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\S 1. Introduction.

Let $M$ be an n-dimensional Riemannian manifold with Levi-Civita connec-
tion $\nabla$ . Then the curvature tensor $R$ of $M$ is given by $R(X, Y)=\nabla_{X}\nabla_{Y}-\nabla_{Y}\nabla_{X}$

$-\nabla_{[X,Y]}$ for any tangent vector fields $X$ and $Y$. Let $E_{1},$ $\cdots$ , $E_{n}$ be an ortho-
normal frame on $M$. Then the Ricci tensor $S(X, Y)$ and the scalar curvature
$\rho$ are given respectively by

$S(X, Y)=\sum_{t=1}^{n}R(E_{i}, X ; Y, E_{i})$ , $\rho=\frac{1}{n}\sum_{i=1}^{n}S(E_{i}, E_{i})$ ,

where $R(E_{i}, X;Y, E_{i})=g(R(E_{i}, X)Y,$ $E_{i}$ ) and $g$ is the metric tensor of $M$.
Let $x:M\rightarrow\tilde{M}$ be an isometric immersion of $M$ into an $m$ -dimensional Rie-

mannian manifold $\tilde{M}^{m}$ with connection $\tilde{\nabla}$ and metric tensor $\tilde{g}$ . Then the second
fundamental form $h$ of $M$ in $\tilde{M}$ is given by $\tilde{\nabla}_{X}Y=\nabla_{X}Y+h(X, Y)$ . Let $N$ be a
normal vector field of $M$ in $\tilde{M}$, we write

$\tilde{\nabla}_{X}N=-A_{N}(X)+D_{X}N$ ,

where $-A_{N}(X)$ and $D_{X}N$ denote the tangential and normal components of
$\tilde{\nabla}_{X}N$. Then we have $g(A_{N}(X), Y)=\tilde{g}(h(X, Y),$ $N$). $D$ is called the normal
connection of $M$ in $\tilde{M}^{m}$ . A local normal vector field $N\neq 0$ is called a parallel
section if $DN=0$ . Let $R^{\perp}$ be the curvature tensor associated with $D$ , $i$ . $e.$ ,
$R^{\perp}(X, Y)=D_{X}D_{Y}-D_{Y}D_{X}-D_{[X,Y]}$ . Then the normal connection $D$ is flat if $R^{\perp}$

vanishes identically. The normal connection is flat if the (real) codimension is
one. If the (real) codimension is higher, then the normal connection is not
flat in general.

In this paper, we shall study the normal connection of a Kaehler submani-
fold $M$ in another Kaehler manifold $\tilde{M}$. In \S 3, we shall prove that the normal
connection of $M$ in $\tilde{M}$ is flat only when the Ricci tensors of $M$ and $\tilde{M}$ are
equal on the tangent bundle of $M$. Moreover, we shall prove that if $M$ and
$\tilde{M}^{m}$ are both compact and $\tilde{M}$ is flat then the normal connection is flat when
and only when the first Chern class $c_{1}(\nu)$ of the normal bundle $\nu$ is trivial. In
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\S 4, we shall prove that the complex projective line in a complex sphere $Q_{n}=$

$SO(n+2)/SO(2)XSO(n)$ is the only Kaehler submanifold of $Q_{n}$ whose normal
bundle admits a parallel section. Moreover, the complex projective line in $Q_{2}$

is the only Kaehler submanifold in $Q_{n}$ with flat normal connection.

\S 2. Basic formulas.

Let $M^{n}$ be a complex n-dimensional Kaehler manifold with complex struc-
ture $J$ and metric tensor $g$. Then the curvature tensor $R$ of $M^{n}$ satisfies the
following formulas.

