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§1. Introduction.

Recently many results concerning the weighted norm inequalities for
various types of integral transforms have been proved. The most fundamental
result in this direction is the one due to Muckenhoupt [7], which establishes
the weighted norm inequalities for the Hardy-Littlewood maximal functions in
R":

(L) ) =sup-grf 1FDldy,

where fe Li,.(R") and Q, ranges over all cubes with sides parallel to axes
and centered at x. His result is:

THEOREM A. Let 1<p<oo, and w is non-negative and belongs to Li,(R™).
The inequality

(1.2) J LA aPe@de=C, | 1f00)]Palx)dx

1s valid for all fe LP(w(x)dx), if and only if w satisfies the condition

(A4,) Sgp (‘%I—LQQ)(X)dx)(ﬁf‘gw(x)—mp—ndx Pl oo

where the supremum is taken over all cubes Q.
The weak type inequality

(13) ma({xe R (0> AN E-3f 10| wodx

(here mw(A):jAw(x)dx for measurable AC R") 1s valid for all f<L'(w(x)dx),
if and only if w satisfies the condition

(A)) w*¥(x) < Cow(x) a.e.

Shortly after the proof of Theorem A, Hunt, Muckenhoupt, and Wheeden
proved the same result for Hilbert transforms in R® in place of the maximal
function.

More recently, extending the latter result to the singular integral operators
in R®, Coifman and Fefferman [2] have proved
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THEOREM B. Let T: f—Kxf in R", be a singular integral operator with a
convolution kernel satisfying the conditions

(@) IKl.=C,
C
(b) LENES
(@) |K)—Kx=y) =Sk for Is1<5L

Suppose that the weight function w satisfies the condition (A,), 1<p< oo, then

(L4) T Pa(x)dx=C,f  1£()|7a(x)dx.
R R
To prove Theorem B, they introduced the “maximal operator”

’

(1.5) T*f(x)= sup
QuCQ)

[ Ka—»fG)dy
Qx\Qa;

where Q. and Q) range over all cubes centered at x with Q>2DQ,, and showed

that the inequality is an easy consequence of the “distribution function
inequality”

(1.6) m({T*f>24, f*=7r2)=Cr’m,({T*f>2}),

where the weight function @ satisfies the condition
(Ax) There exist positive constants C, 6>0 so that given any cube Q and any
measurable subset ECQ

myE) _ o(_|E| Y

m,(Q) = ( Q1 ) )

From the inequality [1.6), it follows that
[ (T@yre)de=C,[ (FHx)yolx)dz.

Combining this and (see [8])

LEMMA 1. (A4,), 1=<p<co, implies (A.),
they proved Theorem B.

On the other hand, Coifman [1] stated earlier, only with a sketch of proof
for the special case of Hilbert transform that, if the convolution kernel K
satisfies the conditions

() K(x)=8(x)/|x|", where £ is homogeneous of degree zero,
(B) £ satisfies a Lipschitz condition of positive order «, 0 < a <1,
on the unit sphere S™7,

o | L B0ndw =0,
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and o satisfies the condition (A.), then for any 2>0 and any 8>1, y >0 with
B—1>Cr

L7 ma({THF > BA, F*<72)) = Ce™ " my({T*F > 1)) .

It is easily seen that the conditions (a), (8) and (y) imply the condition
(a), (b) and

(c”) [K(x)—K(x—y)lé;Cly]a | x|

Izlnux for |y|<——2

(see, for example, Zygmund [11]). The idea of Coifman and Fefferman [2]
applies also to the kernel satisfying the conditions (a), (b), and (¢’) or more
general

(") | KoK=yl g AR gor <21,

where 6 is an increasing function such that #(2¢)<Cé(t) (¢>0) and

j‘l-&dt<oo
o )

The purpose of this note is to give proofs of the distribution function in-
equalities and the weighted norm inequalities for singular integral with kernels
satisfying the general conditions (a), (b) and (c¢’) or (¢”). In Section 3 we
shall prove the distribution function inequalities, and for this end it is con-
venient to state the weighted norm inequalities and distribution function in-
equalities for the Marcinkiewicz integrals, so we shall prove them in Sec-
tion 2. In Section 4 we shall derive the weighted norm inequalities from the
results in Section 3, and also give a converse result.

