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§1. Introduction.

By a Hopf surface S, we shall mean a 2-dimensional compact complex
manifold of which the universal covering is W=C?*—{0}, where C? is the space
of two complex variables (z,, z,) and 0 is the origin (0, 0). S can be represented
as a quotient space W/G with a group G generated by some biholomorphic
transformations of W whose action is properly discontinuous and free.

Let B be a closed spherical set in C? determined by the inequality:
|z,]*+12,]*<1. A complex analytic automorphism g of C? is called a con-
traction if g”(B) converges to 0 for n—co.

By Kodaira [4], G has the following properties ;

(1) G contains a contraction g, and the infinite cyclic subgroup generated

by g has a finite index in G,
(2) if G is non-abelian, then by a proper choice of global coordinates of
C? G appears as a subgroup of GL(2, C).

The purpose of this paper is to classify all Hopf surfaces by diffeomor-

phisms (or equivalently, homeomorphisms). (See, Theorems 9, 10 and 12.)

§ 2. Classification of G in the case GCGL(2, C).

First we define subgroups H and K of G as follows;
H={xeG: |detx|=1},
K={xeG:detx=1}CSL(2,C).

Clearly, G> HD> K and GI> K. In what follows H and K are assumed to satisfy
these conditions. Let G, be a subgroup of a group G;. We denote by [G;: G,]
the index of G, in G;. If G, is generated by some elements hy, ---, 2, of Gy,
we sometimes write {h,, -+, h,} instead of G,.

LEMMA 1. An element x of G is a contraction if and only if |det x| <1.

ProOF. We denote by «, 8 the eigenvalues of x=G. If x is a contrac-
tion, then |a| <1, || <1. Hence |det x|<1. Conversely, let x be an element
of G such that |det x| <1. If |a|=]|fB|, then x is a contraction by the in-



Topology of Hopf surfaces 223

equality |a|*=|det x| <1. If |a|#|B!, then x is a contraction except the
cases |a|=1>]|8] and |B|=1>|a|. Hence we may assume that |a|=1>|8].
Then x is of the infinite order and not a contraction. Let g be a contraction
in G. Then we have {x} " {g}={1}. This implies that [G: {g}]l=o0. This
contradicts the property (1) of G. Q.E.D.

LEMMA 2. There exists an infinite cyclic subgroup Z of G such that G is
the semi-direct product Z-H of Z and H.

PrOOF. Define a group homomorphism f:G—R by f(x)=—Ilog|det x|
(xe G). By the property (1) of G, we can choose a contraction g; in G such
that [f(G): {f(g)}]=d < +oo. Hence f(g,)/de f(G) is a minimum positive
element of f(G). Letting g be an element of G such that f(g)=f(g,)/d, we
define Z={g}. Then it is clear that G=Z-H. Q.E.D.

By the properties (1), (2) of G and H and K are finite subgroups
of GL(2,C). By Lemma 1, we can choose a generator g of Z so that g is a
contraction. We call Z the infinite part of G and H the finite part of G. If
G can be expressed as a direct product of the infinite part and the finite part,
then we say that G is decomposable. If not, we say that G is indecomposable.

Taking a suitable conjugate subgroup to G in GL(2, C), we may assume
that K is one of the following finite subgroups of SU(2)=U(2)N\SL(2, C) (F.

Blichfeldt [T]).
(1 O>
0 1/’

1. K={I}, I
a 0
3. K:Am:KO 1)], the cyclic group of order m,
o

I

2. K={+1I};

a=a primitive m-th root of 1, m=3;

[ 0 1 On 0
4. K:Bn:1< ) ( >}, the dihedral group of order 4n,
1 0 0 on

0 1 /8 ](
5. K=C= {( ) , W( > , the tetrahedral group, order=24,
¢ =g

0 ¢
_ T )T
{=exp—v—1;
6. K=D= {< , —~~2~< >}, the octahedral group, order=48,
0o ¢ ¢ -t



224 M. KaTO

{=exp—-+—1;
3 —_— . — 2_ .8
7. K=E= ¢ 0y (0 1 o1 e e the icosahedral
) 0 et ! 1 0 " 4/5 ?—gd?  e—gt ' group, order=120,
e=exp 2 V1.

Let G, be a subgroup of G,. We denote by N4, (G,) and Cg,(G,) the nor-
malizer of G, in G, and the centralizer of G, in G, respectively. The follow-
ing lemma is useful. The method of proof is due to E. Ban-nai.

