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\S 1. Introduction.

In [7] p. 36 F. S. Macaulay has given a famous set of prime ideals $\{P_{n}\}$

in the polynomial ring in 3 variables which need at least $n$ generators. In
fact all the examples are ideals defining irreducible curves in affine 3-space
with singularities at the origin. A modern explanatorial presentation of
those classical examples has been delivered by S. S. Abhyankar (Notes by

A. Sathaye) in [1]. F. S. Macaulay’s examples illustrate in the best way that
“ There is no higher limit to the number of members that may be required

for the basis of a prime module $(=ideal)$
” (quoted from [7]).

However, F. S. Macaulay’s classical examples cannot be adapted directly

to show the same result for power series rings in three variables. In fact,
locally, in the sense of analytic geometry, Macaulay’s curves dissolve into a
bunch of straight lines. It is the purpose of this article to furnish a new set
of curves in 3-dimensional space to illustrate the unboundedness of generators
for prime ideals in the polynomial ring and power series ring in three var-
iables at the same time. To this end we shall construct a set $\{C_{n}\}$ of rational
irreducible curves in 3-dimensional affine space which are analytically irre-
ducible at the origin. Moreover the corresponding prime ideals $P_{n}$ need at
least $n$ generators in $k[[x, y, z]]$ and hence in $k[x, y, z]$ .

In \S 2 we shall introduce the concept of binomial vectors and prove the
linear independence of them under projections.

In \S 3 an arithmetic property, namely ” residuely equal distributions ”,
about semigroups will be introduced. The above mentioned property is a
refinement of a well-known fact about semigroups observed by Sylvester,
Aprey [2], Gorenstein [4] et al.

In \S 4 we shall provide a proof by constructing examples of the following
theorem:

THEOREM. Let $k$ be a field of characteristic zero and $A=k[[x, y, z]]$ , the
pOwerseries ring in 3 variables over $k$ . Then for each $n\geqq 1$ there exists a Prime
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ideal $P_{n}\subset k[[x, y, z]]$ such that $P_{n}$ needs at least $n$ generators.
The author was informed about this problem by the speech of J. Herzog

at Purdue University and the discussions after it with S. S. Abhyankar.
Recently D. Eisenbud and M. Hochster greatly encouraged him to search for
examples. To the above mentioned persons the author wishes to express his
thanks. The author’s gratitude is due to his wife, Lii meei-huey, who helped
prove Theorem 2.1. Finally, he wants to thank Mrs. Louise Ruppert for typing
this manuscript.

\S 2. The linear independence of binomial vectors.

Let $k$ be any field of characteristic zero. Let the ring of integer $Z$ be
canonically imbedded in $k$ . Let $k^{m}(resp. k^{\infty})$ be the canonical m-dimensional
( $\infty$ -dimensional) vector space over $k$ . We define

DEFINITION 2.1. Let $b_{n,0},$ $b_{n,1},$
$\cdots,$

$b_{n,n}$ be the sequence of binomial coefficients
of n-th power. Then the n-th binomial vector $b_{n}$ (in $k^{\infty}$) is defined to be
$(b_{n,0}, \cdots, b_{n,n}, 0, \cdots)$ .

EXAMPLES. $b_{0}=$ $(1, 0, \cdots , 0, )$ , $b_{1}=(1,1,0, )$ , $b_{2}=(1,2,1,0, )$ , $b_{3}=$

$(1,3,3,1,0, )$ .
NOTATIONS. Let $\rho_{m}$ denote the mapping from $k^{\infty}$ to $k^{m}$ defined by

$\rho_{m}(r_{1}, r_{2}, \cdots , r_{m}, )=(r_{1}, r_{2}, \cdots , r_{m})$ .
Let $\rho_{m}^{\prime}$ denote the mapping from $k^{\infty}$ to $k^{m-1}$ defined by

$\rho_{m}^{\prime}(r_{1}, r_{2}, \cdots , r_{m}, )=(r_{2}, r_{3}, \cdots , r_{m})$ .
Let $T=\{t_{1}, \cdots, t_{m}\}$ be a subset of non-negative integers. Moreover, let
$i_{1},$

$\cdots,$
$t_{m}$ be labeled as $t_{1}<t_{2}<\ldots<t_{m}$ . Let $B_{t_{1},\ldots,t_{m}}$ be the $m\times m$ matrix

defined by
$B_{t_{1},\cdots,t_{m}}=(\rho_{m}(b_{t_{1}}), \cdots \rho_{m}(b_{t_{m}}))$

$=\left(\begin{array}{llllll} & & b_{t_{1}0}, ’ & \cdots & b_{t_{1}m- 1} & \\b_{t} & 0 & \vdots b_{\iota_{m}} & m & \vdots & 1\end{array}\right)m,$

