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\S 1. Introduction.

Let $k$ be a totally real algebraic number field of degree $n$ . Then $k$ has $n$

distinct embeddings $\varphi_{i}(1\leqq i\leqq n)$ into the real number field $R$ , where $\varphi_{1}$ is the
identity. Let $A$ be a quaternion algebra over $k$ which is unramified at the
place $\varphi_{1}$ and ramified at all other infinite places $\varphi_{i}(2\leqq i\leqq n)$ . Then there
exists an R-isomorphism

$\rho:A\bigotimes_{Q}R\mapsto M_{2}(R)\oplus H\oplus\cdots\oplus H$ , (1)

where $H$ is the Hamilton quaternion algebra.
Denote by $\rho_{i}$ the composite of $\rho|_{A}$ with the projection to the i-th factor.

Then $\rho_{1}$ (resp. $\rho_{i}(2\leqq i\leqq n)$ ) is an isomorphism of $A$ into $M_{2}(R)$ (resp. $H$ ). By
changing the indices suitably, for any element $a$ of $k$ we have

$\rho_{1}(a\cdot 1_{A})=a\cdot 1_{2}$ , $\rho_{i}(a\cdot 1_{A})=\varphi_{t}(a)\cdot 1_{H}$ $(2\leqq i\leqq n)$ , (2)

where $1_{A},$ $1_{H}$ and $1_{2}$ are the unities of $A,$ $H$ and $M_{2}(R)$ respectively.
Denote by $tr_{A}()$ and $n_{A}()$ (resp. $tr_{H}()$ and $n_{H}($ )) the reduced trace and

the reduced norm of $A$ (resp. $H$ ). Then for any $\alpha\in A$ , we have

$tr_{A}(\alpha)=tr(\rho_{1}(\alpha))$ , $\varphi_{i}(tr_{A}(\alpha))=tr_{H}(\rho_{i}(\alpha))$ $(2\leqq i\leqq n)$ , (3)

$n_{A}(\alpha)=\det(\rho_{1}(\alpha))$ , $\varphi_{i}(n_{A}(\alpha))=n_{H}(\rho_{i}(\alpha))$ $(2\leqq i\leqq n)$ , (4)

where tr $()$ and det $()$ are the trace and the determinant of $M_{2}(R)$ respectively.
Now take an order $O$ of $A$ and put

$U=$ { $\epsilon\in O|\epsilon 0=O$ and $n_{A}(\epsilon)=1$ }.

Then $U$ is a group called the unit group of $O$ of norm 1. Denote by $\Gamma(A, 0)$

the image $\rho_{1}(U)$ of $U$ under $\rho_{1}$ . Then $\Gamma(A, 0)$ is a discrete subgroup of $SL_{2}(R)$ .
The group $SL_{2}(R)$ operates on the upper half plane $H=\{z\in C|{\rm Im}(z)>0\}$ in
the following way:

$SL_{2}(R)\ni g=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ : $z-\frac{az+b}{cz+d}$ .
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It is well-known that by the above operation $\Gamma(A, 0)$ defines a Fuchsian
group of the Prst kind $i$ . $e$ . a properly discontinuous group such that $H/\Gamma(A, O)$

is of finite volume. If we change the isomorphism $\rho,$
$\Gamma(A, O)$ is transformed

into a $GL_{2}(R)$ -conjugate group.
DEFINITION. Let $\Gamma$ be a discrete subgroup of $SL_{2}(R)$ such that $ H/\Gamma$ is

of finite volume. Then we call $\Gamma$ a Fuchsian group of the first kind. When
$\Gamma$ is commensurable with some $\Gamma(A, 0),$ $\Gamma$ is called an arithmetic Fuchsian
group (cf. [5]). Moreover, if $\Gamma$ is a subgroup of $\Gamma(A, 0)$ of finite index, then
we call $\Gamma$ a Fuchsian group derived from a quaternion algebra $A$ .

In this paper we shall prove the following theorem which gives a charac-
terization of arithmetic Fuchsian groups $\Gamma$ by the properties of the set tr $(\Gamma)$

$=\{tr(\gamma)|\gamma\in\Gamma\}$ .
THEOREM 1. Let $\Gamma$ be a Fuchsian group of the first kind. Then $\Gamma$ is an

arithmetic Fuchsian group if and only if $\Gamma$ satisfies the following conditions
(I) and $(II_{1})$ :

(I) Let $k_{1}$ be the field $Q(tr(\gamma)|\gamma\in\Gamma)$ generated by the set tr $(\Gamma)$ over the
rational number field Q. Then $k_{1}$ is an algebraic number field of finite degree,
and tr $(\Gamma)$ is contained in the ring $O_{k_{1}}$ of integers of $k_{1}$ .

$(II_{1})$ Let $k_{2}$ be the field $Q((tr(\gamma))^{2}|\gamma\in\Gamma)$ generated by the set $\{(tr(\gamma))^{2}|\gamma\in\Gamma\}$

over Q. Let $\varphi$ be any isomorphism of $k_{1}$ into the complex number field $C$ such
that $\varphi|_{k_{2}}\neq the$ identity. Then $\varphi(tr(\Gamma))$ is bounded in $C$.

In order to prove Theorem 1 we must prove first the following
THEOREM 2. Let $\Gamma$ be a Fuchsian group of the first kind. Then $\Gamma$ is a

Fuchsian group derived from a quaternion algebra if and only if $\Gamma$ satisfies
the condition (I) in Theorem 1 together with the following condition $(II_{2})$ :

$(II_{2})$ Let $\varphi$ be any isomorphism of $k_{1}=Q(tr(\gamma)|\gamma\in\Gamma)$ into $C$ such that $\varphi\neq$

the identity. Then $\varphi(tr(\Gamma))$ is bounded in $C$.
REMARK. Theorem 2 is a generalization of a result in [1].