(2.1) $R(JX, JY)=R(X, Y)$ , $R(X, Y)JZ=JR(X, Y)Z$

(2.2) $R(X, Y)Z+R(Y, Z)X+R(Z, X)Y=0$

(2.3) $R(X, Y;Z, W)=R(Z, W;X, Y)=-R(Y, X;Z, W)$

$=-R(X, Y;W, Z)$ .
Let $M^{n}$ be isometrically immersed in a complex m-dimensional Kaehler mani-
fold $\tilde{M}^{m}$ as a complex submanifold. Let $\tilde{J},\tilde{R}$ and $\tilde{g}$ be the complex structure,
the curvature tensor and the metric tensor of $\tilde{M}^{m}$ , respectively. Then the
equations of Gauss and Ricci are given respectively by

(2.4) $\tilde{R}(X, Y;Z, W)=R(X, Y;Z, W)+\tilde{g}(h(X, Z),$ $h(Y, W))$

$-\tilde{g}(h(Y, Z),$ $h(X, W))$ ,

(2.5) $\tilde{R}(X, Y ; N, N^{\prime})=R^{\perp}(X, Y ; N, N^{\prime})-g([A_{N}, A_{N^{\prime}}](X), Y)$ ,

where $X,$ $Y,$ $Z,$ $W$ are vector fields tangent to $M^{n}$ and $N,$ $N^{\prime}$ are vector fields
normal to $M^{n}$ . Moreover, we have

(2.6) $A_{JN}^{\sim}=JA_{N}$ and $JA_{N}=-A_{N}J$ ,

from which we have trace $h=0$ .

\S 3. Ricci tensor and normal connection.

Let $M^{n}$ be a Kaehler submanifold in another Kaehler manifold $\tilde{M}^{m}$ as in
\S 2. Suppose $N$ be a parallel section in normal bundle $\nu$ . Then $R^{\perp}(X, Y)N=0$

for all vector fields $X,$ $Y$ tangent to $M^{n}$ . From the equation of Ricci, we find

(3.1) $\tilde{R}(X, Y;N,\tilde{J}N)=-g([A_{N}, A_{JN}^{\sim}](X), Y)$ .

Hence, by using (2.6), we have

(3.2) $R(X, Y;N, JN)=2g(JA_{N}(X), Y)$ .
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Let $H_{B}(X, N)$ denote the holomorphic bisectional curvature for the pair
$(X, N)$ . Then we have

$H_{B}(X, N)=R(X, JX;JN, N)/g(X, X)g(N, N)$ .

From (3.2) we have the following Proposition.
PROPOSITION 1. Let $M^{n}$ be a Kaehler submanifold of a Kaehler manifold

$\tilde{M}^{m}$ . If there is a unit tangent vector $X$ such that, for all unit normal vectors
$N$, the holomorPhic bisectional curvatures $H_{B}(X, N)$ are positive, then the normal
bundle admits no Parallel section.

In [5] Smyth proved that the normal connection of a Kaehler hypersurface
$M^{n}$ in $\tilde{M}^{n+1}$ is flat if and only if $S(X, Y)=S(X, Y)$ for all $X,$ $Y$ in $TM^{n}$ . In
this section we shall prove the following.

THEOREM 2. Let $M^{n}$ be a Kaehler submanifold of a Kaehler manifold $\tilde{M}^{m}$.
If the normal connection of $M^{n}$ in $\tilde{M}^{m}$ is flat, then the Ricci tensors $S$ and $\tilde{S}$

of $M^{n}$ and $\tilde{M}^{m}$ satisfy the following relation: $S(X, Y)=S(X, Y)$ for all $X,$ $Y$

