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Introduction.

Let K be a quadratic extension of a field £ whose characteristic is not
2; K=k(4/a). Let (V, H) be a non-degenerate Hermitian vector space de-
fined over K/k. There exists a functor sending each (V, H) to an alternating
vector space (V/, A7) given by V/= RV, A'(x, y)=(H(x, y)—H(y, x))/2+/ «.
When K/k is a totally imaginary quadratic extension of a totally real number
field, the above functor gives rise to a “holomorphic imbedding” sending a
symmetric bounded domain of type I, denoted by DY, into a Siegel space, or
a symmetric bounded domain of type IIl, denoted by D', Furthermore, when
we are given a lattice L in V, the above functor induces a homomorphism
sending the arithmetic subgroup I'! of SU(V, H) stabilizing L into the sub-
group '™ of Sp(V’, A’) stabilizing Rg,,L. Thus we obtain a mapping p
sending “cusps” of D! with respect to I'! into “cusps” of D' with respect to
I''T. Each “cusp” of D' with respect to I'T is, by definition, a I'T-orbit of
rational boundary components of the compactification D'; a rational boundary
component of D! is, on the other hand, associated to a totally isotropic sub-
space of V. The totality of the rational boundary components associated to
totally isotropic subspaces of dimension s constitutes an SU(V, H)-orbit which
is decomposed into a finite number of cusps, the totality of the latter being
denoted by CYL). The mapping p sends CYL) into CI( Rk, L). When L is
an “J-modular lattice”, with J assumed to be an ideal in %, the lattice Ry, L
is maximal in V' and there exists a bijection @™ sending CII'(Rg,,L) onto
the ideal class group C(k), (s>0). On the other hand, the association of
each element of CYL) corresponding to a totally isotropic subspace U of V
to the ideal class of the lattice L "\ U gives a mapping &': C}(L)—C(KX) which
is, under a certain condition, bijective (Theorem 1.8 and its Corollaries, Ch.
II). The main result of this note asserts the existence of a surjection v, : C(K)
—C(k) closely connected to the norm Nk, such that the following diagram
is commutative (Theorem 3.3, Ch. II):
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Chapter 1. Boundary components of certain symmetric
bounded domains.

In this chapter we shall summarize the facts, which will be utilized as
foundation for chapter II, concerning the symmetric bounded domains asso-
ciated to Hermitian forms and alternating forms. A large part of these facts
and their proofs are found, although not always explicitly, in [9] and [10].

§1. Basic notions.

Let k be a field with the characteristic not 2 and let K be a commutative
ring with unity containing %# as a subring. We assume the existence of a
non-zero element w of K such that:

1) wek,

2) K=k-14k-w, (direct sum of k-vector spaces).

An element w’ of K satisfies the requirements 1) and 2) above if and
only if w’=aw, for an element a € k*.

The ring K then admits a uniquely determined non-trivial involution o
which stabilizes each element of %; namely, for an element a=a-+bw of K
we have a®=a—bw.

Given an element a of K we set N(a)= Ng(a)=a’a, Tr(a)=Trg(a)
=a’+ta.

Let (V, H) be the pair of a finite dimensional free K-module V and a
non-degenerate o-sesquilinear form H on V which shall be called a Hermitian
form on V. We have by definition

H(au, fv)=a’H(u, v)8, (a, B K, u,ve V),
H(u, v) = H(v, u),
radgV={ve V; Hv,u)=0 for all ue V}={0}.

The K-module V is, naturally, a k-vector space of finite dimension admit-
ting a non-degenerate alternating form A=A, defined by:

Ayp(u, v)=(H(u, v)—H@, u))/2w .
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We have, for aek*, A,,=a'A,. The K-module V is, when regarded as
a k-vector space, denoted by Rg,,V, or simply by RV, and the alternating
form A, is denoted by Imy,H, or Im H. Furthermore, we set:

RV, H)=R(V, H)=(RV,Im H).

We denote the group of K-module automorphisms of V by GL(V) and
set

UV,H)={geGL(V); H(gu, gv)=H(u,v), for all u,veV},
SU(V, H)y=U(V, HynSL(V),

where, of course, SL(V)={geGL(V): det g=1]}.
The above functor Rk, then naturally gives rise to a homomorphism

p: UV,H)— Sp(RV,Im H),
where Sp(RV, A)={gs GL(RV); A(gu, gv)= A(u, v), for all u,ve RV}.

§2. The symmetric bounded domain DYV, H) and
its boundary components.

2.1. Let K=C=complex number field, and let # =R =real number field.
Let V be a vector space over C with the base {v,, ---, v,}, supplied with a
non-degenerate Hermitian form H given by H(v;, v;)=¢,0;;; ;=1 for 1=1=4,
e;=—1 for t+1=<j=<n. We set #’=n—t and assume that t=#. We put

DYV, H)={U; U is a t’-dimensional subspace of V such that H|y; <0},

which is, when # >0, an open submanifold of a complex Grassmannian mani-
fold, whereas, when =0, D'=DYV, H) is a point. D! has the “origin”
d=Uy={vs41, =+, Vnte, (Wwhen '=0, U,={0}). The group SU(V, H), which is
also denoted by G', naturally operates transitively on D'; the isotropy sub-
group stabilizing o', denoted by K, is clearly a maximal compact subgroup of
the Lie group G'. We have, therefore, isomorphism of manifolds: D'= G'/K?,
where the latter homogeneous space is well known to be a symmetric bounded
domain. A realization of D! as a bounded domain is given in the following
manner.

We shall denote the orthogonal projection of V onto its subspace U, by
po. Then by the above definition of DI, p, is injective on each element U of
D' and hence p,: U—U, is an isomorphism of vector spaces. This implies
that there exists uniquely a base {u,, -+, u,} of U such that p,(u;)=v.4j,
(1=j=Vt). Hence each element U of D' determines uniquely at ¢x# complex

t

matrix Z(U)=(z;;) with uj:.El 2 Vit vy, 1S7=t). The matrix Z=Z(U)
i=

satisfies that
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(1) 1—ZZ>0.

Conversely, if Z is an arbitrarily given complex ¢t Xt matrix satisfying (1),
then there exists uniquely an element U< D! such that Z=Z(U). The space
D! is, in this manner, realized as a bounded domain in C***. Each element

g = G! represented with respect to the base {v,, ---, v,} as g=<é g){z,operates

on D' as follows ¢ ¢

g(Z)=(AZ+B)(CZ+D)™*, (Z=2Z(U), UsDY).
We shall denote- the analytic isomorphism sending each element U of D! to
Z(U) of C*™" by (L
Let us denote the Lie algebra of G' by g!, which is, with respect to the
base {v,, -+, v,}, represented as a subalgebra of the total matrix algebra
M(n, C) consisting of the matrices:

t t’

_ X ¥ oo oio o i _
s=(Z W)}z" ‘X=—X, Z="7, ‘W=—W, tr X+tr W=0.

The Lie algebra g' admits a Cartan involution ¢ determined by :

6:S—> —1S,
which gives rise to the Cartan decomposition :

gl ="t+pf,

where f={Seg!; 6(S)=S}, p'={Seg’; 0(S)=—5}:{(92- g)e ¢'}, and ¥ is
the Lie algebra of K, (cf. Helgason [3, Ch. IV]). The subspace p' may be
identified with the tangent space of D! at o! and admits a complex structure,
(or, according to the terminology used by Helgason in [3], a canonical almost
complex structure), /' given by:

I 92' %)-—>(_¢B—1,Z— \/?Z)

(For this paragraph and also for the paragraph 3.1, concerning the domain
DM cf, Satake [10].)

2.2. The closure D' of D! in the ambient Grassmannian manifold is
given by:

D'={U; U is a t’-dimensional subspace of V such that H|, <0} .

The analytic isomorphism ¢! is naturally extended to a continuous mapping,
again denoted by ¢!, sending D' onto the closure of ¢/(D') in C*** which con-
sists of ¢X#-complex matrices Z such that 1—:ZZ=0.

Given elements U,, U,= D' we shall write UlfG\I/ U, if and only if there
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exists an element g< G! sending U, onto U, It is obvious that we have:

Ulf\IJ U, & dim (radgU,)=dim (radzU,).
G
Hence D' is decomposed into disjoint union of GY-orbits:

EI:OC§, Cl={Ue<D'; dim (radzU)=s} ;
s=0

the operation of g:(é g) €G! on C{ is given by :

g(2)y=(AZ+B)(CZ+D)", (ZeC(C)).

It is evident that for an arbitrarily given totally isotropic subspace W
of V there always exists an element Ue D! with radgU=W. We shall set:

BL, ={UeD'; radyU=W}.
We have, then,
Cl= U Bj.
dim W=s

It is furthermore known that each Bl is a “boundary component” of DY, i.e.
it is an arc-wise connected component with respect to complex analytic
curves, (cf. Pyatetski-Shapiro, [9, Ch. II, §6, Theorem 1]).

Setting Gl,={geG'; gW =W}, the space Bj, carries the structure of a
Gl-space.

Generally if W is a totally isotropic subspace of V the quotient space
W+/W carries a non-degenerate Hermitian form Hy canonically induced by
H. We then have a mapping:

@l + By —> DYW*/W, Hy),

determined by ¢} (U)=U/radgU=U/W. It is obvious that ¢}, is bijective.
Furthermore ¢}, is an analytic isomorphism from the submanifold B}, of C***
onto the symmetric bounded domain DY (W+*/W, Hy).

Particularly, when W= {v,~+v,4y, -+, Vs+Visste, (0<s=<t), we have:

ﬂ(B;V):{((l)s )i 112250, Ze M(t—s, ©)},

and ¢ sends the element corresponding to ((1) g) to the element of
DY W+*/W, Hy) associated to Z.

