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Introduction.

Let $A$ be an integral domain and let $K$ be the quotient field of $A$ . In this
Paper we are mainly concerned with a subring $B$ of $K$ containing $A$ . For the
sake of simplicity we shall call such an intermediate ring an over ring of $A$

hereafter. The purpose of this paper is to study the relationship between an
over ring $B$ and subsets $F_{A}(B)$ and $F_{A}^{*}(B)$ of Spec $A$ defined by

$F_{A}(B)=\{\mathfrak{p}\in SpecA;A_{\mathfrak{h}}\subsetneqq B\otimes_{A}A_{\mathfrak{p}}=B_{\mathfrak{p}}\}$

and
$F_{A}^{*}(B)=$ { $\mathfrak{p}\in F_{A}(B)$ ; height $\mathfrak{p}=1$ }

respectively. Among others it will be shown that if $A$ is a Krull domain and
$B$ is a flat over-domain of $A$ , then $B$ is determined uniquely by $F_{A}^{*}(B)$ . More-
over if $B$ is a flat over-domain of $A,$ $B$ is finitely generated over $A$ if and
only if $F_{A}^{*}(B)$ is a finite set.

Following the usual terminology, rings are always understood to be com-
mutative and to have the identity elements. For a ring $A$ , Spec $A$ stands for
the set of all prime ideals of $A$ and $Ht_{1}(A)$ is the set of all prime ideals of $A$

with height 1.

\S 1. On $F_{A}(B)$ .
The following well-known fact will be used frequently in this paper, so

we write down it as a lemma without proof (cf. [3]).

(1.1) LEMMA. Let $A$ be a ring and $B$ an A-algebra contained in the total
quotient ring of A. Then the following four conditions are equivalent to each
other:

(1) $B$ is flat over $A$ .
(2) $B_{\mathfrak{p}}=B\otimes_{A}A_{\mathfrak{p}}$ is flat over $A_{\mathfrak{p}}$ for any $\mathfrak{p}\in SpecA$ .
(3) $A_{A\cap \mathfrak{P}}=B_{\mathfrak{P}}$ for any $\mathfrak{P}\in SpecB$ .
(4) For every $\mathfrak{p}\in SpecA$ , either $\mathfrak{p}B=B$ or $A_{p}=B_{p}$ .
Let $A$ be an integral domain and let $B$ be an over-ring of $A$ . We shall

introduce the sets:
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$F_{A}(B)=\{\mathfrak{p}\in SpecA;A_{\mathfrak{p}}\subsetneqq B_{\mathfrak{p}}\}$ ,

$F_{A}^{*}(B)=F_{A}(B)\cap Ht_{1}(A)$ .

General properties of $F_{A}(B)$ and $F_{A}^{*}(B)$ are summarized in the following three
lemmas.

(1.2) LEMMA. Let $A$ be an integral domain and let $B$ be an over-ring.
Then $F_{A}(B)$ is closed under specializations. We have $ F_{A}(B)=\emptyset$ if and only if
$A=B^{1)}$ .

PROOF. Let $\mathfrak{p}$ and $q$ be prime ideals of $A$ such that $\mathfrak{p}\subseteqq q$ . If $q$ is not an
element of $F_{A}(B),$ $A_{q}=B_{q}\supseteqq B$ . Therefore $A_{\mathfrak{p}}=(A_{q})_{\mathfrak{p}A_{q}}\supseteqq B$ . Hence $A_{\mathfrak{p}}=B_{\mathfrak{p}}$

namely $\mathfrak{p}\not\in F_{A}(B)$ proving the first half of the lemma. If $ F_{A}(B)=\emptyset$ , then $A$

$=\bigcap_{\mathfrak{p}\in SpecA}A_{\mathfrak{h}}=\bigcap_{\mathfrak{p}\in SpecA}B_{\mathfrak{p}}\supseteqq B$ . Hence we have $A=B$ . It is trivially seen that
$ F_{A}(A)=\emptyset$ .

A maximal point of $F_{A}(B)$ is, by definition, a prime ideal of $F_{A}(B)$ which
is minimal under inclusion.

