Topology of Hopf surfaces

By Masahide KATO

(Received May 14, 1973) (Revised May 20, 1974)

§ 1. Introduction.

By a Hopf surface S, we shall mean a 2-dimensional compact complex manifold of which the universal covering is $W = C^2 - \{0\}$, where C^2 is the space of two complex variables (z_1, z_2) and 0 is the origin (0, 0). S can be represented as a quotient space W/G with a group G generated by some biholomorphic transformations of W whose action is properly discontinuous and free.

Let B be a closed spherical set in \mathbb{C}^2 determined by the inequality: $|z_1|^2 + |z_2|^2 \leq 1$. A complex analytic automorphism g of \mathbb{C}^2 is called a contraction if $g^n(B)$ converges to 0 for $n \to \infty$.

By Kodaira [4], G has the following properties;

- (1) G contains a contraction g, and the infinite cyclic subgroup generated by g has a finite index in G,
- (2) if G is non-abelian, then by a proper choice of global coordinates of C^2 , G appears as a subgroup of $GL(2, \mathbb{C})$.

The purpose of this paper is to classify all Hopf surfaces by diffeomorphisms (or equivalently, homeomorphisms). (See, Theorems 9, 10 and 12.)

§ 2. Classification of G in the case $G \subset GL(2, \mathbb{C})$.

First we define subgroups H and K of G as follows;

$$H = \{x \in G : |\det x| = 1\},\$$

 $K = \{x \in G : \det x = 1\} \subset SL(2, C).$

Clearly, $G \triangleright H \triangleright K$ and $G \triangleright K$. In what follows H and K are assumed to satisfy these conditions. Let G_2 be a subgroup of a group G_1 . We denote by $[G_1: G_2]$ the index of G_2 in G_1 . If G_2 is generated by some elements h_1, \dots, h_r of G_1 , we sometimes write $\{h_1, \dots, h_r\}$ instead of G_2 .

LEMMA 1. An element x of G is a contraction if and only if $|\det x| < 1$.

PROOF. We denote by α , β the eigenvalues of $x \in G$. If x is a contraction, then $|\alpha| < 1$, $|\beta| < 1$. Hence $|\det x| < 1$. Conversely, let x be an element of G such that $|\det x| < 1$. If $|\alpha| = |\beta|$, then x is a contraction by the in-

equality $|\alpha|^2 = |\det x| < 1$. If $|\alpha| \neq |\beta|$, then x is a contraction except the cases $|\alpha| \geq 1 > |\beta|$ and $|\beta| \geq 1 > |\alpha|$. Hence we may assume that $|\alpha| \geq 1 > |\beta|$. Then x is of the infinite order and not a contraction. Let g be a contraction in G. Then we have $\{x\} \cap \{g\} = \{1\}$. This implies that $[G: \{g\}] = \infty$. This contradicts the property (1) of G.

LEMMA 2. There exists an infinite cyclic subgroup Z of G such that G is the semi-direct product $Z \cdot H$ of Z and H.

PROOF. Define a group homomorphism $f: G \to \mathbb{R}$ by $f(x) = -\log |\det x|$ $(x \in G)$. By the property (1) of G, we can choose a contraction g_1 in G such that $[f(G): \{f(g_1)\}] = d < +\infty$. Hence $f(g_1)/d \in f(G)$ is a minimum positive element of f(G). Letting g be an element of G such that $f(g) = f(g_1)/d$, we define $Z = \{g\}$. Then it is clear that $G = Z \cdot H$. Q. E. D.

By the properties (1), (2) of G and Lemma 2, H and K are finite subgroups of $GL(2, \mathbb{C})$. By Lemma 1, we can choose a generator g of Z so that g is a contraction. We call Z the *infinite part* of G and H the *finite part* of G. If G can be expressed as a direct product of the infinite part and the finite part, then we say that G is decomposable. If not, we say that G is indecomposable.

Taking a suitable conjugate subgroup to G in $GL(2, \mathbb{C})$, we may assume that K is one of the following finite subgroups of $SU(2) = U(2) \cap SL(2, \mathbb{C})$ (F. Blichfeldt [1]).

1.
$$K = \{I\}, I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$$

2. $K = \{\pm I\}$;

3.
$$K = A_m = \begin{Bmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \end{Bmatrix}$$
, the cyclic group of order m ,

a = a primitive m-th root of 1, $m \ge 3$;

4.
$$K = B_n = \left\{ \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \begin{pmatrix} \rho_n & 0 \\ 0 & \rho_n^{-1} \end{pmatrix} \right\}$$
, the dihedral group of order $4n$, $i = \sqrt{-1}$, $\rho_n = \exp \frac{\pi}{n} \sqrt{-1}$;

5.
$$K = C = \left\{ \begin{pmatrix} \zeta^2 & 0 \\ 0 & \zeta^{-2} \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} \zeta^3 & \zeta^3 \\ \zeta & -\zeta \end{pmatrix} \right\}$$
, the tetrahedral group, order=24, $\zeta = \exp \frac{\pi}{4} \sqrt{-1}$;

6.
$$K = D = \left\{ \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} \zeta^3 & \zeta^3 \\ \zeta & -\zeta \end{pmatrix} \right\}$$
, the octahedral group, order=48,

$$\zeta = \exp \frac{\pi}{4} \sqrt{-1};$$
7. $K = E = \left\{ \begin{pmatrix} \varepsilon^3 & 0 \\ 0 & \varepsilon^2 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \frac{\epsilon_1}{\sqrt{5}} \begin{pmatrix} \varepsilon^4 - \varepsilon & \varepsilon^2 - \varepsilon^3 \\ \varepsilon^2 - \varepsilon^3 & \varepsilon - \varepsilon^4 \end{pmatrix} \right\}, \text{ the icosahedral group, order} = 120,$

$$\varepsilon = \exp \frac{2\pi}{5} \sqrt{-1}.$$

Let G_2 be a subgroup of G_1 . We denote by $N_{G_1}(G_2)$ and $C_{G_1}(G_2)$ the normalizer of G_2 in G_1 and the centralizer of G_2 in G_1 respectively. The following lemma is useful. The method of proof is due to E. Ban-nai.

LEMMA 3. If K is non-abelian, then $N_{SL(2,C)}(K)$ is a finite group.

