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\S 0. Introduction.

Let $\Phi$ be an involutive system of partial differential equations. The exist-
ence of (local) analytic solutions of $\Phi$ is guaranteed by the Cartan-K\"ahler

theorem. However the existence of differentiable solutions of $\Phi$ has not been
shown as yet. Suppose that $\Phi$ has only one unknown function of two inde-
pendent variables. The structure of such $\Phi$ has been investigated in detail
by the author [5]. In particular he introduced the characteristic polynomial
of $\Phi$ . The purpose of this paper is to prove the existence of $C^{\infty}$ solutions of
$\Phi$ under the condition that the characteristic polynomial of $\Phi$ possesses real
and distinct roots; We prove this by showing that the Cauchy problem for
$\Phi$ with initial data on a non-characteristic curve possesses a unique $C^{\infty}$ solu-
tion. Since our existence proof may be a clue to showing the existence of $C^{\infty}$

solutions of a general involutive system (satisfying some appropriate condition),

we have a good reason to discuss the existence of $C^{\infty}$ solutions of such sys-
tems as above.

In the case of a single hyperbolic equation of the second order with two
independent variables, it is H. Lewy [6] who proved the result for the first
time. This result was extended to the case of a single hyperbolic equation of
higher order by H. Lewy himself and K. O. Friedrichs [7] and completed by
M. Cinquini-Cibrario [1]. These results were proved by reducing the Cauchy
problem to that for a system of equations in characteristic form. They can
also be proved quite differently by reducing a given equation to a hyperbolic
system of the first order with several unknown functions (cf. Friedrichs [3],

Courant and Hilbert [2], Chapter V). By applying the theory developed by
the author [5] and the existence theorem of M. Cinquini-Cibrario [1], we prove
our result for an involutive system by the method given by K. O. Friedrichs
and II. Lewy [7]. From the proof it also follows that the value of the solution
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of the Cauchy problem at a point depends only upon the data on the finite
segment of the initial curve (the domain of dependence); it is given by the
segment of the initial curve cut out by the both outer characteristic curves
passing that point.

Every notions aPpearing in this paper are assumed to be in the category of
infinite differentiability although this assumption can be refined.

\S 1. The Cauchy problem.

Let $\Phi$ be a system of partial differential equations of order $m$ . Suppose
that it has a single unknown function of two independent variables. Let
$(M, N, \rho)$ be a differentiable fibered manifold where $\rho$ is the projection from
$M$ onto the base space $N$ such that dim $M=3$ and dim $N=2$ , and let $J^{m}(M, N, \rho)$

be the space of m-jets of cross-sections of $(M, N, \rho)$ . We denote by $\mathcal{E}(J^{m})$ the
sheaf of germs of differentiable functions on $J^{m}(M, N, \rho)$ . $\Phi$ is defined to be
a locally finitely generated subsheaf of ideals in $\mathcal{E}(J^{m})$ . The mapping $\rho_{k}^{m}$ from
$J^{m}(M, N, \rho)$ to $J^{k}(M, N, \rho)$ is defined by $\rho_{k}^{m}(j_{a}^{m}(f))=j_{\alpha}^{k}(f)(0\leqq k\leqq m)$ . We shall
denote $\rho\circ\rho_{0}^{m}$ by $\rho_{-1}^{m}$ . Let $(x, y, z)$ be a coordinate system on a neighbourhood
$U$ of $M$ such that there exists a coordinate system $(x^{\prime}, y^{\prime})$ on $\rho U$ satisfying
$x=x^{\prime}\circ\rho,$ $ y=y^{\prime}\circ\rho$ . Then a coordinate system of $J^{m}(M, N, \rho)$ on $(\rho_{0}^{m})^{-1}U$ is
given by $(x, y, z, p_{i,k} ; 1\leqq i+k\leqq m)$ , where $p_{i,k}=\partial^{i+k}z(x, y)/\partial x^{i}\partial y^{k},$ $z(x, y)$ being
z-coordinate of a cross-section of $(M, N, \rho)$ . For convenience we shall write
$p_{0,0}=z$ .

The set of the integral points of $\Phi$ is denoted by $ I\Phi$ . Let $X_{0}$ be an inte-
gral point of $\Phi$ . Suppose that $\Phi=0$ gives a regular local equation of $ I\Phi$

around $X_{0}$ , and that one can take a system of local generators

$F_{a}(x, y, z, \cdots p_{i,k}, )(1\leqq\alpha\leqq r)$ , $f_{a}(x, y, z, p_{i,k}, )(1\leqq\alpha\leqq t)$

of $\Phi$ on an open neighbourhood $\mathcal{U}$ of $X_{0}$ in such a manner that the rank of
Jacobian matrix $\partial(F_{1}, \cdots , F_{r})/\partial(p_{m,0}, \cdots , p_{0,m})$ at $X_{0}$ is equal to $r$ and that
$\partial f_{a}/\partial p_{m-\beta,\beta}=0(1\leqq\alpha\leqq t, 0\leqq\beta\leqq m)$ on a neighbourhood of $X_{0}$ in $ I\Phi$ .

The prolongation $ p\Phi$ of $\Phi$ , defined on $\tilde{\mathcal{U}}=(\rho_{m}^{m+1})^{-1}\mathcal{U}$ , is by definition the
locally finitely generated subsheaf of ideals in $\mathcal{E}(\tilde{\mathcal{U}})$ generated by $F_{a}(1\leqq\alpha\leqq r)$ ,
$f_{a}(1\leqq\alpha\leqq t)$ and

$\partial_{x}F_{a},$ $\partial_{y}F_{a}(1\leqq\alpha\leqq r)$ , $\partial_{x}f_{a},$ $\partial_{y}f_{\alpha}(1\leqq\alpha\leqq t)$ ,

where
$\partial_{x}=\frac{\partial}{\partial x}+\sum_{t+k=0}^{\infty}p_{i+1,k}\frac{\partial}{\partial p_{t,k}}$ , $\partial_{y}=\frac{\partial}{\partial y}+\sum_{i+k=0}^{\infty}p_{i,k+1}\frac{\partial}{\partial p_{i,k}}$ .

$\Phi$ is said to be $p$ -closed at $X$ if $(p\Phi)x\cap e_{X}(J^{m})$ is contained in $\Phi_{X}$ , where $\tilde{X}$ is
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a point of $J^{m+1}(M, N, \rho)$ satisfying $\rho_{m}^{m+1}\tilde{X}=X$ .
We shall introduce an integer which indicates, roughly speaking, the num-

ber of independent equations exactly of order $m+1$ in $ p\Phi$ ;

$r_{m+1}(X)=rank\partial(\partial_{x}F_{1}, \partial_{y}F_{1}, \cdot.. , \partial_{x}F_{r}, \partial_{y}F_{r})/\partial(p_{m+1,0}, p_{m,1}, \cdot.. p_{0,m+1})(X)$ .
The criterion of involution given by the author ([5], Theorem I) is stated

as follows.
I. Under the above conditions, $\Phi$ is involutive at $X_{0}$ if and only if the

following two conditions are satisfied:
(i) $r_{m+1}(X)=r+1$ on a neighbourhood of $X_{0}$ in $ I\Phi$ .