LEMMA 3. If K is non-abelian, then Ngp,c)(K) ts a finite group.

PROOF. Put N=Ngp,,e(K) and C=Cgru,c)(K). An element ne N acts
on K as an inner automorphism of K in a natural way and C acts trivially
on K. Since C is a normal subgroup of N, we have a following group homo-
morphism ;

o: N/C Aut (K)
] U]

7=the equivalent the inner automorphism
class of n corresponding to 7,

where Aut (K) denotes the group of all automorphisms of K. It is clear that
Ker o ={1}. Hence ¢ is an injection. Since Aut (K) is a finite group, N/C is
also a finite group. We regard KGGL(2, C) is an irreducible representation
of K into GL(2,C). Then, by Shur’s lemma,

ol pener -1 )

Hence C is a finite group. Therefore N is a finite group. Q.E.D.
LEMMA 4. The following equalities hold ;

S O\ 0 ¢t

Nsm,m(Am):{( , ( ): s, teC*\ (m=3),
0 st/ \=t 0

Nsi1e,0)(Br) =By, (n=2),

NSL(Z,C)(C>:D y

Nsuz,m(D):D,

NSL(z,C)(E>:E.

ProoF. We denote by |G,| the order of the group G,. Considering the
order of groups, we have Ngpe,(D)=D, because |D|=48 is a divisor of
[ Nsreo,e(D)| and it is clear that D is not contained in B,,. Similarly we have
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Nsro,o(E)=E. Since {C, u} =D, where u= <g C'(D € Ns1e,0(C), it follows
that DC Ng1e,0)(C). Hence |Ngre,e,(C)| is a multiple of 48. Thus we have
NSL(2,C)(C) =D.

Now we consider the case N=Ng,c(B,) (n=2). Put x:(? g)eN

o _ /0 1 _ /Pn 0 . .
(ao—Br=1), a—(i O) and r—<0 p?,l)' Since the eigenvalues of x are
invariant under inner automorphisms, one of the following two equalities holds;

xTx =17 xtxt=c"!

(a) { (b)

xox'=gr? '=g1?

L Xox =07

where 4 is a suitable integer. By the direct calculation of matrices, we have
(a) a=0dp;% ad=1, pf=yr=0,
(b) B=rp:', rB=-1, a=d=0,

that is
n 0\~*
(a) x:i(pz > ,
0 pn
n 0\*
(b) x=io<p2 >
: 0 pm

Then, in both cases, we have x<B,,. Conversely x B,, leads to x& N.
Hence we obtain N=B,,.

In the similar manner, we can prove the case N=Ngre,c)(An) (m=3).

Q.E.D.
By and the direct calculation, we have the following

LEMMA 5.

s 0 0 it
NGL(Z,C)(Am>:C*I'{<O >, < 0): S, Z‘EC*} (m=3),

st t

NGL(Z,C)(Bn) =C*I-B,, (n=2),

/C 0
Nm,CxC>:C*1-D=C*I-{ c >} :
0 C_
NGL(Z,C)(D) =C*I-D ,
NGL(2,0)<E) =C*I-E.

REMARK (a). We have fixed the generators of K all of which are elements
of U(2). There exists an inner automorphism of GL(2, C) which sends H into
U(2) leaving K fixed. In fact, this is clear for K={I}, {1}, B,,C, D and E

by In the case K=A, (m=3), H is generated by (8 0

a—l ’
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1S 0 _ . 0 d;t7t . _ _
0 cls[1> (=12, c 0 agd (djt,. ’ Jo) (=12, -, k), where |¢;|=|d;|=1.
iS;

Since the order of (0 gt is finite, we have |¢;s;|=]|¢;s7'|=1. For any ¢, J,

d,t AN rdid
we have |[#;|=|t,], because (?uz 0) (?ijtj I ’O)=< 0 g didjtit;?) has a

-1 1
finite order. Now put 02(8 r O>’ where r=1t;|2. Then it is easy to check

that -*HOC U(2) and 67'K6 =K. We assume for the remainder of the paper
that H is a subgroup of U(2).