,
Moreover let

$iA=\left(\begin{array}{lllllll}1 & 0 & 0 & & & & 0\\0 & 1 & 0 & & & & 0\\0 & 0 & 1 & & 0 & & 0\\ & & & 1 & -1 & & 0\\ & & & 0 & 1 & & 0\\ & & & & & 1 & 0\\0 & 0 & & & & 0 & 1\end{array}\right)$ i-th
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be a $m\times m$ matrix. Let $A_{m}=\prod_{i=1}^{m-1}iA$ .
LEMMA 2.1. SuppOse $t_{1}>0$ . Then

$B_{t_{1}t_{2}\cdots,t_{m}}A_{m}=B_{t_{1}-1,t_{2}- 1,\cdots,t_{m}-1}$ .
Moreover

det $B_{t_{1}t_{2}\cdots,t_{m}}=\det B_{c_{1}-1,t_{2}-1,\cdots,tm^{-1}}$ .
PROOF. Certainly it is enough to prove the first equation. Let us consider

the left hand side of it. Clearly

$B_{t_{1},t_{2}\cdots,t_{m}}A_{m}=\left(\begin{array}{lllll}b_{t_{1}0}, & b_{t_{1}1}-b_{c_{1}- 1,0} & \cdots & \cdots & ,b_{t_{1}m- 1}-b_{t_{1}- 1,m- 2}\\ & \vdots & & & \vdots\\ b_{t} b_{t}0 & 1^{-b_{t_{m}}}10, & \cdots & ,b_{c_{m}} & m- 1bt_{m}- 1m-2\end{array}\right)m’ m$

”’

$=\left(\begin{array}{llllllllll}b_{t_{1}- 1,0}, & b_{t_{1}- 1,1} & \cdots & b_{t_{1}- 1,m- 1} & & \prime & & & & \\b_{t} 1 & 0 & b_{t} & 1 & 1 & \cdots’ & b_{t} & 1 & m & 1\end{array}\right)m^{-}’ m’ m^{--}$

$=B_{t_{1}-1,t_{2}-1,\cdots,t_{m}-1}$ .
Since

$b_{t_{i}0}=b_{t_{i}-1,0}=1$

and
$b_{t_{tJ}}-b_{t_{i^{-1,j-1}}}=b_{t_{i^{-1,j}}}$ . Q. E. D.

LEMMA 2.2. SuPpose $t_{1}=0$ . Then

det $ B_{t_{1},t_{2},\cdots,t_{m}}=\det$ $(\rho_{m}^{\prime}(b_{t_{2}}), \cdots , \rho_{m}^{\prime}(b_{\iota_{m}}))$ .
PROOF. Routine.
LEMMA 2.3. We have

det $(\rho_{m}^{\prime}(b_{t_{2}}), \cdots , \rho_{m}^{\prime}(b_{c_{m}}))=(t_{2}\ldots t_{m})/(m-1)$ ! det $B_{t_{2}- 1,\cdots,t_{m}- 1}$ .
PROOF. It is trivial to check that

$b_{t_{i},j}=t_{i}(t_{i}-1)\ldots(t_{i}-j+k)/j!$

$=t_{i}/jb_{t_{i}-1,j-1}$ .
Hence if in the following matrix we multiply the j-th column by $j$ and i-th
row by $1/t_{i+1}$

$(\rho_{m}^{\prime}(b_{c_{2}}), \rho_{m}^{\prime}(b_{tm}))=\left(\begin{array}{lllll} & b_{t_{2},1}, & \cdots & ,b_{t_{2},m- 1} & \\b_{t} & \vdots 1 & b_{t} & m & 1\end{array}\right)$

then we get

$\left(\begin{array}{lllll}b_{t_{2}- 1,0}, & \cdots & ,b_{t_{2}- 1,m- 1} & & \\\vdots & & \vdots & & \\b_{t} & 10, & \ldots, 1 & b_{t_{m}} & m- 1\end{array}\right)=B_{c_{2}- 1,\cdots,t_{m}- 1}$ .
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Now our lemma follows trivially.
We shall establish
THEOREM 2.1. The set $\{\rho_{m}(b_{t_{1}}), \cdots, \rho_{m}(b_{t_{m}})\}$ forms a basis for $k^{m}$ .
PROOF. We shall make inductions on $m$ . If $m=1$ , then $\rho_{1}(b_{t_{1}})=(1)$ which

is a basis for $k^{\prime}$ . Let us assume the theorem holds for all positive integers
less than $m>1$ . We shall prove the case $t_{1}=0$ firstly. It follows from lemmas
2.2 and 2.3 that

det $b_{t_{1},t_{2},\ldots,t_{m}}=(t_{2}\ldots t_{m})/(m-1)$ ! det $b_{t_{2}-1,\ldots,t_{m-1}}$ .
It follows from the hypothesis of mathematical induction that the right hand
side, hence the left hand side, is nonzero. In other words $\{b_{t_{1}}, \cdots , b_{\iota_{m}}\}$ forms
a basis for $k^{m}$ . Inductively let us assume the theorem has been proved for
certain $t_{1}\geqq 0$ . Let us consider $b_{t_{1+1}},$ $b_{t_{2}},$