$\in TM^{n},$ $TM^{n}$ being the tangent bundle of $M^{n}$ .
PROOF. Let $M^{n}$ be an n-dimensional Kaehler submanifold of an m-dimen-

sional Kaehler manifold $\tilde{M}^{m}$ with flat normal connection. Then, by Proposition
1.1 in [1, p. 99], there exist locally $2m-2n$ mutually orthogonal unit normal
vector Pelds $N_{1},$ $N_{2},$ $\cdots$ , $N_{2m-2n}$ such that $DN_{r}=0$ for all $r=1,2,$ $\cdots$ , $2m-2n$ .
Since $\tilde{M}^{m}$ is Kaehlerian, $\nabla J=0$, we see that $N_{1},$ $N_{2},$ $\cdots$ , $N_{m-n},\tilde{J}N_{1},$ $JN_{m-n}$

are orthonormal parallel sections in the normal bundle. From the definition of
Ricci tensors and the equation of Gauss, we have

(3.3) $S(X, Y)=\tilde{S}(X, Y)-\sum_{\alpha=1}^{m-n}\{R(N_{\alpha}, X;Y, N_{\alpha})+\tilde{R}(\tilde{J}N_{\alpha}, X;Y,\tilde{J}N_{a})\}$

$-\sum_{A=1}^{2n}\tilde{g}(h(E_{A}, X),$ $h(E_{A}, Y))$ ,

where $E_{1},$ $\cdots$ , $E_{2n}$ is an orthonormal frame of $M^{n}$ . On the other hand, since
$N_{a},$ $\alpha=1,$ $\cdots$ , $m-n$ are parallel, (3.2) implies

(3.4) $fi(X, Y, N_{\alpha}, JN_{\alpha})=2g(JA_{N_{\alpha}}^{2}(X), Y)$ .
By (2.2) and (2.3), we have

(3.5) $R(X, JY;N_{\alpha}, JN_{a})=R(N_{\alpha}, JY;X, JN_{\alpha})-R(N_{a}, X;JY,\tilde{J}N_{\alpha})$ .
Hence, by using (2.1) and (2.3), we have

(3.6) $R(X, JY;N_{a},\tilde{J}N_{a})=-[R(\tilde{J}N_{a}, X;Y,\check{J}N_{\alpha})+\tilde{R}(N_{a}, X;\prime Y, N_{\alpha})]$ .
Moreover, from (2.6), we may find
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(3.7) $\sum_{A=1}^{2n}\tilde{g}(h(E_{A}, X),$ $h(E_{A}, Y))=2\sum_{\alpha=1}^{m-n}g(A_{\alpha}^{2}(X), Y)$ ,

where $A_{\alpha}=A_{N_{\alpha}}$ . Combining (3.3), (3.4), (3.6) and (3.7), we find $S(X, Y)=S(X, Y)$

for all vector fields $X,$ $Y$ tangent to $M^{n}$ . This completes the proof.
A Kaehler manifold $M^{n}$ is called an Einstein space if there exists a func-

tion $\rho$ on $M^{n}$ such that $S(X, Y)=\rho g(X, Y)$ for all tangent vectors $X$ and $Y$ .
The function $\rho$ is the scalar curvature of $M^{n}$ . If $n>1,$ $\rho$ is constant.

A Kaehler manifold $M^{n}$ is called a complex sPace form of holomorphic
curvature $c$ if the curvature tensor $R$ satisfies

(3.8) $R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y+g(JY, Z)JX$

$-g(JX, Z)JY+2g(X, JY)JZ\}$ .
From Theorem 2, we have immediately the following

THEOREM 3. Let $M^{n}$ be a Kaehler submanifold of a Kaehler-Einstein mani-
fold $\tilde{M}^{m}$ . If the nomal connection is flat, then $M^{n}$ is also Einstein. Moreover,
$M^{n}$ and $\tilde{M}^{m}$ have the same scalar curvature.

Let $M^{n}$ and $\tilde{M}^{m}$ be both compact. If $m>n+1$ , then $S(X, Y)=S(X, Y)$ for
all $X,$ $Y\in TM^{n}$ seems to be too weak to conclude the flatness of the normal
connection. However we have the following.