PROOF. Put $N = N_{SL(2,C)}(K)$ and $C = C_{SL(2,C)}(K)$. An element $n \in N$ acts on K as an inner automorphism of K in a natural way and C acts trivially on K. Since C is a normal subgroup of N, we have a following group homomorphism;

where $\operatorname{Aut}(K)$ denotes the group of all automorphisms of K. It is clear that $\operatorname{Ker} \varphi = \{\overline{1}\}$. Hence φ is an injection. Since $\operatorname{Aut}(K)$ is a finite group, N/C is also a finite group. We regard $K \subseteq GL(2, \mathbb{C})$ is an irreducible representation of K into $GL(2, \mathbb{C})$. Then, by Shur's lemma,

$$C \subset \left\{ \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} : c \in \mathbb{C}^*, c^2 = 1 \right\} = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Hence C is a finite group. Therefore N is a finite group. Q. E. D. LEMMA 4. The following equalities hold;

$$\begin{split} N_{SL(2,C)}(A_m) &= \left\{ \begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix}, \begin{pmatrix} 0 & t^{-1} \\ -t & 0 \end{pmatrix} : s, \ t \in \mathbb{C}^* \right\} \quad (m \geq 3), \\ N_{SL(2,C)}(B_n) &= B_{2n} \quad (n \geq 2), \\ N_{SL(2,C)}(C) &= D, \\ N_{SL(2,C)}(D) &= D, \\ N_{SL(2,C)}(E) &= E. \end{split}$$

PROOF. We denote by $|G_1|$ the order of the group G_1 . Considering the order of groups, we have $N_{SL(2,C)}(D) = D$, because |D| = 48 is a divisor of $|N_{SL(2,C)}(D)|$ and it is clear that D is not contained in B_{2n} . Similarly we have

 $N_{SL(2,c)}(E) = E$. Since $\{C, u\} = D$, where $u = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix} \in N_{SL(2,c)}(C)$, it follows that $D \subset N_{SL(2,C)}(C)$. Hence $|N_{SL(2,C)}(C)|$ is a multiple of 48. Thus we have $N_{SL(2,\mathbf{C})}(C) = D.$

Now we consider the case $N = N_{SL(2,c)}(B_n)$ $(n \ge 2)$. Put $x = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in N$ $(\alpha\delta-\beta\gamma=1)$, $\sigma=\begin{pmatrix}0&i\\i&0\end{pmatrix}$ and $\tau=\begin{pmatrix}\rho_n&0\\0&\rho_n^{-1}\end{pmatrix}$. Since the eigenvalues of x are invariant under inner automorphisms, one of the following two equalities holds;

(a)
$$\begin{cases} x\tau x^{-1} = \tau \\ x\sigma x^{-1} = \sigma \tau^{\lambda} \end{cases}$$
 (b)
$$\begin{cases} x\tau x^{-1} = \tau^{-1} \\ x\sigma x^{-1} = \sigma \tau^{\lambda} \end{cases}$$

where λ is a suitable integer. By the direct calculation of matrices, we have

(a)
$$\alpha = \delta \rho_n^{-\lambda}$$
, $\alpha \delta = 1$, $\beta = \gamma = 0$,

(b)
$$\beta = \gamma \rho_n^{-\lambda}$$
, $\gamma \beta = -1$, $\alpha = \delta = 0$,

that is

(a)
$$x = \pm \begin{pmatrix} \rho_{2n} & 0 \\ 0 & \rho_{2n}^{-1} \end{pmatrix}^{-\lambda}$$
,

(b)
$$x = \pm \sigma \begin{pmatrix} \rho_{2n} & 0 \\ 0 & \rho_{2n}^{-1} \end{pmatrix}^{\lambda}$$
.

Then, in both cases, we have $x \in B_{2n}$. Conversely $x \in B_{2n}$ leads to $x \in N$. Hence we obtain $N=B_{2n}$.

In the similar manner, we can prove the case $N = N_{SL(2,C)}(A_m)$ $(m \ge 3)$.

Q. E. D.

By Lemma 4 and the direct calculation, we have the following LEMMA 5.

$$N_{GL(2,C)}(A_m) = C*I \cdot \left\{ \begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix}, \begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix} : s, t \in C* \right\} \quad (m \ge 3),$$

$$N_{GL(2,C)}(B_n) = C * I \cdot B_{2n} \quad (n \ge 2)$$
,

$$N_{GL(2,C)}(C) = C*I \cdot D = C*I \cdot \left\{ C, \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix} \right\},$$

$$N_{GL(2,C)}(D) = C*I \cdot D,$$

$$N_{GL(2,C)}(D) = C * I \cdot D$$
,

$$N_{GL(2,C)}(E) = C*I\cdot E$$
.

REMARK (a). We have fixed the generators of K all of which are elements of U(2). There exists an inner automorphism of $GL(2, \mathbb{C})$ which sends H into U(2) leaving K fixed. In fact, this is clear for $K = \{I\}, \{\pm I\}, B_n, C, D$ and E by Lemma 5. In the case $K=A_m$ $(m \ge 3)$, H is generated by $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$,

 $\begin{pmatrix} c_l s_l & 0 \\ 0 & c_l s_l^{-1} \end{pmatrix} \ (l=1,2,\cdots,h) \ \text{ and } \begin{pmatrix} 0 & d_j t_j^{-1} \\ d_j t_j & 0 \end{pmatrix} \ (j=1,2,\cdots,k), \ \text{ where } \ |c_i| = |d_i| = 1.$ Since the order of $\begin{pmatrix} c_i s_i & 0 \\ 0 & c_i s_i^{-1} \end{pmatrix} \ \text{is finite, we have } \ |c_i s_i| = |c_i s_i^{-1}| = 1.$ For any i,j, we have $|t_i| = |t_j|, \text{ because } \begin{pmatrix} 0 & d_i t_i^{-1} \\ d_i t_i & 0 \end{pmatrix} \begin{pmatrix} 0 & d_j t_j^{-1} \\ d_j t_j & 0 \end{pmatrix} = \begin{pmatrix} d_i d_j t_i^{-1} t_j & 0 \\ 0 & d_i d_j t_i t_j^{-1} \end{pmatrix} \ \text{has a}$ finite order. Now put $\theta = \begin{pmatrix} 0 & r^{-1} \\ r & 0 \end{pmatrix}, \text{ where } r = |t_j|^{\frac{1}{2}}.$ Then it is easy to check that $\theta^{-1} H \theta \subset U(2) \ \text{ and } \theta^{-1} K \theta = K.$ We assume for the remainder of the paper that H is a subgroup of U(2).