We shall first prove Theorem 2, in \S 2. By making use of Theorem 2, we
shall then prove Theorem 1, in \S 3. Finally in \S 4, it is shown that the condi-
tions (I) and $(II_{1})$ are independent of each other.

The author would like to thank Professors G. Shimura and Y. Ihara for
their valuable suggestions.

\S 2. Proof of Theorem 2.

In this section we shall prove Theorem 2.
2.1. Necessity of the conditions (I) and $(II_{2})$ .
Let $\Gamma$ be a subgroup of $\Gamma(A, 0)$ of finite index. Then $k_{1}=Q(tr(\gamma)|\gamma\in\Gamma)$

is contained in the center $k$ of $A$ . Therefore $k_{1}$ is totally real. Since $tr_{A}(O)$
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is contained in $O_{k}$ , we see that tr $(\Gamma)$ is contained in $O_{k_{1}}$ . This shows that $\Gamma$

satisfies the condition (I).

Now consider the case $n\geqq 2$ . By (3), we see that $\varphi_{i}(tr(\Gamma))$ is contained
in $tr_{H}(\rho_{i}(U))(2\leqq i\leqq n)$ . On the other hand by (4) for any $\epsilon\in U$ we have
$n_{H}(\rho_{i}(\epsilon))=\varphi_{i}(n_{A}(\epsilon))=1(2\leqq i\leqq n)$ . Hence $\rho_{i}(U)$ is contained in the set $H^{(1)}=$

$\{x\in H|n_{H}(x)=1\}$ . Since $tr_{H}(H^{(1)})$ coincides with the interval [–2, 2], $\varphi_{i}(tr(\Gamma))$

is bounded in $R(2\leqq i\leqq n)$ .
Finally we shall show that $k_{1}$ coincides with $k$ . Suppose that $k$ is a proper

extension of $k_{1}$ . Then there exists an isomorphism $\varphi_{i}(2\leqq i\leqq n)$ such that
$\varphi_{i}|_{k_{1}}=the$ identity. Using this $\varphi_{i}$ , we see that tr $(\Gamma)$ is contained in the
interval [–2, 2]. This means that $\Gamma$ contains no hyperbolic elements, which
is a contradiction. Therefore, $k_{1}$ coincides with $k$ . Thus we have shown that
$\Gamma$ satisfies the condition $(II_{2})$ .

2.2. Sufficiency of the conditions (I) and $(II_{2})$ .
PROPOSITION 1. Let $\Gamma$ be a Fuchsian group of the first kind. Let $A(\Gamma)$

be the vector space spanned by $\Gamma$ over $k_{1}=Q(tr(\gamma)|\gamma\in\Gamma)$ in $M_{2}(R)$ . Then
$A(\Gamma)$ is a quaternion algebra over $k_{1}$ . Moreover, if $\Gamma$ satisfies the condition
(I), then the submodule $O(\Gamma)$ of $A(\Gamma)$ spanned by $\Gamma$ over $O_{k_{1}}$ is an order of
$A(\Gamma)$ .

This proposition is proved in [1].

We shall now prove the following
PROPOSITION 2. Let $\Gamma$ be a Fuchsian group of the first kind. Assume that

$\Gamma$ satisfies the conditions (I) and $(II_{2})$ . Then $k_{1}=Q(tr(\gamma)|\gamma\in\Gamma)$ is totally real.
Moreover, let $\varphi$ be any isomorphism of $k_{1}$ into $R$ such that $\varphi\neq the$ identity.
Then $\varphi(tr(\Gamma))$ is contained in the interval [–2, 2].

PROOF. Take any $\gamma\in\Gamma$ . Let $u$ and $1/u$ be the eigen-values of $\gamma$ . Let $\varphi$

be any isomorphism of $k_{1}$ into $C$ such that $\varphi\neq the$ identity. Extend $\varphi$ to an
isomorphism $\psi$ of $k_{1}(u)$ into $C$. We shall show that $|\psi(u)|=1$ . Suppose that
$|\psi(u)|\neq 1$ . Then by the inequality

$|\varphi(tr(\gamma^{m}))|=|(\psi(u))^{m}+1/(\psi(u))^{m}|\geqq||\psi(u)|^{m}-1/|\psi(u)|^{m}|$ ,

the set $\{\varphi(tr(\gamma^{m}))|m\in z\}$ is not bounded which contradicts $(II_{2})$ . Therefore
$|\psi(u)|=1$ . By the equations

$\varphi(tr(\gamma))=\psi(u)+1/\psi(u)=\psi(u)+\overline{\psi(u)}$ ,

$\varphi(tr(\gamma))$ is a real number contained in the interval [–2, 2]. This shows that
$k_{1}$ is totally real and that $\varphi(tr(\Gamma))$ is contained in the interval [–2, 2]. $q$ . $e$ . $d$ .

PROPOSITION 3. Let $\Gamma$ be a Fuchsian group of the first kind. Assume
that $\Gamma$ satisfies the conditions (I) and $(II_{2})$ . Then
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$A(\Gamma)\otimes_{Q}R\cong M_{2}(R)\oplus H\oplus\cdots\oplus H$ .
PROOF. In view of the proof of Proposition 1 in [1] by considering a

suitable conjugate group of $\Gamma$ , we may assume that $\Gamma$ contains the following
two elements:

$\gamma_{0}=\left(\begin{array}{ll}w & 0\\0 & 1/w\end{array}\right)$ $(w^{2}\neq 1)$ , $\gamma_{1}=\left(\begin{array}{ll}a_{1} & 1\\c_{1} & d_{1}\end{array}\right)$ $(c_{1}\neq 0)$ .