§2. Marcinkiewicz integrals.

Let P be a closed set in R® and d(x)=0px(x) denote the distance of the
point x€ R" from P. Let a be any positive number and f be a measurable
function on R". We shall call the integral

1) MF(x)=Mpof(r)=| DB dy

to be the Marcinkiewicz integral of f with respect to P and a.

Zygmund proved
THEOREM C. If fe L?(R"), 1<p< o, then

(2.2) (J 1Mpeorpax)” =p0(f15)17dz)"s

and if f is bounded and supported in a set of finite measure E, then
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(2.3) §_exp (el MF()I/I/l)dx =C|E].

The second named author has complemented this result by proving :
THEOREM D. If CP is of finite measure, then, for any f & L=(R™), Mf is of
BMO and

1
(2.4) | Mf |« = sup WL) | Mf(x)=(Mf)qldx=C| fll-,

where gQ:]Q]“ng(x)dx and the supremum is taken over all cubes Q.

In this section we shall prove the weighted version of above results. To
this end we state a lemma of which we shall make repeated use in sequel.

LEMMA 2. Suppose that the least decreasing radial majorant of ¢ is inte-
grable in R*, then

sup|f+@s(x)| =Cf*(x)  for f& Lin(RY),
0

where ©5x)=0""¢(x/0) and C is the integral of the majorant.

This is well known (for example, see [9; p. 62]).

THEOREM 1. Suppose M[f is defined by (2.1) and the weight function w
satisfies the condition (A,).

1°. If 1=p< oo, then

(2.5) [ MpG) odx=C, [ 17 Polx)dz;

2°. If CP 1s of finite measure and o satisfies (As), then
1
26) 1 k0= gy ), | M)~ (Mgl 0(x)dx=C]floro

where gQ,w:W%W.ng(y)w(y)dy and || flle,, is the essential supremum of f

with respect to the measure w(x)dx.

PrOOF. 1°. Let 1<p<oo. Then as was pointed out by Folelli and is
easily verified, the dual space of LP(wdx) is isometrically anti-isomorphic to
LP (@0 Y ?"Vdx), 1/p+1/p’=1, with the duality given byj f(x)g(x)dx, where

R™
fe LP(wdx) and g€ L? (w0~ Pdx), so that we know

(27) = (1A 0ty =supl | f(r)god],

where the supremum is taken over all g€ L?(0™"® "dx) with |&,,p-1p-n=1.
Now

JMrengax|= [ 17 (o] = lERle )
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Taking ¢(x)=1/(1+|x|"""), we can use and obtain

(2.8) 0N iy | EE ey dr = Car.

Thus and the Holder inequality give

J Mgt =cf 17)lg*(ay

=CISflp0l 8%l 0-1-1 «
The condition (A,) for o implies the (A,) for @ ¥?"P go that Theorem A
yields
lg*lrw-10-0 = Cpl &l 0-1/m-1>

Altogether, we obtain the inequality for 1<p< oo,
In case p=1, the proof is more simple: reasoning as above, we obtain

[ Mf@letdr= ] 1f0)1(8°)] u—yﬂgfgwm )dy

=Cf 17/l dy=Cf 1))y,

which proves (2.5) for p=1.

2°. Let Q be a cube, and Q* be its double. We estimate Mf in Q writing
Mf = Mf,+ Mf,, where f=fi+f, and fi=/Xg and f,=fXge-. It can be easily
proved that

1
@7 o [MAO () Z CL i e

(see the proof of part 3°). On the other hand, it is known
that | Mfy(x)—aq| =C|l flw,w where

_ J(»)o*(y)
aQ—jcQ* lxo_yln+a+5n+a(y) dy

and x, is the center of (), so that we have
1 3
Q) | M)~ agla(x)dx S C I f ey

altogether we obtain [2.6), and the proof is completed.