(ii) $\Phi$ is $p$ -closed at $X_{0}$ .
The characteristic polynomial of $\Phi$ at $ X\in I\Phi$ is defined to be the highest

common factor of the polynomials

(1) $F_{\alpha}^{(0)}dy^{m}-F_{\alpha}^{(1)}dy^{m- 1}dx+\cdots+(-1)^{m}F_{a}^{(m)}dx^{m}$ $(\alpha=1,2, \cdots , r)$ ,

where $F_{a}^{(\beta)}=\partial F_{\ell\iota}(X)/\partial p_{m-\beta,\beta}$ (Kaki\’e [5], \S 3). Let $\mu_{0}dy-\mu_{1}dx$ be a real linear
factor of the characteristic polynomial of $\Phi$ at $X(\mu_{0},$ $\mu_{1}$ are supposed to be
real numbers). The direction of the line in $T_{a}(N)(a=\rho_{-1}^{m}X)$ spanned by
$\mu_{0}\partial/\partial x+\mu_{1}\partial/\partial y$ is called a characteristic direction of $\Phi$ at $X$. One of the
fundamental results concerning the involutive systems discussed here is the
following one (Kaki\’e [5], Theorem II).

II. SuPpose that $\Phi$ is involutive at X. Then the characteristic polynomial

of $\Phi$ at $X$ is of degree $m+1-r$.
$\Phi$ can be represented by the following differential system on $\mathcal{U}\subset J^{m}(M, N, \rho)$ :

$(\Sigma(\Phi))\left\{\begin{array}{ll}f_{\alpha}=0 & (\alpha=1,2, \cdots, t), F_{a}=0 (\alpha=1,2, \cdots , r),\\df_{\alpha}=0 & (\alpha=1,2, \cdots, t) , dF_{a}=0 (\alpha=1,2, \cdots r),\\\tilde{\omega}_{i,k}= & p_{i,k}-p_{i+1,k}dx-p_{i,k+1}dy=0 (0\leqq i+k<m).\end{array}\right.$

Remark that when $\Phi$ is involutive at each point on $\mathcal{U}$ , the equations $df_{\alpha}=0$

are consequences of the other equations in $\Sigma(\Phi)$ . A solution of $\Phi$ is canonically
identified with a two-dimensional integral manifold $\mathcal{M}$ of $\Sigma(\Phi)$ satisfying
dim $(\rho_{-1}^{m})_{*}T(\mathcal{M})=2$ . An integral curve $\mathcal{I}$ of $\Sigma(\Phi)$ such that dim $(\rho_{-1}^{m})_{*}T(\mathcal{I})=1$

is said to be non-characteristic if and only if the direction of the line $(\rho^{\underline{m}_{1}})_{*}T_{X}(\mathcal{I})$

is not a characteristic one of $\Phi$ for each $X\in \mathcal{I}$ .
The Cauchy problem for $\Phi$ can be transformed into the corresponding one

for $\Sigma(\Phi)$ . We shall now state our main result.
THEOREM. SuPpose that $\Phi$ is involutive at $X_{0}$ and that the roots of the

characteristic polynomial of $\Phi$ at $X_{0}$ are real and distinct. Then for any non-
characteristic integral curve $\mathcal{I}$ of $\Sigma(\Phi)$ satisfying dim $(\rho_{-1}^{m})_{*}T(\mathcal{I})=1$ , there exists
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a unique two-dimensional integral manifold $\mathcal{M}$ of $\Sigma(\Phi)$ Passing through $\mathcal{I}$ such
that dim $(\rho_{-1}^{m})_{*}T(\mathcal{M})=2$ .

A point on the integral manifold $\mathcal{M}$ is uniquely determined only by the
finite segment of the initial curve $\mathcal{I}$ cut out by the two outer characteristic
curves on $\mathcal{M}$ Passing the Point.

Suppose that $\Phi$ is involutive at $X_{0}$ . We shall denote by $\nu$ the degree of
the characteristic polynomial of $\Phi$ at $X_{0}$ ; $\nu=m+1-r$. When $\nu=0,$ $\Phi$ is com-
pletely integrable at $X_{0}$ ; for each point $ X\in I\Phi$ sufficiently near $X_{0}$ , one can
obtain the two-dimensional integral manifold of $\Sigma(\Phi)$ passing through $X$ by
integrating $\Sigma(\Phi)$ which is completely integrable. Hence our Theorem is
obviously valid. Note that the last assertion in it is vacuous. When $\nu=1$ ,

the differential system $\Sigma(\Phi)$ has one-dimensional Cauchy’s characteristics;

These characteristic curves are obtained by integrating a system of ordinary
differential equations (cf. Kaki\’e [5], \S 7). Hence the existence of the solution
of the Cauchy problem stated above can be derived from that for a system of
ordinary differential equations. Therefore in this case our Theorem is again
valid. Thus it remains only to prove our Theorem in the case when $\nu\geqq 2$ .
We shall prove it in the remaining sections.

\S 2. Monge characteristic systems.

We shall devote this section to recalling Monge characteristic systems of
an involutive system and deducing some propositions needed later on.

Let us consider $\Phi$ which will be always assumed to satisfy the assumptions
of Theorem in the preceding section. Without loss of generality, we may
assume that the $\nu$ distinct characteristic directions of $\Phi$ in a neighbourhood
$\mathcal{V}$ of $X_{0}$ in $ I\Phi$ are defined respectively by $\partial/\partial x+\lambda_{1}\partial/\partial y,$ $\cdots$ , $\partial/\partial x+\lambda.\partial/\partial y$ ,
where the $\lambda_{j}’ s$ are differentiable functions on $\mathcal{V}$ . Besides we shall assume
that $\Phi$ is involutive at each point on $\mathcal{V}$ .

The characteristic system (of order m) of $\Phi$ corresponding to the charac-
teristic direction defined by $\partial/\partial x+\lambda_{l}\partial/\partial y$ is defined to be the Pfaffian system
on $\mathcal{V}$ which defines at each point $X\in \mathcal{V}$ the annihilator in $T_{X}^{*}(J^{m})$ of the
space

$\{(\frac{d}{dx}+\sum_{\beta=0}^{m}\tilde{\varphi}_{\beta}\frac{\partial}{\partial p_{m-\beta,\beta}})+\lambda_{l}(\frac{d}{dy}+\sum_{\beta=0}^{m}\tilde{\psi}_{\beta}\frac{\partial}{\partial p_{m-\beta,\beta}});\varphi_{\beta}=\tilde{\varphi}_{\beta},$ $\psi_{\beta}=\tilde{\psi}_{\beta}$

annihilate the following functions of $2(m+1)$ variables $\varphi_{\beta},$
$\psi_{\beta}$

$(**)$
$[\varphi_{\beta}-\psi_{\beta-1}(0<\beta\leqq m)\frac{dF_{a}}{dx}(X)+\sum_{-,\beta- 0}^{m}F_{a}^{(\beta)}\varphi_{\beta},$

$\frac{dF_{\alpha}}{dy}(X)+\sum_{\beta=0}^{m}F_{a}^{(\beta)}\psi_{\beta}$

$(\alpha=1, 2, r)\}$ ,
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where
$\frac{d}{dx}=\frac{\partial}{\partial x}+\sum_{\iota+k=0}^{m-1}p_{i+1,k}\frac{\partial}{\partial p_{i,k}}$ , $\frac{d}{dy}=\frac{\partial}{\partial y}+\sum_{i+k=0}^{m-1}p_{i,k+1}\frac{\partial}{\partial p_{i,k}}$