THEOREM 4. Let $M^{n}$ be a $comPact$ Kaehler submanifold of a $comPact$

Kaehler manifold $\tilde{M}^{m}$ . Then we have
(a) $S(X, Y)=S(X, Y)$ for all $X,$ $Y\in TM^{n}$ implies $c_{1}(\nu)=0$ , where $c_{1}(\nu)$

denotes the first Chern class of the normal bundle $\nu$ .
(b) If $\tilde{M}^{m}$ is flat, then the normal connection is flat if and only if $c_{1}(\nu)$ is

zero.
PROOF. Let $\Phi$ be the fundamental 2-form on $M^{n},$ $i$ . $e.$ , a closed 2-form

defined by

$\Phi(X, Y)=\frac{1}{2}g(JX, Y)$ .

Let $\tilde{\gamma}$ (respectively, $\gamma$ ) be the Ricci 2-form of $\tilde{M}^{m}$ (respectively, $M^{n}$) $i$ . $e.$ , a
closed 2-form defined by

(3.9) $\tilde{\gamma}(\tilde{X},\tilde{Y})=\frac{1}{4\pi}\tilde{S}(\tilde{J}\tilde{X},\tilde{Y})(respectively,$ $\gamma(X, Y)=\frac{1}{4\pi}S(JX, Y))$ .
Then the first Chern class $c_{1}(T\tilde{M}^{m})$ of $T\tilde{M}^{m}$ is represented by $\tilde{\gamma}$ (respectively,
$c_{1}(TM^{n})$ of $TM^{n}$ is represented by $\gamma$).

Now suppose that $S=\tilde{S}$ on $TM^{n}$ , then, equation (3.9) implies $\tilde{\gamma}|_{M^{n}}=\gamma$ .
Hence we have

(3.10) $c_{1}(T\tilde{M}^{m}|_{M^{n}})=c_{1}(TM^{n})$ .
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On the other hand, since $ T\tilde{M}^{m}|_{M^{n}}=TM^{n}\oplus\nu$ , we find

(3.11) $c_{1}(T\tilde{M}^{m}|_{M^{n}})=c_{1}(TM^{n})+c_{1}(\nu)$ .

Substituting (3.10) into (3.11), we get $c_{1}(\nu)=0$ . This proves (a).
Now, suppose that $\tilde{M}^{m}$ is flat and $c_{1}(\nu)=0$ . Then, by (3.9) and (3.11), we

have $c_{1}(TM^{n})=0$ . Hence, there exists a l-form $\eta$ such that

(3.12) $\gamma=d\eta$ .

Let $\Lambda$ be the operator of interior product by $\Phi$ . Applying $\Lambda$ to both sides of
(3.12) we have

(3.13) $ n\rho=4\pi\Lambda d\eta$ .

Let $\delta$ be the codifferential operator and $C$ the operator defined by $C\alpha=$

$(\sqrt{-1})^{r-s}\alpha$ , where $\alpha$ is a form of type $(r, s)$ . Then by using the well-known
identity $ d\Lambda-\Lambda d=\delta C-C\delta$ , we have $\Lambda d\eta=-\delta C\eta$ since $d\Lambda\eta=C\delta\eta=0$ . Thus
we find

(3.14) $\int_{M^{n}}\rho*1=0$ .

On the other hand, the flatness of $\tilde{M}^{m}$ and the equation (3.3) imply

$n\rho=-\Vert h\Vert^{2}$

where $\Vert h\Vert$ is the length of $h$ . Hence, by using (3.14), we find $\rho=h=0$ , from
which we find $R^{\perp}=0$ . The remaining part of this theorem is trivial. This
proves the theorem.

\S 4. Kaehler submanifold in $Q_{n}$ with parallel normal sections.

Let $P_{m+1}(c)$ be an $(m+1)$ -dimensional complex projective space with holo-
morphic sectional curvature 4. Let $z_{0},$ $z_{1},$ $\cdots$ , $z_{m+1}$ be homogeneous coordinates
in $P_{m+1}(c)$ . Then the complex sphere $Q_{m}$ is a complex hypersurface of $P_{m+1}(c)$

dePned by the equation
$z_{0}^{2}+z_{1}^{2}+$ $\cdot$ .. $+z_{m+1}^{2}=0$ .