LEMMA 6. If G is indecomposable and K=+ {I}, {%1I}, then K+ D, E.
Furthermore (in the cases K=A, (im=3), K=B, (n=2) and K=C), we can
choose a generator g of the infinite part of G expressed in the form g=cu
where ce C* and ue GL(2, C) having the following form;

0o t

> for some teC*,
t 0

Case 1 K=A,: uz(

Pon 0
Case 2 K=B,: u:< >,
0 pu

g 0
Case 3 K=C :u:< >
0 ¢+t
ProoF. First we show that for non-abelian K any generator g of the
infinite part of G can not belong to C*I-K. In fact, g C*[-K implies the
existence of c=C* and g,= K such that g=cg,, so we have the direct product
splitting G={cl} X H which leads to the contradiction to the indecomposability
of G. On the other hand G C Ngye,c,(K). Now applying Lemma 5, we conclude
that K is one of the groups A,, B, and C. Inthecases K=5, and K=C, g
can be written in the form g=cug, with ceC* g,= K. Hence we have
g?eC*I-K and G={cu}-H. If K and H are abelian, then H is a group gener-

*

ated by the elements of A and some matrices of the form (0 2), since K=+
0 ! s 0
{I}, {£I}. On the other hand, we have g:c(t 0) or c(o s’1> by
5. If g is of the latter form, G is abelian. This contradicts the assumption
-1
that G is indecomposable. Hence we have g:c(? t()) as desired. If K is
abelian and H is non-abelian, then H contains an element of the form (8 g)
(Jgl=Ir]=1). Now we express G as a semi-direct product G={g}-H where
g:c((s) 3*9). Then we define an element g’ of G by

0 q s 04/0 q /0t

e M L N N

7 0 0 st\r 0 ¢

-1

y
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where t:(rq“’)%s“l. It is easy to check that G={g}-H=1{g’}-H and g’ is an
element of the required form. We note that, in each of the cases, we have
g*e C*I-K. Q.E.D.

LEMMA 7. If G is indecomposable and K=+ {I}, {£I}, then K= D, E and
G can be expressed as follows;

G=G,Vg-G, (coset decomposition),

where Gy={c?I} X H, g=cu. The element u of GL(2, C) is defined as follows;
Case 1, K=A, (m=3), H=abelian,

0o ¢
u:( ) (telC*);
t 0

Case 1, K=A, (m=3), H=non-abelian,

0 1t
u=< ) (Itl=1);
t 0

Case 2 K=B, (n=2),

Case 3 K=C,
¢ 0
u:< >e SU(2).
0 ¢t

We note that the case 1, really happens if and only if the element <(1) é) is

contained in Ngpe,c,(H) and that in the cases 1,, 2 and 3, u is a unitary matrix.

PrROOF. Let g=cu be the generator of the infinite part of G which is
defined in and we express G as a semi-direct product G={g}-H.
Since gf=cu*=C*I-K, we have a subgroup G,= {c*I} X H of G of index 2.
G can be expressed as G=G,Jg-G,., Now examining the condition that g
must be contained in Ngpe,¢,(H), we shall derive some restrictions to the form
of u. If K=A, and H is abelian, then each element of H is of the form
¢ 9. Hence g=c(’ t(;) is contained in Nezc,o(H) if and only if ((1) 5)
€ Noro,eo(H). If K=A, and H is non-abelian, H contains an element of the

-2

form (2 ?)) (lgl=1|r|=1). Then by g‘l(g g>g: (t)zqt 6)EH, [t|]=1 fol-
lows. If K=B,, then H is generated by the elements of B,, scalar matrices

and some elements of the form 2(02" ‘02_?> (]21=1). Thus it is clear that g=

cu:c(ozn pz—q)ENGL‘z’“(H)' If K=C, then H is generated by the elements
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of C, scalar matrices and some elements of the form 2(% C"(b (]2]=1). Thus

we have g=o(§ ,-2) & Noza,o(H) Q.E.D.

PROPOSITION 8. G is conjugate in GL(2, C) to one of the following groups,
Notation: «a, B, ¢, te C*: constants satisfying

0<lal<1, 0<|BI<1 and 0<|c|<1,

m=the order of H,

a =a primitive m-th root of 1,

(m, n)=the greatest common divisor of integers m, n.
Case 1 K={I},

a 0 a 0
() {( >}><H, H={< )} (m, n)=1, (m, n+1)=1;
0 B 0 a"