(see Kaki\’e [5], \S 4 (in particular Proposition 5) and \S 5). For brevity we shall
write $[F_{a}]_{x}=dF_{\alpha}(X)/dx,$ $[F_{\alpha}]_{y}=dF_{a}(X)/dy$ . The characteristic system corre-
sponding to the characteristic direction defined by $\partial/\partial x+\lambda_{\iota}\partial/\partial y$ is given by

$m$

(2) $\left\{\begin{array}{ll}dy-\lambda_{l}dx, & \omega_{l}=\partial_{=0}e^{\beta_{l}}dp_{m-\beta,\beta}+a_{\iota}dx+b_{l}dy,\\dF_{\alpha} (\alpha=1,2, & \cdots , r), \tilde{\omega}_{i,k}(0\leqq i+k<m),\end{array}\right.$

where $(e_{l}^{0}, \cdots , e_{l}^{m})$ is a system of differentiable functions on $\mathcal{V}$ satisfying
$m$ $m$

(3) $\left\{\begin{array}{ll}\sum_{\beta=0}e^{\beta_{l}}\varphi_{\beta}+\lambda_{l}\sum_{\beta=0}e^{\beta_{l}}\psi_{\beta}\equiv 0 & \\( mod [\varphi_{\beta}-\psi_{\beta}\sum_{\beta=0}^{m}F_{\alpha}^{(\beta)}\varphi_{\beta}, & \sum_{\beta=0}^{m}F_{\alpha}^{(\beta)}\psi_{\beta} (1\leqq\alpha\leqq r)),\end{array}\right.$

$(0<\beta\leqq m)$ ,

rank $(F_{a}^{(\beta)}, e_{l}^{\theta} ; \beta=0,1, \cdots m\downarrow, \alpha=1,2, \cdots , r\rightarrow)=r+1$ ,

and $a_{l}=-\sum_{\beta=0}^{m}e_{l}^{\beta}\varphi_{\beta}^{0},$ $b_{l}=-\sum_{\beta=0}^{m}e_{l}^{\beta}\psi_{\beta}^{0}$ in which $\varphi_{\beta}^{0},$ $\psi_{\beta}^{0}$ are a system of functions on
$\mathcal{V}$ annihilating $(**)$ (see Kaki\’e [5]). From the dePnition we immediately obtain

(4) $(\sum_{\beta=0}^{m}e^{\beta_{l}}\varphi_{\beta}+a_{l})+\lambda_{l}(\sum_{\beta=0}^{m}e^{\beta_{l}}\psi_{\beta}+b_{l})\equiv 0$ $(mod (**))$ .

Let us recall the following Pfaffian forms, which appear in the classical theory
of characteristic systems (cf. Goursat [4], Friedrichs and Lewy [7]):

$\Omega_{\alpha}^{(x)}(\lambda_{l})=\sum_{\beta=0}^{m-1}(-1)^{\beta}\Delta_{a}^{\beta}(\lambda_{l})dp_{m-\beta,\beta}+[F_{\zeta f}]_{x}dx$ ,

$\Omega^{()}ff(\lambda_{l})=\sum_{\beta=0}(-1)^{\beta}\Delta_{a}^{\beta}(\lambda_{l})dp_{m-\beta-1,\beta+1}+[F_{\alpha}]_{y}dxm1$

where
$\Delta_{\alpha}^{\beta}(\lambda_{l})=F_{\alpha_{\vee}}^{(0)}\lambda^{\beta}\cdot-F_{\alpha}^{(1)}\lambda^{\beta_{l}-1}+\cdots+(-1)^{\beta}F_{\alpha}^{(\beta)}$ $(0\leqq\beta\leqq m)$ .

We obtain at once the following formulae:

(5) $dF_{\alpha}\equiv\Omega_{\alpha}^{(x)}(\lambda_{l})+\lambda_{l}\Omega^{()}ff(\lambda_{l})$ $(mod dy-\lambda_{l}dx,\tilde{\omega}_{i,k} ; 0\leqq i+k<m)$ .

The rank of the Pfaffian forms $\Omega_{\alpha}^{(x)}(\lambda_{l}),$ $\Omega_{\alpha}^{(y)}(\lambda_{l})(1\leqq\alpha\leqq r)$ is equal to $r+1$ . In
fact, since $\Phi$ is $p$ -closed at each point on $\mathcal{V}$ , the mapping $\rho_{m}^{m+1}$ from $ I(p\Phi)\cap$

$(\rho_{m}^{m+1})^{-1}\mathcal{V}$ to $\mathcal{V}$ is surjective. That is, the following system of linear equations
with the unknown quantities $p_{m+1-\beta,\beta}(0\leqq\beta\leqq m+1)$ has actually solutions:
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$\sum_{\beta=0}^{m}F_{a}^{(\beta)}p_{m+1-\beta,\beta}+[F_{\alpha}]_{x}=0$ , $\sum_{\beta=0}^{m}F_{a}^{(\beta)}p_{m-\beta,\beta+1}+[F_{a}]_{y}=0$ $(\alpha=1,2, \cdots r)$ .

Hence the following is valid:

(6) rank $[_{F_{r}^{(0)}F_{r}^{(1)}F_{r}^{(m)}0[F_{r}]_{x}}^{F_{1}^{(0)}\ldots.F_{1}^{(1)}..\cdot.\cdot..\cdot..\cdot.\cdot..\cdots F_{1}^{(m)}....0\ldots.[.F_{1}]_{x}}00F_{r}^{(0)}F_{1}^{(.0.)}F_{r}^{(m-1)}F_{1}^{(m.-1)}F_{r}^{(m)}F_{1}^{(m)}[[F_{r}F_{1}]_{y}]_{y}]=rankD$ (on $\mathcal{V}$),

where $D$ is the matrix composed of the first $m+2$ columns of the matrix on
the left side of (6). Multiply the first column-vector of $D$ by $-\lambda_{l}$ and add it
to its second column. Next, multiply by $-\lambda_{l}$ the second column-vector of the
matrix thus obtained and add it to its third column. Proceed step by step in
the same way, then we have a matrix whose components of the last column
vanish. We shall denote by $D(\lambda_{l})$ the obtained matrix deleted the last column.
$D(\lambda_{l})$ is nothing else than the matrix composed of coefficients of $dp_{m-\beta,\beta}$

$(0\leqq\beta\leqq m)$ of the above $2r$ Pfaffian forms $\Omega’ s$ . From the construction of $D(\lambda_{l})$

it follows that rank $D(\lambda_{l})=rankD$ (on $\mathcal{V}$ ). On the other hand, since rank $D$

at $X$ is equal to $r_{m+1}(X)$ , rank $D=r+1$ (see (ii) in I). Therefore equality (6)

implies that the assertion is valid.
III. The following two Pfaffian systems (i) and (ii) defined on $\mathcal{V}$ are equi-

valent to each other in consequence of $dy-\lambda_{l}dx=0,\tilde{\omega}_{i,k}=0(0\leqq i+k<m)$ :
(i) $\omega_{l},$ $dF_{a}(\alpha=1,2, \cdots , r)$ .