(1.3) LEMMA. If $A$ is a Krull domain, any maximal Point of $F_{A}(B)$ has
height 1.

PROOF. Let $q$ be a maximal point of $F_{A}(B)$ . We shall show that height
$q=1$ . Assuming the contrary, $i$ . $e.$ , height $q>1$ , we see that prime ideals which
are properly contained in $q$ are not in $F_{A}(B)$ . Therefore $A_{q}=\bigcap_{\mathfrak{p}\in Ht_{1}(A)}A_{\mathfrak{p}}$

$=\bigcap_{\mathfrak{p}\in Ht(A)}B_{\mathfrak{p}}\supseteqq B$ . Hence we have $A_{q}=B_{q}$ . This is a contradiction.

(1.4) LEMMA. Let $A$ be an integral domain and let $B_{1}$ and $B_{2}$ be over-rings

of $A$ such that $B_{2}\supseteqq B_{1}$ . Then $F_{A}(B_{2})\supseteqq F_{A}(B_{1})$ .
PROOF. Let $\mathfrak{p}\not\in F_{A}(B_{2})$ . Then $A_{\mathfrak{p}}=(B_{2})_{\mathfrak{p}}\supseteqq(B_{1})_{\mathfrak{p}}$ . Hence $A_{\mathfrak{p}}=(B_{1})_{\mathfrak{p}},$ $i$ . $e.$ ,

$\mathfrak{p}\not\in F_{A}(B_{1})$ .
(1.5) THEOREM. Let $A$ be an integral domain ond let $B_{1}$ and $B_{2}$ be over-

rings of A. Assume that $B_{2}$ is flat over A. Then $F_{A}(B_{2})\supseteqq F_{A}(B_{1})$ if and only
if $B_{2}\supseteqq B_{1}$ .

PROOF. By (1.4) it suffices to prove the “only if” part. Let $\mathfrak{P}\in SpecB_{2}$

and $\mathfrak{p}=\mathfrak{P}\cap A$ . Since $B_{2}$ is flat over $A,$ $A_{\mathfrak{p}}=(B_{2})_{\mathfrak{P}}$ by (1.1). Hence $A_{\mathfrak{p}}\supseteqq B_{2}$ and
we see that $\mathfrak{p}\not\in F_{A}(B_{2})$ . From the assumption it follows that $\mathfrak{p}\not\in F_{A}(B_{1})$ , hence
$A_{\mathfrak{p}}=(B_{1})_{\mathfrak{p}}$ . Since $B_{1}\subseteqq(B_{1})_{\mathfrak{p}}=A_{\mathfrak{p}}=(B_{2})_{\mathfrak{P}}$ , we have $B_{1}\subseteqq\bigcap_{\mathfrak{P}\in SpecB_{2}}(B_{2})_{\mathfrak{P}}=B_{2}$ .

(1.6) COROLLARY. Let $A$ be an integral domain and let $B_{1}$ and $B_{2}$ be flat
over-rings of A. Then $F_{A}(B_{1})=F_{A}(B_{2})$ if and only if $B_{1}=B_{2}$ .

(1.7) LEMMA. Let $A$ be a Krull domain and let $\Delta$ be a subset of $Ht_{1}(A)$ .
Let $C=\bigcap_{\mathfrak{p}\in\Delta}A_{\mathfrak{p}}$ . Then we have $ F_{A}^{*}(C)=Ht_{1}(A)-\Delta$ .

1) We denote by $\emptyset$ the empty set.
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PROOF. As is well known, $Ht_{1}(C)=\{C\cap \mathfrak{p}A_{\mathfrak{p}}|\mathfrak{p}\in\Delta\}$ , from which the asser-
tion follows easily.

From now on we shall mainly be concerned with flat over-rings $B$ and we
shall show how they are determined by $F_{A}(B)$ .

(1.8) LEMMA. Let $A$ be a Krull domain and $B$ a flat over-ring of A. Then
$B=\bigcap_{\mathfrak{p}\in\Delta}A_{\mathfrak{p}}$ , where $\Delta=Ht_{1}(A)-F_{A}^{*}(B)$ .

PROOF. Obvious by virtue of (1.1), (1.4).
(1.9) THEOREM. Let $A$ be a Krull domain and let $B$ be an over-ring of $A$ .