O L

Case 11 K={=%I},

a 0 a 0\] (m,n)=1, m=n+1=0 (mod 2),
o G =y GO
O ’ 2 — 4,

B 0 a 2
1 0
(ii) {(a >}><H, Hz{(a >}, m=0 (mod2);
0 @ 0 a

(iii) {c* I} X H\Y(cu)-({c* I} x H) (coset decomposition),

a 0 0 !
H:K )}, uz( ), m=0 (mod2);
0 —a t 0

Case 11l K=+{I}, {£I},
«@ 0
(D {( >}><H, H=abelian ;
0 B8

(ii) {cI}xXH;
(i) {cI}xXHYU(cu)-({c I} x H) (coset decomposition);
where, in the case 111 (iii), HC U(2) is a finite group acting on S® freely, u 1is
determined according to Lemma 7 and K is neither D nor E.
PrROOF. Define a group homomorphism d by

d: H— UQl)={zeC*: |z]=1}.
U U
x—> det x.



Topology of Hopf surfaces 229

Then Kerd=K and d(H)= Z,. for some positive integer m’.

If G is indecomposable and K =+ {I}, {+I}, then there occurs the case III
(iii) by

If G is decomposable and K # {I}, {+I}, we have two cases.

(a) H=non-abelian: In this case, the generator of the infinite part of G
is a scalar matrix ¢/ with ceC*. So the case is III (ii).

(b) H=abelian, K=A, (m=3): The case is III (i).

Now there remain two cases I and II.

Case I K={I}. Since d is an injection, we have m’=m and H=Z,.
Since H acts on S? freely, we may assume that H is generated by an element

h=<8 aQ) with some integer n such that (m, n)=1. In addition, the condi-

tion K={I} implies (m, n+1)=1. We express G as {g}-H (semi-direct pro-
duct). Since g *hge H and d(g 'hg)=d(h), it follows that g-*hg=~h. Thus if

n%1 (modm), then g has the form (] 2) and G is the case I (i), If n=1

(modm), then g is an arbitrary contraction and consequently the case I (ii)
may occur.

Case I K={=+I}. In this case, we have 2m’=m, Take an element he H
so that d(h) is a generator of d(H). Then A™ is either I or —I, If ™ =1
and m’ is odd, the order of —h <= H is 2m’=m. Hence we have H=Z,. Let
h™ =1 and m’ is even, i.e, m’=2m”. Letting ¢, ¢, be the eigenvalues of &,
we have e ==+1, e"==1. Since ~™ 1 and 2™ has no fixed points, we have
e =¢p"=—1. Consequently ™ = —I. But this contradicts the assumption
that d(h) is a generator of d(H). Hence m’ is odd. If »™ = —1I, then h has
the order 2m’=m. This implies H=Z,. We express G as {g}'H (semi-direct

product). Let h:(g aQ) be a generator of H. Since a™! is a primitive

%-th root of 1, we have n4+1=0 (mod 2). Lete= (_1421_, —thL—l), —ZL =c¢k and

”2le el where k, le Z. Then (a"")*=a***=(a™)'=1. Thus k is a multiple

of % and we have e=1. Since g-hge H and d(g‘hg)=d(h), it follows that

g hg="h or —h. If g*hg=nh, then g is of the form (g g) So the cases II

(i) and II (ii) may occur by the similar argument to case I. If g 'hg= —h,
then we have a"= —a, since h has the same eigenvalues as —h. And more-

1
over g has the form ((’)o‘ 6) Hence, letting c=(y0)?, t:(ﬁr‘l)é and u=
-1
(? to), this case is reduced to the case II (iii). Q.E.D.

REMARK (b). All the types of finite subgroups H of U(2) which acts on
S*® freely are determined by Threlfall-Seifert [6].
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REMARK (c). Any finite subgroups of SU(2) acts on S°® freely, since any
elements of them except the identity matrix never have 1 as their eigenvalues.

§3. Topology of Hopf surfaces.

Let S=W/G be a Hopf surface. If G is abelian, it may happen that G is
not contained in GL(2,C) (cf. the property (2) of G). If G is abelian, G is
expressed as G = Z@P Torsion (G). Let g be a contraction corresponding to a
generator of Z. Then we may assume that g has the form

g: (217 22) i (Z;! Z,Z) :<a21+22;y ‘822> ’

where 7 is a certain positive integer and «, 8 and 4 are constants satisfying
(a—p"2=0, 0<|a|=|B|<1. Let h be an arbitrary element of G which has
a finite order. Now we determine the form of & by a similar method to the
proof of Theorem 47, Kodaira [3].