(ii) $\Omega_{\alpha}^{(x)}(\lambda_{l}),$ $\Omega_{a}^{(y)}(\lambda_{l})(\alpha=1, 2, r)$ .
This fact clarifies the link between our dePnition of characteristic systems

(i) and the classical one (ii) (cf. Goursat [4], Friedrichs and Lewy [7]).
PROOF. As we have already shown, the Pfaffian systems (i) and (ii) have

the same rank $r+1$ . Hence on account of (5), in order to complete the proof,
it suffices to show

(7) $\omega_{l}\equiv 0$ $(mod dy-\lambda_{l}dx, \Omega_{a}^{(x)}(\lambda_{l}),$ $\Omega_{a}^{(y)}(\lambda_{l});1\leqq\alpha\leqq r)$ .

This is derived from (4) as follows. If we replace the variables $\varphi_{\beta}$ and $\psi_{\beta}$ in
(4) respectively by

$\varphi_{\beta}-\lambda_{l}\varphi_{\beta+1}+\cdots+(-\lambda_{l})^{m-\beta}\varphi_{m}+(-\lambda_{l})^{m-\beta+1}\psi_{m}$

and
$\psi_{\beta}-\lambda_{l}\psi_{\beta+1}+\cdots+(-\lambda_{l})^{m-\beta}\psi_{m}$ ,

then the expression on the left side becomes
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(8) $\{ \sum_{\beta=0}^{m}(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda_{l})\varphi_{\beta}+a_{l}\}+\lambda_{l}\{\sum_{\beta=0}^{m-1}(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda_{l})\psi_{\beta}+b_{l}\}$ ,

where
$\Gamma^{\beta_{l}}(\lambda)=e_{\iota}^{0}\lambda^{\beta}-e_{l}^{1}\lambda^{\beta-1}+\cdots+(-1)^{\beta}e^{\beta_{l}}$ $(0\leqq\beta\leqq m)$ .

After replacing $\varphi_{\beta}$ and $\psi_{\beta}$ in (8) by $\varphi_{\beta}/\xi$ and $\psi_{\beta}/\xi$ respectively where $\xi$ is an
indeterminate, multiply the expression by $\xi$ . Let us substitute $dP_{m-\beta,\beta}$ ,
$dp_{m-\beta-1,\beta+1}$ and $dx$ into $\varphi_{\beta},$ $\psi_{\beta}$ and $\xi$ in the obtained expression respectively.
Since we have the relations

$\Gamma_{l}^{0}(\lambda_{l})=e_{l}^{0}$ , $(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda_{l})+\lambda_{l}(-1)^{\beta-1}\Gamma^{\beta_{l}-1}(\lambda_{l})=e^{\beta_{l}}$ $(1\leqq\beta\leqq m)$ ,

the expression becomes the Pfaffian form $\omega_{l}$ if we take into account $dy=\lambda_{l}dx$ .
Besides, since $\Delta_{a}^{m}(\lambda_{l})=0(1\leqq\alpha\leqq r)$ , we find at once that, by the same pro-
cedure as above, the expressions in $(**)$ become $\Omega_{\alpha}^{(x)}(\lambda_{l}),$ $\Omega_{\alpha}^{(y)}(\lambda_{l})(1\leqq\alpha\leqq r)$ .
Therefore we obtain (7). Q. E. D.

Let us associate with $\Gamma_{l}^{m}(\lambda)$ the polynomial

(9) $e_{l}^{0}dy^{m}-e_{l}^{1}dy^{m-1}dx+\cdots+(-1)^{m}e_{l}^{m}dx^{m}$ .
We find it convenient to denote by $G_{1},$ $\cdots$ , $G_{r}$ and $R_{l}$ the rpolynomials (1) and
(9) respectively in which $dy,$ $dx$ are replaced by $\xi,$

$\eta$ respectively. Then it
follows from (3) that

(10) $\xi R_{l}-\lambda_{l}\eta R_{l}\equiv 0$ $(mod \xi G_{1}, \eta G_{1}, \cdots , \xi G_{r}, \eta G_{r})$ .
From the Theorem I it follows that, using the same notation as in Appendix,

dim $\langle\xi G_{1}, \eta G_{1}, \cdots , \xi G_{\tau}, \eta G_{r}\rangle=\dim\langle G_{1}, \cdots , G_{r}\rangle+1$ .
Hence (10) implies that

dim $\langle\xi G_{1}, \eta G_{1}, \cdots , \xi G_{r}, \eta G_{r}, \xi R_{l}, \eta R_{l}\rangle=\dim\langle G_{1}, \cdots , G_{r}, R_{l}\rangle+1$ .
Since dim $\langle G_{1}, \cdots, G_{\gamma}, R_{l}\rangle=r+1$ (see (3) ), applying Lemma in Appendix, we find
that the highest common factor of $G_{1},$

$\cdots,$
$G_{r},$ $R_{l}$ is of degree $\nu-1(\nu=m+1-r)$ .

Moreover (10) can be written in the form

$(\xi-\lambda_{l}\eta)R_{l}\equiv 0$ $(mod G_{1}, \cdots , G_{r})$ .
Noting that $\xi-\lambda_{l}\eta$ is a common linear factor of $G_{1},$ $\cdots$ , $G_{r}$ , we conclude from
this that the highest common factor of $G_{1},$ $\cdots$ , $G_{r},$ $R_{l}$ is obtained from that of
$G_{1},$ $\cdots$ , $G_{r}$ by excluding the linear factor $\xi-\lambda_{\iota}\eta$ . This fact enables us to deduce
the following result.

IV. For each integer $h=1,2,$ $\cdots$ , $J\backslash $

rank ( $e_{l}^{\beta}F_{\alpha}^{(\beta)}|_{l=1,2,,h\downarrow}^{\alpha=1,2,..\cdot.\cdot\cdot,r\downarrow}$ ; $\beta=0,1,$ $\cdots$ , $m\rightarrow)=r+h$ (on $\mathcal{V}$).
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PROOF. Since by assumption $\lambda_{l}(1\leqq l\leqq h)$ are distinct from one another,
the fact above explained implies that the highest common factor of $r+h$ poly-
nomials $G_{1},$ $\cdots$ , $G_{r},$ $R_{1},$ $\cdots$ , $R_{h}$ is of degree $\nu-h$ ; it is obtained from the highest
common factor of $G_{1},$ $\cdots$ , $G_{\tau}$ by dividing it by the factor $(\xi-\lambda_{1}\eta)\cdots(\xi-\lambda_{h}\eta)$ of
degree $h$ . On the other hand, we can prove that

dim $\langle\xi G_{\alpha}, \eta G_{\alpha}, \xi R_{j}, \eta R_{j} ; 1\leqq\alpha\leqq r, 1\leqq j\leqq h\rangle$

$=\dim\langle G_{\alpha}, R_{j} ; 1\leqq\alpha\leqq r, 1\leqq i\leqq h\rangle+1$

by induction on $h$ . Hence, applying Lemma in APpendix to the $r+h$ polynomials
$G_{a},$ $R_{j}$ , we obtain the desired result. Q. E. D.