Then $B$ is flat over $A$ if and only if either $B_{\mathfrak{p}}=A_{\mathfrak{p}}$ or $\mathfrak{p}B=B$ holds for any $\mathfrak{p}$

in $Ht_{1}(A)$ .
PROOF. From (1.1) it suffices to prove the “if part” of the theorem. If $q$

is a prime ideal of $A$ not in $F_{A}(B)$ , then by definition $A_{q}=B_{q}$ . Hence to prove
the theorem it is sufficient to show that for any $q\in F_{A}(B)$ we have $qB=B$ (cf.
[1]). From (1.3) there exists a prime ideal $\mathfrak{p}$ in $F_{A}^{*}(B)$ with $\mathfrak{p}\subseteqq q$ . Since $A_{\mathfrak{p}}\neq B_{\mathfrak{p}}$

the assumption implies that, we have $\mathfrak{p}B=B$ , a fortiori, $qB=B$ .
(1.10) THEOREM. Let $A$ be a Krull domain and let $B$ be an over-ring of

A. If $B$ is finitely generated over $A$ , then $F_{A}^{*}(B)$ is a finite set. If we impose
an additional assumptiOn that $B$ is flat over $A$ , the converse also holds.

PROOF. Suppose $B$ is finitely generated over $A$ , then there exists an ele-

ment $a\in A$ such that we have $B\subseteqq A[\frac{1}{a}]$ . Whence we see immediately that
$F_{A}^{*}(B)$ is a finite set.

Conversely assume that $B$ is a flat over-ring and $F_{A}^{*}(B)$ is a finite set, say,
$F_{A}^{*}(B)=\{\mathfrak{p}_{1}, \cdots , \mathfrak{p}_{t}\}$ . Then $A_{\mathfrak{p}i}\neq B_{\mathfrak{p}i}$ and we must have $\mathfrak{p}_{i}B=B$ for $i=1,$ $\cdots$ , $t$

by (1.1). Hence we can find elements $ a_{k}\in \mathfrak{p}_{1}\cap$ $\cap \mathfrak{p}_{t}$ and $\alpha_{k}\in B$ such that

$\sum_{k=1}^{n}a_{k}\alpha_{k}=1$ . Let $C=A[\alpha_{1}, \cdots , \alpha_{n}]$ . Then we have $\mathfrak{p}_{i}C=C$ for $i=1,$ $\cdots$ , $t$, and
$F_{A}^{*}(C)\supseteqq\{\mathfrak{p}_{1}, \cdots \mathfrak{p}_{t}\}$ . On the other hand $C$ is contained in $B$ , hence we have
the inclusion relation $F_{A}^{*}(C)\subseteqq F_{A}^{*}(B)=\{\mathfrak{p}_{1}, \mathfrak{p}_{t}\}$ . Therefore we have $F_{A}^{*}(C)=$

$F_{A}^{*}(B)=\{\mathfrak{p}_{1}, \cdots , \mathfrak{p}_{t}\}$ . For any prime ideal $\mathfrak{p}$ of height 1 other than $\mathfrak{p}_{1},$ $\cdots$ , $\mathfrak{p}_{t},$ $\mathfrak{p}$

is not contained in $F_{A}^{*}(C)$ , whence we have $A_{\mathfrak{p}}=C_{\mathfrak{p}}$ . Then (1.9) implies that $C$

is flat over $A$ . Now $B=C$ follows from (1.6).

\S 2. Relations between epimorphic over-rings and flat over rings.