LEMMA 6. If G is indecomposable and $K \neq \{I\}$, $\{\pm I\}$, then $K \neq D$, E. Furthermore (in the cases $K = A_m$ ($m \geq 3$), $K = B_n$ ($n \geq 2$) and K = C), we can choose a generator g of the infinite part of G expressed in the form g = cu where $c \in \mathbb{C}^*$ and $u \in GL(2, \mathbb{C})$ having the following form;

Case 1
$$K = A_m : u = \begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix}$$
 for some $t \in \mathbb{C}^*$,

Case 2 $K = B_n : u = \begin{pmatrix} \rho_{2n} & 0 \\ 0 & \rho_{2n}^{-1} \end{pmatrix}$,

Case 3 $K = C : u = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$.

PROOF. First we show that for non-abelian K any generator g of the infinite part of G can not belong to $C^*I \cdot K$. In fact, $g \in C^*I \cdot K$ implies the existence of $c \in C^*$ and $g_0 \in K$ such that $g = cg_0$, so we have the direct product splitting $G = \{cI\} \times H$ which leads to the contradiction to the indecomposability of G. On the other hand $G \subset N_{GL(2,C)}(K)$. Now applying Lemma 5, we conclude that K is one of the groups A_m , B_n and C. In the cases $K = B_m$ and K = C, g can be written in the form $g = cug_0$ with $c \in C^*$, $g_0 \in K$. Hence we have $g^2 \in C^*I \cdot K$ and $G = \{cu\} \cdot H$. If K and H are abelian, then H is a group generated by the elements of K and some matrices of the form $\binom{*}{0} \quad \binom{*}{s}$, since $K \neq \{I\}$, $\{\pm I\}$. On the other hand, we have $g = c\binom{0}{t} \quad \binom{t^{-1}}{0}$ or $c\binom{s}{0} \quad \binom{0}{s^{-1}}$ by Lemma 5. If g is of the latter form, G is abelian. This contradicts the assumption that G is indecomposable. Hence we have $g = c\binom{0}{t} \quad \binom{t^{-1}}{0}$ as desired. If K is abelian and H is non-abelian, then H contains an element of the form $\binom{0}{r} \quad \binom{q}{0} \cdot \binom{q}{r} = r \cdot \binom{q}{0}$. Now we express G as a semi-direct product $G = \{g\} \cdot H$ where $g = c\binom{s}{0} \quad \binom{0}{s^{-1}}$. Then we define an element g' of G by

$$g' = g \begin{pmatrix} 0 & q \\ r & 0 \end{pmatrix} = c \begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix} \begin{pmatrix} 0 & q \\ r & 0 \end{pmatrix} = c(rq)^{\frac{1}{2}} \begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix}$$

where $t = (rq^{-1})^{\frac{1}{2}}s^{-1}$. It is easy to check that $G = \{g\} \cdot H = \{g'\} \cdot H$ and g' is an element of the required form. We note that, in each of the cases, we have $g^2 \in C^*I \cdot K$.

Q. E. D.

LEMMA 7. If G is indecomposable and $K \neq \{I\}$, $\{\pm I\}$, then $K \neq D$, E and G can be expressed as follows;

$$G = G_0 \cup g \cdot G_0$$
 (coset decomposition),

where $G_0 = \{c^2I\} \times H$, g = cu. The element u of $GL(2, \mathbb{C})$ is defined as follows; Case 1_a $K = A_m$ $(m \ge 3)$, H = abelian,

$$u = \begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix} \qquad (t \in \mathbf{C}^*);$$

Case 1_b $K = A_m$ $(m \ge 3)$, H = non-abelian,

$$u = \begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix} \quad (|t| = 1);$$

Case 2 $K=B_n \ (n \ge 2)$,

$$u = \begin{pmatrix} \rho_{2n} & 0 \\ 0 & \rho_{2n}^{-1} \end{pmatrix} \in SU(2)$$
;

Case 3 K=C,

$$u = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix} \in SU(2).$$

We note that the case 1_a really happens if and only if the element $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is contained in $N_{GL(2,\mathbf{C})}(H)$ and that in the cases 1_b , 2 and 3, u is a unitary matrix.

PROOF. Let g=cu be the generator of the infinite part of G which is defined in Lemma 6 and we express G as a semi-direct product $G=\{g\}\cdot H$. Since $g^2=c^2u^2\in C^*I\cdot K$, we have a subgroup $G_0=\{c^2I\}\times H$ of G of index 2. G can be expressed as $G=G_0\cup g\cdot G_0$. Now examining the condition that g must be contained in $N_{GL(2,C)}(H)$, we shall derive some restrictions to the form of u. If $K=A_m$ and H is abelian, then each element of H is of the form $\begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$. Hence $g=c\begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix}$ is contained in $N_{GL(2,C)}(H)$ if and only if $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\in N_{GL(2,C)}(H)$. If $K=A_m$ and H is non-abelian, H contains an element of the form $\begin{pmatrix} 0 & q \\ r & 0 \end{pmatrix}$ (|q|=|r|=1). Then by $g^{-1}\begin{pmatrix} 0 & q \\ r & 0 \end{pmatrix}g=\begin{pmatrix} 0 & t^{-2}r \\ t^2q & 0 \end{pmatrix}\in H$, |t|=1 follows. If $K=B_n$, then H is generated by the elements of B_n , scalar matrices and some elements of the form $\lambda\begin{pmatrix} \rho_{2n} & 0 \\ 0 & \rho_{2n}^{-1} \end{pmatrix}$ $(|\lambda|=1)$. Thus it is clear that $g=cu=c\begin{pmatrix} \rho_{2n} & 0 \\ 0 & \rho_{2n}^{-1} \end{pmatrix}\in N_{GL(2,C)}(H)$. If K=C, then H is generated by the elements

of C, scalar matrices and some elements of the form $\lambda \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$ ($|\lambda|=1$). Thus we have $g=c\begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix} \in N_{GL(2,C)}(H)$.

Proposition 8. G is conjugate in $GL(2, \mathbb{C})$ to one of the following groups, Notation: α , β , c, $t \in \mathbb{C}^*$: constants satisfying

$$0 < |\alpha| < 1$$
, $0 < |\beta| < 1$ and $0 < |c| < 1$,

m = the order of H,

a = a primitive m-th root of 1,

(m, n) = the greatest common divisor of integers m, n.