For the later use, we state a lemma concerning the distribution function
inequality for Marcinkiewicz integrals.

LEMMA 3. Let P, @« and the distance function 0 be the same as in the

beginning of this section and X be the characteristic function of the set CP, and
w satisfy (A), then for any cube Q with |Q]ga!CP}, we have



Weighted norm inequalities 575

(2.9) mu({x e Q: MX(x)> 1}) < Cla)e *m,(Q)

for A>0.

PrOOF. This is an easy consequence of [Theorem 1, [(2.6), but we shall
give a simple proof based on a result of Zygmund of Theorem C.

For any 7 >0, if follows from that

§ exp (oMa()dx <11+ B T [ (Mxyrdz

= p!

IA

IA

Q1+ £ Trcoprf undx=1Ql+ £ IR Cpy
1
a

{ x; 77Cp) }IQl

if lngaICPl. Since the last series converges for nz—gé—e—, we obtain

f exp (eMB)dx < C@)1Ql,
and follows easily.

§ 3. Distribution function inequalities for singular integrals.

THEOREM 2. Let T:f— Kxf be a singular integral operator in R" with a
convolution kernel K satisfying the conditions (a), (b) and (c’) in the introduc-
tion, and the maximal operator T* be defined by (1.5). Suppose that the weight
function w satisfies (A.) and a>0 is giwen. Then there exist positive constants
C, ¢, C(a) such that, for any B, y>0 with 8>Cy, the inequality

(31) my({xeQ: THA(x)> pA, ¥(x) < 72}) = Cla)e™T mu(Q)
is valid for any f< LY(R™) and for any cube Q with

(32) Q12— 1= 17x)ldx.

PrOOF. The set P=PFP;={xe R"; f*(x)<y4} is closed. For the pair f, 74
and the open set QR:CPZ, combining the Calder6n-Zygmund lemma and
Whitney lemma ([9; p. 16]), we get the decomposition of the set £, into the
union of non-overlapping cubes {Q,} in such a way that

O CARE N

.. 1
(@) ], S O)dr=Cra,
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(iii)  [f(x)|=y2 a.e.in P
and
(iv) 2diamQ;=dist(P, Q;)<9diamQ,.

And also we decompose f into the sum of the good part g and the bad
part b, where
F(x) for x P,

Wquf(y)dy for x€Q;, j=1,2, -,

then
(v) 1gx)|=Cy2 a.e. and gl =/,

(vi)  b(x)=0in P, and IQ‘b(y)dy:O and {Ibl, =207 .
J

Now, since T*f < T*g+T*p, it is sufficient to prove

(34) mo({xe@: Trg(x)>-BAY) < Clwe T my(@)
and
(35) mo({xeQn Py T*0(x) > BAY) < Cla)e T m,(Q)

for any cube Q with [3.2).

To prove (3.4), let Q* be the double of Q and write g=g,+g,, where g,=
g%¢- and g,=gXgq-. Then |g(x)|=|g(x)|=Cy2 a.e. by (ii), (iii) and [3.3), and
g, is supported in the cube Q*. By a well known fact that

IT*g\ll,=pCllgill,  for p=2

(see Stein [9; p. 48]), we obtain for »>0

fQ*exp (pT*gl)dx§2fQ*cosh (pT*g,)dx

=2{10*1+ 2 -J5y 7] (Tayds}

<2{1q++ FLGrED 1 gv) ).

Since the last series converges for Cyrie=1/2, it follows that for this value
of 7

(3.6) foexp (T /r2dr £CIQL.