In this section $A$ and $B$ are not necessarily integral domains. Let $A$ be a
ring and let $B$ be an A-algebra with the structure homomorphism $f:A\rightarrow B$ .
A ring homomorphism $f:A\rightarrow B$ is called an epimorphism, if for any ring $C$

and any two homomorphisms $g,$ $g^{\prime}$ : $B\rightarrow C$ , the relation go $f=g^{\prime}\circ f$ implies $g=g^{\prime}$ .
(2.1) LEMMA. Let $A$ be a ring and $B$ an ePimorphic A-algebra. Let $M$
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be a B-module which admits a direct sum decomPosition $M=M_{1}\oplus M_{2}$ as A-
modules. Then A-modules $M_{1}$ and $M_{2}$ have natural B-module structures and
$M=M_{1}\oplus M_{2}$ as B-modules. In particular if $B=B_{1}\oplus B_{2}$ as A-modules, then $B$

is a direct product of subrings $B_{1}$ and $B_{2}$ .
PROOF. Let $b$ be an element of $B$ . Then it is known that there are ele-

ments $b_{1},$ $b_{2},$ $\cdots$ , $b_{r}\in B,$ $c_{1},$ $c_{2},$ $c_{s}\in B$ and $\beta_{ij}\in A$ ( $1\leqq i\leqq r$ and $1\leqq i\leqq s$) such
that $b=\sum_{i.j}\beta_{ij}b_{i}c_{j}$ and both $\sum_{i}\beta_{ij}b_{i}$ and $\sum_{j}\beta_{ij}c_{j}$ are in $A$ (cf. [3]). Then for
any $m\in M$ we have $b\otimes m=1\otimes bm$ . Define a B-module homomorphism $\phi$ :
$B\otimes_{A}M\rightarrow M$ by $\phi(b\otimes m)=bm$ and a B-module homomorphism $\psi:M\rightarrow B\otimes_{A}M$

by $\psi(m)=1\otimes m$ . Then the above consideration implies that $\psi\circ\phi=1_{B\otimes M}$ and
$\phi\circ\psi=1_{M}$ . Therefore $M\cong B\otimes_{A}M$ as B-modules. Now assume that $M$ (regarded
as A-module) is a direct sum of A-modules $M_{1}$ and $M_{2}$ . Then we have $B\otimes_{A}M$

$=B\otimes_{A}M_{1}\oplus B\otimes_{A}M_{2}$ . Let $m$ be any element of $M_{1}$ and let $b$ be an element of
$B$ . Write $bm=m_{1}+m_{2}$ , where $m_{1}\in M_{1}$ and $m_{2}\in M_{2}$ . Then $b\otimes m=\psi\circ\phi(b\otimes m)$

$=\psi(bm)=\psi(m_{1}+m_{2})=1\otimes m_{1}+1\otimes m_{2}$ . Hence $b\otimes m-1\otimes m_{1}=1\otimes m_{2}\in B\otimes_{A}M_{1}$

$\cap B\otimes_{A}M_{2}=(0)$ . Hence $1\otimes bm=1\otimes m_{1}$ . Therefore $bm=m_{1}\in M_{1}$ . Thus $M_{1}$

has a B-module structure and similarly $M_{2}$ has a B-module structure. It is
now immediate to see that $M=M_{1}\oplus M_{2}$ as B-module.

(2.2) COROLLARY. Let $A$ be a ring and $B$ an ePimorphic A-algebra. Let
$M$ be a B-module. Then $M$ is an irreducible B-module if and only if $M$ is an
irreducible A-module.

The next lemma is proved in [3].

(2.3) LEMMA. Let $A$ be a Noetherian local ring and let $B$ be a local A-
algebra. If $f:A\rightarrow B$ is a local epimOrphism, $B$ is $A$ -isomorphic to a localization
of a finite A-algebra.

Making use of (3.3), we can give a relationship between flat over-rings and
epimorphic over-rings.

(2.4) THEOREM. Let $A$ be a Noetherian normal domain and $B$ an over-ring

of A. Then $B$ is epimOrphic over $A$ if and only if $B$ is flat over $A$ .
PROOF. The “if” part was proved in [31 in a more general setting. Hence

we shall give here a proof of the “only if” part of the theorem. Assume that
$B$ is epimorphic over $A$ . Let $\mathfrak{P}$ be any prime ideal in $B$ and let $\mathfrak{p}=\mathfrak{P}\cap A$ .
Then $A_{\mathfrak{p}}\rightarrow B_{\mathfrak{P}}$ is a local epimorphism and $A_{\mathfrak{p}}$ is a Noetherian normal local do-
main. Hence by (3.3), $B_{\mathfrak{P}}$ is $A_{\mathfrak{p}}$ -isomorphic to a localization $C_{Q}$ of a finite A-
algebra $C\subseteqq K$, where $K$ is the quotient field of $A$ . Indeed there is a finite $A_{\mathfrak{p}-}$