We shall show that $K=k_{1}(w)$ is a proper extension of $k_{1}$ . If $k_{1}$ is a proper
extension of $Q$ , then there exists an isomorphism $\psi$ of $K$ into $C$ such that
$\psi|_{k_{1}}\neq the$ identity. $\psi(w)$ and $1/\psi(w)$ are the roots of the equation $x^{2}-\psi(t_{0})x+1$

$=0$ , where $t_{0}=tr(\gamma_{0})$ . By Proposition 2 we have $|\psi(t_{0})|<2$ . Therefore $\psi(K)$

$=\psi(k_{1}(w))$ is an imaginary field. On the other hand, by Proposition 2, $\psi(k_{1})$

is a real field. It follows that $K$ does not coincides with $k_{1}$ .
If $k_{1}=Q$ , then $t_{0}$ is a rational integer such that $|t_{0}|>2$ . Therefore the

polynomial $x^{2}-t_{0}x+1$ is irreducible over $Q$ . This shows that $K$ is a proper
extension of $k_{1}$ .

Consequently we have

$\gamma_{0}=\left(\begin{array}{ll}w & 0\\0 & w^{\prime}--\end{array}\right)$ $(w^{2}\neq 1)$ , $\gamma_{1}=\left(\begin{array}{ll}a_{1} & 1\\c_{1} & a_{1}^{\prime}\end{array}\right)$ $(c_{1}\neq 0\in k_{1})$ ,

and we see that

$A(\Gamma)=A=\{\left(\begin{array}{ll}a & b\\bc_{1} & a\end{array}\right)|a,$ $b\in K\}$ ,

where $a^{\prime}$ is the $k_{1}$ -conjugate of $a$ .
LEMMA 1. Let $\psi$ be any isomorphism of $K=k_{1}(w)$ into $C$ such that $\psi|_{k_{1}}\neq$

the identity. Then for any element $\gamma=\left(\begin{array}{ll}a & b\\b’ c_{1} & a’\end{array}\right)$ of $\Gamma$ we have the inequality
$|\psi(a)|\leqq 1$ .

COROLLARY. Let $\psi$ be the same as in Lemma 1. Then we have $\psi(c_{1})<0$ ,

where $\gamma_{1}=\left(\begin{array}{ll}a_{1} & 1\\c_{1} & a_{1}^{\prime}\end{array}\right)$ .
PROOF OF LEMMA 1. By Proposition 2 for any $\gamma=\left(\begin{array}{ll}a & b\\bc_{1} & a’\end{array}\right)\in\Gamma$ we have

the inequality $|\psi(tr(\gamma\cdot\gamma_{0}^{m}))|\leqq 2$ . Then we have

$\psi(tr(\gamma\cdot\gamma_{0}^{m}))=\psi(aw^{m})+\psi(a^{\prime}w^{\prime m})=\psi(aw^{m})+\psi\overline{(aw^{m}})=2{\rm Re}(\psi(a)\cdot\psi(w^{m}))$ .
In view of the proof of Proposition 2, we see that $|\psi(w)|=1$ . Since $w$ is not
a root of unity, the set $\{\psi(w)^{m}|m\in Z\}$ is a dense subgroup of $C^{(1)}=\{z\in C||z|=1\}$ .
Therefore we have $|{\rm Re}(\psi(a)\cdot z)|\leqq 1$ , for any $z\in C^{(1)}$ . It follows that $|\psi(a)|\leqq 1$ .

$q.e$ . $d$ .
PROOF OF COROLLARY. Applying Lemma 1 to $\gamma_{1}$ we see that $|\psi(a_{1})|\leqq 1$ .
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By the equation
det $(\gamma_{1})=a_{1}a_{1}^{/}-c_{1}=1$

we have
$\psi(c_{1})=\psi(a_{1}a_{1}^{/})-1=|\psi(a_{1})|^{2}-1\leqq 0$ .

By the fact that $c_{1}\neq 0$ we see that $\psi(c_{1})<0$ . $q$ . $e$ . $d$ .
Let $\{\varphi_{i}\}(1\leqq i\leqq n_{1})$ be all distinct isomorphisms of $k_{1}$ into $R$ , where we

assume that $\varphi_{1}=the$ identity. Extend $\varphi_{i}$ to an isomorphism $\psi_{i}$ of $K=k_{1}(w)$

into $C$. Moreover we shall define an isomorphism $\Psi_{i}$ of $A(\Gamma)$ into $M_{2}(C)$ in
the following way:

$\Psi_{i}$ : $\alpha=\left(\begin{array}{ll}a & b\\b^{\prime}c_{1} & a\end{array}\right)\leftrightarrow\Psi_{i}(\alpha)=\left(\begin{array}{ll}\psi_{i}(a) & \psi_{i}(b)\\\psi_{i}(bc_{1}) & \psi_{i}(a)\end{array}\right)$ .

Then $A_{i}=\Psi_{i}(A(\Gamma))$ is a quaternion algebra over $\psi_{i}(k_{1})$ . By definition of $\psi_{i}$ we
see easily that

$A(\Gamma)\otimes_{Q}R\cong\bigoplus_{i=1}^{n_{1}}(A_{i}\otimes_{\varphi i^{(k_{1})}}R)$ .
Since we have

$\psi_{i}(a^{\prime})=\overline{\psi_{i}(a})$ $(2\leqq i\leqq n_{1})$ ,
we see that

$A_{i}=\{$( $\overline{a}b$) $|a,$ $b\in\psi_{i}(K)\}$ .

It follows from Corollary to Lemma 1 that

$A_{i}\otimes_{\varphi i^{(k_{1})}}R\cong H$ $(2\leqq i\leqq n_{1})$ .
This completes the proof of Proposition 3.