Next, observing that |x—y|=c|Q|Y" for x=Q and y < CQ*, the Holder
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inequality and (v) yield

Jo o, Ks—3)2:(0)d3|= Cf | K(x—3)118(2)|dy

y—x|zclQil/n

<c{f T2} el =ClQ 1 gl

ly—zlzel@il/n | X—Y
1/2
=cloI sy e=c(LF)"  for xeq,
so that, if Ing—;ll—ll fl;, we obtain

37 T*g(x)=C(a)ya for x€Q.
Altogether by and
jQ exp (—fcz—T*g)dx < jQ exp (%)‘—T*go -exp <%T*g2> dx
=Ua)[Q1,
so that
l{x eQ:T*g(x)> —%}lé C(fl)‘fiﬁ: Q1.

Then the estimate follows from the condition (A.) for .
To prove [3.5), we observe that for x € P,

(38) THH(x) S 5[ 1K)~ K(x—3,)|16(3)|dy-+Ch*(x)

where ¥; is the center of Q;; this fact is proved in [9; pp. 43-44] for a
modified set P¥ of P,, However, the same proof works for P; itself if we
use the Whitney decomposition of £, which satisfies the condition (iv).

Now we know that, for y€Q; and x€ P,, 2|y—y;|<|x—y| and |[x—Y] is
comparable to |x—y,|, so that the condition (c¢’) yields

C(diam @;)*
fo, | Ko=)~ Kx=3)l 16 |dy = S SERLA [ 1)1y

Since [ bIdy= [ 170)1dy+Craf dv, f 1b(x)|dy=CraQ;l. From this,

observing that |x—y|™** is comparable to |x—y|***40"*%(y) for x< P; and
for all y, we obtain

J | KG9 Kx=3)| 160)1dy SCraf | o ratgurayy &0 for x< Pa.

|x—y "+ 440"+ ()
Finally, by [3.8),
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5!1
T*b<x)§cyzfm Ix—yl““(Jyr)a““(y) dy+Cy2

SCrA{MX(x)+1} for xe P,,

where X is the characteristic function of the set CPX and MX denotes the
Marcinkiewicz integral of X with respect to P; and a«. Hence, if |Q|= 7’;‘2“ Il

then lQl;—% ICPI by (ii), so that we obtain by that
{re@npi: o0 > B Y =[{r e @ Pi: crame+1) > BLY|

=[{xe@: Mrto) > 5 1}|=ce ¥ 101,

from this inequality, the estimate follows from the (A.) property of w.
REMARK. The estimate [(3.1) is the best possible one in the sense that the
restriction cannot be omitted and the number /7 in the exponent of the
right hand side can not be replaced by a larger one; this fact can easily be
seen in the case n=1 from the example in which f=1X;,,; and T*f(x)=

x+1]
oz 13251

From we can deduce the following ‘“distribution function in-
equality” for the maximal singular integral.

THEOREM 3. Suppose that T* is a maximal singular integral operator with
a convolution kernel K satisfying the conditions (a), (b) and (c¢’) in the intro-
duction and that the weight function w satisfies the condition (Aw). Then for
any fe Li,(R") and B, y>0 with 8>1, B—1>Cy and for any A>0, we obtain
(3.9) me({xe R : T*f(x)> BA, f¥(x)=<7a})

_cg-D

<Ce ™ 7 my({xesR":T*f(x)>1}).

PrOOF. The proof is accomplished by refining slightly the idea of Coifman
and Coifman and Fefferman [2]. The open set 2;={x< R": T*f(x)> A}
breaks up as a union of nonoverlapping cubes {Q;} satisfying the condition

2 diam Q; < dist (25, Q,) <9 diam Q; .

Then there exist points x; & C‘QZ such that dist (x;, Q;)<9diam Q;. Let @,
be the cube centered at x; with diameter 21+/n times as large as that of Q;.
Then @,-DQ}'-‘, where QF is the cube concentric with Q; whose diameter is

2+/n times as large as that of Q,.
To prove (3.9) we may assume that f*(§;) < y2 for at least one point &;=Q;.
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We write f=f,+f, where fi=/1g, and fo=/fX¢g,. Since §;€Q,CQ;, it fol-
lows that

1 1 (£
(3.10) ToN f@jlfl(y)ldy———l 0 j(_“xf(ywy <fHENSTA,
so that we have IQ,-I;—TCT | 7ill;. Thus, yields
(3.11) m{xeQ;: T*f1> B2, f*<72})

<m({x€Q,: TH, > BA, FF=7) =Ce™ T mu(Q,),

where B’ will be determined soon after.
Next we shall prove that

(3.12) T*f,(x)=(Cr+1)4  for x€0Q;.