algebra $C^{\prime}$ and a prime ideal $Q^{\prime}$ such that we have $B_{P}=C_{Q^{\prime}}^{\prime}$ . Then we can
take $C,$ $Q$ as the images of $C^{\prime},$ $Q^{\prime}$ in $K$. Since $A_{\mathfrak{p}}$ is normal, $C=A_{\mathfrak{p}}$ , so $B_{\mathfrak{P}}=A_{\mathfrak{p}}$ .
Therefore $B$ is flat over $A$ .

In the next theorem we shall determine the structure of epimorphic A-
algebras.
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(2.5) THEOREM. Let $A$ be a Noetherian normal domain and $B$ an ePimor-
Phic Noetherian A-algebra. Let I be the torsion A-submodule of B. Then the
following exact sequence of A-modules

$g$

$0\rightarrow I\rightarrow B\rightarrow B/I\rightarrow 0$

sPlits as A-module and $B$ is isomorphic to $I\times B/I$ as B-algebra.
PROOF. First of all, we shall show that $I$ is a prime ideal in $B$ . Let

$B_{0}=B/I$. Since $B$ is epimorphic over $A,$ $B_{0}$ is also epimorphic over $A$ with a
$f$ $q$

ring homomorphism $gf:A\rightarrow B\rightarrow B_{0}$ where $f$ is a structure homomorphism of
$B$ and $g$ is the natural homomorphism. Then $f\otimes 1:A\otimes_{A}K\rightarrow B_{0}\otimes_{A}K$ is also
an epimorphism. Since $A\otimes_{A}K=K$ is a field $f\otimes 1$ must be an isomorphism
and we see that $B_{0}\otimes_{A}K$ is a field. Being a subdomain of $B_{0}\otimes_{A}K,$ $B_{0}$ is also
an integral domain.

Next we shall show that $g$ is a flat homomorphism. Let $\mathfrak{P}_{0}$ be an arbitrary
prime ideal in $B_{0}$ , and let $\mathfrak{P}=g^{-1}(\mathfrak{P}_{0})$ and $\mathfrak{p}=\mathfrak{P}\cap A$ .

In the above diagram, $\psi$ is a local epimorphism, $A_{\mathfrak{p}}$ is a Noetherian normal
local domain, and $B_{0\mathfrak{P}0}$ is an over-ring of $A_{\mathfrak{p}}$ (cf. [3]). Therefore by the proof
of (3.4), $\psi$ is an isomorphism, so $g_{\mathfrak{P}}\cdot f_{\mathfrak{p}}\cdot\psi^{-1}=1_{B_{0}\mathfrak{P}_{0}}$ . Hence $B_{\mathfrak{P}}$ is a direct sum
of $B_{0\mathfrak{P}_{0}}$ and $kerg_{\mathfrak{P}}$ as $A_{\mathfrak{p}}$ -modules. By (3.1), $B_{\mathfrak{P}}$ is a direct product of $B_{0\mathfrak{P}_{0}}$ and
ker $g_{\mathfrak{P}}$ as rings because $B_{\mathfrak{P}}$ is epimorphic over $A_{\mathfrak{p}}$ . On the other hand Spec $B_{\mathfrak{P}}$

is connected since $B_{\mathfrak{P}}$ is a local ring. Hence ker $g_{\mathfrak{P}}=0$ and $g_{\mathfrak{P}}$ is an isomor-
phism. Therefore $g$ is flat.

Since $g$ is a flat surjective homomorphism, the morphism Spec $B_{0}\rightarrow SpecB$

is an open and closed immersion. Therefore Spec $B=V$ IL Spec $B_{0}$ for a closed
subscheme $V$ of Spec $B$ . Since closed subscheme of an affine scheme are also
affine ones, Spec $B=SpecB/J$ JL Spec $B/I$ for an ideal $J$ in $B$ . It is easy to
show by using the Noetherian property of $B$ that $B=B/I\times B/J$ and $B/J\cong I$.
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