2.3. In this paragraph we let % be a totally real number field and let K
be its totally imaginary quadratic extension. We set dimgzV =n and assume
that ind (H)=7r>0. (ind (H) is, by definition, the dimensiorn of a maximal
totally isotropic subspace of V, and is equal to the k-rank of algebraic group
SU(V, H).)
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Let {7, -+, 74} be the set of mutually distinct isomorphisms sending %
into R. Then each (V)p=V"Q, R carries a non-degenerate Hermitian
form H* naturally induced by H. Since indz(H")=r, (1<i<d), each
DY(V*®i)g, H"") is a non-trivial symmetric bounded domain. Let us set

DN, By =11 DY(V*i), HF).

This is a symmetric domain of type I, (cf. (9), (10)).
—_— o~ A d _
Each boundary component of DYV, H)=TID'((V™9)g, H), B', may be
i=1
d —
written as B'= EB%M where B}y, is a boundary component of DY((V™)g, H%)

associated to a totally isotropic subspace W; of (V™). B'=1] B}y, is called
rational if there exists a totally isotropic subspace W of V such that W;=
(W)g, (1=1=d); in such a case we denote B' by BY.

(This definition of “rational boundary components” is in accordance with
the definition of “I’-rational boundary components” for an arithmetic sub-
group I, given in Borel-Baily, [2].)

The set of rational boundary components of DYV, }7) is therefore de-
composed into the disjoint union of Gl-orbits, (G'=SU(V, H)) each of which
shall be denoted by C} where C1= U B}. Furthermore it is easily seen

~ dim W=sg
that By = DY{((W*/W)~, Hy).

§3. The symmetric bounded domain D™(V A) and
its boundary components.

3.1. Let V be a finite dimensional vector space over R supplied with a
non-degenerate alternating form A. We shall set:

D"V, A)={I; I is a complex structure on V such that the bilinear
form S(x, y)=A(x, Iy), (x, y€ V) is symmetric and positive definite} .
The group G'"'=5Sp(V, A) then operates on D (V, A) as follows:
g:l—sglgt, (ge G e DM=DI(V, 6 A)).
Let V¢ denote the complexification of V. V. admits the involution:
Vesx— X Vg,

such that V={xe V,; £=x}. The form A may be naturally extended to a
non-degenerate alternating form, again denoted by A, on V. with A(Z, )

=A(x,y). Let us set:
F(X, y) - '\/:“—]_-A<.7E, y) ’ (x’ y € VC) .
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F is, then, a non-degenerate Hermitian form on V.

Given an element /= D™ we denote its extension to V¢ again by I. We
then have a decomposition :

VC:UI_I_UI; Ur={xeV¢; Ix=—+/—1x}, ﬁI:{xE Ve Ix=+/—1x},
(cf. [10]). We have furthermore,
)] AlU,=0, FlU,<0.

It is, on the other hand, easily seen that F is positive definite on 17, and
therefore U; belongs to DYV, F).
When, on the other hand, we are given a subspace U of V¢ with dim U

:—%— dim V. satisfying the condition (1) above, we obtain a decomposition :
Ve=U+U, UNU={0}.
Accordingly we can determine a complex structure / of V¢ by:
NU=—-~=1-1, IlU=+=11,

and by restricting this I on V we obtain an element I(U) of D™, We have
I=I(U;) and U=U;y, Hence the mapping [—U; determines a bijection
from D™ onto the following closed submanifold of DY(V¢, F):

DV, F)={UCV,; A|U=0, FIU<0, dim U:—12~dim Vel

The space D™ may be in this manner identified with the manifold D™ which
is known to be a symmetric bounded domain of type III, (cf. [107]).
The group G'™ is naturally identified with the following group:

GM={ge UV, F); g®)=g), forall xeVc},
and we have, for g€ G"(=G™), the following commutative diagram:

DWs] —> glg?e DM
2 v
DS U, —> gU, e DI,

Let {vy, -+, v v, -+, vp} be a base of V with A(v,, v,)= A(vi, v;)=0,
A(vy, v3)=0;,. Let us set

e;=(;—~—=11)/A+~/—1), (1=i=n).

Then {e,, -+, e,, &, ---, &,} constitutes a base of V¢ with F(e;, e;) =0;;, F(¢;, €;)
=—0;j, I'(e;,2;)=0. The element o™=U,={e,, ---, &,}¢ belongs to D™ and
the corresponding I,=I(U,) is determined by :

I(vy) =11, L) =—v,, (1=i=n).
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The fact that G operates transitively on D™ immediately follows from
the observation that every I< D™ is associated to a base {uy, -+, Uy, Ui, -+, Uy}
of V with A(uy, u;)=A(ui, u;)=0, A(u;, u,)=0;;; I(u;)=uj, I(uj)=-—u;. The
isotropy subgroup K™ of G™ stabilizing o™ is easily seen to be a maximal
compact subgroup. The symmetric space D= D! ig realized as a bounded
domain in C™**P”* in the following manner. First, since D! is contained in
DYV, F), to each Ue D™ there corresponds a complex nXn matrix Z(U)

=(z;;) such that {zi:_ﬁ) z;;e;+8;, (1=1=n)} constitutes a base of U. Taking
Jj=1

the additional condition “A]U=0" into account we have:

(2) Z=27, 1-ZZ>0, (Z=2Z()).

‘The mapping . U—Z(U) gives an analytic isomorphism sending D™ onto
the bounded domain in C™”**V* consisting of the nXn complex matrices Z
satisfying the condition (2).

With respect to the base {e, ---, e, &, ---, €,} the group G™ is written
as the set of 2nX2n complex matrices as follows:

n
—~—

{(;‘g g)iz; ‘BA='AB, 'AA—BB=1},

and for g:(é g) G and U= D™ we have:

Z(gU)=(AZ+B)BZ+A)™, (Z=Z(U)).

The Lie algebra of G'™ is, with respect to the base {ey, -+, ,, &y, ***, €,},
‘written as follows:

g ={(% E){ ‘X=—X, Y=Y},
‘which admits the following Cartan involution :
6:S—>—'S, (Seqm,
according to which we have the Cartan decomposition :

Ut = Iyt

G R S A RS

and the latter space p™! is identified with the tangent space of D' at o™ on
which acts the complex structure /™ defined by

iy H—v=iCy )
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3.2. DY(V, F) is a submanifold of the Grassmann manifold consisting

of the subspaces U of V. with dim U:—%— dim V. The closure of D! in
the Grassmann manifold is given by :

D ={U; UC Ve, dim U=-5-dim Ve, A|U=0, FIU<0}.

The analytic isomorphism ¢! is extendible to a continuous mapping, again
denoted by (™, sending D™ onto the closure of (T(DW) in C™"+2

(n:—%—dim Vc>, which is the set of nXn complex matrices Z such that
tZ=7, 1-2Z=0.

Suppose that we are given Ue D™, We shall set W:radFU. Then it
can be easily verified that the subspace U/W of WL/W is an element of
DW(W/W, F#). Let us set, furthermore, W=W(U)=WnN V. Then A|W=0
and we obtain in a natural manner a non-degenerate alternating vector space
(W*/W, Ay) where Ay is induced by A. W*/W may be, then, regarded as the
complexification of W+/W, and Fy is obtained from Ay in the same manner
as in 3.1. Hence we may identify D™(W*/W, F) with DU(W*/W, Ay). We
shall denote the element of the latter space corresponding to U/W by Iy y.

Let us set:

cV, Ay={W, Iy); wWcV, AiIW=0, I, DM(W*+/W, Ay)} .
We assert that the mapping :
a: D= U — (W), Iyayp) €C(V, A)
is bijective. Clearly, it is enough to show that « is surjective. For the pur-

pose of showing the latter let us note that the operation of G (=G) is
naturally extended to the operation on DY, “g:U—gU, g G™, Us DM ;

precisely, we have for g= (g g) € G and Ze M(DM) the following :

g(Z)=(AZ+B)(BZ+A)™.

Now, suppose that W is a subspace of V with A|W=0. Then the subgroup
of G consisting of the elements stabilizing W, denoted by G, obviously
operates transitively on the subset of D™ consisting of elements U with
W(U)=W. This fact, together with the fact that totally isotropic subspaces
W, W’ of V are G"-equivalent (i.e. there exists g= G™ such that gW=W")
if and only if dim W=dim W', imply the surjectivity of a.

Given a totally isotropic subspace W of V we shall set

BR={U; UsD™, WU)=W}, CH =dim\{V:sB};§I.

Then BY¥ is a boundary component of D™ and the mapping ot U—1Ty y
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gives an isomorphism sending B¥' onto D™(W+/W, Ay). B¥ is, as mentioned
above, a GZ'-space, whereas CIT is the G"-orbit of B in D™ with dim W =s.

We have DW= \?OCF‘, 2n=dim V).

3.3. Let %k be a totally real number field and let {z,, ---, 4} be the set
of mutually distinct isomorphisms sending % into R. Let (V, A) be a non-
degenerate alternating vector space over k. Denoting the alternating form
on VEi naturally induced by A by A%, we obtain a symmetric bounded do-

~ A d d —_ P
main DUV, A)=II D"(V ji, A%%). A boundary component [1 BY., of D™(V, A)
i=1 i=1

is rational when there exists a totally isotropic subspace W of V such that
W;=WZgt for 1=<1=d; we denote such a boundary component by B¥. The
set of rational boundary components is, therefore, decomposed into disjoint
union of G"-orbits each of which shall be denoted by Cll'= U B} Each

I~ ~ dim W=s
B! may be identified with DY(W<*/W, Ay).