By Propositions 1, 2 and 3 $k_{1},$ $A(\Gamma)$ and $0(\Gamma)$ satisfy the assumptions in
\S 1. Clearly, $\Gamma$ isasubgroup of $\Gamma(A(\Gamma), 0(\Gamma))$ . $SincebothH/\Gamma andH/\Gamma(A(\Gamma)$ ,
$O(\Gamma))$ are of finite volume, $\Gamma$ is a subgroup of $\Gamma(A(\Gamma), 0(\Gamma))$ of finite index.
This shows that $\Gamma$ is a Fuchsian group derived from a quaternion algebra.

\S 3. Proof of Theorem 1.

In this section we shall prove Theorem 1 by making use of Theorem 2.
3.1. Necessity of the conditions (I) and $(II_{1})$ .
Let $\Gamma$ be a Fuchsian group of the first kind. Denote by $\Gamma^{(2)}$ the subgroup

of $\Gamma$ generated by the set $\{\gamma^{2}|\gamma\in\Gamma\}$ . Then $\Gamma^{(2)}$ is a normal subgroup of $\Gamma$

such that $\Gamma/\Gamma^{(2)}$ is of exponent 2. Since $\Gamma$ is finitely generated, $\Gamma/\Gamma^{(2)}$ is a
finite abelian group of type(2, 2, $\cdots$ , 2). Therefore $\Gamma^{(2)}$ is a subgroup of $\Gamma$ of
finite index.
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In view of the proof of Proposition 1 there exist two elements $\gamma_{0}$ , and $\gamma_{1}$

of $\Gamma$ such that $\{1_{2}, \gamma_{0}, \gamma_{1}, \gamma_{0}\cdot\gamma_{1}\}$ is a basis of $A(\Gamma)$ over $k_{1}=Q(tr(\gamma)|\gamma\in\Gamma)$ . It
is easy to see that we may assume that

$\gamma_{0}=\alpha^{2}$ $\gamma_{1}=\beta^{2}$ ,

where $\alpha$ and $\beta$ are hyperbolic elements of $\Gamma$ . Since tr $(\alpha^{2})\neq 0$ , by the equation

$\beta^{4}-tr(\beta^{2})\cdot\beta^{2}+1=0$ ,

either tr $(\alpha^{2}\cdot\beta^{2})$ or tr $(\alpha^{2}\cdot\beta^{4})$ is non-zero. Therefore without loss of generality
we may assume that

tr $(\alpha^{2}\cdot\beta^{2})\neq 0$ . (5)

PROPOSITION 4. Let $\Gamma$ be a Fuchsian group of the first kind. Denote by
$\Gamma^{(2)}$ the subgroup of $\Gamma$ generated by the set $\{\gamma^{2}|\gamma\in\Gamma\}$ . Let $k_{2}=Q((tr(\gamma))^{2}|\gamma\in\Gamma)$

and $k_{2}^{\prime}=Q(tr(\gamma)|\gamma\in\Gamma^{(2)})$ . Then $k_{2}$ coincides with $k_{2}^{\prime}$ .
PROOF. Take any basis of $A(\Gamma)$ over $k_{1}$ of the form $\{1_{2}, \alpha^{2}, \beta^{2}, \alpha^{2}\cdot\beta^{2}\}$

where $\alpha$ and $\beta$ are elements of $\Gamma$ satisfying (5). Let $A_{0}$ be the vector space
spanned by $\{1_{2}, \alpha^{2}, \beta^{2}, \alpha^{2}\cdot\beta^{2}\}$ over $k_{2}$ . We shall show that $A_{0}$ is a quaternion
algebra over $k_{2}$ and that $A_{0}$ coincides with $A(\Gamma^{(2)})$ . The multiplication table
of the algebra $A(\Gamma)$ with respect to the basis { $1_{2},$ $\alpha^{2},$ $\beta^{2},$ $\alpha^{2}\cdot\beta^{2}$ ) is as follows:

For any $\gamma\in\Gamma$ we have
tr $(\gamma^{2})=(tr(\gamma))^{2}-2$ .

It implies that $k_{2}$ is contained $k_{2}^{\prime}$ . It is easy to see that, $\alpha^{4},$ $\beta^{4},$ $\alpha^{4}\cdot\beta^{2}$ and $\alpha^{2}\cdot\beta^{4}$

are all contained in $A_{0}$ .
LEMMA 2. Let $\delta_{1}$ and $\delta_{2}$ be two elements of $\Gamma$ . Then tr $(\delta_{1}^{2}\cdot\delta_{2}^{2})$ is con-

tained in $k_{2}$ .
PROOF. We have

tr $(\delta_{1}^{2}\cdot\delta_{2}^{2})=tr((tr(\delta_{1})\cdot\delta_{1}-1_{2})(tr(\delta_{2})\cdot\delta_{2}-1_{2}))$

$=tr(\delta_{1})$ tr $(\delta_{2})$ tr $(\delta_{1}\cdot\delta_{2})-(tr(\delta_{1}))^{2}-(tr(\delta_{2}))^{2}+2$ .
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On the other hand, using the equation

tr $(\delta_{1})$ tr $(\delta_{2})=tr(\delta_{1}\cdot\delta_{2})+tr(\delta_{1}\cdot\delta_{2}^{-1})$ ,
we obtain

$(tr (\delta_{1}\cdot\delta_{2}^{-1}))^{2}=(tr(\delta_{1}))^{2}(tr(\delta_{2}))^{2}+(tr(\delta_{1}\cdot\delta_{2}))^{2}$

$-2$ tr $(\delta_{1})$ tr $(\delta_{2})$ tr $(\delta_{1}\cdot\delta_{2})$ .

It implies that tr $(\delta_{1})$ tr $(\delta_{2})$ tr $(\delta_{1}\cdot\delta_{2})$ is contained in $k_{2}$ . Hence tr $(\delta_{1}^{2}\cdot\delta_{2}^{2})$ is con-
tained in $k_{2}$ . $q$ . $e$ . $d$ .