By the Hartogs’ theorem, there exist holomorphic functions ¢, ¢ on C?
such that

h:z=(zy, 2,) —> h(2) = (¢(2), ¢(2)), $(0)=¢(0)=0
By g-h=h-g, we have
(3-1) dlaz,+2z8, Bz,) = aP(zy, 2,)+ (2, 2,)",
(3-2) Plaz, 4223, Bz,)= Bz, 2,) .
If 2=0, then we have by [3-1), [3-2),
P(az;, Bz;) = ag(z,, z;) ,
Plaz,, Bz,) = Bd(z;, 2,) .

Hence we have ¢(z;, z,) =az,, ¢(z,, z,)=bz, where a, b are certain constants,
and so heGL(2,C). Consequently we have GC GL(2,C). If 2#0, then a=p".

Applying —aa? to [(3-2), we get

a9l (g2)= 3L (2.

Hence we obtain

50 ()= lim (§) 35 (e2) = lim (%) 320
This shows that

¢ : _
'a‘g‘b‘(z): oz, Oy M@=,

0, if a+p.
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If a=f, then n=1. Applying 9 to (3-2), we have
0z,

2L 0+ 0 =p52- ),
and - 8 —(0)=0 follows. Thus, in both cases, we have —g%— (z)=0. Applying
*ag— to [3-2), we get
8- (er=-9L ().
a¢

Therefore e is reduced to constant. Denote this constant by a(h). Then
2
we have ¢(z)=a(h)z,. Now [3-1) is reduced to
P(az,+123, Bz,) = ad(z,, 2,)+Aa(h)" 27 .

Applying —agj, we obtain
22 (gn="2L().
0

Therefore i is a constant and we denote this constant by b(h). Then ¢(z)
1

is reduced to the form
p(z2)=b(M)z,+n(z), 7(0)=0
where 7(z,) is 2 holomorphic function of z,. By the equality , we have
an(z,) —1(Bz,) = A(b(h)—a(h)™)zE .
Letting p(zz):kg c,2k, we get
;=0 for all k#n,
a(h)*=b(h).
Since h has a finite order, ¢, vanishes and a(h)™ =1 for some integer m,.
Hence ~ has the form
h: (zy, z5) —> (a(h)*z,, a(h)z,), alhym=1

Clearly the mapping h—a(h) is a group isomorphism from Torsion(G) into
U(1). Therefore we conclude that Torsion (G) = Z,, for a certain positive integer
m such that (m, n)=1, since & has no fixed points.

The above argument shows that, if G & GL(2, C), then G= Z®@ Z,, and that
G is generated by the following two elements;

ga: (24, 2,) — (ﬁ"21+223, 4822) 0< I‘Bl <1,

h:(zy, z,)—> (a2, az;)  (m,n)=1
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where a is a primitive m-th root of 1 and 4 is a fixed constant. Let @: W—W/{h}
be the canonical projection. We define a holomorphic automorphism ¢ of
(W/{h})XC by
o: (W/H{h})XC —> (W/{h})xC
U W
(@(z2), ) — (@(g:2), 1)

where C denotes the plane of complex numbers. Since g;-h=h-g; ¢ is well-
defined. The infinite cyclic group {¢} acts on (W/{h})XC properly-discon-
tinuously and freely. Hence M =(W/{h})XC)/{¢} is a family of deformations
of Hopf surfaces parametrized by A. Let p be the natural projection H—C.
Each p7*(2) (A=C) is diffeomorphic to p~'(0). Note that p7'(0) is a quotient
space of W by a subgroup G of GL(2,C). Hence, in order to classify Hopf
surfaces by diffeomorphisms, it is sufficient to consider only the case where G
are subgroups of GL(2, C).

THEOREM 9. Each Hopf surface S=W/G is diffeomorphic to one of the
following types;

(1) S'X(S*/H),

(2) (S?*/H)-bundle over S* whose transition function u:S*/H—S?*/H is an
involution of S*/H.

PrOOF. (a) Cases I (i), II (i), 1II (i) (ii) (cf. [Proposition §).

Let S® be the sphere defined by S*={(z,, 2z,)€C?: |z,|*+]z,|*=1}. Define
a diffeomorphism ¢: RXS*—W by

¢: RXS? — W
W W
(7, (24, Z,)) —> (a"zy, ‘Brzz) ,

where R is the real line. Let & be an element of G belonging to HC U(2) and
g a contraction of G of the form (g g) Now we define automorphisms f(h),
f of RXS?® by
S(h): (r, 2) —> (7, hz),
fi(r,z)—>(r+1, 2).