§4. The holomorphic imbedding p: D'— DL,

4.1. Let (V, H) be a non-degenerate finite dimensional Hermitian vector
space over C/R and let (V/, A)=R¢r(V, H), (A’ =Imv=H). The homomor-
phism p:G'—GM=Sp(V’, A’) induces, as follows, a mapping p: DXV, H)
— DMV’ A’) which sends o! onto o', (cf. [107]).

Given an element U= D' we have the direct sum decomposition :

V=U+U".
We then obtain an element /= p(U)< D™ given as follows:
NU=—+/—1"1y, NU*=+/—11y:.

The mapping p is “equivariant”, i.e. we have, for g€ G,

o(gU)=p(g)pU)p(g)™", (UeD).

The mapping p induces a mapping, again denoted by p, sending D! into
D™, For the purpose of obtaining an explicit description of the latter map-
ping, we shall first consider the Hermitian vector space (V*, H*) naturally
determined by (V, H) as follows:

i) V*is, as a vector space over C, identical to V;

ii) V(=V*) admits an R-linear involution x— x* satisfying that (ax)*
=ax* (aeC);

i) H*(x* y*)=—H(y, x).

Let us set:

V=V@V* H=H®H*, (i.e. Hox+y¥, x+yF)=H(x, 1)+ H*¥, 39)).
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V admits an involution V3> x=x+yf—-x*=y +x¥e V. We set:
Alx, )=—~—1H(x% ), (xye V).

The R-subspace of V, Vo={xe 17; x=x*}, is, then, supplied with an alter-
nating form A, naturally induced by the above A. It is obvious that the
space (V,, A,) is isometric to R¢r(V, H)=(V’, A’) and that V is identifiable
to the complexification V. Suppose, now, that U is an element of DYV, H).
Then the subspace U+(U*Y)* of v belongs to D™(V, H) and is identifiable
to p(U).

For the purpose of obtaining an expression of the mapping p:D'— DM
utilizing coordinate systems, let {v,, -+, v,} be a base of V over C such that
Hw;, v;)=¢,0,;, where ¢;=1, for 1=1=<t, ¢;=—1 for t+1=<j=n. Then, by
setting vi=+/—1v,;, (1=Z1=1), vj=—+/—1v;, (t+1=j=<n) we obtain a base

{vg, ~o, vy, V5, -, v} of V' over R. We may, then, form a base {e,, -, ¢,
2y, -,2,} of Vi as in 3.1. Given an element g< G', expressed with respect
to the base {v,, -+, v,} as:
/A B
g '(C D)’

we have p(g) € G, expressed with respect to the base {e,, -+, e,, &;, =+, ,}
as follows:

A 0 0 iB

R R R CEVES
0 B/i A 0
C/t 0 0 D

Hence, we have:

o:D'5zZ—i(}, Z)epm.

It is also clear that we have dp(f) C ¥, dp(p") Cp™, and hence p: D'— DM is
a “holomorphic imbedding”, i.e. it is a holomorphic isometry such that p(D")
is totally geodesic in D™, (cf. [10]).

4.2. The holomorphic imbedding o : D'— D™ may be uniquely extended
to a continuous mapping p: D'— DU ag follows. First, for an element U D!
we set W=radzU. Then we have the direct sum decomposition U=W+U’,
where U’ may be regarded as a subspace of W*/W. We then have U*=
W+U’*, where U’* is identifiable with the complement of U’ in W*/W.
Hence, (U*)*=W*+(U'*)*. We shall set p(U)=U+U*Y*=W+W*+U’
+U’')*; W+W* may be identified with R(W)e. Therefore p maps Bjy into
B}, (W' =®(W)), and induces a holomorphic imbedding pw : DXW*/W, Hy)—
DY (W'+/W’', Aw.), which coincides to the holomorphic imbedding naturally
induced by the functor R¢g. Furthermore, for g G' we have p(gU)=
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o(8)pU), (UeDY). Explicitly, we have for Z< DY, p(Z):«/:TG)Z g .
4.3. Suppose that we are in the same situation as in 2.3, and let (V’, A’)
d ~ o~
=Rg(V, H). Then we obtain a mapping p=IJ p%%, sending DV, H) into
~ =1
DUI( 17’, A’), where each p™ is, by definition, the holomorphic imbedding natu-
rally induced by R¢jr: (V§i, H)—(VFi, A’"Y). The mapping p is, therefore, a
holomorphic imbedding and is extendible to a continuous mapping, again
denoted by p, sending DX V. H) into D"(V”, A’) which is equivariant. Further-
more, o induces a holomorphic imbedding sending a rational boundary com-
ponent Bl of D! into BY, (W’ = Rg,W). We have, therefore, p(CHC CIH,

Chapter II. Cusps of certain symmetric bounded domains.
§1. Cusps of DL

1.1. Let %k be a totally real number field and let K be a totally imaginary
quadratic extension of k. Let (V, H) be a non-degenerate Hermitian vector
space over K/k with ind (H) >0, G'=SU(V, H), and let D'= DYV, . Suppose
that we are given an arithmetic subgroup I" of GL A Glorbit CI of D' is,
then, decomposed into disjoint union of I-orbits, each of which is called a
cusp of level s, (with respect to I'), When W is a totally isotropic subspace
of dimension s in V, the G-orbit C! may be identified with the quotient
space G'/G), and the space of cusps of level s is in a bijective correspondence
with the double coset space I'\G!/GY,. We shall choose for an arithmetic
subgroup /" a subgroup G} of G' consisting of elements stabilizing a “lattice”
Lin V.

1.2. Let us recall some of basic notions and properties of lattices. Let
9, (or 0,) be a Dedekind domain of characteristic not 2, k2 its quotient field,
and let K be a commutative ring with unity satisfying the requirements 1),
2) of Ch. I, §1. Let Ox denote the ring of o-integers in K, (when K=FkXEk,
L =0X0).

Let V be a free K (resp. k)-module of finite rank. A sub g (resp. 0)-
module L of V is called an 2 (resp. o)-lattice in V if L is finitely generated
and if it contains a base of V over K (resp. k). Specifically, when V=K
(resp. k), an O (resp. o)-lattice in V is called an Ox (resp. 0)-ideal in K
(resp. k).

Given a subgroup G of GL(V) and a lattice L in V we set Gy={g=G;
gL=L}, Given g (resp. 0)-submodules M, N of V we shall denote MrZN

if and only if there exists g G such that N=gM, and set (M)g={N; N is
an Og (resp. 0)-submodule of V, Nn; M} ; (M)g is called the G-equivalence
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class of M.

Suppose that we are in the same situation as in 1.1, o is the ring of
integers in k, L is an ©g-lattice in V and I'=G}. Let W be a totally iso-
tropic subspace of V with dimension s. Let us denote the space of cusps of
level s with respect to GL by CYL). Then, there exists a bijective corre-
spondence between CIL) and Gi\G'/G},, and the latter double coset space may
be identified with (W)gt /GL. Furthermore the correspondence G'= g—gtel?
induces the bijection: GI\G'/GY = G}, \G*/G}, and the latter space is identifi-
able with (L)g1 /G

An Og (resp. 0)-lattice L in V admits the decomposition :

(1D L=%v,+ - +UAw,, (direct sum),

where U; are O (resp. n)-ideals in K (resp. k), and {v,, ---, v,} is a base of

V. The ideal class ¢( f[ ;) is, then, uniquely determined by L and is denoted
1=1

by cx(L) (resp. ¢x(L)) or simply ¢(L). We have L;L\(VgM if and only if c(L)
=c(M).

Given Og (resp. o)-lattices L and M in V we set dg(L, M) (resp. di(L, M)),
or simply d(L, M) to be D (resp. 0)-ideal generated by det (g) with g rang-
ing over all the endomorphisms of V sending L into M. When L is decom-
posed as in (1), and when we have M=%B,u,+ --- +B,u,, the following formula
holds :

@ d(L, M)=(det (£)) IT A%,

where g€ GL(V) is determined by g(v;)=1u,, 1=i=<n). We have, therefore,
(3) c(d(L, M))=c(L)"c(M).

1.3. The situation being the same as in 1.2, we let (V, H) be a non-
degenerate Hermitian vector space over K/k and let L be an g-lattice in
V. We shall set:

HH(L) =0Dg-ideal generated by H(x)= H(x, x), for all x=L,
(L) =9Dg-ideal generated by H(x, y), for all x, ye L,
Li={xeV: H(L ©)C Ok} . |
It is known and easily seen that
Ok Tr p5(L) C p(L) C pf(L) C p(L)D,

where D '={xe K; Tr (xx)Co,}. The lattice L is called (p(L)-) modular
with respect to H if one has L=p§(L)L*. L is normal with respect to H if

pH(L) = pi(L).
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When we are given a totally isotropic subspace W of V and an J-modular
lattice L in V we have the following “W-decomposition” of L:

4 L= -él U Iw,;+Ww)P L, (orthogonal sum),
where {w,, .-, w,} is a base of W, w,;e L, U; are Dg-ideals such that A, DN,

D DU, Hw;, wh)=24,;, Hw;, wj)=m;d;;, (Proposition 3.3, [6]). We have,
therefore, the following :

) LAW=2%%w,, L'=LAWYLAW;
i=1

when W+22W, L’ is an J-modular lattice in W+*/W with respect to Hy.
We shall set, for a given J-modular lattice L,

(L, W)=HLN+TrI={Hx)+Tra; xelL’, acJ},
2(L)=HL)+TrJ;

2u(L, W) and Xy(L) are submodules of 0,, and if # is an algebraic number
field of finite degree the index sz(L, W)=[2Xy(L): Yx(L, W)] is finite, (Pro-
position 4.2, [6]). Furthermore it is easily seen that when X ,(L)=2y(L, W)
we may set, in the decomposition (4), m;=0, (1=<1<s), ([6], 3.7). When, in
particular, O Tr p§(L)= (L), it is obvious that 2 ,(L)=2gz(L, W).