Case I $K = \{I\}$,

(i)
$$\left\{\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}\right\} \times H$$
, $H = \left\{\begin{pmatrix} a & 0 \\ 0 & a^n \end{pmatrix}\right\}$, $(m, n) = 1$, $(m, n+1) = 1$;

(ii)
$$\left\{ \begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix} \right\} \times H$$
, $H = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \right\}$;

Case II $K = \{\pm I\}$,

(i)
$$\left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \right\} \times H, \quad H = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^n \end{pmatrix} \right\}, \quad \left(\frac{m}{2}, \frac{n+1}{2} \right) = 1;$$

(ii)
$$\left\{ \begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix} \right\} \times H$$
, $H = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \right\}$, $m \equiv 0 \pmod{2}$;

(iii) $\{c^2I\} \times H \cup (cu) \cdot (\{c^2I\} \times H)$ (coset decomposition),

$$H = \left\{ \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \right\}, \quad u = \begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix}, \quad m \equiv 0 \pmod{2};$$

Case III $K \neq \{I\}, \{\pm I\},$

(i)
$$\left\{\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}\right\} \times H$$
, $H = abelian$;

- (ii) $\{cI\} \times H$;
- (iii) $\{c^2I\} \times H \cup (cu) \cdot (\{c^2I\} \times H)$ (coset decomposition);

where, in the case III (iii), $H \subset U(2)$ is a finite group acting on S^3 freely, u is determined according to Lemma 7 and K is neither D nor E.

PROOF. Define a group homomorphism d by

Then $\operatorname{Ker} d = K$ and $d(H) \cong \mathbf{Z}_{m'}$ for some positive integer m'.

If G is indecomposable and $K \neq \{I\}$, $\{\pm I\}$, then there occurs the case III (iii) by Lemma 7.

If G is decomposable and $K \neq \{I\}$, $\{\pm I\}$, we have two cases.

- (a) H = non-abelian: In this case, the generator of the infinite part of G is a scalar matrix cI with $c \in C^*$. So the case is III (ii).
 - (b) H=abelian, $K=A_m \ (m \ge 3)$: The case is III (i).

Now there remain two cases I and II.

Case I $K = \{I\}$. Since d is an injection, we have m' = m and $H \cong \mathbf{Z}_{m'}$. Since H acts on S^s freely, we may assume that H is generated by an element $h = \begin{pmatrix} a & 0 \\ 0 & a^n \end{pmatrix}$ with some integer n such that (m, n) = 1. In addition, the condition $K = \{I\}$ implies (m, n+1) = 1. We express G as $\{g\} \cdot H$ (semi-direct product). Since $g^{-1}hg \in H$ and $d(g^{-1}hg) = d(h)$, it follows that $g^{-1}hg = h$. Thus if $n \not\equiv 1 \pmod{m}$, then g has the form $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, and G is the case I (i). If $n \equiv 1 \pmod{m}$, then g is an arbitrary contraction and consequently the case I (ii) may occur.

Case II $K = \{\pm I\}$. In this case, we have 2m' = m. Take an element $h \in H$ so that d(h) is a generator of d(H). Then $h^{m'}$ is either I or -I. If $h^{m'}=I$ and m' is odd, the order of $-h \in H$ is 2m' = m. Hence we have $H \cong \mathbb{Z}_m$. Let $h^{m'}=I$ and m' is even, i.e., m'=2m''. Letting ε_1 , ε_2 be the eigenvalues of h, we have $\varepsilon_1^{m''} = \pm 1$, $\varepsilon_2^{m''} = \pm 1$. Since $h^{m''} \neq I$ and $h^{m''}$ has no fixed points, we have $\varepsilon_1^{m''} = \varepsilon_2^{m''} = -1$. Consequently $h^{m''} = -I$. But this contradicts the assumption that d(h) is a generator of d(H). Hence m' is odd. If $h^{m'} = -I$, then h has the order 2m'=m. This implies $H\cong \mathbb{Z}_m$. We express G as $\{g\}\cdot H$ (semi-direct product). Let $h = \begin{pmatrix} a & 0 \\ 0 & a^n \end{pmatrix}$ be a generator of H. Since a^{n+1} is a primitive $-\frac{m}{2}$ -th root of 1, we have $n+1 \equiv 0 \pmod{2}$. Let $e = \left(\frac{m}{2}, \frac{n+1}{2}\right), \frac{m}{2} = ek$ and $\frac{n+1}{2}$ = el where k, $l \in \mathbb{Z}$. Then $(a^{n+1})^k = a^{2elk} = (a^m)^l = 1$. Thus k is a multiple of $\frac{m}{2}$ and we have e=1. Since $g^{-1}hg \in H$ and $d(g^{-1}hg)=d(h)$, it follows that $g^{-1}hg = h$ or -h. If $g^{-1}hg = h$, then g is of the form $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$. So the cases II (i) and II (ii) may occur by the similar argument to case I. If $g^{-1}hg = -h$, then we have $a^n = -a$, since h has the same eigenvalues as -h. And moreover g has the form $\begin{pmatrix} 0 & \gamma \\ \delta & 0 \end{pmatrix}$. Hence, letting $c = (\gamma \delta)^{\frac{1}{2}}$, $t = (\delta \gamma^{-1})^{\frac{1}{2}}$ and $u = (\gamma \delta)^{\frac{1}{2}}$ $\begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix}$, this case is reduced to the case II (iii). Q.E.D.

REMARK (b). All the types of finite subgroups H of U(2) which acts on S^{s} freely are determined by Threlfall-Seifert [6].

REMARK (c). Any finite subgroups of SU(2) acts on S^3 freely, since any elements of them except the identity matrix never have 1 as their eigenvalues.

§ 3. Topology of Hopf surfaces.

Let S = W/G be a Hopf surface. If G is abelian, it may happen that G is not contained in GL(2, C) (cf. the property (2) of G). If G is abelian, G is expressed as $G \cong \mathbb{Z} \oplus \operatorname{Torsion}(G)$. Let g be a contraction corresponding to a generator of \mathbb{Z} . Then we may assume that g has the form

$$g: (z_1, z_2) \longmapsto (z'_1, z'_2) = (\alpha z_1 + \lambda z_2^n, \beta z_2),$$

where n is a certain positive integer and α , β and λ are constants satisfying $(\alpha - \beta^n)\lambda = 0$, $0 < |\alpha| \le |\beta| < 1$. Let h be an arbitrary element of G which has a finite order. Now we determine the form of h by a similar method to the proof of Theorem 47, Kodaira [3].