Then we have the following two commutative diagrams of diffeomorphisms ;

R><S3—SD>W R><S"’—€0—>W
RO lr e
RXS* > W, RxS*—>W.

Hence we have a diffeomorphism S'X(S*/H)—W/G=S induced from ¢.
(b) Cases I (i), II (ii).
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Using the deformation argument, we can reduce these cases to case (a).
Hence we have S= S'X(S*/H).

(¢) Case III (iii) and H=non-abelian.

Let w=(w,, w,) be a point of W and define a differentiable mapping
¢ W—R, ¢,: W—S® by
log s

|*

/, —p—
9)1(1,{})——7’—— IOgIC

log s

__logs
Po(w)=(c Toglel w,, ¢ Toglel w,),

1
where s=(|w,|*+|w,|*)?%. Then it is easy to check that ¢ =(¢,, ¢,): W—-RXS?
is a diffeomorphism. Now we have the following two commutative diagram
of diffeomorphisms ;

¢ 6
W — RxS?® W — RXS?
[, b s s
W —> RXS®, W —> RXS?,

where f(h), f are diffeomorphisms defined in case (a). Thus we have W/G,
=~ S'X(S*/H) where G,={c®I} xH. Since H is non-abelian, u is a unitary
matrix by Lemma 7. Therefore u acts on S*® naturally and we obtain

eu(w)) =(,(w) + -, u(gs(w)) .

Hence we infer that S=W/G=(W/G,)/{cu} is an (S°/H)-bundle over S? of
which the transition function is u#. Since uw* < K< H, u is an involution of

S®/H.
(d) Cases II (iii), III (iii) and H=abelian.

-1
Put G,={cI} X H, u:ut:@ to>’ G,=1{G,, cu,} and W/G,=S,. Since,

in this case, Ngre,e(H{) contains ((1) (l)), W/G, defines a Hopf surface for
arbitrary t€ C*, Let ¢ be a holomorphic automorphism of S,XC* defined by
@1 SeXC* —> 5o X C*

U U
(x, ) —= (cuy(x), 1) .

Then ¢ is a fixed point free involution of S,XC*. Hence H=S,XC*/{¢p}
=\ (W/G,) is a family of deformations of Hopf surfaces parametrized by ¢?.
tec*

Since ul:((l) (1)>e U(2), W/G, is an (S?/H)-bundle over S' with transition

function u, by the similar argument to case (c). Moreover, for each teC*,
W/G,=W/G,. Q.E.D,
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Let S=W/G and S’=W/G’ be arbitrary two Hopf surfaces. We may as-
sume that both G and G’ are subgroups of GL(2, C). Note that H (H’) is the
set of elements of G (G’ resp.) of which the orders are finite.

THEOREM 10. If G and G’ are isomorphic as abstract groups, and if H(=H")
is not a (finite) cyclic group, then S is diffeomorphic to S’.

PrROOF. The group H is unique up to conjugate in GL(2, C), since H is not
cyclic (Brieskorn [2], Threlfall-Seifert [6]). Hence there exists § € GL(2, C)
such that 6-*Hf=H’. Itis clear that 6-'Kf =K’. Hence we may assume that
H=H cCcUQ2) and K=K

If G is decomposable, then by [Proposition § and [Theorem 9 we have S=
S’ = S'x(S*/H) (Proposition 8 cases III (i), III (ii).

Suppose that G is indecomposable. Since we have assumed that H is not
a cyclic group, G is of the case IIl (iii). Hence, in the case K=B, or C, S= 5’
follows because u is determined uniquely by K. If K=A, (m=3) and H is
abelian, then, as in the proof of (d), we may assume that u=