1.4. LEMMA. 1) If 0,=NOg+TrOg, then Xy(L)=p(L)Nk, 2g(L, W)
= LNAW*/LAW)NE,

2) If k is an algebraic number field of finite degree and if o, is the ring
of integers in k, then p,= NOgr+Tr Ok.

PrOOF. 1) Since H(x+y)=H(x)+H(y)+Tr(H(x, y)), (x,ye V), 2x(L) is
contained in p'(L)\k. For the purpose of showing that X5(L)=p (L) k, it
suffices to show that Xz(L) is an 0,-ideal, which follows from the fact that
every element a =0, may be, in our case, written as:

a=Na+Trp, (a,fsDx).
Indeed, for x€ L and £ J we have:
a(H(x)+Tr &) =H(ax)+Tr 8- Hx)+a-Tré&
= H(ax)+Tr (BH(x)+a) € Yu(L).

It can be shown in the similar manner that 2x(L, W)= p (LN\W*/LA\W)Nk.
2) When K=FkXk one has NOx=TrOx=0. When K is a quadratic
extension of k it is known that NOg+TrOg =0, (Lemma 4.6, [6]). q.e.d.
COROLLARY. When 0=NOg+TrOg, W2 W, and when both L and
LAW?/LAW are modular and normal, we have Xg(L)=2Xy(L, W).
When dimgV is odd, or when K is either kX% or a unramified quadratic
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extension of %, every modular lattice in V is known to be normal (Ch. I, 4.3
[4]). Hence, in such a case, if 0=NOx+TrOx and W*22 W, then Xx(L)
=2X,(L, W).

From this point, whenever K/k is a quadratic extension of a number
field we shall assume that o, is the ring of integers in k.

1.5. Given an Og-lattice L in a non-degenerate Hermitian vector space
(V, H) over K/k we shall set:

Cu(L)={det (2); g= G},

where CN;IzU(V, H). When, furthermore, we are given a totally isotropic
subspace W of V we set:

Cu(L, W)= {det (g); g CLNGL} .

When g belongs to GL we have d(gL, L)=d(L, L)=(det g§)=Dx and hence
Cy(L) is a subgroup of the following group:

UK/F)y={ac Ug; Na=1},

where Uy is the group of invertible elements of Og. In particular, if L has
an orthogonal summand of rank 1 we have Cy(L)= U(K/k).

Let W be a totally isotropic subspace of V and let L be an J-modular
lattice in V admitting the following W-decomposition :

L=3 W Juw+Auw) L .
Then, for ue U(K/k), the element g= GL(V) given by:

g(wy) =uw,, glw)=u""wi=uw;, gw)=w,; gw)=w;, (2=1=5)

gx)=x, for xelL’,

belongs to GL N\ GL. Hence, U(K/k) D Cu(L) D Cu(L, W) D U(K/E):. Particularly
when H(w;)=0, (e.g. when Xyz(L)=2X4(L, W)) one has:

Cu(L, W)DB(K/kR)y={u'"?; ucs Ug} .

»

Suppose that K/k is a quadratic extension of a number field and let 7y, 7,
be the numbers of real and complex prime spots of K. Let {{.} be the
group of all the roots of unity in K, ({, denotes a primitive m-th root of
unity ; m is even). Then we have Ux = {{,} XZ™*"2"! and hence [Ux: U%]
=271*"2,  There exists, on the other hand, a natural homomorphism f:
U(K/k)/U(K/k)*—Ug/U% induced by the inclusion mapping U(K/k)—Ug. It
is, then, easily seen that the homomorphism f is injective if there exists no
element ¢ in Ux such that Ne=—1; whereas if there exists such an element
£ the kernel of f is represented by 1 and ¢®. Therefore, according as whether
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we are in the first or second of the cases above we have
CUK/R): UK/R)®*]1=2%, with g<r,+7r, or g=<r,+r,+1.

In particular when K/k is a totally imaginary quadratic extension of a totally
real number field we have

LU(K/k): UK/R*]1=2¢, g=d=[k:Q].

Hence, when K/k is a quadratic extension of a number field and when
L is modular, Cxz(L)/Cyx(L, W) may be regarded as a quotient group of a
subgroup of the finite Abelian group of type (2,2, ---, 2), UK/k)/U(K/k)".
In particular, when 25(L)=24(L, W), Cx(L)/Cx(L, W) is regarded as a quo-
tient group of a subgroup of H'(g(K/k), Ug), where g(K/k) denotes the Galois
group of K/k.

When K/k is a quadratic extension of a number field the order of the
cohomology group H'(g(K/k), Ug), denoted by h(K/k), is known to be finite
and is equal to [U,: NUx]/2%', where d is the number of real conjugates
of 2 which are contained in complex conjugates of K, (cf. §13.2; [4]
Ch. II, 1.7). When, furthermore, K/k is a totally imaginary quadratic exten-
sion of a totally real number field, we have U,= {+1} X Z%, (d=[k:Q]),
and hence, (in view of the fact that NUxDU}%), h(K/k) is equal to 2/[NUg:
U%7] which is either 1 or 2. In particular when 2=@ and K is an imaginary
quadratic number field we have U(K/k)=Ugk, U(K/k)>=U%= B(K/k), and
h(K/R)=[U(K/E): UK/E)?*]=2.

We shall note here that when K/k is a quadratic extension of a number
field it is known that A(K/k)=h(k)2¢/|C(K/k)|, where h(k)=class number of
k, ¢=the number of prime ideals in 2 which ramify in K, and C(K/k) is the
subgroup of the Og-ideal class group C(K) consisting of the classes repre-
sented by o-invariant ideals, ((14]).

REMARKS. 1) When K/k is a totally imaginary quadratic extension of
a totally real number field, and when A(K)=1, it is known that A(K/k)=2,
or, equivalently, NUx=U%, ([(4)).

2) When k=Q(~/m), where m is a square-free integer such that m=5
(mod 8) and K="%k(+/—1), one has NUx=U}. Particularly when m>0 one
has A(K/k)=2.

3) There are examples of K/k such that ~(K/k)=1; e.g. when k=Q(~/3)
and K=k(+/—1) one has [NUg: U%2]=2 and h(K/k)=1.

1.6. Let K/k be a quadratic extension of a number field, (V, H) a non-
degenerate Hermitian vector space over K/k, W a non-zero totally isotropic
subspace of V and let L be an J-modular lattice in V. Let U be a totally

isotropic subspace of V with Uf\; W. Then U*/U may be identified with
G
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W?t/W. The association:
et (U)=(c(LNU), f(LNU*/LNT)),

where y(LNU*/LNU)=unitary-equivalence class of LNU*/LNU, induces
the mapping :

Olw: GING'/Gly = (U)g}, —> ¢L(U) e C(K)XCW /W, ),

where C(W+*/W, I) denotes the set of unitary-equivalence classes among J-
modular lattices in W*/W. For the purpose of investigating the properties
of @, which is sometimes written as @', it is convenient to utilize the
following mapping :

P(M)=((MNW), y(MAW/MAW)), Me(L)gr.
This mapping induces the following mapping :

Uh.r: GW\G/GL = (M)gl, —> ¢l(M) € C(K)XCW /W, J),
which is simply written as . We have:
Y GlreGL) =04 GLg'Gy), (geGh.

We denote the canonical projection: C(K)XC(W*/W, J)—C(K) by = and set
P =go@!, Fl=ro¥1,

1.7. Let us set n=dimyV, r=ind (H), s=dimxW >0 and consider the
following cases:

I) s<r; in this case W*2 W and W*/W is isotropic,

II) s=r<n/2; in this case W*/W is anisotropic and of dimension n—2r,

II) s=r, n=2r+1; this is a special case of (II) and dimgzW*/W=1,

III) s=r=mn/2; in this case W*=W and when K/k is a totally imaginary
quadratic extension of a totally real number field, the rational boundary
component B} is a point.

Let us first investigate the properties of the images Im ¥, Im ¥

Cases I), I): 1) ¥, is surjective.

PrROOF. We shall use the “local argument”. Given a prime ideal p in k&
we set ky=the completion of % at 9, o =the ring of p-adic integers, Ky =K kj,
Vi=VQky, Og,=0xQ®0, Ly=LQony, etc. The Hermitian form H naturally
induces a non-degenerate Hermitian form Hy on V, and Ly is an Og,-lattice
in V. We have p¥(Ly)= p!(L)y, p§(Ly)= p(L), and for lattices L and M in V,
d(Ly, My)=d(L, M), holds for every prime ideal p in £ It is known that L
is J-modular if and only if L, is Jy-modular for every p, [4]. Lattices L and
M in V are said to be of the same unitary (resp. special unitary)-genus when
L, and M, belong to the same unitary (resp. special unitary)-equivalence
class for every p. It is known that when V is indefinite, (and of dimension
greater than 1), a special unitary genus of a lattice in V consists of only
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one special unitary class, [13].

Now let ¢ be an arbitrary element of C(K). Then there exists a prime
ideal B in K not dividing the different D(K/k) such that c(Ple(LA\AW)=c.
Since the prime ideal p=P % does not ramify in K/k we have 0,=Tr O,
= NOg,+TrOg,. Since, furthermore, every lattice in V, or in Wy/W; is

normal, we have Xg,(Ly)=2y,(Ly, W;). Hence L, admits the following W,-
-decomposition

Ly =2 "w+WUw) D Ly, H(wy)=0, (1=i=ss).