By the Hartogs' theorem, there exist holomorphic functions $\phi,\, \psi$ on C^2 such that

$$h: z = (z_1, z_2) \longmapsto h(z) = (\phi(z), \phi(z)), \ \phi(0) = \phi(0) = 0.$$

By $g \cdot h = h \cdot g$, we have

(3-1)
$$\phi(\alpha z_1 + \lambda z_2^n, \beta z_2) = \alpha \phi(z_1, z_2) + \lambda \psi(z_1, z_2)^n,$$

(3-2)
$$\psi(\alpha z_1 + \lambda z_2^n, \beta z_2) = \beta \psi(z_1, z_2).$$

If $\lambda = 0$, then we have by (3-1), (3-2),

$$\phi(\alpha z_1, \beta z_2) = \alpha \phi(z_1, z_2),$$

$$\phi(\alpha z_1, \beta z_2) = \beta \phi(z_1, z_2).$$

Hence we have $\phi(z_1, z_2) = az_1$, $\phi(z_1, z_2) = bz_2$ where a, b are certain constants, and so $h \in GL(2, \mathbb{C})$. Consequently we have $G \subset GL(2, \mathbb{C})$. If $\lambda \neq 0$, then $\alpha = \beta^n$.

Applying $\frac{\partial}{\partial z_1}$ to (3-2), we get

$$\alpha \frac{\partial \phi}{\partial z_1}(gz) = \beta \frac{\partial \phi}{\partial z_1}(z)$$
.

Hence we obtain

$$\frac{\partial \psi}{\partial z_1}(z) = \lim_{\nu \to +\infty} \left(\frac{\alpha}{\beta}\right)^{\nu} \frac{\partial \psi}{\partial z_1}(g^{\nu}z) = \lim_{\nu \to +\infty} \left(\frac{\alpha}{\beta}\right)^{\nu} \frac{\partial \psi}{\partial z_1}(0).$$

This shows that

$$\frac{\partial \psi}{\partial z_1}(z) = \begin{cases} \frac{\partial \psi}{\partial z_1}(0), & \text{if } \alpha = \beta, \\ 0, & \text{if } \alpha \neq \beta. \end{cases}$$

If $\alpha = \beta$, then n = 1. Applying $\frac{\partial}{\partial z_2}$ to (3-2), we have

$$\lambda \frac{\partial \psi}{\partial z_1}(0) + \beta \frac{\partial \psi}{\partial z_2}(0) = \beta \frac{\partial \psi}{\partial z_2}(0) ,$$

and $\frac{\partial \psi}{\partial z_1}(0) = 0$ follows. Thus, in both cases, we have $\frac{\partial \psi}{\partial z_1}(z) = 0$. Applying $\frac{\partial}{\partial z_2}$ to (3-2), we get

$$-\frac{\partial \psi}{\partial z_2}(gz) = -\frac{\partial \psi}{\partial z_2}(z).$$

Therefore $\frac{\partial \psi}{\partial z_2}$ is reduced to constant. Denote this constant by a(h). Then we have $\psi(z) = a(h)z_2$. Now (3-1) is reduced to

$$\phi(\alpha z_1 + \lambda z_2^n, \beta z_2) = \alpha \phi(z_1, z_2) + \lambda a(h)^n z_2^n.$$

Applying $\frac{\partial}{\partial z_1}$, we obtain

$$\frac{\partial \phi}{\partial z_1}(gz) = \frac{\partial \phi}{\partial z_1}(z)$$
.

Therefore $\frac{\partial \phi}{\partial z_1}$ is a constant and we denote this constant by b(h). Then $\phi(z)$ is reduced to the form

$$\phi(z) = b(h)z_1 + \eta(z_2)$$
, $\eta(0) = 0$,

where $\eta(z_2)$ is a holomorphic function of z_2 . By the equality (3-1), we have

$$\alpha \eta(z_2) - \eta(\beta z_2) = \lambda(b(h) - a(h)^n) z_2^n$$
.

Letting $\eta(z_2) = \sum_{k \ge 1} c_k z_2^k$, we get

$$c_k = 0$$
 for all $k \neq n$,

$$a(h)^n = b(h)$$
.

Since h has a finite order, c_n vanishes and $a(h)^{m_1} = 1$ for some integer m_1 . Hence h has the form

$$h: (z_1, z_2) \longmapsto (a(h)^n z_1, a(h) z_2), \quad a(h)^{m_1} = 1.$$

Clearly the mapping $h \mapsto a(h)$ is a group isomorphism from Torsion (G) into U(1). Therefore we conclude that Torsion $(G) \cong \mathbb{Z}_m$ for a certain positive integer m such that (m, n) = 1, since h has no fixed points.

The above argument shows that, if $G \subset GL(2, \mathbb{C})$, then $G \cong \mathbb{Z} \oplus \mathbb{Z}_m$ and that G is generated by the following two elements;

$$g_{\lambda}: (z_1, z_2) \longmapsto (\beta^n z_1 + \lambda z_2^n, \beta z_2) \qquad 0 < |\beta| < 1$$

$$h: (z_1, z_2) \longmapsto (a^n z_1, a z_2)$$
 $(m, n) = 1$,

where a is a primitive m-th root of 1 and λ is a fixed constant. Let $\tilde{\omega}: W \to W/\{h\}$ be the canonical projection. We define a holomorphic automorphism φ of $(W/\{h\}) \times C$ by

where C denotes the plane of complex numbers. Since $g_{\lambda} \cdot h = h \cdot g_{\lambda}$, φ is well-defined. The infinite cyclic group $\{\varphi\}$ acts on $(W/\{h\}) \times C$ properly-discontinuously and freely. Hence $\mathcal{M} = ((W/\{h\}) \times C)/\{\varphi\}$ is a family of deformations of Hopf surfaces parametrized by λ . Let p be the natural projection $\mathcal{M} \to C$. Each $p^{-1}(\lambda)$ ($\lambda \in C$) is diffeomorphic to $p^{-1}(0)$. Note that $p^{-1}(0)$ is a quotient space of W by a subgroup G of GL(2, C). Hence, in order to classify Hopf surfaces by diffeomorphisms, it is sufficient to consider only the case where G are subgroups of GL(2, C).

THEOREM 9. Each Hopf surface S = W/G is diffeomorphic to one of the following types;

- (1) $S^1 \times (S^3/H)$,
- (2) (S^3/H) -bundle over S^1 whose transition function $u: S^3/H \to S^3/H$ is an involution of S^3/H .

PROOF. (a) Cases I (i), II (i), III (i) (ii) (cf. Proposition 8).