We fix cubes Q, and Q, centered at x with Q,DQ,, and let Q;j and Q.; be
the cubes of same size as @, and @, respectively, centered at x;,. Then we
write

o K 70| S [ (g, Km0y

+ f(lej\sz)A(Q;\Qx) | K(x=3) | f(3)|dy

(where 4 denotes the symmetric difference)

<|f LN K(ry=9) ) o, o, | K== K=l 7)1 dy

i, e ey K= 7)1y

= A1+A2+As .
Now

Al:]j(Q'xj\ijmgajK(xj—y)f(y)dy

and the set (Qz,\Qz;)N C@j is empty, or equal to Q;j\Gj, or Q;,\Qq; according
to Q;DQ%;, or Q;,CQ,CQh, or Q;C Qa;, so that A, < T*f(x;) < 4, since x;& 2,
Next 4, =< (5 |K(x;—y)—K(x—)|1f(3)|dy and the construction of @,

J

| x;

shows that Ixj—x|<-——7_1|— for xQ; and yeC@j and also |x;—y| is

comparable to |§—y| for any §=Q; and yeCQj, so that the condition (c’)

and the same reasoning used to obtain in the proof of gives
that, for x=Q;,
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(313) A= Cla—al Y 1 ay
o | f(D)]
SCU o TESs e WG, for any £€Qy,

where d;=diam Q;. In particular, since f*(§;)<r4, we know that A, <CrA.
Finally, a simple geometric observation shows that A; is majorized by a
sum of at most four integrals of the form

| f(E=¥)]
C‘fﬁélyléc,o |yln——dy for any £<0Q;,

where p>0, and this integral majorized by Cf*(§) in virtue of Lemma 2, so
that A;=<CrA.
Altogether we obtain

U QNe, K(x—y)fo(y)dy|=(Cr+1)A.

Taking supremum for @, and @,, we have proved the estimate (3.12).

Taking f'=p—1—Cy in and then combining and (3.12) we have
by that

m,({x€Q;: T*f> B, f*=7a})

sm({x€Q;: T*1+T*f,> B 2+(1+Cn)A, f*=74})

<m{x€Q,: T > FA, A=) =Ce T my(Q,).

Adding in j yields the inequality and the proof of is completed.

THEOREM 4. Suppose that T* be a maximal singular integral operator with
a convolution kernel K satisfying the conditions (a), (b) and (¢”) in the intro-
duction and the weight function w satisfies the condition (A.) and positive
numbers B, y with 8—1>Cy are given, then for any f& Li,(R™ and any 2>0

(3.14) mo({x € R*: T*f(x)> B4, f*(x)=7r2})
Y '}
< c(m) ma({xe R": T*f(x)>2}).

PrOOF. The proof of applies equally up to the inequailty [3.11)
Then the weak type inequality

{re R T ) > =G 1700ldx
yields

(3.15) [{xe R*: T*/\(x)> 2} é*ﬁ%‘fm'fmx)ldxé*fsf—.
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Next we prove (3.12) in this case, and its proof reduces to estimate A;, A4,
and A; as in the proof of The estimates for A4, and A, are not
changed because they based on the fact that f*(§,)<y4 and on the condition
(b) only. Now the reasoning leading to shows

A= Cfgy g o(-ES ) 10 ay

x;—y|"*
<Cfop, ey (e e &) 1F)ldy
scf | Bt (G sCrae) =Cra

for x€Qj, because ©(x)=6(1) for |x|<1 and ¢(x)=6(1/]x])/|x|" for |x|>1
satisfies the condition of if @ satisfies the condition (c¢”). Altogether
we obtain

(3.124;) T*fy(x) < 24Cy2 for x=Q;.