LEMMA 3. Let $\alpha,$
$\beta$ be the same as in the definition of $A_{0}$ . Then an ele-

ment $\gamma$ of $A(\Gamma)$ is contained in $A_{0}$ if and only if tr $(\gamma)$ , tr $(\gamma\cdot\alpha^{-2})$ , tr $(\gamma\cdot\beta^{-2})$

and tr $(\gamma\cdot\beta^{-2}\cdot\alpha^{-2})$ are all contained in $k_{2}=Q((tr(\gamma))^{2}|\gamma\in\Gamma)$ .
PROOF. Let $\gamma$ be any element of $A(\Gamma)$ . Then we have

$\gamma=x_{0}1_{2}+x_{1}\alpha^{2}+x_{2}\beta^{2}+x_{3}\alpha^{2}\cdot\beta^{2}$

where $x_{i}(0\leqq i\leqq 3)$ belongs to the field $k_{1}$ .
Multiplying $\gamma$ by $\alpha^{-2},$ $\beta^{-2}$ and $\beta^{-2}\cdot\alpha^{-2}$ respectively and taking the traces,

we have the equations

tr $(\gamma)=2x_{0}+tr(\alpha^{2})x_{1}+tr(\beta^{2})x_{2}+tr(\alpha^{2}\cdot\beta^{2})x_{3}$ ,

tr $(\gamma\cdot\alpha^{-2})=tr(\alpha^{2})x_{0}+2x_{1}+tr(\alpha^{2}\cdot\beta^{-2})x_{2}+tr(\beta^{2})x_{3}$ ,

tr $(\gamma\cdot\beta^{-2})=tr(\beta^{2})x_{0}+tr(\alpha^{2}\cdot\beta^{-2})x_{1}+2x_{2}+tr(\alpha^{2})x_{3}$ ,

tr $(\gamma\cdot\beta^{-2}\cdot\alpha^{-2})=tr(\alpha^{2}\cdot\beta^{2})x_{0}+tr(\beta^{2})x_{1}+tr(\alpha^{2})x_{2}+2x_{3}$ .
Put

$D=\left(\begin{array}{llllllll}2 & & tr(\alpha^{2}) & & tr(\beta^{2}) & & tr(\alpha^{2} & \beta^{2})\\tr(\alpha^{2}) & & 2 & & tr(\alpha^{2}\cdot & \beta^{-2}) & tr(\beta^{2}) & \\tr(\beta^{2}) & & tr(\alpha^{2}\cdot & \beta^{-2}) & 2 & & tr(\alpha^{2}) & \\tr(\alpha^{2}\cdot & \beta^{2}) & tr(\beta^{2}) & & tr(\alpha^{2}) & & 2 & \end{array}\right)$ .

Then

$D\cdot\left(\begin{array}{l}X_{0}\\X_{1}\\X_{2}\\X_{3}\end{array}\right)=\left(\begin{array}{ll}tr(\gamma) & \\tr(\gamma\cdot\alpha^{-2}) & \\tr(\gamma\cdot\beta^{-2}) & \\tr(\gamma\cdot\beta^{-2}\cdot & \alpha^{-2})\end{array}\right)$ .

Now we shall show that the matrix $D$ is contained in the group $GL_{4}(k_{2})$ .
By Lemma 2 we see that $D$ belongs to $M_{2}(k_{2})$ . Considering $x_{i}(0\leqq i\leqq 3)$ as
variables, we can express the norm form of $A(\Gamma)$ in the following way:
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$n_{A(\Gamma)}(\gamma)=x_{0}^{2}+tr(\alpha^{2})x_{0}x_{1}+tr(\beta^{2})x_{0}x_{2}+tr(\alpha^{2}\cdot\beta^{2})x_{0}x_{3}$

$+\chi_{1}^{2}+tr(\alpha^{2}\cdot\beta^{-2})x_{1}x_{2}+tr(\beta^{2})x_{1}x_{3}+x’’+tr(\alpha^{2})x_{2}x_{3}+x_{8}^{2}$

$=\frac{1}{2}(x_{0}, x_{1}, x_{2}, x_{3})\cdot D\cdot\left(\begin{array}{l}X_{0}\\X_{1}\\x_{2}\\x_{3}\end{array}\right)$ .

Since $A(\Gamma)$ is a quaternion algebra over $k_{1}$ , the norm form of $A(\Gamma)$ is non-
degenerate. Hence det $(D)$ is non-zero. This shows that $D$ is contained in the
group $GL_{4}(k_{2})$ . It follows that $\gamma$ is contained in $A_{0}$ if and only if tr $(\gamma)$ , tr $(\gamma\cdot\alpha^{-2})$ ,
tr $(\gamma\cdot\beta^{-2})$ and tr $(\gamma\cdot\beta^{-2}\cdot\alpha^{-2})$ are all contained in $k_{2}$ . $q$ . $e$ . $d$ .