Let S^3 be the sphere defined by $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\}$. Define a diffeomorphism $\varphi : \mathbb{R} \times S^3 \to W$ by

where R is the real line. Let h be an element of G belonging to $H \subset U(2)$ and g a contraction of G of the form $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$. Now we define automorphisms f(h), f of $R \times S^3$ by

$$f(h): (r, z) \longmapsto (r, hz),$$

 $f: (r, z) \longmapsto (r+1, z).$

Then we have the following two commutative diagrams of diffeomorphisms;

$$\begin{array}{cccc} \mathbf{R} \times S^3 \stackrel{\varphi}{\longrightarrow} W & \mathbf{R} \times S^3 \stackrel{\varphi}{\longrightarrow} W \\ \downarrow f(h) & \downarrow h & \downarrow f & \downarrow g \\ \mathbf{R} \times S^3 \stackrel{\varphi}{\longrightarrow} W, & \mathbf{R} \times S^3 \stackrel{\varphi}{\longrightarrow} W. \end{array}$$

Hence we have a diffeomorphism $S^1 \times (S^3/H) \rightarrow W/G = S$ induced from φ .

(b) Cases I (ii), II (ii).

Using the deformation argument, we can reduce these cases to case (a). Hence we have $S \cong S^1 \times (S^3/H)$.

(c) Case III (iii) and H = non-abelian.

Let $w = (w_1, w_2)$ be a point of W and define a differentiable mapping $\psi_1: W \to \mathbb{R}$, $\psi_2: W \to S^3$ by

$$\begin{aligned} & \phi_1(w) = r = \frac{\log s}{\log |c|^2}, \\ & \phi_2(w) = (c^{-\frac{\log s}{\log |c|}} w_1, c^{-\frac{\log s}{\log |c|}} w_2), \end{aligned}$$

where $s = (|w_1|^2 + |w_2|^2)^{\frac{1}{2}}$. Then it is easy to check that $\phi = (\phi_1, \phi_2) : W \to \mathbb{R} \times S^3$ is a diffeomorphism. Now we have the following two commutative diagram of diffeomorphisms;

$$W \xrightarrow{\psi} R \times S^{3} \qquad W \xrightarrow{\psi} R \times S^{3}$$

$$\downarrow h \qquad \downarrow f(h) \qquad \downarrow c^{2}I \qquad \downarrow f$$

$$W \xrightarrow{\psi} R \times S^{3}, \qquad W \xrightarrow{\psi} R \times S^{3},$$

where f(h), f are diffeomorphisms defined in case (a). Thus we have $W/G_o \cong S^1 \times (S^3/H)$ where $G_o = \{c^2I\} \times H$. Since H is non-abelian, u is a unitary matrix by Lemma 7. Therefore u acts on S^3 naturally and we obtain

$$\psi(cu(w)) = (\phi_1(w) + \frac{1}{2}, u(\phi_2(w))).$$

Hence we infer that $S = W/G = (W/G_o)/\{cu\}$ is an (S^3/H) -bundle over S^1 of which the transition function is u. Since $u^2 \in K \triangleleft H$, u is an involution of S^3/H .

(d) Cases II (iii), III (iii) and H=abelian.

Put $G_o = \{c^2I\} \times H$, $u = u_t = \begin{pmatrix} 0 & t^{-1} \\ t & 0 \end{pmatrix}$, $G_t = \{G_o, cu_t\}$ and $W/G_o = S_o$. Since, in this case, $N_{GL(2,C)}(H)$ contains $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, W/G_t defines a Hopf surface for arbitrary $t \in C^*$. Let φ be a holomorphic automorphism of $S_o \times C^*$ defined by

Then φ is a fixed point free involution of $S_o \times C^*$. Hence $\mathcal{M} = S_o \times C^*/\{\varphi\}$ $= \bigcup_{t \in C^*} (W/G_t)$ is a family of deformations of Hopf surfaces parametrized by t. Since $u_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in U(2)$, W/G_1 is an (S^3/H) -bundle over S^1 with transition function u_1 by the similar argument to case (c). Moreover, for each $t \in C^*$, $W/G_t \cong W/G_1$.

Let S = W/G and S' = W/G' be arbitrary two Hopf surfaces. We may assume that both G and G' are subgroups of $GL(2, \mathbb{C})$. Note that H(H') is the set of elements of G(G') resp.) of which the orders are finite.

THEOREM 10. If G and G' are isomorphic as abstract groups, and if $H(\cong H')$ is not a (finite) cyclic group, then S is diffeomorphic to S'.

PROOF. The group H is unique up to conjugate in $GL(2, \mathbb{C})$, since H is not cyclic (Brieskorn [2], Threlfall-Seifert [6]). Hence there exists $\theta \in GL(2, \mathbb{C})$ such that $\theta^{-1}H\theta = H'$. It is clear that $\theta^{-1}K\theta = K'$. Hence we may assume that $H = H' \subset U(2)$ and K = K'.

If G is decomposable, then by Proposition 8 and Theorem 9, we have $S \cong S' \cong S^1 \times (S^3/H)$ (Proposition 8, cases III (i), III (ii)).

Suppose that G is indecomposable. Since we have assumed that H is not a cyclic group, G is of the case III (iii). Hence, in the case $K=B_n$ or C, $S\cong S'$ follows because u is determined uniquely by K. If $K=A_m$ ($m\ge 3$) and H is abelian, then, as in the proof of Theorem 9 (d), we may assume that $u=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Hence we obtain $S\cong S'$. Next we consider the case where $K=A_m=\{k=\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}\}$ ($m\ge 3$) and H is non-abelian. Let $d:H\to U(1)$ be a group homomorphism defined by $d(x)=\det x$. Choose $h\in H$ such that d(h) is a generator of $d(H)\cong \mathbb{Z}_n$. Then H is generated by k and k. Since $h\in N_{U(2)}(A_m)$ and H is non-abelian, k has the form k0 k2, where k3 where k4 is non-abelian as a finite order, we can express this element as k4. By the direct calculation, we obtain

$$g^{-1}hg = \begin{pmatrix} 0 & t^{-2}r \\ t^{2}q & 0 \end{pmatrix},$$

$$h^{\lambda}k^{\mu} = \begin{pmatrix} 0 & a^{-\mu}(qr)^{\nu}q \\ a^{\mu}(qr)^{\nu}r & 0 \end{pmatrix},$$

and consequently,

$$t^2 = \frac{r}{q} (qr)^{\nu} a^{\mu} = \frac{r}{q} (qr)^{-\nu} a^{\mu}$$
.