Combining and (3.12y;s), the same argument as in the proof of
2 yields
C
H{xeQ;: T*f(x)>ﬁl}[§‘3Tr_crlel,
which implies by the condition (A.) for w, and the proof of
is completed.

We remark that if K(x)=82(x)/|x|™ is any Calderén-Zygmund kernel, i.e.
where £ is homogeneous of degree zero, satisfies a Dini condition and mean-
value zero on the unit sphere, then K satisfies the conditions (a), (b) and (¢”)
and applies to this kernel.

§4. Weighted norm inequalities for singular integrals.

In this section we shall prove the weighted norm inequalities for singular
integral operators. Moreover, we prove the weighted norm inequalities of
weak type in LY(w(x)dx) with w satisfying the condition (4,) as well as the
BMO properties for singular integrals in L™(w(x)dx) with o satisfying (A).

For this end, we define the modified singular integral Tf:

(1) Tix)=lim | [Ko(r—3)— Ko =3)1f()dy

for f€ L™(w(x)dx), where Kq=K-Xgq for any cube Q centered at the origin
and @, is the unit cube.
Besides, we need some more lemmas.
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LEMMA 4. Let 1<p< oo and w satisfy the condition (A,), then

o(x)
j‘nn l+IXInp dx <o

This is due to Hunt, Muckenhoupt and Wheeden [5; Lemma 1] for the
case n=1; the proof in case n>1 is similar.

LEMMA 5. Any weight function satisfying (Aw) already satisfies (A,) for
some p < co,

This is due to Muckenhoupt [8]; see also Coifman and Fefferman [2].

LEMMA 6. If o satisfies (A,), 1=<p< oo, then

JE E| \?
8= (D

for any cube Q and any measurable subset EC Q.
This is due to Muckenhoupt [8], Gundy and Wheeden [4]. A more general
result can be found in Coifman and Fefferman [2]

THEOREM 5. Suppope that 1<p<oco, the weight function w satisfies the
condition (A,) and the convolution kernel K satisfies the conditions (a), (b) and
(¢”) in the introduction.

1°. If 1<p < oo, then

(12) [ (T yatode=C,f 17017 o)dz;
2°. If p=1, then for any 1>0

(43) ma{re R T > =5 [ 17 e(ods;
3°. If p=oo, then for any cube Q

(4.4) @) TF =T o0l 0()dx SC I f 1,
where (8)g,w= _mwl(—Q)j g(x)w(x)dx.

PEOOF. 1°. Let 1<p<oo, then the distribution function inequality
of with f=2 yields that

jRn(T*f)Pwdxgcj:zv-lmw({T*p 241)d2
< Cf 2 my({7* > rA)dA+Cr | A m, (T > 2))d

=C(y) j (fPede+Cy’ j (T*fpods.

Taking 7 so small that Cy°<1/2 and making use of Theorem A, we obtain
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2 (T*fyedz=C { f1Padzxt { (T*fyodz.

Now, if f is infinitely differentiable and of compact support, then it is
easily seen that T*f is bounded and O(1/|x|") as |x|—co, so that we know

f (T*f)Pwdx <o by [Lemma 4, and we obtain [4.2). Since such functions
R

are dense in L?(wdx), standard arguments show that holds for feL?(wdx).
2°. Next, let fe L (wdx) and P,={xe R": f*(x)<21}. Then by Theorem

A, denoting 92=CP1,
(45) m @) =Gf 1)l eodx.

Again, we decompose the open set £, into a non-overlapping union of
cubes {Q;} satisfying the conditions (i)~(iv) listed in the proof of
with y=1, and also we write f=g-+b as there.

Since |g(x)|=C2 a.e., j |g|2wdx§czj |flwdx, the part 1° of this theo-
RT RN
rem shows that

jRn(T*g)dexg chn1g[2wdx§ c,zjmlflwdx :

Since (A4,) implies (A4,) for any p>1, it follows that

(4.6) m,({T*e>45 1)=& § \flwds.