We shall show that $\beta^{2}\alpha^{2}$ is contained in $A_{0}$ . By Lemma 2 tr $(\beta^{2}\alpha^{2})$ and
tr $(\beta^{2}\alpha^{2}\beta^{-2}\alpha^{-2})(=tr((\beta^{2}\alpha\beta^{-2})^{2}\cdot\alpha^{-2}))$ are contained in $k_{2}$ . Applying Lemma 3 to
$\beta^{2}\alpha^{2}$ we see that $\beta^{2}\alpha^{2}$ is contained in $A_{0}$ . It follows from this that $\alpha^{2}\cdot\beta^{2}\alpha^{2}$

and $\beta^{2}\alpha^{2}\cdot\beta^{2}$ are also contained in $A_{0}$ . Thus we have shown that $A_{0}$ is an
algebra over $k_{2}$ such that

$A_{0}\otimes_{k_{2}}k_{1}=A(\Gamma)$ .
It is clear by definition that $A_{0}$ is contained in $A(\Gamma^{(2)})$ . Take any $\gamma\in\Gamma$ . We
shall show that $\gamma^{2}$ is contained in $A_{0}$ . By Lemma 2 tr $(\gamma^{2})$ , tr $(\gamma^{2}\alpha^{-2})$ and
tr $(\gamma^{2}\beta^{-2})$ are all contained in $k_{2}$ . Considering the assumption (5), by the
equations

tr $(\gamma^{2}\beta^{-2}\alpha^{-2})=tr(\alpha^{2}\beta^{2}\gamma^{-2})=tr(\alpha^{2}\beta^{2}\gamma^{-1})$ tr $(\gamma)-tr(\alpha^{2}\beta^{2})$ ,

$(tr (\alpha^{2}\beta^{2}\gamma))^{2}=(tr(\alpha^{2}\beta^{2}) tr (\gamma)-tr(\alpha^{2}\beta^{2}\gamma^{-1}))^{2}$

$=(tr(\alpha^{2}\beta^{2}))^{2}(tr(\gamma))^{2}+(tr(\alpha^{2}\beta^{2}\gamma^{-1}))^{2}$

$-2$ tr $(\alpha^{2}\beta^{2})$ tr $(\alpha^{2}\beta^{2}\gamma^{-1})$ tr $(\gamma)$ ,

we see that tr $(\gamma^{2}\beta^{-2}\alpha^{-2})$ is contained in $k_{2}$ . We can apply Lemma 3 to $\gamma^{2}$ .
Hence we see that $\gamma^{2}$ is contained in $A_{0}$ . It follows that $\Gamma^{(2)}$ is contained in
$A_{0}$ . In particular, tr $(\Gamma^{(2)})$ is contained in $k_{2}$ . Therefore $k_{2}^{\prime}$ is contained in $k_{2}$ .
Thus we have shown that $k_{2}^{\prime}$ coincides with $k_{2}$ . This completes the proof of
Proposition 4. By the way since $A(\Gamma^{(2)})$ is a quaternion algebra over $k_{2}^{\prime}(=k_{2})$ ,
we see that $A_{0}=A(\Gamma^{(2)})$ . $q$ . $e$ . $d$ .

PROPOSITION 5. Let $\Gamma$ be an arithmetic Fuchsian group commensurable
with $\Gamma(A, 0)$ where $A$ and $O$ are the same as in \S 1. Then $k_{2}=Q((tr(\gamma))^{2}|\gamma\in\Gamma)$

coincides with the center $k$ of $A$ and $A(\Gamma^{(2)})$ coincides with $\rho_{1}(A)$ .
PROOF. By the assumption there exists a subgroup $\Gamma_{1}$ of both $\Gamma$ and

$\Gamma(A, 0)$ of finite index. By 2.1. \S 2 we see that $k$ coincides with the field
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$Q(tr(\gamma)|\gamma\in\Gamma_{1})$ . Moreover by Proposition 1 we see that $A(\Gamma_{1})=\rho_{1}(A)$ . We
may take $\Gamma_{1}$ as a normal subgroup of $\Gamma$ . Take any $\gamma\in\Gamma$ . Then $\gamma$ induces
an automorphism $\varphi_{\gamma}$ of $\Gamma_{1}$ defined as follows:

$\varphi_{\gamma}$ ; $\Gamma_{1}\ni\alpha-\gamma^{-1}\alpha\gamma\in\Gamma_{1}$ .
$\varphi_{\gamma}$ can be extended to an automorphism $\varphi_{r}$ of $A(\Gamma_{1})=\rho_{1}(A)$ in a natural way
which is the identity of the center $k\cdot 1_{2}$ of $\rho_{1}(A)$ . By the Skolem-Noether’s
Theorem there exists an invertible element $\delta_{0}$ of $A$ such that for any $\alpha\in\rho_{1}(A)$

we have
$\varphi_{\gamma}(\alpha)=\rho_{1}(\delta_{0})^{-1}\cdot\alpha\cdot\rho_{1}(\delta_{0})$ .

Since we have
$\rho_{1}(A)\otimes_{k}R\cong M_{2}(R)$ ,

we have the expression
$\gamma=a\cdot\rho_{1}(\delta_{0})$ ,

where $a$ is a non-zero real number. By the equation

$1=\det(\gamma)=\alpha^{2}$ det $(\rho_{1}(\delta_{0}))=a^{2}n_{A}(\delta_{0})$ ,

$a^{2}$ is a non-zero element of $k$ . Hence $\gamma^{2}$ is contained in $\rho_{1}(A)$ . It follows that
$\Gamma^{(2)}$ is contained in $\rho_{1}(A)$ . Therefore, $A(\Gamma^{(2)})$ is contained in $\rho_{1}(A)$ and $k_{2}$ is
contained in $k$ .

It is clear that
$A(\Gamma^{(2)})\otimes_{k_{2}}k\cong\rho_{1}(A)$ .

By the assumption (1) of $A,$ $k_{2}$ coincides with $k$ and that $A(\Gamma^{(2)})=\rho_{1}(A)$ . This
completes the proof of Proposition 5.