Hence we get $(qr)^{\nu} = \pm 1$ and

(3-3)
$$g^{-1}hg = hk^{\mu}, \quad \text{if} \quad t^2 = \frac{r}{q}a^{\mu},$$

(3-4)
$$g^{-1}hg = -hk^{\mu}, \quad \text{if} \quad t^2 = -\frac{r}{q}a^{\mu}.$$

If (3-3) holds, then we may assume that g is one of the following;

$$g_1 = c \begin{pmatrix} 0 & (qr^{-1})^{\frac{1}{2}} \\ (qr^{-1})^{-\frac{1}{2}} & 0 \end{pmatrix} \qquad g_1^{-1}hg_1 = h ,$$

$$g_2 = c \begin{pmatrix} 0 & (qr^{-1})^{\frac{1}{2}}a^{-\frac{1}{2}} \\ (qr^{-1})^{-\frac{1}{2}}a^{\frac{1}{2}} & 0 \end{pmatrix} \qquad g_2^{-1}hg_2 = hk .$$

If (3-4) holds, then $m \equiv 0 \pmod{2}$, and we may assume that g is one of the following;

$$\begin{split} g_3 &= c \binom{0}{(-qr^{-1})^{\frac{1}{2}}} \binom{-qr^{-1})^{\frac{1}{2}}}{0} \qquad g_3^{-1}hg_3 = -h \;, \\ g_4 &= c \binom{0}{(-qr^{-1})^{\frac{1}{2}}a^{\frac{1}{2}}} \binom{-qr^{-1})^{\frac{1}{2}}a^{-\frac{1}{2}}}{0} \qquad g_4^{-1}hg_4 = -hk \;. \end{split}$$

Let $G_i = \{h, k, g_i\}$ (i = 1, 2, 3, 4). Note that H is a subgroup of G_i consisting of all elements of which the orders are finite.

Step 1. It is easy to check that $[H, H] = \{k^2\}$, $G_i \triangleright [H, H]$ and $g_i^{-1}kg_i = k^{-1}$ for any i, where [H, H] denotes the commutator subgroup of H.

Step 2. If $m \equiv 1 \pmod 2$, then $-I \in K$. This implies that equalities $g_3^{-1}hg_3 = -h$ and $g_4^{-1}hg_4 = -hk$ never hold. Since m is odd, there exists $\lambda \in \mathbb{Z}$ such that $a^{2\lambda+1} = 1$. Then we obtain

$$g_{2}k^{\lambda} = c \begin{pmatrix} 0 & (qr^{-1})^{\frac{1}{2}}a^{-\frac{1}{2}} \\ (qr^{-1})^{-\frac{1}{2}}a^{\frac{1}{2}} & 0 \end{pmatrix} \begin{pmatrix} a^{\lambda} & 0 \\ 0 & a^{-\lambda} \end{pmatrix} = c\kappa \begin{pmatrix} 0 & (qr^{-1})^{\frac{1}{2}} \\ (qr^{-1})^{-\frac{1}{2}} & 0 \end{pmatrix}$$
$$= \kappa g_{1}, \quad (\kappa = \pm 1).$$

This shows that if $m \equiv 1 \pmod 2$, then G and G' are $\{h, k, \kappa g_1\}$ $(\kappa = \pm 1)$. Hence we have $S \cong S'$.

Step. 3. If $m \equiv 0 \pmod 2$ and $m \not\equiv 0 \pmod 4$, then there exists $\lambda \in \mathbb{Z}$ such that $a^{2\lambda+1} = -1$. Hence we get

$$\begin{split} g_2 k^\lambda &= c \binom{0}{(qr^{-1})^{-\frac{1}{2}} a^{\frac{1}{2}}} \qquad 0 \qquad \binom{a^\lambda}{0} a^{-\lambda} = c \binom{0}{(-qr^{-1})^{-\frac{1}{2}}} \qquad 0 \\ &= \kappa g_3 \;, \\ g_4 k^\lambda &= c \binom{0}{(-qr^{-1})^{-\frac{1}{2}} a^{\frac{1}{2}}} \qquad 0 \qquad \binom{a^\lambda}{0} a^{-\lambda} = c \kappa \binom{0}{(qr^{-1})^{\frac{1}{2}}} \qquad 0 \\ &= c \kappa \left(\frac{1}{(qr^{-1})^{-\frac{1}{2}}} a^{\frac{1}{2}} a^{\frac{1}{2}} a^{-\frac{1}{2}} \right) \binom{a^\lambda}{0} \qquad 0 \\ &= c \kappa \binom{0}{(qr^{-1})^{-\frac{1}{2}}} a^{\frac{1}{2}} \qquad 0 \end{split}$$

 $= \kappa g_1$.

This shows that G and G' are G_1 or G_3 .

Now we shall show that G_1 and G_3 are not isomorphic as abstract groups. This implies that $S \cong S'$. In $G_1/[H, H]$, we have $\bar{g}_1^{-1}\bar{k}\bar{g}_1 = \bar{k}^{-1} = \bar{k}$, $\bar{g}_1^{-1}\bar{h}\bar{g}_1 = \bar{h}$ and $\bar{h}\bar{k} = \bar{k}\bar{h}$. This shows that $G_1/[H, H]$ is abelian. On the other hand, by $m \not\equiv 0 \pmod{4}$, we get $-I \notin [H, H]$. Hence $\bar{g}_3^{-1}\bar{h}\bar{g}_3 = -\bar{h} \neq \bar{h}$ in $G_3/[H, H]$. This implies that $G_3/[H, H]$ is non-abelian. Hence $G_1 \cong G_3$.

Step 4. If $m \equiv 0 \pmod{4}$, then there exists $\lambda \in \mathbb{Z}$ such that $a^{2\lambda} = -1$. Hence we get

$$\begin{split} g_3 k^\lambda &= c \binom{0}{(-qr^{-1})^{\frac{1}{2}}} \binom{a^\lambda}{0} \binom{a^\lambda}{0} = c \kappa \binom{0}{(qr^{-1})^{\frac{1}{2}}} \binom{qr^{-1}}{2} \\ &= \kappa g_1 \,, \\ g_4 k^\lambda &= c \binom{0}{(-qr^{-1})^{-\frac{1}{2}} a^{\frac{1}{2}}} \binom{a^\lambda}{0} \binom{a^\lambda}{0} a^{-\lambda} \\ &= c \kappa \binom{0}{(qr^{-1})^{-\frac{1}{2}} a^{\frac{1}{2}}} \binom{qr^{-1}}{2} a^{\frac{1}{2}} = \kappa g_2 \,. \end{split}$$

This shows that G and G' are G_1 or G_2 . Then $S \cong S'$ follows from the fact that G_1 and G_2 are not isomorphic. In fact, $\bar{g}_2^{-1}\bar{h}\bar{g}_2 = \bar{h}\bar{k} \neq \bar{h}$ holds, since $k \in [H, H]$. Hence $G_2/[H, H]$ is non-abelian, while $G_1/[H, H]$ is abelian. This completes the proof of the theorem.