We finally give the following result needed later on.
V. For any $\lambda_{j}$ which is distinct from $\lambda_{l}$ , the following is valid:

$\{\sum_{\beta=0}^{m-1}(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda_{j})dp_{m-\beta,\beta}+a_{l}dx\}+\lambda_{l}\{ \sum_{\beta=0}^{m-1}(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda_{j})dp_{m-\beta,\beta+1}+b_{l}dx\}$

$\equiv 0$ $(mod \Omega_{a}^{(x)}(\lambda_{j}), \Omega_{\alpha}^{(y)}(\lambda_{j});1\leqq\alpha\leqq r)$ on $\mathcal{V}$ .

PROOF. The fact already shown indicates that $\lambda_{j}$ is a root of the equation

$\Gamma_{l}^{m}(\lambda)=e_{l}^{0}\lambda^{m}-e_{l}^{1}\lambda^{m- 1}+\cdots+(-1)^{m}e_{l}^{m}=0$ .
Hence by repeating the same argument as in the proof of III, we can deduce
from (4) the desired result. Q. E. D.

\S 3. Reduction the Cauchy problem for $\Phi$ to that for a system
of equations in characteristic form.

From now on we shall always assume that $\nu\geqq 2$ (see the last part of \S 1).
Let $\mathcal{M}$ be the solution of the Cauchy problem for $\Phi$ with non-characteristic
initial curve $\mathcal{I};\mathcal{M}$ is the two-dimensional integral manifold of $\Sigma(\Phi)$ satisfying
dim $(\rho_{-1}^{m})_{*}T(\mathcal{M})=2$ and passing through $\mathcal{I}$ . It will be supposed that $\mathcal{M}$ is con-
tained in the neighbourhood $\mathcal{V}$ of $X_{0}$ (see \S 2). Such integral manifold $\mathcal{M}$ is
generated by each of the $\nu$ distinct families of one-parameter characteristic
curves; Those families are defined respectively by $dy-\lambda_{1}dx=0,$ $\cdots$ , $dy-\lambda_{\nu}dx$

$=0$ . Let us consider the tangent line to the initial curve $\mathcal{I}$ at a point $X$ on
$\mathcal{I}$ ; more precisely, consider the line $(\rho_{-1}^{m})_{*}T_{X}(\mathcal{I})$ in $T_{a}(N)(a=\rho_{-1}^{m}X)$ . If the
line is rotated by straight angle, its direction coincides successively with $\nu$

characteristic directions of $\Phi$ . We shall call the two characteristic directions
with which the direction of that line coincides firstly and lastly the outer ones
(with respect to $\mathcal{I}$), and the two corresponding characteristic curves (on $\mathcal{M}$)
the outer ones.
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Instead of the coordinate system $(x, y)$ , we introduce a coordinate system
$(\sigma, \tau)$ on $\mathcal{M}$ such that the both outer characteristic curves on $\mathcal{M}$ are given by
$\sigma=const$ . and $\tau=const$ . respectively. We shall $suppose$ that the outer charac-
teristic curves are defined by $dy-\lambda_{\nu}dx=0$ and $dy-\lambda_{1}dx=0$ respectively. When
$x,$ $y$ are considered as functions of $\sigma,$

$\tau$ , they satisfy the equations

$\frac{\partial y}{\partial\sigma}-\lambda_{1}\frac{\partial x}{\partial\sigma}=0$ , $\frac{\partial y}{\partial\tau}-\lambda_{\nu}\frac{\partial x}{\partial\tau}=0$ ,

where $\lambda_{1},$ $\lambda_{v}$ denote their values on $\mathcal{M}$ which are regarded as the functions
of $x,$ $y$ .

The manifold $\mathcal{M}$ can be represented by

(11) $(x(\sigma, \tau),$ $y(\sigma, \tau),$ $z(\sigma, \tau),$ $p_{i,k}(\sigma, \tau);1\leqq i+k\leqq m)$

where $\sigma,$
$\tau$ varies in a domain in two-dimensional space. Let $\mathcal{I}$ be defined by

the equation $\tau=g(\sigma)$ ; that is, $\mathcal{I}$ is defined by (11) in which $\tau$ is replaced by
$g(\sigma)$ . From the definition of the coordinate system $(\sigma, \tau)$ we have $g^{\prime}(\sigma)<0$ .

We shall denote by the superscript $\sigma$ or $\tau$ the derivative with respect to
the parameter $\sigma$ or $\tau$ respectively. Moreover, for each $\lambda_{l}(1\leqq l\leqq\nu)$ , we set

$\frac{d}{dt_{l}}=A_{l}\frac{\partial}{\partial\sigma}+B_{l}\frac{\partial}{\partial_{T}}$ , where $A_{l}=\frac{\partial y}{\partial_{T}}-\lambda_{l}\frac{\partial x}{\partial_{T}}$ , $B_{l}=-(\frac{\partial y}{\partial\sigma}-\lambda_{l}\frac{\partial x}{\partial\sigma})$ ,

and we write $f^{tl}=df/dt_{l}$ for a function $f$ of $\sigma,$ $\tau$ . It should be noted that the
derivative $d/dt_{l}$ has the definite meaning only when $x,$ $y,$ $z,$ $p_{ik}(1\leqq i+k\leqq m)$

are given as functions of $\sigma,$
$\tau$ , and that if we consider $d/dt_{l}$ on the manifold

$\mathcal{M}$ represented as above, $d/dt_{l}$ defines the vector field on $\mathcal{M}$ along the charac-
teristic curves defined by $dy-\lambda_{l}dx=0$ .

We are now in a position to deduce equations satisfied by (11) dePning
the integral manifold $\mathcal{M}$ . Since $dF_{a}=0(1\leqq\alpha\leqq r)$ on $\mathcal{M}$ and $p_{i.k}^{\sigma}-p_{i+1,k}x^{\sigma}-p_{i,k+1}y^{\sigma}$

$=0(0\leqq i+k<m)$ , we have

$\sum_{\beta=0}^{m}F_{\alpha}^{(\beta)}p_{m-\beta,\beta}^{\sigma}+[F_{\alpha}]_{x}x^{\sigma}+[F_{a}]_{y}y^{\sigma}=0$ $(\alpha=1, 2, r)$ .

If we replace $\varphi_{\beta}$ and $\psi_{\beta}$ in (4) by $\partial p_{m-\beta,\beta}/\partial x$ and $\partial p_{m-\beta,\beta}/\partial y$ respectively and
furthermore $\lambda_{\iota}$ in it by $y^{tl}/\chi^{ll}$ then the functions obtained from $(**)$ vanish on
$\mathcal{M}$ , and hence we obtain

$\partial_{=0}^{e^{\beta_{l}}p_{m-\beta\beta}^{\iota_{l}}+a_{l}x^{tl}+b_{l}y^{tl}=0}m$ $(l=1, 2, \nu)$ .