$\cdots,$
$b_{t_{m}}$ with $t_{1}+1<t_{2}<\ldots<t_{m}$ . Then

it follows from lemma 2.1 that

det $B_{t_{1}+1,t_{2}\cdots,t_{m}}=\det B_{t_{1},t_{2}-1,\cdots,t_{m}-1}$ .
Again it follows from the hypothesis of mathematical induction that the right
hand side, hence the left hand side, is nonzero. Thus $\{b_{t_{1}+1}, b_{t_{2}}, \cdots , b_{t_{m}}\}$ forms
a basis for $k^{m}$ . Q. E. D.

For completeness we shall include the following theorem in this section.
However since it will not be needed in this article, the proof is left to readers.

THEOREM 2.2. Let $C_{n,s}$ be the following $m\times m$ matrix,

$C_{n,s}=\left(\begin{array}{lllllll}b_{n,s}, & b_{n,s+1}, & \cdots & b_{n,s+m- 1} & ’ & & \\\vdots & & & \vdots & & & \\b_{n+m} & 1 & s & b_{n+m} & & 1 & s+m- 1\end{array}\right)$

Then

det $C_{n,s}=\prod_{i=n}^{n+m-1}b_{i,s}/\prod_{i=s}^{s+m-1}b_{i,s}$ .

EXAMPLE.

det $\left(\begin{array}{llll}10, & 10, & 5, & 1\\15, & 20, & 15, & 6\\21, & 35, & 35, & 21\\28, & 56, & 70, & 56\end{array}\right)=10\times 15\times 21\times 28/1\times 3\times 6\times 10=490$ .

Note that the sequence $(b_{s,s}, b_{s+1,s}, \cdots)$ is the standard s-th order arithmetic
sequence. Incidently, it follows from Theorem 2.2 that

COROLLARY. The pr0duct of $m$ consecutive members of the standard s-th
wder arithmetic sequence is divisible by the pr0duct of the first $m$ ones.

PROOF. It follows from the fact that det $C_{n,s}$ is an integer.
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\S 3. Equal distributions of semigroups.

Apery [2], and subsequently Gorenstein [4], proved that if $Q$ is a point
on a plane curve then $n_{Q}=2\delta_{Q}$ , where $\delta_{Q}=\dim O_{Q}/O_{Q}^{\prime}$ and $n_{Q}=\dim O_{Q}/C_{Q}$ ,
$O_{Q}^{\prime}$ being the local ring of Q. $O_{Q}$ its normalization, and $C_{Q}$ the conductor.
The above statement is equivalent to the following; let $S$ be the semigroup
of orders of all holomorphic functions defined on the plane curve and centered
at $Q$ , let $L$ be the largest integer which is not in $S$ . Then the number of
elements in $S$ which are less than $L$ is $(L+1)/2$ . To refine the above concept

we shall define
DEFINITION 3.1. A semigroup $S$ of nonnegative integers is said to be

residuely equally distributed mod $n$ , where $n$ is a positive integer, if

Card $(S\cap\{i+nZ\}\cap Z_{L})=(L+1)/2n$ for all $i$ ,

where
1) Card $A=Cardinal$ number of set $A$ .
2) $L$ is the largest integer not in $S$ .
3) $Z_{L}=\{i:i\in Z, 0\leqq i\leqq L\}$ .
REMARK. The fact observed by Ap\’ery and Gorenstein is equivalent to

that the semigroup $S$ is residuely equally distributed mod 1.
The following proposition is trivial.
PROPOSITION 3.1. Let $n,$ $m$ be two positive integers with $n|m$ . SuPpose $S$

is residuely equally distributed mod $m$ . Then it is residuely equally distributed
mod $n$ .

Clearly the conditions in Definition 3.1 cannot be satisfied by arbitrary
$S$ and $n$ . However we shall prove that they can be satisfied in some interest-
ing cases. Namely

THEOREM 3.1. Let $n$ be an odd positive integer. Then the semigroup $S$

generated by $(n+1)$ and $(n+2)$ is residuely equally distributed mod $n$ .
PROOF. The following two well-known properties of $S$ will be assumed.
1) The largest integer $L$ not in $S$ is $n(n+1)-1$ .
2) The semigroup $S$ is residuely equally distributed mod 1.