It is well-known that the Hermitian symmetric space $SO(m+2)/SO(2)\times SO(m)$

is complex analytically isometric to the complex sphere $Q_{m}$ .
THEOREM 5. Let $M^{n}$ be an n-dimensional Kaehler submanifold of $Q_{m}$ .
(a) If the normal bundle of $M^{n}$ in $Q_{m}$ admits a parallel section, then $n=1$ ,

$i$ . $e.,$
$M^{n}$ is a holomorphic curve in $Q_{m}$ .

(b) If the normal connection of $M^{n}$ in $Q_{m}$ is flat, then $n=1$ and $m=2$ .
Moreover, $M^{1}$ is a linear curve in $P_{3}(c)$ .
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PROOF. (a) Let $N$ be a parallel section in the normal bundle. Then, for
any vector $X$ tangent to $M^{n}$ , equation (3.2) implies that

(4.1) $R(X, JX;N, JN)=2g(A_{N}(X), A_{N}(Y))$ .
On the other hand, let $\tilde{A}$ be the operator associated with the second funda-

mental form of the immersion of $Q_{m}$ into $P_{m+1}(c)$ . Then (3.8) and the equation
of Gauss imply that

(4.2) $\tilde{R}(X, JX;N,\tilde{J}N)=2\{\tilde{g}(X,\tilde{A}(N))^{2}+\tilde{g}(JX,\tilde{A}(N))^{2}\}$

$-2g(X, X)\tilde{g}(N, N)$ .
Hence from (4.1) and (4.2) we get

(4.3) $\tilde{g}(X,\tilde{A}(N))^{2}+\tilde{g}(JX,\tilde{A}(N))^{2}=g(X, X)\tilde{g}(N, N)+g(A_{N}(X), A_{N}(X))$ .
Since $N$ has nonzero constant length, (4.3) implies that

$\tilde{g}(X,\tilde{A}(N))^{2}+\tilde{g}(JX,\tilde{A}(N))^{2}\neq 0$

for any nonzero vector $X$ tangent to $M^{n}$ . This is clearly impossible if $n\geqq 2$ .
(b) If the normal bundle of $M^{n}$ in $Q_{m}$ is flat, then there exists $2m-2n$

local parallel sections. Hence, from part (a), we see that $n=1$ . On the other
hand, from Theorem 2, we have

(4.4) $S(X, X)=\tilde{S}(X, X)$

for all vector $X$ tangent to $M^{1}$ . Since $Q_{m}$ is Einstein with $\tilde{S}(X, X)=2mg(X, X)$ .
Hence, $M^{1}$ is of constant holomorphic sectional curvature $2m$ . On the other
hand, if we regard $Q_{m}$ as a hypersurface in $P_{m+1}(C)$ , then, by the equation of
Gauss, we find that $m=2$ , and $M^{1}$ is a linear curve in $P_{3}(C)$ .

REMARK 1. $Q_{2}$ is complex analytically isometric to $P_{1}(C)\times P_{1}(C)$ . Hence,

if we regard $P_{1}(C)$ as a Kaehler submanifold of $Q_{2}$ in a natural way, then the
normal connection of $P_{1}(C)$ in $Q_{2}$ is flat. Let $Q_{2}$ be imbedded in $Q_{m}$ as a
totally geodesic submanifold $(m>2)$ . Then the normal bundle of $P_{1}(C)$ in $Q_{m}$

admits a parallel section.
REMARK 2. The normal bundle of Kaehler submanifolds in a complex

space form of holomorphic sectional curvature $c\neq 0$ admits no parallel section
(Chen-Ogiue [2]). (For hypersurface case, see Kon [3], Nomizu-Smyth [4]

and Smyth [5].)
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