On the other hand, an analogous argument which leads to [(3.8) in the
proof of shows that

* | -n ly_§1 /
47 T =B 1x=3170(1=5 1) 1Ml dy+C'bH(x)
for x€ P; and for any £=Q;. Let us denote the series on the right hand side
of by 2(x) and integrate it over the set P, then we know by the con-
dition (¢”) for K and the condition (A,) for @ that

@) [, Swo@dr=C3f 160 {fg, I 1"0(-E5Jatxds}dy

scuf | 1xlmo(-f)ol—x)dskdy

al>cdj

(d;=diam Q,)

=Cxf 1bWle*ndy=Cf 15l aly)dy.
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The condition (A,) implies that, for any cube Q,

(4.9) 1 [ w(3)dy =Cessinf w(x).
I Q I Q zEQ
Now, for x= Q;, we have

1
|Q;less inf w(x)
.T:GQJ

1
= dy <
g(x) 10;] qulf(y)l V=
consequently, by [(4.9),

[ let)letdrs — 29[| 7(5)|a(y)dy
Qj Qj

|Q;lessinf w(x)

J, 7oy,

=cf 170y,

and this implies
§ Jeledy=cf 17wy .

Altogether by (4.8) and the last inequality, we obtain

[, Zwedz=Cf17x)]oxds,
and it follows that
(410) mal{x € Py B> =5[]z,
Since b*(x)=<C”2 for x € P, (4.7), (4.10) show that
my({x € Py: T*b(x)>(1+C'C")2})
<m,({xe Py: 2(x)+C'b¥(x) > A+C'C"2})
=m(lx€ P B> = S 1f)lo(ds,

and this implies

4.11) mo({xe Py: T*b(x)> %}) < % jml Fx) | w(x)dx .

Combining [(4.5), (4.6) and [(4.11) yields

me({xe R™: T*b(x)> 1})

< mw({x eR": T*g(x)> —;—})+mm({x e Py T*b(x)> -—';—}) +m,(£2;)

=) @lear,

and we have proved [4.3).
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3°. Finally we shall prove [44). Let w satsfies the condition (A.) and
fe L*(w(x)dx). Since by Lemmas 5 and 6, the measures w(x)dx and dx are
absolutely continuous with respect to each other, L*(w(x)dx)= L*(R"), so that
Tf is well defined. Fix any cube Q and let x, be its center and O be the

cube centered at x,, with diameter 2+/n times as large as that of Q. We
write f=g+h, where g=fX5, h=1X¢5.
Then

Tf(x)=Tag@)+ | [Kx—3)—Kiu—y)I()dy

(412) +{J LK) Koo~ Ih2)dy—[ Koo —3)8(»)dy}

=Tg(x)+I(x)+Cq.
Since, by Lemma 5, w satisfies (A,) for some 1<p<oo, and g LP(w(x)dx)
for this p andj |g|Pdx < m,(Q)| fl2,», we obtain by (4.2) and Lemma 6 that
R

— (Q)j 1Tg|wdx<{ j ngl"wdx}

=l |g|pwdx} "<o{ MalO). nggg} 1 f ey SCll f o -

On the other hand, the condition (c¢”) yields

(4.13)

[Tl hl-f  Kxe—ya— ) = K(t—)|dy
< ClAle S Cl Fller
so that
(414) 0y ) I 0 S Cl f

From (4.12), (4.13) and (4.14), we obtain

1 .
Wf | T/ (@) =Col@(x)dx = Cl flo,a,

and this implies (4.4). The proof of Theorem 5 is completed.
If we define

£ lsw =530~y f 1A~ (Nel 0lx)dx

and (BMO),={f: |l flx <o}, then we can prove that, if o satisfies (4,) and
f€ (BMO).,,

7~ (Fowo]
(415) f e e () dx = C Qo) o
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for any ¢>0, where Q, is the unit cube in R™, by a similar computation as in
Fefferman and Stein [3].

