{w})^{-1}\xi^{\sigma}(\delta_{w})\xi^{\sigma}(a_{w})$ .

As $\{q\}$ contains almost all primes, both expressions above belong to $K$, by
Theorem (2.6) of [1]. Therefore the expression on the left is invariant under
$\sigma$ , and as $\sigma$ is an automorphism leaving the elements of $K$ fixed, the right
side is the image of the left side under $\sigma$ .

(6.7) LEMMA. $x^{\sigma}(e_{\xi\sigma})=x(e_{\xi})$ , for each Pair of irreducible characters $\chi$ and
$\xi$ , and all $\sigma\in Ga1_{\overline{K}/K}$ .

PROOF. Let $e_{\xi}=\sum_{w\in W_{J}}\lambda_{w}a_{w}$ . Then $\sigma\otimes 1$ is an automorphism of $A_{J}^{\overline{K}}$ , and
$(\sigma\otimes 1)(e_{\xi})=\sum\sigma(\lambda_{w})a_{w}$ is a primitive idempotent affording $\xi^{\sigma}$ , as

$\xi^{\sigma}(\Sigma\sigma(\lambda_{w})a_{w})=\Sigma\sigma(\lambda_{w})\sigma(\xi(a_{w}))$

$=\sigma(\Sigma\lambda_{w}\xi(a_{w}))$

$=\sigma(\xi(e_{\xi}))\neq 0$ .
We now have, as $\chi(e_{\xi})\in K$,

$x^{\sigma}(e_{\xi\sigma})=\sum\sigma(\lambda_{w})x^{\sigma}(a_{w})=\sigma(\chi(e_{\xi}))=x(e_{\xi})$ ,
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and the Lemma is proved.
We can now complete the proof that $\hat{h}_{J,w}\in K$. Let $\sigma\in Ga1_{\overline{K}/K}$ , and let

$\omega_{\xi}=\sum_{\chi}\chi(e_{\xi})\chi$ .
Then $\sigma(\omega_{\xi})=\sum_{\chi}\chi(e_{\xi})x^{\sigma}=\sum_{\chi}x^{\sigma}(e_{\xi\sigma})x^{\sigma}=\omega_{\xi\sigma}$ , by Lemma (6.7). As the generic de-

grees $d_{\xi}(X)$ are constant over $\langle\sigma\rangle$ orbits $\{\xi, \xi^{\sigma}, \xi^{\sigma 2}, \}$ it follows that $\sum d_{\xi}(X)\omega_{\xi}$

is invariant under $\sigma$ , and hence

$\Sigma d_{\xi}(X)\omega_{\xi}(a_{w})\in K$

for each $w\in W$, as required.
The following elegant expression for the polynomials $h_{J,w}(X)$ in case $ J=\emptyset$

is due to R. Kilmoyer. Note that $ J=\emptyset$ is equivalent to the statement that $t$

is a regular element of $T(q)$ .
(6.8) COROLLARY (Kilmoyer). The polynomial $h_{J,w}(X)$ , for $ J=\emptyset$ , is given by

$h_{\emptyset,w}(X)=IND(a_{w_{R}})\rho_{A}(a_{w})$ ,

where $\rho_{A}=$
$\sum_{\varphi\in \mathcal{E}(W)}$

$\varphi(1)\chi_{\varphi}$ is the regular character of the generic algebra $A$ .
PROOF. From the formula for $h_{J,w}$ , in case $ J=\emptyset$ , in Theorem (6.5), we

have
$h\emptyset,w(X)=IND(a_{w_{R}})\sum_{\varphi\in \mathcal{E}(W)}v_{\emptyset,\varphi}(X)\chi_{\varphi}(a_{w})$

$=IND(a_{wR})\sum_{\varphi\in 6^{}(W)}\varphi(1)\chi_{\varphi}(a_{w})$

$=IND(a_{w_{R}})\rho_{A}(a_{w})$ ,

because $P_{\emptyset}(X)=1$ , IND $(a_{w}\emptyset)=1$ , and $v_{\emptyset,\varphi}(X)=\varphi(1)$ by Corollary (6.2).
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