Consequently, (11) defining the integral manifold $\mathcal{M}$ of $\Sigma(\Phi)$ must be a solution
of the following system of differential equations:
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(12) $\left\{\begin{array}{ll}y^{\sigma}-\lambda_{1}x^{\sigma}=0, & y^{\tau}-\lambda_{v}x^{\tau}=0,\\\sigma U_{i,k}=p_{i.k}^{\sigma}-p_{i+1} & x^{\sigma}-p_{i,k+1}y^{\sigma}=0 (0\leqq i+k<m),\\\sum_{\beta=0}^{m}F_{a}^{(\beta)}p_{m-\beta\beta}^{\sigma}+[ & ]_{x}x^{\sigma}+[F_{\alpha}]_{y}y^{\sigma}=0 (\alpha=1, 2, r),\\\partial_{=0}^{e^{\beta_{l}}p_{m-\beta,\beta}^{t_{l}}+a_{l}x}m & (l=1,2, \cdots , \nu).\end{array}\right.$

We shall from now on regard this system as that defined on an open set $\mathcal{U}$ in
$J^{m}(M, N, \rho)$ by extending the functions $e_{l},$ $a_{l},$

$b_{l}$ on $\mathcal{V}$ to those on $\mathcal{U}$ .
Conversely, let us consider the Cauchy problem for (12). Assume that a

curve in the $(\sigma, \tau)$ -space is given and it is defined by the equation $\tau=g(\sigma)$

$(\sigma_{0}<\sigma<\sigma_{1})$ with $g^{\prime}(\sigma)\neq 0$ . Let a system of functions defined on $\sigma_{0}<\sigma<\sigma_{1}$

be given as follows:

(13) $(X(\sigma), Y(\sigma),$ $Z(\sigma),$ $P_{i,k}(\sigma);1\leqq i+k\leqq m)$ .
We assume that (13) defines a curve in $\mathcal{U}$ . The curve defined by (13) is an
integral curve of $\Sigma(\Phi)$ if and only if $F_{\alpha}(1\leqq\alpha\leqq r)$ and $f_{a}(1\leqq\alpha\leqq t)$ vanish
on it and (13) satisfies the strip conditions

$P_{i,k}^{f}(\sigma)-P_{i+1,k}(\sigma)X^{\prime}(\sigma)-P_{i,k+1}(\sigma)Y^{\prime}(\sigma)=0$ $(0\leqq i+k<m)$ .

Besides it is a non-characteristic integral curve of $\Sigma(\Phi)$ if and only if

$Y^{\prime}(\sigma)-\lambda_{l}X^{\prime}(\sigma)\neq 0$ $(l=1, 2, \nu)$ ,

where the variables in the $\lambda_{l}’ s$ are supposed to be replaced by their values
given by (13).

By the Cauchy problem for (12) with initial data (13) we mean the problem
of finding the solution of (12) such that its value on the curve $\tau=g(\sigma)$ coin-
cides with (13); $x(\sigma, g(\sigma))=X(\sigma),$ $y(\sigma, g(\sigma))=Y(\sigma)$ , and so on. The Cauchy
problem for $\Phi$ can be reduced to that for (12). In fact, combining the method
of Friedrichs and Lewy [7] with the results we have deduced, we have the
following proposition.

VI. The solution of the Cauchy Problem for (12) with initial data (13)
defining an integral curve of $\Sigma(\Phi)$ gives the two-dimensional integral manifold
$\mathcal{M}$ satisfying dim $(\rho_{-1}^{m})_{*}T(\mathcal{M})=2$ Passing through the curve defined by (13).

PROOF. What we must prove is the following two facts:
(a) The functions $F_{\alpha}(1\leqq\alpha\leqq r)$ and $f_{\alpha}(1\leqq\alpha\leqq t)$ vanish for the solution.
(b) The solution satisfies the strip conditions

$\tilde{\omega}_{i,k}=dp_{i,k}-p_{i+1,k}dx-p_{i,k+1}dy=0$ $(0\leqq i+k<m)$ .
We first prove (a). The equations in (12) imply that the derivative, with
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respect to the parameter $\sigma$ , of each function $F_{\alpha}$ in which the variables are
replaced by the solution vanishes. Since the $F_{\alpha}’ s$ vanish for the initial data,
this implies that the $F_{a}’ s$ vanish for the solution everywhere. Now the fact
that $\Phi$ is $p$-closed at each point on $\mathcal{V}$ implies that

$df_{a}\equiv 0$ $(mod \tilde{\omega}_{i,k}(0\leqq i+k<m), f_{1}, \cdots , f_{t}, \Gamma_{1}\prec, \cdots , F_{r})$ $(\alpha=1, \cdots , t)$ .
Hence for the solution we have

$f_{a}^{\sigma}\equiv 0$ $(mod f_{1}, \cdots , f_{t})$ $(\alpha=1,2, \cdots , t)$ .
Since $f_{a}=0$ for the initial data, the $f_{a}’ s$ vanish everywhere for the solution by
virtue of the well-known uniqueness theorem concerning linear homogeneous
ordinary differential equations.

Let us now prove (b). Since the solution satisfies $\sigma U_{i,k}=0(0\leqq i+k<m)$ ,
it suffices to prove that the solution satisfies

$\tau U_{i,k}=p_{i.k}^{\tau}-p_{i+1,k}x^{\tau}-p_{i,k+1}y^{\tau}=0$ $(0\leqq i+k<m)$ .
We shall denote by $\tau U_{t.k}^{\sigma}$ the derivative of $\tau U_{i,k}$ with respect to $\sigma$ and by $\sigma U_{i.k}^{\tau}$

that of $\sigma U_{i,k}$ with respect to $\tau$ . For simplicity we shall write $\lambda=\lambda_{v}$ . By
simple calculation we obtain the relations

(14) $\tau U_{i,k}-U_{i,k}^{\tau}=p_{i+1.k}^{\tau}x^{\sigma}+p_{i.k+1}^{\tau}y^{\sigma}-p_{i+1.k}^{\sigma}x^{\tau}-p_{i.k+1}^{\sigma}y^{\tau}$ $(0\leqq i+k<m)$ .
Since $\sigma U_{i,k}=0$ for the solution, (14) implies that the following relations are
valid for the solution of (12):

(15) $p_{m-\beta\beta}^{\sigma}+\lambda p_{m-1-\beta\theta+1}^{\sigma}=-\frac{1}{x^{\tau}}\tau U_{m-1-\beta,\beta}^{\sigma}+\frac{1}{X^{\tau}}(p_{m-\beta\beta}^{\tau}x^{\sigma}+p_{m-1-\beta.\beta+1}^{r}y^{\sigma})$

$(\beta=0,1, \cdots m-1)$ .
Furthermore, using the relations similar to (14), we obtain the following
equalities valid for the solution of (12):

(16) $p_{m-\beta\beta}^{t_{l}}+\lambda p_{m-1-\beta\beta+1}^{t_{l}}=-\frac{c_{l}}{X^{\tau}}\tau U_{m-1-\beta.\beta}^{\sigma}+\frac{1}{x^{\tau}}(p_{m-\beta\beta^{X^{t_{l}}}}^{\tau}+p_{m-1-\beta.\beta+1}^{\tau}y^{t_{l}})$

$(l=1,2, \cdots, \nu;\beta=0, 1, m-1)$ ,
where

$c_{l}=(x^{t_{l}}y^{\tau}-x^{\tau}y^{\iota_{l}})/(x^{\sigma}y^{\tau}-x^{\tau}y^{\sigma})$ $(\neq 0)$ .
From equalities (14) it follows that for the solution of (12)

(17) $\tau U_{j.h}^{\sigma}\equiv 0$ $(mod^{\tau}U_{i,k} ; 0\leqq i+k<m)$ $(0\leqq j+h\leqq m-2)$ .