Now, since W*/W is of a positive dimension and L; is modular and normal,

it admits an orthogonal summand of rank 1, [4]; Li=Ok,vDLJ. Let us set
for the above p,

My =P, +B Wi+ 3 U Sowi+ A+ T+ L

where Il is a prime element of . Then there exists a lattice N in V with
Ny=M,, N;=L,, (for every prime ideal q different from the above p). N is
J-modular, p(N)=p (L) and since d(L, N)=Og they belong to the same
special unitary-genus, (Proposition 5.2, Ch. I, [4]). Therefore, NAIJL. We
have, on the other hand, c((NAW)=c(B)c(LN\W)=c. Gq. e.d.
Next, let M and N be elements of (L)s1 such that c(MNAW)=c(NNW).
Let us investigate the relation between M =M W'/ MW and N =

NAWL/NAW. We have, by Proposition 3.5 of [6], the following W-decom-
positions:

M= 3 @r3wA L) ®M,  N= 3 @ Sut ) SN .

Hence, c(d(M, N))=c(d(M’, N’))=1 and therefore ¢(M’) = c¢(N’) and there exists
g'eGLW*/W) sending MW/ MW onto NN\ W*/NNW. Particularly,
when 25(M)=2%,(M, W) and 2 yz(N)=24(N, W) both hold we may assume,
in the above W-decompositions, that H(w};)= H(u})=0 for 1=<i<s. Hence, in
this case, it is obvious that there exists a« € K such that Ne=1 and d(M, N)
=a-dM', N)=0k. Now, since W*2W there exists an element he
UW+*L/W, Hy) with det (h)=a"'. We then have d(hM’, N') = Ox.

When M’ and N’ are both normal the above assumption is automatically
satisfied and furthermore AM’ and N’ belong to the same special unitary
genus, [4].

Generally, when we are given Og-lattices L and M in a non-degenerate
Hermitian vector space (V, H), we shall write L=M if and only if there
exists an element he U(V, H) such that 2L and M belong to the same special
unitary genus. We shall set, furthermore,

¢(L)=number of unitary-equivalence classes among {M; M=L}.
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¢(L) is known to be finite, and, in particular, when L is modular and normal
and when C(K)=C(K/k), ¢(L) is equal to the unitary class number u(L) of
L, (cf. [5], 1.7).

The above consideration shows that when M, Ne(L)g1, c((MA\W)=c(NN\W),
and when M'=M W/ MW and N=NN\W*/NNW are both normal, one
has M'=N.

We shall now show the following :

2) Let M be an element of (L)g1 and assume that M =MW/ MW
is normal. If Ne(L)gr and if N=NA\W*/NNW is normal and ¢c(MN\W)
=c(NN\W) one has M’=N’. Conversely, if N’ is a lattice in W+*/W such
that N =M’ there exists a lattice NV in V such that N& (L)g1 and c(MN\W)
=c(NNW).

Proor. It is sufficient to show the latter half of the assertion. Let N’
be a lattice in W*/W with N =M’. We shall again utilize the W-decom-
position :

M= 5 @ 3w+Aaw) M, Hw)=0, (1Si<9).

N’ is, by the assumption, modular and normal, and furthermore d(M’, N')=
(b'-?), for an element be K* Let us set:

N= (b~ U Sw, + b, w|+ z (U Sw, W) DN

Then N is J-modular normal and d(M, N)=9g. Hence M and N belong to
the same Gl-genus. Since V is indefinite they are mutually G'-equivalent.

q.e.d.
As corollaries to 2) above we obtain:

2’) Suppose that we are in case ) and that every J-modular lattice in
W<t/W is normal; e.g. dimgV is odd or K/k is unramified. Then for each
ce C(K) there exists one and only one y.€ C(W*/W, J) with (¢, y.) €Im ¥L

2”) Suppose that we are in case II’). Then for each ¢ = C(K) there exists
one and only one y,.€ C(W+/W, J) with (¢, y.) €Im ¥,

Next we shall consider the case where L'=L\W*/LN\W admits an
orthogonal summand of rank 1. Case II’) is contained in such a case. L
and L’ are, in this case, both modular and normal and hence 25 (L)=2 (L, W).
Furthermore, in this case we have Cyx(L, W)=U(K/k). We now have W-
-decomposition :

L=3 (W SwAAw)DL, L'=WwdL", Hw)=0, (1=i<s).
=1

Suppose that we are given M & (L)gr and that ccMN\W)=c¢(B)c(LN\W). Then
by setting :
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N =B Sw, + B9, |+ z; (U5 w4 Ww)) + B v+ L7

we obtain an element Ne&(L)gr such that ¢(NAW)=cMNW). Since
NAW*Y/NNW is normal, if MAW<*/M~W is also normal we have, by 2),
MAWrMAW=NAWL/NAW. If in particular MW/ MAW)=1; e.g.
cases I) or II"), we have Cyx(M, W)= U(K/k).

Case III): Given M & (L)1 we have W-decompositions :

(3

L=3 O Sweda)), M=3 @ SutBu).

1

Hence, c(d(L, M))=c(TI(%'B)"")=1, and therefore c(LA W) c(MAW)
i=1

:c(_ﬁ (A;B;1)°) is o-invariant. We shall denote the subgroup of C(K) con-
=1

sisting of s-invariant elements by C,(K/k).

When in particular p(L) =g Tr p§(L), the same condition holds for every
Me (L)g1, and hence, in the W-decomposition above, we may assume that
H(w))=H(u;)=0, for 1=<i<s. Hence, in this case, the linear transformation
g of V determined by g(w,)=u;, glwj)=u; (1=1=<s) is unitary. Therefore

there exists a< K* with Na=1 and d(L, M):afI(QI;lfBi)l‘”. There exists
1=1

be K* such that a=5"° Since d(L, M)=9Dg the ideal b_lj‘[l(QI{l%i) is o-

invariant. Hence, in this case, c(LN\W)'c(M\W)e C(K/k). Conversely,
suppose that ¢, C(K/k) and let c=c(LN\W)c,, co=c(A) with A=A, Then,
since Hw) =0, (1<i<s), we obtain by setting:

N = U S, + A Wgwi+ 35 (Ao, +Aw)

an J-modular lattice N such that pf(N)= (L), p{(N)=p(L) and d(L, N)=Ok.
If in the above the ideal A may be expressed as the quotient of two integral
ideals both of which being relatively prime to the different ®©, then N=(L)gr.
Indeed, for a prime ideal p in 2 such that A, =(1) we have Ny=L,, whereas
when Ay +#(1), v is unramified in K/k and therefore both L, and N, are
normal. Therefore N and L belong to the same G'-genus which now con-
sists of only one G'-class.

LEMMA. Suppose that c=c(N)e C(K/k) with N =A. Then A may be
expressed as the quotient of two integral ideals both of which being relatively
prime to the different D if and only if there exists an ideal a in k such that
c=c(a), (where a and oDy are identified).

PROOF. A os-invariant integral ideal B may be written as B=3,8, where
B, is an ideal in & and B, =TIL; with L; ranging over the ramifying prime
ideals in K dividing B. On the other hand, for a given prime ideal p in k2
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(ramifying in K/k), there exists an ideal a in % relatively prime to any rami-
fying ideal such that p and a are mutually equivalent. is, thus,
evident. qg.e.d.
We set: ,
Ci(K/k)={cla)= C(K); a is an ideal in k}.

When, in particular, every ramifying prime ideal in K is principal we have
C(K/k)=C(K/k). We have thus obtained the following :
3) When we are in case III) one has:

CILAW) Im T Cy(K/E).
When furthermore p'(L)=9x Tr #§(L) one has:
CAK/B)C (LAWY Im TIC CK/R).
As we have seen in 1.5 of this chapter one has:
|C(K/R)|=2%h(k)/h(K/k),

where ¢ is the number of prime ideals in 2 ramifying in K. In particular,
when K/k is a totally imaginary quadratic extension of a totally real number
fied one has:

[C(K/R)| =29 h(R)[NUx: U3].

When furthermore h(k)=1, C(K/k) is an Abelian group of type (2,2, ---, 2)
generated by ¢(9Q,), -+, ¢(Q,), where Q, are the prime ideals in K ramifying
in K/k. Furthermore in this case [C(K/k)|=2% or 2¢7' according as whether
h(K/k)=1or 2. Specifically when ¢=1, |C(K/k)|=2 or 1 according as whether
h(K/R)=1 or 2.

Particularly when 2=@ and K is an imaginary quadratic number field,
one has h(K/k)=2 and |C(K/k)|=2?"'. Let K=Q(+/—m), where m is a
squarefree positive integer. Then |[C(K/R)|=|C,(K/k)|=1 if and only if m
is either 1 or prime number p=3 (mod 4),

We shall now investigate the properties of inverse images (¥N)7'(c, 1),
(e, neC(K)XC(W*+/W,J)). Suppose that M and N are elements of (L)g1
such that cLMNAW)=c(NAW), y(MAW*/MAW)=y(NNW*/NAW). Then,
by Proposition 3.5 of [6] we have the following W-decompositions :

M= 3 (W 3w+ Ww)DM , N=3 (U Su+Au) DN,
i=1 i=1

and y(M")=7y(N’), i.e. there exists a unitary transformation g’ sending M’
onto N'. If furthermore we have H(w;)= H(u;), (1=<1=<s) then the element
g€ GL(V) given by: glwy)=u;, gw)=u, (1=i<s), g|M =g’, belongs to
5{;,. Since M, N=(L)s1 we have, furthermore, d(M, N)=(det g)=Dg and
hence det g= U(K/k). It is, on the other hand, clear that when we are given
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an Og-lattice M in V and an element g 5{,, one has ng\I/ M if and only if
Gy

detge Cy(M, W). 1t is known that [Xz(M): YoM, W)]1< (NK,Q@)%, (Proposi-

tion 4.9, [6]). Hence we have:

I e, | = (Nro®) LUK/ R) : UK/ R)®],

(c=c(MNW), y=y(M"). When, particularly, Xgz(M)=23y(M, W) one has
[T, 1) = h(K/k). Furthermore, when U(K/k)=Cy(M, W) there exists
only one point in (¥TH)(c, p).