Next we consider the case where H is a (finite) cyclic group. Let $H \cong \mathbb{Z}_m$ and $h = \begin{pmatrix} a & 0 \\ 0 & a^n \end{pmatrix}$ ((m, n) = 1) the generator of H, where a is a primitive m-th root of 1. S^3/H defines a 3-dimensional lens space. Now we shall prove the following lemma.

LEMMA 11. Let L_1 and L_2 be lens spaces. If $\mathbf{R} \times L_1$ and $\mathbf{R} \times L_2$ are diffeomorphic, then L_1 and L_2 are diffeomorphic.

PROOF. Let $\tilde{\varphi}: \mathbf{R} \times L_1 \to \mathbf{R} \times L_2$ be a diffeomorphism. Put $\tilde{\varphi}(\{0\} \times L_1) = L_1'$ and choose t large enough so that $L_1' \cap \{t\} \times L_2 = \emptyset$. We identify $\{t\} \times L_2$ with L_2 . Let V be a compact submanifold in $\mathbf{R} \times L_2$ with boundaries; $\partial V = L_1' \cup L_2$, $L_1' \cap L_2 = \emptyset$. Note that L_2 is a deformation retract of V. In fact, V is a deformation retract of $\{r \le t\} \times L_2$, since $\tilde{\varphi}(\{r \le 0\} \times L_1) \cup V = \{r \le t\} \times L_2$. On the other hand, by the fact that L_2 is a deformation retract of $\{r \le t\} \times L_2$, the inclusion mapping $i_1: L_2 \to V$ is a homotopy equivalence. Hence L_2 is a deformation retract of V. Similarly, L_1' is a deformation retract of V. Thus (V, L_1', L_2) is an h-cobordism. Then $L_1' \cong L_2$ follows from Corollary 12.12 of Milnor [4, p. 410].

Now we shall prove the following

THEOREM 12. Let G and G' be isomorphic as abstract groups and $H \cong H'$ be a (finite) cyclic group. Then,

- (1) if G is indecomposable, $S \cong S'$,
- (2) if G is decomposable, $S \cong S'$ if and only if $S^3/H \cong S^3/H'$.

PROOF. If G is decomposable, the condition $S^3/H \cong S^3/H'$ is clearly sufficient for $S \cong S'$. Conversely, assume that there exists a diffeomorphism $\varphi: S \rightarrow S'$. Then we have a following commutative diagram;

$$\begin{array}{ccc}
R \times (S^3/H) & \xrightarrow{\tilde{\varphi}} R \times (S^3/H') \\
\downarrow \tilde{p} & & \downarrow \tilde{p} \\
S & \xrightarrow{\varphi} S'
\end{array}$$

where \tilde{p} is a covering map induced from the natural covering $p: \mathbb{R} \to S^1$. Hence, by Lemma 11, we have $S^3/H \cong S^3/H'$. This proves (2).

If G is indecomposable, then, by Proposition 8 and the proof of Theorem 9, we may assume that

$$G = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^n \end{pmatrix}, c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\} \qquad n^2 \equiv 1 \pmod{m}, (m, n) = 1,$$

$$G' = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{n'} \end{pmatrix}, c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\} \qquad n'^2 \equiv 1 \pmod{m}, (m, n') = 1.$$

Then (1) follows easily from the following

LEMMA 13. The groups G and G' are isomorphic if and only if $n \equiv n' \pmod{m}$ (or equivalently $nn' \equiv 1 \pmod{m}$).

PROOF. Equivalence of $n \equiv n'$ and $nn' \equiv 1$. If $n \equiv n'$, then $nn' \equiv n^2 \equiv 1$. Conversely, if $nn' \equiv 1$, then $1 \equiv nn' = n^2 + n(n'-n) \equiv 1 + n(n'-n)$. Hence, by (m, n) = 1, we get $n' \equiv n$.

Now assume that G and G' are isomorphic. Let $\phi: G \rightarrow G'$ be an isomorphism. We have the following relations: $gh = h^n g$, $g'h' = h'^{n'}g'$. It is clear that ϕ satisfies the following conditions;

$$\begin{cases} \phi(h) = h'^{\lambda}, & (m, \lambda) = 1, \\ \phi(g) = h'^{\nu}g' & \text{or } h'^{\nu}g'^{-1}. \end{cases}$$

Consider the case

$$\begin{cases} \phi(h) = h'^{\lambda}, \\ \phi(g) = h'^{\nu}g'. \end{cases}$$

Then we have

$$\phi(gh) = \phi(g) \cdot \phi(h) = h'^{\nu}g'h' = h'^{\nu+\lambda n'}g',$$

238 М. Като

$$\phi(h^ng) = \phi(h)^n \cdot \phi(g) = h'^{\lambda n}h'^{\nu}g' = h'^{\nu + \lambda n}g'.$$

By $\phi(gh) = \phi(h^n g)$, we get $\lambda n \equiv \lambda n'$. Hence, by $(m, \lambda) = 1$, we obtain $n \equiv n'$. In the case

$$\begin{cases}
\phi(h) = h'^{\lambda}, \\
\phi(g) = h'^{\nu}g'^{-1}.
\end{cases}$$

we get $nn' \equiv 1$ by the similar argument as above.

Q.E.D.

REMARK (d). The lens spaces S^3/H and S^3/H' are diffeomorphic if and only if $n \equiv \pm n'$ or $nn' \equiv \pm 1 \pmod{m}$ (Reidemeister [5], Milnor [4]).

References

- [1] F. Blichfeldt, Finite Collineation Groups, Univ. Chicago Press, Chicago, Illinois, 1917.
- [2] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. math., 4 (1968), 336-358.
- [3] K. Kodaira, On the structure of compact complex analytic surfaces, II, III, Amer. J. Math., 88 (1966), 682-721, 90 (1968), 55-83.
- [4] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426.
- [5] K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 102-109.
- [6] W. Threlfall und H. Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluβ), Math. Ann., 107 (1932), 543-586.

Masahide Kato

Department of Mathematics Faculty of Science Rikkyo University Nishiikebukuro, Toshima-ku Tokyo, Japan