Replacing $p_{m-\beta\beta}^{\sigma}$ by the expressions given by (15) successively from $\beta=0$ to
$\beta=m$ gives rise to the equalities satisfied for the solution
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$\sum_{\beta=0}^{m}F_{a}^{(\beta)}p_{m-\beta.\beta}^{\sigma}+[F_{a}]_{x}x^{\sigma}+[F_{\alpha}]_{y}y^{\sigma}=-\frac{1}{X^{\tau}}\{\sum_{\beta=0}^{m-1}(-1)^{\beta}\Delta_{\alpha}^{\beta}(\lambda)^{-}U_{m-1-\beta.\beta}^{\sigma}\}$

$+\frac{1}{X^{\tau}}[x^{\sigma}\{\sum_{\beta=0}^{m-1}(-1)^{\beta}\Delta_{a}^{\beta}(\lambda)p_{m-\beta.\beta}^{\tau}+[F_{\alpha}]_{x}x^{r}\}$

$+y^{\sigma}\{m1\overline{\partial_{--0}}^{(-1)^{\beta}\Delta_{a}^{\beta}(\lambda)p_{m-1-\beta.\beta}^{\tau}+[F_{\alpha}]_{y}x^{\tau}\}]}$ $(\alpha=1, 2, r)$ .

Hence the solution satisfies

(18) $\sum_{\beta=0}^{m-1}(-1)^{\beta}\Delta_{a}^{\beta}(\lambda)^{\tau}U_{m-1-\beta.\beta}^{\sigma}=x^{\sigma}\tilde{\Omega}_{\alpha}^{(x)}(\lambda)+y^{\sigma}\Omega_{d^{\prime})}((\lambda)$ $(\alpha=1, 2, r)$ ,

where $\tilde{\Omega}’ s$ represent the values of the Pfaffian forms $\Omega’ s$ in which $dp_{m-\beta,\beta},$ $dx,$ $dy$

are replaced by $p_{m-\beta.\beta}^{\tau},$ $x^{\tau},$ $y^{\tau}$ respectively.
On the other hand, by III and (a) already shown, it is easily deduced that

the following are valid for the solution

(19) $\tilde{\Omega}_{a}^{(x)}(\lambda)$ , $\tilde{\Omega}_{\alpha}^{(y)}(\lambda)\equiv 0$ $(mod^{\tau}U_{i,k} ; 0\leqq i+k<m)$ $(\alpha=1,2, \cdots , r)$ .
Hence from (18) we have

(20) $m1f\overline{l_{--0}}(-1)^{\beta}\Delta_{a}^{\beta}(\lambda)^{\tau}U_{m-1-\beta.\beta}^{\sigma}\equiv 0$ $(mod^{\tau}U_{i,k} ; 0\leqq i+k<m)$ $(\alpha=1, 2, r)$ .

In the similar manner, from another group of equations in (12) we can
deduce the following equalities satisfied for the solution

$\sum_{\beta=0}^{m-1}(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda)^{\tau}U_{m-1-\beta,\beta}^{\sigma}=\div[x^{t_{l}}\{\sum_{\beta=0}^{m-1}(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda)p_{m-\beta.\beta}^{\tau}+a_{l}x^{\tau}\}$

$+y^{t_{l}}\{\sum_{-,\beta-0}^{m-1}(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda)p_{m-1-\beta\beta+1}^{\tau}+b_{l}x^{\tau}\}]$ $(l=1, 2, \nu-1)$ .

By virtue of V, we find that the terms on the right side can be expressed as
linear combinations of $\tilde{\Omega}_{\alpha}^{(x)}(\lambda),\tilde{\Omega}_{a}^{(y)}(\lambda)(1\leqq\alpha\leqq r)$ . Therefore, on account of (19),
we conclude that the following are valid for the solution:

(21) $m1\overline{F_{--0}}(-1)^{\beta}\Gamma^{\beta_{l}}(\lambda)^{\tau}U_{m-1-\beta\beta}^{\sigma}\equiv 0$ $(mod^{\tau}U_{i,k} ; 0\leqq i+k<m)$ $(1=1, 2, \nu-1)$ .

The matrix composed of the coefficients on the left side in the equations (20)
and (21) is constructed from the following matrix in the same manner as in
constructing $D(\lambda)$ from $D$ (see the argument below (6) in \S 2):

$(_{e^{\beta_{l}}}^{F_{a}^{(\beta)}}|_{l=1,2,,\nu-1}^{\alpha=1,2,..\cdot.\cdot\cdot,r\downarrow}\downarrow;\beta=0,1,$ $\cdots$ $m\rightarrow)$ .

Therefore IV indicates that both matrices have the rank $m$ .
The system obtained by adjoining (17), (20) and (21) forms a system of
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linear homogeneous ordinary differential equations with unknown functions
$\tau U_{i,k}(0\leqq i+k<m)$ ; The matrix of its coefficients has non-zero determinant.
The initial values of the $\tau U_{ik}’ s$ vanish, for the $\sigma U_{ik}’ s$ vanish and the strip
conditions toward the direction tangent to the initial curve $\tau=g(\sigma)$ are satisfied.
Consequently the uniqueness theorem asserts that $\tau U_{i,k}(0\leqq i+k<m)$ vanish
everywhere. Thus we have proved (b). Q. E. D.

\S 4. The existence theorem.

In completing the proof of our Theorem, we shall use the existence theorem
established by M. Cinquini-Cibrario [1]. Let $\rho,$ $\mu,$ $\rho_{i}(1\leqq i\leqq q)$ and $a_{js}(3\leqq j\leqq n$ ,
$1\leqq s\leqq n)$ be differentiable functions defined on a domain $W$ in the space of $n$

variables $u_{1},$ $u_{2},$ $\cdots$ , $u_{n}$ . We shall consider a system of non-linear differential
equations of the Prst order with $n$ unknown functions $u_{1}(\sigma, \tau),$ $\cdots$ , $u_{n}(\sigma, \tau)$ of
two independent variables $\sigma,$ $\tau$ :

where $h,$ $k,$ $l_{i}$ are integers such that $h\leqq k\leqq l_{1}\leqq\ldots\leqq l_{q-1}\leqq n$ and the derivatives
$d/dt_{i}$ are defined by

$\frac{d}{dt_{i}}=A_{i}\frac{\partial}{\partial\sigma}+B_{i}\frac{\partial}{\partial\tau}$ ,

where

(23) $A_{i}=\frac{\partial u_{2}}{\partial\tau}-\rho_{4}\frac{\partial u_{1}}{\partial\tau}$ , $B_{i}=-(\frac{\partial u_{2}}{\partial\sigma}-\rho_{i}\frac{\partial u_{1}}{\partial\sigma})$ .

Note that the derivatives $d/dt_{i}$ have the dePnite meaning only when the $u_{s}’ s$

are given as functions of $\sigma,$
$\tau$ .