We shall show that (I) and $(II_{1})$ are necessary conditions. Let $\Gamma$ be an
arithmetic Fuchsian group commensurable with $\Gamma(A, O)$ . Take any $\gamma\in\Gamma$ .
Then $\gamma^{m}$ is contained in $\rho_{1}(O)$ for some positive integer $m$ . Let $u$ and $1/u$ be
the eigen-values of $\gamma$ . Then $u^{m}$ and $1/u^{m}$ are the eigen-values of $\gamma^{m}$ . Since
tr $(\gamma^{m})$ is contained in $O_{k},$ $u^{m}$ and $1/u^{m}$ are algebraic integers. Hence $u$ and
$1/u$ are also algebraic integers. It follows that tr $(\gamma)$ is contained in $O_{k_{1}}$ . This
shows that $\Gamma$ satisfies the condition (I).

Let $\varphi$ be any isomorphism of $k_{1}$ into $C$ such that $\varphi|_{k_{2}}\neq the$ identity. Then
by Proposition 5 $k_{2}$ coincides with $k$ and hence $\varphi|_{k_{2}}=\varphi_{i}$ for some $i(2\leqq i\leqq n)$ .
Extend $\varphi$ to an isomorphism $\psi$ of $k_{1}(u)$ in to $C$. Since $\gamma^{m}$ belongs to $\rho_{1}(A)$ ,
$\varphi(tr(\gamma^{m}))$ is contained in the interval [–2, 2]. Since $\psi(u^{m})$ and $1/\psi(u^{m})$ are
the roots of the equation

$x^{2}-\psi(tr(\gamma^{m}))x+1=0$ ,

we have $|\psi(u^{m})|=1$ . Hence we have $|\psi(u)|=1$ . It follows from the equations
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$\varphi(tr(\gamma))=\psi(u)+1/\psi(u)=\psi(u)+\overline{\psi(u)}$

that $\varphi(tr(\gamma))$ is contained in the interval [–2, 2]. This shows that $\varphi(tr(\Gamma))$

is bounded. Therefore, $\Gamma$ satisfies the condition $(II_{1})$ .
3.2. Sufficiency of the conditions (I) and $(II_{1})$ .
Let $\Gamma$ be a Fuchsian group of the first kind satisfying the conditions (I)

and $(II_{1})$ . By Proposition 4 we see easily that $\Gamma^{(2)}$ satisfies the conditions (I)
and $(II_{2})$ in Theorem 2. By Theorem 2 $\Gamma^{(2)}$ is a Fuchsian group derived from
a quaternion algebra. Since $\Gamma^{(2)}$ is a subgroup of $\Gamma$ of finite index, $\Gamma$ is an
arithmetic Fuchsian group. This completes the proof of Theorem 1.

REMARK. In view of the proof of Theorem 1 $\Gamma$ is an arithmetic Fuchsian
group if and only if $\Gamma^{(2)}$ is a Fuchsian group derived from a quaternion algebra.

\S 4. Independency of the conditions (I) and $(II_{1})$ .
In this section we shall show that the conditions (I) and $(II_{1})$ in our

Theorem are independent of each other. First we shall give an example of a
Fuchsian group which satisfies the condition (I) but does not satisfy the con-
dition $(II_{1})$ .

For any rational integer $q$ such that $q\geqq 7$ put $\lambda=2$ cos $(\pi/q)$ . Then the
field $k_{\lambda}=Q(\lambda)$ is a totally real algebraic number field of degree 1/2 $\cdot$ $\varphi(2q)$ ,
where $\varphi()$ is the Euler function. Let $\Gamma(\lambda)$ be the subgroup of $SL_{2}(R)$ gener-
ated by the following two elements:

$S=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , $T_{\lambda}=\left(\begin{array}{ll}1 & \lambda\\ 0 & 1\end{array}\right)$ .

$\Gamma(\lambda)$ is introduced by E. Hecke in [3] and is shown to be a Fuchsian group
of the first kind. It is easy to see that $k_{\lambda}=Q(tr(\gamma)|\gamma\in\Gamma(\lambda))$ . Since $\lambda$ is con-
tained in $O_{k_{\lambda}},$ $\Gamma(\lambda)$ is a subgroup of $SL_{2}(O_{k_{\lambda}})$ . Therefore, we have tr $(\Gamma(\lambda))$

$\subset O_{k_{\lambda}}$ . It follows that $\Gamma(\lambda)$ satisfies the condition (I). Since $\Gamma^{(2)}(\lambda)$ contains
$(ST_{\lambda})^{2}T_{\lambda}^{2m}$ for any rational integer $m$ , we see that $\Gamma(\lambda)$ does not satisfy the
condition $(II_{1})$ .

Now we shall construct a Fuchsian group which satisfies the condition $(II_{1})$

but does not satisfy the condition (I). For this purpose we make use of the
arithmetic Fuchsian group $\Gamma(A, 0)$ defined in \S 1. Let $k,$ $A,$ $O$ and $\Gamma(A, 0)$ be
the same as in \S 1. We assume that $k\neq Q$ . Then $A$ is a division quaternion
algebra over $k$ . Hence $H/\Gamma(A, O)$ is compact (cf. $e$ . $g$ . $[2]$ ). It follows that
$\Gamma(A, O)$ does not contain any parabolic elements. Since $\Gamma(A, 0)$ is a finitely
generated subgroup of $SL_{2}(R)$ , by Lemma 8 in [4] there exists a torsion-free
subgroup $\Gamma$ of $\Gamma(A, O)$ of finite index. It follows that $\Gamma$ is generated by $2g$

$(g\geqq 2)$ hyperbolic elements
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$\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots \alpha_{g}, \beta_{g}\}$ ,

which satisfy the unique fundamental relation

$\alpha_{1}\cdot\beta_{1}\cdot\alpha_{1}^{-1}\cdot\beta_{1}^{-1}\cdots\alpha_{g}\cdot\beta_{g}\cdot\alpha_{g}^{-1}\cdot\beta_{g}^{-1}=I_{2}$ .