We can prove a converse of [Theorem o for singular integrals with con-
volution kernels satisfying the condition («), (8) and (7) in the introduction.
More generally we have:

THEOREM 6. Suppose the convolution kernel K is of the form $2(x)/|x|"
where 2 is real-valued, homogeneous of degree zero, continuous and does not
vanish identcially on the unit sphere S™*, and the singular integrals Tf= Kxf
and ’f‘f:f(*f are defined almost everywhere, where R(x)zK(——x).

Let 1<p<oco, and w be non-negative and w < Li,.(R"™). If both of the in-
equalities

(4.16) ma{x e R | TAOI> IS 5|17 Patx)dx
and
(4.17) ma{xe R T 1> N Z 5[ 1f(@)]Pax)dx

hold for any f< LP(w(x)dx) and 2>0, then w satisfies the condition (A,) or
w(x)=0 a.e.
PROOF. If we define K,=(K+K)/2, K,=(K—K)/2, then K, and K, satisfy
the assumption of so that we may assume that K is odd or even.
Since £ is continuous on S™°?, there exists a point g, S™! and a neigh-
borhood U, of ¢, in S™ ! such that

(4.18) 2 is constant sign on U,,
(4.19) \Q(0)1>%|Q(00)|:m>0 for oeU,.

Let a cube @ be given, then by a simple geometrical observation, we can
find another cube @’ which is congruent to () and has the following property:

(4.20) |§—:§/}|—er and |r—y|<CdiamQ for all x=Q’ and all y=Q.

First, let 1<p<co. Take a function f=0 supported in Q. Then
and (4.20) show that for any x=Q’

77t = [ ARERL )y z b [ o,

so that
Qc{xreRr: 1Tf(x)|>T;]-ijdy}
and thus yields
wan' ? v
(4.21) m Q@) (1S f @) SCf frodx.
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Taking f=1, we obtain
(4.22) my(Q') = j w(x)dxgcj o(x)dx.
Q' Q

Starting from T f and Q’, and reversing the above argument we can interchange

Q and Q’ in and obtain
dx< dx .
qu(x) x__Cleco(x) x

If w(x)>0 a.e., taking f=w™V? in shows that w satisfies (A4,), and if
o(x)=0 on a set of positive measure, taking f to be the characteristic func-
tion of this set shows that w(x)=0 a.e.

Next, we treat the case p=1. Since we< Li(R"), ess ‘ignf w(x)< oo, For

any ¢>0, we set E={x=R": w(x)< essqinf w-+e}, then |E[>0. Let f(x)=1 on

E and f(x)=0 outside E. Then f€L(wdx) and |Tf(x)|>c|Q|*|E| for all
x=Q’ by (4.18), and (4.20), so that

Q'C{xeR™: |Tf(x)|>c|QIEl}.
Thus, if holds, it follows that
mo(Q)=CIQIIE| " f(x)a(x)dzx

= C[Ql(essqinf w-+e),
and, since ¢ is arbitrary, we obtain
(4.23) my,(Q)ZC|Q]| essQinf .

The relation holds for p=1 and the argument following it shows
that m,(Q’)= m,(Q), so that we know that

1 .
_— <
0] J‘Qw(x)dx <C eSSanf 1)

for any cube Q. This inequality is equivalent to the fact that w satisfies (4,),
and the proof of is completed.

At last, we shall give an example which shows that the assumption
for K cannot be omitted for the validity of

Let E; (j=1, -, 4) be the j-th quadrant in R%. We take such a kernel
K(x)=£(x)/|x|* as supp 2 S*NE, and such a weight function » as

1 (xe Ey),
w(x)=
L0 (XEEEa)-
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Given any fe< LP(R*), we set g=fXg,, then Tf(x)=Tg(x) for x= E,. Since
ge L?(wdx),

mo({|TA(x)1> )= [{ITf(x)| > 2} N Es|

={ITgx)| >3 NEs|={ITg(x)|>4}|

€[ lg@)lrdeyr=(C27f ()] Pala)dx)"?.

However, it is obvious that @ does not satisfy (A4,).
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