Writing $\Delta=\det$ $(a_{js} ; j=3,4, \cdots , n, s=3,4, \cdots , n)$ , we shall suppose that
the following conditions are satisfied:
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(24) $\Delta\neq 0$ , $1-\rho\mu\neq 0$ , $1-\rho_{\ell}\mu\neq 0$ , $\rho-\rho_{i}\neq 0$ , $\rho_{i}-\rho_{j}\neq 0$ $(i\neq j)$

on $W$ $(i, j=1, 2, ’ q)$ .
Consider the curve $\gamma$ in the $(\sigma, \tau)$ -space defined by $\tau=g(\sigma)$ with $g^{\prime}(\sigma)\neq 0$

$(\sigma_{0}<\sigma<\sigma_{1})$ . Let $U_{1}(\sigma),$ $U_{2}(\sigma),$ $\cdots$ , $U_{n}(\sigma)$ be $n$ functions dePned on $\sigma_{0}<\sigma<\sigma_{1}$ .
Suppose that each point $(U_{1}(\sigma), \cdots , U_{n}(\sigma))$ belongs to $W$ . Moreover suppose
that the following conditions are satisfied:

(25) $\left\{\begin{array}{ll}U_{1}^{\prime}(\sigma)-\rho U_{2}^{f}(\sigma)\neq 0 , & U_{2}^{\prime}(\sigma)-\mu U_{1}^{\prime}(\sigma)\neq 0,\\U_{1}^{\prime}(\sigma)-\rho_{i}U_{2}^{\prime}(\sigma)\neq 0 & i=1,2, \cdots , q) for \sigma_{0}<\sigma<\sigma_{1} ,\end{array}\right.$

in which $u_{1},$ $\cdots$ , $u_{n}$ in $\rho,$ $\mu,$ $\rho_{i}$ are supposed to be replaced by $U_{1}(\sigma),$ $\cdots$ , $U_{n}(\sigma)$

respectively.
The Cauchy problem for the system (22) is the problem of finding the $n$

functions $u_{1}(\sigma, \tau),$ $\cdots$ , $u_{n}(\sigma, \tau)$ which satisfy (22) and which also satisfy the
condition on $\gamma$

(26) $u_{1}(\sigma, g(\sigma))=U_{1}(\sigma),$ ,.

By differentiating the first two equalities in (26), we have

$\frac{\partial u_{1}}{\partial\sigma}+g^{\prime}(\sigma)\frac{\partial u_{1}}{\partial\tau}=U_{1}^{f}(\sigma)$ , $\frac{\partial u_{2}}{\partial\sigma}+g^{\prime}(\sigma)\frac{\partial u_{2}}{\partial\tau}=U_{2}^{\prime}(\sigma)$ on $\gamma$ .

On account of the second inequality in (24), these two equations and the first
two equations in (22) determine the values $\partial u_{1}/\partial\sigma,$ $\partial u_{1}/\partial\tau,$ $\partial u_{2}/\partial\sigma,$ $\partial u_{2}/\partial\tau$ on
$\gamma$ , and hence the $A_{i}$ and $B_{i}$ defined by (23) are determined on $\gamma$ by the given
data as known functions of $\sigma$ ; in particular, the ratios $A_{i}$ : $B_{i}$ are also deter-
mined on $\gamma$ . Each of such ratios determines at each point on $\gamma$ a direction in
the $(\sigma, \tau)$ -space. We shall assume furthermore that the following condition is
satisPed:

(27) At each pOint on the curve $\gamma$ , all the $q$ directions defined by $q$ values
$\rho_{i}(1\leqq i\leqq q)$ are situated on the same corner formed by the two lines parallel
to the $\sigma,$

$\tau$ axis through the Point and the tangent line to $\gamma$ is situated on the
supplementary corner.

M. Cinquini-Cibrario [1] proved the following theorem by the method of
successive approximation.

EXISTENCE THEOREM. Under the conditions (24), (25) and (27), the Cauchy

Problem for (22) with initial data (26) on $\gamma$ Possesses a unique solution $u_{1}(\sigma, \tau)$ ,
... , $u_{n}(\sigma, \tau)$ in a sufficiently small neighbourhood of $\gamma$ . Moreover the values of
$u_{1}(\sigma, \tau),$ $\cdots$ , $u_{n}(\sigma, \tau)$ at a pOint dePend only upon the initial data on the segment

of $\gamma$ cut out by the two lines parallel to the $\sigma,$
$\tau$ axis through the Point.

REMARK. Although M. Cinquini-Cibrario proved the existence of $C^{2}$ solu-
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tions whose second derivatives are Lipschitz continuous, the proof can be com-
pleted in order to show the existence of $C^{\infty}$ solutions.

We are now in a position to complete the proof of our Theorem. By the
fact VI, it is sufficient to prove that the above existence theorem can be
applied to the Cauchy problem for the system (12). The system (12) is
essentially of the same type as the system (22); If we denote the unknown
functions $x,$ $y,$ $z,$ $p_{i,k}(1\leqq i+k\leqq m)$ and the functions $\lambda_{1},$ $\lambda_{2},$ $\cdots$ , $\lambda_{v-1},$ $\lambda_{\nu}$ respec-
tively by $u_{1},$ $u_{2},$

$\cdots$ , $u_{n}$ and $\rho,$ $\rho_{1},$
$\cdots$ , $\rho_{q},$ $1/\mu(n=2+(m+1)(m+2)/2, q=\nu-2)$ ,

the system (12) becomes a system of the form (22). The condition correspond-
ing to (25) is satisfied, for it is nothing else than the condition that the curve
defined by the initial data is non-characteristic (cf. the argument around (13)
in \S 3). For any given initial curve of the Cauchy problem for $\Sigma(\Phi)$ , we can
choose such a coordinate system $(\sigma, \tau)$ that the condition corresponding to (27)
is satisfied (cf. \S 3). Hence it remains only to show that the condition corre-
sponding to (24) is satisPed. Using proposition V in which $ h=\nu$ , we readily
see that the determinant corresponding to $\Delta$ does not vanish. The other con-
ditions in (24) are obviously satisPed, for $\lambda_{1},$ $\lambda_{2},$ $\cdots$ , $\lambda_{\nu}$ are distinct from one
another. Thus we have proved our Theorem.

Appendix. An algebraic lemma.

Let $K$ be a field. Let us consider $r$ homogeneous polynomials in two in-
determinates $\xi,$

$\eta$ :

$P_{a}(\xi, \eta)=a_{0}^{(\alpha)}\xi^{m}+a_{1}^{(\alpha)}\xi^{m-1}\eta+\cdots+a_{m}^{(a)}\eta^{m}$ $(\alpha=1,2, \cdots , r)$ ,

where $a_{i}^{(a)}\in K$. We shall denote by $\langle P_{1}, P_{2}, \cdots , P_{r}\rangle$ the vector space spanned
by the polynomials $P_{1},$ $P_{2},$ $\cdots$ , $P_{r}$ over $K$ in the polynomial ring $K[\xi, \eta]$ and
by $(P_{1}, P_{2}, \cdots , P_{r})$ the highest common factor of the polynomials $P_{1},$ $P_{2},$ $P_{r}$ .

Under a certain condition, we can give a method of calculating the degree
of $(P_{1}, P_{2}, ’ P_{\tau})$ .

LEMMA. Assume that

dim $\langle\xi P_{1}, \eta P_{1}, \cdots , \xi P_{r}, \eta P_{\gamma}\rangle=\dim\langle P_{1}, \cdots , P_{r}\rangle+1$ .
Then

deg $(P_{1}, \cdots , P_{r})=m+1-$ dim $\langle P_{1}, \cdots , P_{r}\rangle$ .
(For the proof, see Kaki\’e [5], \S 3, Lemma 2.)
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