When we are in case III) and M (L)g, we have Cy(M, W) B(K/k).
Indeed, we have W-decomposition :

Meo

M= 3 (W' Jw;+Awy) ,

1

and with respect to the base {w,, ---, w, wi, ---, w;} of V an element g of
G, G is expressed as: ‘
_rA =
e=(y a-)-

Furthermore, since g sends M\ W onto itself, det A belongs to Ugk, and hence
det g=det A-det*A-?=(det A)'"° < B(K/k).

If, in particular, B(K/k)=U(K/k)?, (e.g. k=Q, K=imaginary quadratic
number field), or if Y z(M)=2%,(M, W), one has Cx(M, W)= B(K/k).

Combining the above we obtain the following :

1.8. THEOREM. Let K/k be a totally imaginary quadratic extension of a
totally real number field, o, the ring of integers in k, and let (V, H) be a non-
degenerate Hermitian vector space over K/k. We set n=dimgV, r=ind (H)
and assume that r>0. Let W be a totally isotropic subspace of V of dimension
s> 0 and suppose that we are giwen an I-modular lattice L in V. Then the
mappings:

Q' CYL)=GI\GY/GYy — C(K)xC(W+/W, J),

@*: C(L) —> C(K)

have the following properties:
1) For (¢, 7)€ C(K)XC(W*/W, J) one has
[(@)7Xe, 7)I = Nig(D)**- LUK/ k) - U(K/R)];

2) Case: s<r: i) @!is surjective;

ii) When n is odd or K/k is unvamified, for each c=C(K) there exists
one and only one y, € C(W*/W,3J) such that (¢, y,) <Im @1. Furthermore, in
this case, one has (@) (c, rc)lzl((lsl)‘l(c)]§h(K/k);

iii) If LNW?Y/LNW admits an orthogonal summand of rank 1, and if n
is odd or K/k is unramified, then the mapping @' is bijective;
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Case: s=r<mn/2: i) @' is surjective;
ii) When n is odd or K/k is unramified, for each (c,y) one has:

(@D (e, NI=h(K/E).

Furthermore, in this case, for U= (W)s and an J-modular lattice M’ in
U+/U(=W+*/W), one has:

LNU), yM)elm @' = M=L", (L'=LNU/LNT).

Case: s=r, n=2r+1: @! is bijective.
Case: s=r=n/2: One has ¢c(LNW)'Im @' cC,(K/k). When, in parti-
cular, p(L)=9x Tr pi(L), one has:

CAK/BYT c(LAW) Im @' C(K/ k),

and furthermore, |(®)'(c)| < h(K/E).

COROLLARY 1. Let k=@ and K=1imaginary quadratic number field. If
(u, |Ug|)=1 then @' is injective.

PRrROOF. U, is, in our case, a finite cyclic group generated by a primitive
m-th root of unity , with m=2, 4 or 6. Hence n is odd and therefore
Xuy(M)=2%4(M, W) holds for every M&(L)s1. Furthermore, the condition
“(n, |Ug|)=1" implies the existence of d such that {7¢={,. Since the scalar
mapping (%1, belongs to é},,mé{v for every M (L)1, one has Cy(M, W)
=Ux=U(K/k). In view of 1.7 this proves the [Corollary]. g.e.d.

COROLLARY 2. Suppose that k=Q, K=@Q(~/—m), where m is a square-jfree
positive integer, and that dimgV =2, dimxW =1, L is Og-modular and ¢(LN\W)
=1. Then the following assertions hold:

1) Case m=1: Im®' ={1}, and ()Y (1)|=1 or 2 according as whether
(L) =(2) or Og;

2) Case m=2: Im®'= {1}, (@)} (1)|=2:

3) Case m=3: Im®'= {1}, @' is injective :

4) Case m=1 or 2 (mod4), C(K/k)={1}, L is normal: Im @' = {1},
(@) (W1=2; ) i

5) Case m=3 (mod4), m>3: [(@) Y c)|=2 for every ¢ & Im @L
Particularly when m is a prime number p=3 (mod 4), (p>3), Im #T= {1}.

For the proof of the above we need some preparations.

1.9. Suppose, generally, that we are given a non-degenerate Hermitian
vector space (V, H) over K/k and an Og-lattice L in V. Then, for g G! we
obviously have:

gLr\IJL & detge Cyx(l).
G
Suppose, in particular, that n=2s; i.e. V admits a totally isotropic subspace
W such that dimgV =2dimgW. Suppose, furthermore, that L is an J-modular
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lattice and let M= (L)g1. We have a W-decomposition :
M= 3 (A Sw,+Aw)).
i=1

Suppose, now, that for every N (L)1 such that ¢c((NN\W)=c(MN\W) we
have a W-decomposition :

N =35 (W Sust o)

with Huj)= Hw;), 1=<1<s). Let {a,, -+, a;} be a complete system of repre-
sentatives of Cuy(M)/Cuy(M, W). 1If, in this case, there exist g, -, g €G!
with det(g;)=a;, 1=<:1=<t) such that gM, ---, g.M are mutually distinct,
then we have:

(@) (M AW =[CalM): Ca(M, W)].

For the purpose of explicitly calculating Cyx(M) we utilize the following :

(*) For J-modular lattices M, N in V and geé‘, if gMC N one has
gM =N, This assertion immediately follows from the following :

LEMMA. Let o be a Dedekind domain with the characteristic not 2, k its
quotient field, K its quadratic extension, (V, H) a non-degenerate Hermitian
vector space over K/k and let L, M be J-modular lattices in V. If MC L then
L=M.

ProOF. JIL¥*CIM*¥=MC L=3L*. g.e.d.

1.10. ProoOF OF COROLLARY 2: We have, in our case, Ugx=U(K/k),
B(K/k)=U(K/k)*, [UK/k): UK/E)*]=2. On the other hand, since OxTr p§(L)
C MLy (L) and pf(L) =Dk, pML) is either Og or (2); particularly when
m=3 (mod 4), (L) must be O.

Case m=1: Since A(K)=1, Im &= {1}.

i) p(L)=(2): Inthiscase, p(L)=OxTrul(L). For an element M&(L)a
we have a W-decomposition :

(1) M=Qrw+Ogw’, Hw)=0.

In view of 1.9 an element g= GL(V), represented with respect to the base
{w, w'} as g:(z 2) belongs to 5},, if and only if the following conditions
are satisfied :

(2) a’b+ab’® =0, c°d+cd°=0, a’d+b°c=1, a,b, ¢, dsOg.

For the purpose of showing that @' is injective it suffices to show that
Cy(M)=U}={=%1}, (cf. 1.9). Suppose, in the above, that a=0. Then b%c=1
and hence b, c€ Ug, det(g)=—bc=—0b'"9=+1. Similarly if 6=0 we have
det (g)=-+1. Suppose therefore that ab=+0. We then have a?det(Q)
=a’(ad—bc) = a(a’d+b’c) = a, whence det (g) =a'"? Similarly det(g)=—0b"".
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Suppose now that det(g)={=+/—1. Then we must have a=ga,(1+(), b=
bo(1+L)%, (ay, by Z) and hence det(g) € (1+¢)Ok. This implies that det (g)
& Ug which is a contradiction.

ii) p(L)=9Dg: We now have QN pl(M)=Z and Trpi(M)=(2). Re-
placing, if necessary, the element w’ by aw+4w’, (a €Og) we may assume
that, in W-decomposition (1), H(w’)=1. A linear transformation gZ(Z ;)

then belongs to CN?E‘, if and only if the following conditions are satisfied :

) a%+ab’+Nb=0, c’d+cd°+Nd=1, a’d+b'c+b’d=1, a,b,c,deOg.
Since, on the other hand,

4) Hw—w)=-—1, Hw—w', w)=0,

the linear transformation 2 given by :

%) Alw—w)=w—w', hMw”)=Cw’,

belongs to Gl and det ())={. Hence, Cx(M)=Ux and Cx(M)/Cu(M, W) is
represented by {. For the purpose of showing that |(®')"*(1)|=2 it suffices

to show the existence of g& G! such that det (g)=¢ and gM+ M. Such an
element is given by setting:

(1/(1—\/:‘13 —1/2 >
g= .
0 1+v—1
Case m=2: Since h(K)=1 we have Im ?*'={1}. Ug={+1}, Uyk={1}.
) p(L)=(2): An element M & (L), admits a W-decomposition (1) with

H(w’)=0. The linear transformation ((1) (1)> then belongs to 5&, and hence
0 2\ .
Cy(M)=Ug. Furthermore, g=<i 0>EGI, det(g)=—1and gM+M. Hence
N 2
f@H(]=2.
ii) p(L)=9k: M admits a W-decomposition (1) with H(w’)=1. Hence,
similarly as in the case ii) of the previous case, Cy(M)=Ug. By setting:

<—l/v—m (m—l)/Z«/——m)
g= ,

0 v —m
we obtain an element g of G! such that det (g)=—1 and gM # M. Hence,
(@)D =2.