By considering a suitable conjugate group instead of $\Gamma$ , we may assume that

$\beta_{1}=\left(\begin{array}{ll}w & 0\\0 & w\end{array}\right)$ , $\alpha_{1}=\left(\begin{array}{ll}a_{1} & b_{1}\\c_{1}b_{1}^{\prime} & a_{1}^{\prime}\end{array}\right)$ $(k\ni c_{1}\neq 0)$ ,

and that

$A(\Gamma)=A=\{\left(\begin{array}{ll}a & b\\c_{1}b^{\prime} & a\end{array}\right)|a,$ $b\in K\}$ .

For any non-zero real number $u$ we put

$\alpha(u)=\alpha_{1}\cdot\left(\begin{array}{ll}u & 0\\0 & 1/u\end{array}\right)$ .

Then
$\lim_{M1}\alpha(u)=\alpha(1)=\alpha_{1}$ .

Let $\Gamma_{u}$ be the subgroup of $SL_{2}(R)$ generated by $2g$ elements

$\{\alpha(u), \beta_{1}, \alpha_{2}, \beta_{2}, \cdots \alpha_{g}, \beta_{g}\}$ ,

which satisfy the following relation:

$\alpha(u)\cdot\beta_{1}\alpha(u)^{-1}\cdot\beta_{1}^{-1}\cdot\alpha_{2}\beta_{2}\cdot\alpha_{2}^{-1}\cdot\beta_{2}^{-1}\cdots\alpha_{g}\cdot\beta_{g}\cdot\alpha_{g}^{-1}\cdot\beta_{g}^{-1}=I_{2}$ .

Since $ H/\Gamma$ is compact, we can apply to $\Gamma$ the theory of small deformations
which is proved by A. Weil in [6]. Therefore, there exists a neighbourhood
$V$ of 1 in $R$ such that for any $u$ in $V\Gamma_{u}$ is a Fuchsian group of the Prst
kind.

Now we impose on $\Gamma_{u}$ the following condition:

$K\ni u$ and $uu^{\prime}=1$ .
Then $\Gamma_{u}$ is contained in $A$ . It follows that $\Gamma_{u}$ satisfies the condition $(II_{1})$ .

By the relation tr $(\alpha(u))=tr_{K/k}(a_{1}u)$ , where $tr_{K/k}()$ means the trace map of
$K$ to $k$ , if $tr_{K/k}(a_{1}u)$ is not contained in $O_{k}$ , then $\Gamma_{u}$ does not satisfy the con-
dition (I). We need the following

LEMMA 4. There exists a sequence $\{u_{m}\}$ which satisfies the following con-
ditions:

(i) $u_{m}$ is contained in $K$ and $u_{m}\cdot u_{m}^{\prime}=1$ ,
(ii) $\lim_{m\rightarrow\infty}u_{m}=1$ ,
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(iii) $tr_{K/k}(u_{m})$ is not contained in $O_{k}$ .
PROOF. Let $u$ be an element of $K$ such that $u\cdot u^{\prime}=1$ . Then by Hilbert’s

Theorem 90 we can find an element $v$ of $K$ such that $u=v/v^{\prime}$ . Put

$d_{1}=(tr(\beta_{1}))^{2}-4=(w-w^{\prime})^{2}$

Then $K=k(w)=k(\sqrt{d_{1}})$ . Since $v$ can be expressed as follows:

$v=(1+\sqrt{d_{1}}x)y$ ,

where $x$ and $y$ are elements of $k$ , we have

$u=\frac{1+d_{1}x^{2}+2x\sqrt{d_{1}}}{1-d_{1}x^{2}}$ . (6)

Since $tr_{K/k}(a_{1})=tr(\alpha_{1})$ is contained in $O_{k},$ $tr_{K/k}(a_{1}u)$ is contained in $O_{k}$ if and
only if $tr_{K/k}(a_{1}(u+1))$ is so. By (6), we have

$tr_{K/k}(a_{1}(u+1))=\frac{2tr_{K/k}(a_{1})+2(a_{1}-a_{1}^{\prime})\sqrt{d_{1}}\cdot x}{1-d_{1}\cdot x^{2}}$ . (7)

Since $k$ is a totally real algebraic number field of degree $n\geqq 2$ , we can find an
element $x_{0}$ of $O_{k}$ such that $0<|x_{0}|<1$ . For any positive integer $m$ , put

$u_{m}=\frac{1+d_{1}x_{0}^{2m}+2x_{0}^{m}\cdot\sqrt{d_{1}}}{1-d_{1}x_{0}^{2m}}$ .

Then we see easily that $\{u_{m}\}$ satisfies the conditions (i) and (ii).
Since $n_{k/Q}(x_{0})$ is a non-zero rational integer, there exists an index $i$ such

that $|\varphi_{i}(x_{0})|>1$ . Therefore, we have

$\lim_{m\rightarrow\infty}n_{k/Q}(tr_{K/k}(a_{1}(u_{m}+1)))=2^{n}\lim_{m\rightarrow\infty}\prod_{t=1}^{n}\frac{\varphi_{i}(tr_{K/k}(a_{1}))+\varphi_{i}((a_{1}-a_{1}^{\prime})\sqrt{d_{1}})\varphi_{i}(x_{0})^{m}}{1-\varphi_{i}(d_{1})\cdot\varphi_{i}(x_{0})^{2m}}$

$=0$ .
On the other hand, by (7) we have

$\lim_{m\rightarrow\infty}tr_{K/k}(a_{1}(u_{m}+1))=2tr_{K/k}(a_{1})\neq 0$ .

This implies that for any sufficiently large $m,$ $tr_{K/k}(a_{1}u_{m})$ is not contained in
$O_{k}$ . This completes the proof of Lemma 4.

By this lemma we can give an example of a Fuchsian group which satisfies
the condition $(II_{1})$ but does not satisfy the condition (I).
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