((1) (1)> Hence we obtain S=S’. Next we consider the case where K=A,

={r=§ a_‘})} (m=3) and H is non-abelian. Let d: H—U(1) be a group

homomorphism defined by d(x)=det x. Choose h < H such that d(h) is a gen-
erator of d(H)=Z,. Then H is generated by %k and h. Since h& Nyu(An)

and H is non-abelian, 2 has the form (S g), where |¢]=|r|=1. Now we

-1
shall determine the generator g:c<(t) t 0) of the infinite part of G. Since

g 'hg has a finite order, we can express this element as g~'hg = h*k*, where 2,
p are integers. Note that 4 is clearly odd: A=2v-+1. By the direct calcula-

tion, we obtain
0 e
g“hg=< )

t2q 0
0 a~*(gr)’q
e

a*(qr)*r 0

and consequently,
t2 — _L VY — _7:_ “Yak

J (gr)*a 7 (gr)*a
Hence we get (¢r)’==+1 and
(3-3) g thg=hk", if tzz—g—a”,

(3-4) g thg=—hkt, if £#=— %a” )
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If (3-3) holds, then we may assume that g is one of the following;

0 (¢r)?
g1:C< 1 > gr'hg,=h,
(gr1)2 0

1
2

0 (qr"‘)%a
g2:C< _11
(gr) Za? 0
If (3-4) holds, then m =0 (mod 2), and we may assume that g is one of the
following ;

) g:'hg,=hk.

1
0 (—gr )
g3:C< 1 ) gi'hgy=—h,
(—qr'*) 2 0
1 _1
0 (—gr')za 2
g4:C< 11 githg,=—hk,
(—gr ) %a?

Let G;={h, k, g;} (1=1,2,3,4). Note that H is a subgroup of G; consist-
ing of all elements of which the orders are finite.

Step 1. It is easy to check that [H, H]={k?*}, G;>[H, H] and g;'kg;
=Fk! for any i, where [H, H] denotes the commutator subgroup of H.

Step 2. If m=1 (mod2), then —I« K. This implies that equalities g5*hg,=
—h and githg,= —hk never hold. Since m is odd, there exists 1< Z such that
a****=1, Then we obtain

-1
2

0 (qr"l)%a >( a* O) < 0 (qr‘l)%>
1 =CEk 1
(gr™*) 2a? 0 /N0 a* (grz 0

:Egly (lf:i].).

g,k = c<

1
2a

This shows that if m=1 (mod 2), then G and G’ are {h, k, £g,} (k=41). Hence
we have S=S'.

Step,3. If m=0 (mod2) and m==0 (mod4), then there exists A€ Z such
that a****=—1. Hence we get

1
2

(qr‘l)%a >< a’ 0> < 0 (—qr'l)%>
1 = 1
(gr™Y) Zaz 0 /A0 a* (—grt)z 0
- Egs ’

0 (—qr"l)%a‘7 a* 0 0 (qr’l)%
L W Ny wo=edl )

_1
(—gr ™) Za

g,k = c(

1
2a
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=Kg.
This shows that G and G’ are G, or G,.

Now we shall show that G; and G, are not isomorphic as abstract groups.
This implies that S=S’. In G,/[H, H], we have kg, =k '=Fk, g7'hg,=h
and hk=FEh. This shows that G,/[H, H] is abelian. On the other hand, by
m=z=0 (mod 4), we get —I & [H, H]. Hence g;*hg,=—h=#h in Gy/[H, H]. This
implies that G,/[H, H] is non-abelian. Hence G;* G,.

Step 4. If m=0 (mod4), then there exists 1€ Z such that a*=-—1.
Hence we get

0 (—gry¥yat 0 0 (ar)?
A AN

(‘“617’"1)'% 0 /N0 a* qr"l)_% 0
:,Cgly
L _1
" ( (—qrY2a 2><aZ 0)
gr°=c
! (—qr‘l)_%a% 0 0 a*
11
_ 0 (gr™)%a 2
—CE<(qr‘1)_%a% 0 >——/ch.

This shows that G and G’ are G, or G,. Then S= S’ follows from the fact
that G, and G, are not isomorphic. In fact, 8513, =hk+#h holds, since ke [H, H.
Hence G,/[H, H] is non-abelian, while G,/[H, H] is abelian. This completes
the proof of the theorem.

Next we consider the case where H is a (finite) cyclic group. Let H=Z,

and h:<8 a?) ((m, n)=1) the generator of H, where a is a primitive m-th

root of 1. S?®/H defines a 3-dimensional lens space. Now we shall prove the
following lemma.

LEMMA 11. Let L, and L, belens spaces. If RX L, and RXL, are diffeo-
morphic, then L, and L, are diffeomorphic.