Case m=3: Since W(K)=1, Im@'=1. Ug=1{{}, {=e~", Uk={C}.
Since TrOg=~Z, L must be normal. We also have p{(L)=OxTrui(L). Hence
an element M e (L),; admits a W-decomposition (1) with Hw’)=0. We assert

(6)

that Cyx(M)=U% which implies the injectivity of #*. Suppose g= (Z 2)6 5§,,
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and that det (g)={. Then, similarly as in the case of m=1 we must have :
ab+0, a=a,(1+0), b=0b1+0", (a,beZ)

whence det (g) € (1+8)Og, which is a contradiction.

Case m=1 or 2 (mod4), C,(K/k)=1 and L is normal: By Theorem 1.8,
Im@'={1}. Since, in this case, TrOx=(2) an element Me (L), admits a
W-decomposition (1) with H(w’)=1. We may assume that m>1. Hence,
similarly as in the case of m=1, Cx(M)=Ux=1{-+1}. An element g described
in (6) belongs to G' and det (g)=—1, gM = M. Hence, |(&)'(1)]|=2.

Case m=3 (mod4), m>3: Ug={+1}, Uy={1}, TrDg=2Z. Hence, p(L)
=0, Trpd(L), and M e (L),; admits a W-decomposition M=UA""w-+Aw’, Hw’)

=0. An element g= (g 2>EGL(V) belongs to 5}; if and only if it satisfies
the following :

(7)  a’b+ab’=0, ¢’d+cd°=0, a’d+b°c=1, a,d=Og, b NU, ce NUA™'.

-1 ~
Let NA=(a), (@€ Z). Then g:((o)( @ ) belongs to G}, and det(g)=1.

0
-1 ~
Hence, Cy(M)=Ug. Since, furthermore, h= 02’2 Zg ) belongs to G' and

det (h)=—1, hM# M, one has, for every c<=Im @', [(®V) X (c)|=2.
When, in particular, m=p=3 (mod 4), p is the only prime which ramifies
in K. Therefore, as we saw in 1.7, C(K/k) = {1}, whence Im &'={1}. q.e.d.

§2. Cusps of DU,

2.1. Let k£ be a totally real number field and let (V, A) be a non-
degenerate alternating vector space over k. Let GM1=Sp(V, A) and let D=
Dy, ﬁ). Denoting, as in the previous section, the ring of integers in & by
o or D, we let L be an o-lattice in V. Given a totally isotropic subspace W

of V with dimW =s, the G™-orbit C?I:d U B} is decomposed into disjoint
im W=s

union of G¥-orbits each of which is called a “cusp of level s (with respect
to G¥)”. We denote the space of cusps of level s with respect to G¥' by
CM(L). CM(L) is in a bijective correspondence with the double coset space
GG/ G,

2.2. Generally, let 0 be a Dedekind domain and let 2 be its quotient field.
Let (V, A) be a non-degenerate alternating vector space over 2 and let L be
an o-lattice in V. We set:

é

(L) =o-ideal generated by A(x, y) for x,ye L,
Li={xeV,; A(x, L)Co}.

We call L J-maximal if pf(L)=3 and L=p"(L)L. Two maximal lattices L
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and M in V are G™.equivalent if and only if p™(L)= pd"(M), [12].

2.3. The situation being the same as in 2.2 we assume that W is a totally
isotropic subspace of V and that L is an J-maximal lattice in V. Then L
admits a “ W-decomposition” :

L:szl(al—lswz_l-atwo@l’,y leL (1§l§s), aijai+ly (1§l§3_1>:

A(w;, wj)=40;; and {w,, -+, w,} is a base of W,

(Proposition 3.3, [6]).

When in the above W= {0}, we obtain for any o-ideal a, an J-maximal
lattice M in V by setting:

M= (aa;'Jw,+a a,wi -+ i (a7 Sw;+a,w))P L.
=2

J-maximal lattices L, and L, in V are GIf-equivalent to each other if and
only if ¢(L,n\W)=c(L,N\W), (Proposition 3.5, [6]). We thus obtain:

THEOREM. Situation being the same as in 2.1, we let W be a totally isotropic
subspace of dimension s>0 of V and let L be an J-maximal lattice in V.
Then the mapping:

Qur: cH(L) — C(k) ,
given by @QUI . (U)G}H—W(Lﬂ U), (Ue (W) m) is bijective.

§3. The mapping p: CI—CHL

3.1. Let K/k be a totally imaginary quadratic extension of a totally real
number field, o, the ring of integers in # and let (V, H) be a non-degenerate
Hermitian vector space over K/k. Then, as explained in Ch. I, the functor
Ry (V, H—(V’, A’) induces a holomorphic imbedding p: DXV, H)— DV,
A’) which sends a rational boundary component Bl into By, where W is
a totally isotropic subspace of V. Let L be an Og-lattice in V. L is then
an 0,-lattice in V/ which we shall denote by R, or simply by L. Let
G'=SU(V, H) and G'"=Sp(V’, A’). The homomorphism p:G'—G" induced
by Ry then sends G} into GHE% and hence the mapping o : D*— D™ naturally
induces the mapping p: C{L)—CH( Rk, L), which may be identified with the
mapping : GI\G/Gl, — GE\G™M /G, naturally induced by Rgy.

Let K=k+kw, with w’=—w, and A’=Im,H. We set Im,(Ox)=1Im,(x)
={(x—x%/2w; x=Dg}. Suppose that L is an J-modular lattice in V. Then
Ryl =1L is maximal in (V’, A’) if and only if J is an ideal in %, and in such
a case pMU(L)=33Im,(Ok), (Theorem 3.8, [7]). When furthermore U (W),
one has KU € (K W) iy and the mappings &' : CY(L)—C(K) and @™ : CE( R/, L)
—(C(k) are respectively given by :
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2 (D)gy —> cx(LNT), O (RU)gyr —> e RLNRU) =c(LNT) .

For the purpose of investigating the relation between cx(L N\ U) and c,(LNU)
we need subsequent lemmas,

3.2. LEMMA A. Let o be a Dedekind domain, k its quotient field, K either
a quadratic extension of k or kxk and let Dg be the ring of o-integers in K.
Let V be a free K-module of a finite rank and let L, M be Og-lattices in V.
V is then a finite dimensional vector space over k and L, M are o-lattices in V.
We have, furthermore, the following:

(1) de(L, M)= N(dx(L, M)),

(2) e LYN(cx(L))™ = ci( M) N(cx(M))™.

ProOF. By virtue of formula (3) of Ch. II, 1.2 the (2) above follows im-
mediately from (1). We shall use the local argument to show (1). Since for
every prime ideal p in 2 the completion oy is a principal ideal domain there
exists gy € GL(V}) such that gyLy=M,. We have d,,(Ly, My)=(Ng,, det g»)
= Niyr(dx,(Ls, My)). Hence, dp(L, M)= Ng;(dg(L, M)). g.e.d.

LEMMA B. Suppose that o has the characteristic different from 2 and that
we are given a finite dimensional vector space U over k supplied with a non-
degenerate symmetric bilinear form S. Given an o-lattice L in U we set
LS={xeU; S(x, LYCo}. When Lis decomposed as L=aw,+ --- +a,v,, (a; are

o-ideals), we have dy(LS, L)=det (S(vy, v;)) 1ol
1=1

Proor. It is known that LS=ai'u,+ -+ +a;'u,, where S(v;, u;) =0, [8].
The lemma follows easily from this. q.e.d.

Setting, specifically, U= K, (and assuming that ch.k+*2), one has a
non-degenerate symmetric bilinear form S given by S(x, y)=Tr(xy). The
det (S(v;, v,)) appearing in B is, then the discriminant of K/k, mod &*?
denoted by A4(K/k). We have, furthermore, 053 =%"! where D=D(K/k)
denotes the relative different of K/k. Hence,

dy(O%F, Og) = N(dx(D7, Og)) = ND(K/k)) =d(K/Fk)
= A(K/F) ﬁzlag (mod £*?)

where D, =a,0;+0v;. Therefore, 110} = d(K/k)- A(K/k)~* (mod k**). Hence we
i=1
may write:

cx(D) = e (d(EK/R)- A(K/R) 7).

Returning to the situation described in [Lemmal A one may choose, for
the lattice M, the following :

M=0gv,~+ -+ +Ozv,, (n=rank V),
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and obtain the following :
LEMMA C. The situation being the same as in Lemma A, we assume that
ch.k+2. Then, for a given Og-lattice L in V we have:

co(L) = Ng/p(cx(L)exg(Ox)", (n=rank V).

REMARK. The above Lemmas A, B and C and their proofs remain valid
if we take as K a finite separable extension of %, (ch.2+#2). The formula for
c:(Dk) for a finite separable extension K/k was also obtained by E. Artin [I].

The following D and its proof are due to S-N. Kuroda.

LEMMA D. Let k be an algebriac number field of finite degree and let K/k
be a finite extension. Suppose that there exists a prime spot p of k which com-
pletely ramifies in K, (i.e. the ramification exponent of p in K/k 1s equal to
[K: k). Then the homomorphism Ng,,: C(K)—C(k) is surjective.

PrROOF. Let £ denote the absolute class field of %, (in Hilbert’s sense).
Our assumption implies that EnK=Fk We have the diagram :

K-k

l
— g

where, by Translation [Theoreml, K%/K is the class field associated to the
group of ideals U in K such that Ng,A are principal in k2 Hence,
[C(K): Ker Ngy]=[KE: K1=[£:k1=h(k). This implies that Ng,: C(K)—
C(k) is surjective. q.e.d.

COROLLARY. When K/k is a totally imaginary quadratic extension of a
totally real number field the homomorphism N:C(K)—C(k) is surjective.

3.3. Combining 1.8, 2.3, 3.1 of this chapter and the above Lemmas C and
D we obtain the following :

THuEOREM. Let K/k be a totally imaginary quadratic extension of a totally
real number field, o, the ring of integers in k, (V, H) a non-degenerate Hermi-
tian vector space over K/k with ind (H)>0, (V/, A)=Rg(V, H), A’=1Im,, H,
(we K*, w=—uw) and let W be an s-dimensional totally isotropic subspace of
V, (s>0). Let X be an ideal in k and suppose that we are given an I-modular
lattice L in V. Then we have:

(1) L=Rg;L is I1m,(Og)-maximal in V’;

(2) The following diagram is commutative:

cyL) ? CEY(R L)
o | y a| om
C(K) C(k) ,
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where v;: C(K)—C(k) is given by vs(c):NK/k(c)ck((a’(K/k)-A(K/k)‘l)%)‘, and 1is
surjective ;

(3) When WL22W, the above p: CHL)—CE(RL) is surjective;

(4) When WLt=W, or equivalently, 2s=dimgV, boundary components By,

and Bgy are point components. When, furthermore pi(L)=OgTrui(L), for
each k= CHL) one has:

lo ' (p(x))| = |Ker 2],

where 2 is given by 2: C(K/k) D cx(aDg)— ci(a®) € C(k), (a is an ideal in k).

REMARK. By of Theorem 1.8 we obtain examples of p:C}(L)
—CI(RL) with 2s=dimgV which are not injective; e.g. k=@, K=Q(~/—m),
m is square-free positive integer such that m=3 (mod 4), m>3, s=1, I=O,
and ¢«(LN\W)=1.

Appendix, Examples.

1. Let k=Q, K=Q(v/—1), V={v,, vs}x, and let H be a non-degenerate
Hermitian form on V given by H(v;, v;)=¢€;0;, ,=1, e,=—1. Let L=Dxv,
+Oxvy, Oxg=Z[~—17]). L is, then, a normal Og-modular lattice in V. Let
W={w}g, w=v,+v,., W is a totally isotropic subspace of V.

The symmetric bounded domain DI:DI(V, ﬁ) is realized as:

Di={zeC; |z|<1},

and we have:

D'={zeC; |z|=1}, D'=CiUCl, Ci=D', Cl={zeC; |z|=1}.
Boundary components of D! are point components. Particularly, By = {1}.

In view of of Theorem 1.8 of Ch. II, an easy calculation shows
that CI(L) is represented by 1 and +—1.

Let (V/, A)= Rg(V, H), D= DUy A). DM is a subdomain of C®
consisting of symmetric 2X2 complex matrices Z with 1—ZZ>0. We have:

D — clucHyU i,

and the mapping p: D'—D™ sends CI into CI; the latter space consists of
point components.

The lattice L= R/, L is maximal in V/ and each cusp C(RL), (s=1,2)
consists of one element. Therefore the images p(1) and p(+v/—1) are G-
-equivalent to each other.

2. Let k=Q, K=Q(~/—m), m=1 or 2, (m=+1) and suppose that C,(K/k)
={1}. Let V={vy, vs}x, Hv;, v;)=¢,0,;, &,=1, e,=—1 and let L=0zv,+Oxv,,
W= {v,4+v,}x. Then the situation is exactly alike the previous case 1, and
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CI(L) is represented by By ={1} and {—1}. The images p(1) and p(—1) are

point components of D™ which are mutually GYT -equivalent.

3. Let k=Q, K=Q(~V—=5), V={vy, v, v3}x, Hv;, v;)=¢;;, e1=¢ey=1,
&=—1 and let L=0x0,+Oxv,+Oxv,, W={w}g, w=v,+v, (Ox=Z[vV—5]).
L is a normal Og-modular lattice in ¥V and W is a totally isotropic subspace
of V. The symmetric bounded domain DI:DI(V, ﬁ) is realized as:

p={(2)eC; |al*+lal <1},

and we have:

Di={(2)ec; ial +1alPs1}=ClUC],

Ci=D,ci={(2); lal*+lal*=1}.

Boundary components of D! are point components. Particularly, B{V:{((l)».

The mapping @' : CX(L)—C(K), given by @I((U)GIL):C(Lm U), (where U is
a totally isotropic subspace of dimension 1 of V') is bijective.

C(K) is of order 2 and consists of 1 and the ideal class represented by
p=(2, 14++/—5). We have Np=(2), p°=p; whence p?=2"p.

L admits the following W-decomposition :

L=Qxw+QOzw) POy, w = —(v,+v,) , V=0;1tV,Fv;.
Let us set:
M= "w+pw) Py v =(2"pw+pw’) DOkv .

As explained in Ch. II, 1.7, L and M are mutually G'-equivalent. Indeed,
utilizing Lemmal in Ch. II, 1.9 we can calculate and obtain x, y, z&V with:
M=90gx+Ogy+Oxz, Hx)=H(y)=0, Hxy=1, Hz)=1,

€. g. We may set:

x=1+~+v—=5)/2w—4w’+2v,
y=—B++V—=5)/2w+B—v—=5)w'—2v,
z=2w—2(1—~—5)w'+(2—+—5)v.

An element g< G' sending L onto M is given, with respect to {v,, v, v;} as
follows :

(1—-3+/=5)/2  (—3+3v=5)/2 2+42V=5
g=| —1-2v=5  243v=5 74+24/=5
(—1-5v/=5)/2 (1+7v/=5)/2  T+3v/=5
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C’I(L) consists of 71, 7. which are Gl-orbits of B} and g *'(Bk)

5 \/ 5 ( 2)
We set (V/, A)=Rg(V, H), D= DUV’ A’). DM is a subdomain of C*
consisting of symmetric 3X3 complex matrices Z such that 1—ZZ>0. We

have:
D — clmycmycmy it

and the mapping p: D'—D™ sends C!into CI'. Each space of cusps CI(RL)
consists of one element. Hence the points p(By) and p(g '(Bf)) must find

their G#r-equivalents in B&%. The boundary component Baw may be identi-

fied with DM((RWL/RW)~, ASRW) which is the open unit disc D on which
operates Sp(1)=SU(2). Sp(l) contains an arithmetic subgroup I which is
equal to SP(RWL/RW, Asw)arnawlernew = Gaw N Gay.

We utilize the following base of Vj:

{Ul, 2}2, Us, v;y U;, 'Ug} y Ué——— \% _1 Vi, ('L:l, 2) y 'Ué: —'\/:"_]__'U?) )
and the following base of the complexification Vg :
{es, Ez’}i=1,2,3, e;=V;—~ _17)2)/(1‘!”’\/:1—) ,

where, of course, v/—1v, are elements of the complexification V. D™ is
then identified with D™ which consists of the subspaces U of V% spanned
by zizg)z”e,-—}—éi, (1=1,2,3) such that the matrices Z=2Z(U)=(z;;) are
symmetric and 1—:ZZ=0.

The totally isotropic subspace RW of V’/ is spanned by v,+v, and
5 (W;—v3). Hence its complexification W’ is spanned by e;,—+/—1&, and
¢,++—1¢, From this it follows easily that:

0 0 —1
BYL = 0 z 01; 1—12*>0¢;
th—1 0 0
0 0-—1
the mapping: ( 0 =z O)—»z induces the isomorphism sending BY%, onto
-1 0 0

the open unit disc D.
RKRWL/RW is spanned by classes represented by v, +/5vj, and we have:

RLARWL/RLNRW = Zv,+/5 Zv}.

The arithmetic subgroup I" of SU(2) is, then, represented as follows:
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I l 1 <(a+d)—~\/jl_(«/5—b— V5 %) —(+/5b+4/5 1)+ —1 (a—d)>
T2\ (VBh B ) —v=T(a—d) (a+d)+vV=T(v/5b—~/5 )
b
(a )ESL(Z, Z)} .
d

C
We have, on the other hand,

0 0 -1 0 0 a

pBy)={ 0 0 0f, p(&8'(Bw)=|0 0 —2af,
—1 0 0 a —2a 0

a=+—1(1—+=5)/(5—+=5).

An element heG™, sending p(g '(BW)) to a point of BYL is obtained
by observing RW-decompositions of RL and p(g ))RL; with respect to
{vy, Vs, Vs, VB0, /505, v/5vi} we have:

~

0 0 0 —2 0 —1
0 2 0 0 5 —6

2 —4 —4 -3 2 4

"=| s_18-15 0 o 30
2 —1 —4 0 10 —4

-5 12 10 0 0 —20]

Expressing this 2 with respect to the base {e;, &;};-;,, in the form

(4 5

and writing X=p(g '(BY)), we have:
0 0 —1
(AX+BY(BX+A)*'=| 0 =z 0|, (zeD),

—1 0 0
or, equivalently,

0 0 —1
AX+B=| 0 =z 0|BX+A4).
-1 0 0

From this follows easily that z=(—104/5 +8+v/—1)/(22+5+v—=5).
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We can now verify that the above zand 0 are not mutually ['-equivalent

Indeed, let y= (% g) be an element of /" and suppose that y sends 0 onto z.
(a=-4-(a+d)—~=T(V5b—+5 0}, f=—5{—(V5b+v5 " O+vV=T(a—d),
(‘cl 3)6 SL(2, Z)). We must have, then, y(0)=j8-&'= 2z or, equivalently,

5a—14b—6¢+15d =0,
14a+-25b—15¢—30d =0,
ad—bc=1.
The first two relations above imply that:
8a—b—9¢c=0,
whence, replacing b by 8¢—9c we obtain:
—107a+120c+15d =0,
{ ad—8ac+9c*=1.
The first equation implies that =0 (mod 3), whence, by the last equation
1=a(d—8¢c)+9c*=0 (mod 3),

which is a contradiction.
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