PROOF. Let ¢: RXL,—RXL, be a diffeomorphism. Put ¢({0} X L,)=L]
and choose ¢ large enough so that Li\{t} X L,=0. We identify {¢t} XL, with
L,. Let V be a compact submanifold in RX L, with boundaries; 0V=L{\UL,,

iNnL,=0. Note that L, is a deformation retract of V. In fact, V is a de-
formation retract of {r=1}xL,, since ¢({r=0} X L)V V={r=t}XL,. On the
other hand, by the fact that L, is a deformation retract of {r=<1{}XL,, the
inclusion mapping 1,: L,—V is a homotopy equivalence. Hence L, is a de-
formation retract of V. Similarly, L{ is a deformation retract of V. Thus
(V, L, Ly is an h-cobordism. Then L{=L, follows from Corollary 12.12 of
Milnor [4, p. 410]. Q.E.D.
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Now we shall prove the following

THEOREM 12. Let G and G’ be isomorphic as abstract groups and H (= H')
be a (finite) cyclic group. Then,

(1) if G is indecomposable, S=5’,

(2) if G is decomposable, S=S’ if and only if S3/H=S*/H".

Proor. If G is decomposable, the condition S*®/H=S?*/H’ is clearly suf-
ficient for S=S’. Conversely, assume that there exists a diffeomorphism
¢:S—S'. Then we have a following commutative diagram;

R X (S*/H) 2 RX(S*/H')

h |3
Sﬁ-—-@—e S’

where § is a covering map induced from the natural covering p: R—S*. Hence,
by Cemma 11, we have S®/H=S*/H’. This proves (2).

If G is indecomposable, then, by and the proof of
9, we may assume that

a 0y 0 1
G:K |, c< >} n*=1 (modm), (m, n)y=1,
0 a®/ 0

[ 0\ /0 1

G’:J‘( ’), cf )} n’*=1 (mod m), (m, n")=1.
w0 a” \1 0

Then (1) follows easily from the following

LEMMA 13. The groups G and G’ are isomorphic if and only if n=wn’
(mod m) (or equivalently nn’ =1 (mod m)).

PrROOF. Equivalence of n=n’' and nn’=1. If n=n’, then nn'=n*=1.
Conversely, if nn’=1, then l=nn'=n’+4+n(n’—n)=1+n(n’"—n). Hence, by
(m, n)=1, we get n’=n.

Now assume that G and G’ are isomorphic. Let ¢: G—G’ be an isomor-
phism. We have the following relations: gh=h"g, g’h’=h'"g’. It is clear
that ¢ satisfies the following conditions;

GhY=h"*,  (m, D=1,

¢(g>:h/vg/ or h/ug/—l.
Consider the case

[ o=h",

L ¢(g):h’“g’ .
Then we have
$(gh)=¢(g) d(h)=h""g'h' =h"**"g’,
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¢(hng> — ¢(h>n_ ¢(g) — hlznh/»g/ — h/v+2ng/ .

By ¢(gh)=¢(h"g), we get An=2An’. Hence, by (m, 4)=1, we obtain n=n’. In
the case

[ p(h)y=h"*,
#(g)=h"g'"*,
we get nn’=1 by the similar argument as above. Q.E.D.

REMARK (d). The lens spaces S®/H and S®/H’ are diffeomorphic if and
only if n=4n’ or nn’=+1 (mod m) (Reidemeister [5], Milnor [4]).

References

[1] F. Blichfeldt, Finite Collineation Groups, Univ. Chicago Press, Chicago, Illinois,
1917.

[2] E. Brieskorn, Rationale Singularititen komplexer Fliachen, Invent. math., 4
(1968), 336-358.

[3] K. Kodaira, On the structure of compact complex analytic surfaces, 1I, III,
Amer. J. Math., 88 (1966), 682-721, 90 (1968), 55-83.

[4] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426.

[5] K. Reidemeister, Homotopieringe und Linsenrdume, Abh. Math. Sem. Univ.
Hamburg, 11 (1935), 102-109.

[6] W. Threlfall und H. Seifert, Topologische Untersuchung der Diskontinuitits-
bereiche endlicher Bewegungsgruppen des dreidimensionalen sphirischen Raumes
(Schlup), Math. Ann., 107 (1932), 543-586.

Masahide KATO

Department of Mathematics
Faculty of Science

Rikkyo University
Nishiikebukuro, Toshima-ku
Tokyo, Japan



	\S 1. Introduction.
	\S 2. Classification of ...
	\S 3. Topology of Hopf ...
	THEOREM 9. ...
	THEOREM 10. ...
	THEOREM 12. ...

	References