Let us write down all integers between $0$ and $L$ in the following $n\times(n+1)$

matrix

$\left(\begin{array}{llll}0 & 1 ’ & \cdots & n\\n+1 & n+2 ’ & \cdots & 2n+1\\\vdots & \vdots & & \vdots\\ i(n+1) & i(n+1)+1 & \cdots & ’(i+1)(n+1)-1\\\vdots & \vdots & & \vdots\\(n-1)(n+1),(n-1)(n+1)+1, & \vdots \cdots \prime & \cdots & n(n+1)-1\end{array}\right)=(d_{ij})=D$ .
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We shall prove $d_{ij}\in S$ if $i\geqq j$ . Clearly

$d_{ij}=(i-1)(n+1)+(j-1)$

$=(i-j)(n+1)+(j-1)(n+2)\in S$ .
In view of the second well-known property of $S$ , one concludes that $d_{ij}\not\in S$

if $i<j$ .
Next we shall Pnd the set $\{k+nZ\}\cap Z_{L}$ in the previous matrix. Without

losing generality one could assume that $0\leqq k<n$ . Clearly the components of
$D$ on the following arrow sign is in $\{k+nZ\}\cap Z_{L}$ ,

$(\backslash f^{\prime}a_{k+1,1}’,a_{k+1,2}a_{k+2,1},a_{k+2,2}..a_{k+2.’ n}a_{n,1},a_{n,2}’,,$$a_{n,k+2}a_{k,1\swarrow}a_{k,2}a21,a_{22},,a_{2,k}a..\cdot..\cdot.\cdot’ a.\cdot..\cdot\cdot\cdot.’.\cdot.\cdot.\cdot.a_{1,k+1}\swarrow^{\swarrow}’\swarrow\swarrow\swarrow^{\swarrow}..\swarrow a_{2,n+1}a_{1,n+1}a_{k,,...n+1}a_{k+1,n+1}a_{k+2,n+1}a_{n,n+1}\swarrow)$

There are precisely $(n+1)$ elements on the arrow. Thus
$\{k+nZ\}\cap Z_{L}=\{a_{1,k+1}, a_{2,k}, \cdots , a_{k+1,1}, a_{k+1,n+1}, \cdots , a_{n,k+2}\}$ .

Now we shall use a simple counting to show that half of the elements in
$\{k+nZ\}\cap Z_{L}$ are in $S$ and half are not. Suppose $k+1$ is even. Then the
first $(k+1)/2$ elements are not in $S$ , the next $(k+1)/2$ are in $S$, the $(n-k)/2$

elements after that are not and the last $(n-k)/2$ are in $S$ . Suppose $(k+1)$ is
odd. Then the first $k/2$ elements are not in $S$, the next $k/2+1$ elements are
in $S$ , the $(n-k-1)/2+1$ elements are not in $S$ and the last $(n-k-1)/2$ elements
are in $S$. In either case the required property has been established. Now it
is trivial to check that

Card $(S\cap\{k+nZ\}\cap Z_{L})=(n+1)/2$

$=(L+1)/2n$ . Q. E. D.

\S 4. The construction of $P_{n}$ .
To prove the theorem stated in \S 1 we shall construct explicitly a set

of prime ideals $\{P_{n}\}$ with the required properties.
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Let $n$ be an odd positive integer, and $m=(n+1)/2$ . Let $S$ be the semi-
group generated by $(n+1)$ and $(n+2)$ . Let $\lambda$ be an integer $>n(n+1)m$ with
$(\lambda, m)=1$ . Let $\rho$ be a mapping: $k[[x, y, z]]\rightarrow k[[t]]$ defined by

$\rho(x)=t^{nm}+t^{nm+\lambda}$

$\rho(y)=t^{(n+1)m}$

$\rho(z)=t^{(n+2)m}$

where $k[[t]]$ is a powerseries ring of one variable over $k$ . Let $ P_{n}=P=ker\rho$ .
It is obvious that $P$ is a prime ideal in $k[[x, y, z]]$ . To prove that $P$

needs at least $n$ generators, we shall investigate the mapping $\sigma:k[[x, y, z]]$

$\rightarrow k[[x, y, z]]$ defined by

$\sigma(z)=x^{n}$

$\sigma(y)=y^{n+1}$

$\sigma(z)=z^{n+2}$

For self-containedness we shall give the following common definition.
DEFINITION 4.1. The $\sigma$ -order of $f(x, y, z)\in k[[x, y, z]]$ is ord $\sigma f(x, y, z)$ . The

$\sigma$ -leading form of $f(x, y, z)$ is $\sigma^{-1}$ (the leading form of $\sigma f(x,$ $y,$ $z)$). The Power-
series $f(x, y, z)$ is said to be $\sigma$ -homogeneous if $ f(x, y, z)=the\sigma$-leading form of
$f(x, y, z)$ .

Note that, as usual, all $\sigma$ -homogeneous powerseries of a fixed $\sigma$ -order $r$

form a vector space $W_{r}$ over ground field $k$ . Let its dimension be $d_{r}$ .
LEMMA 4.1. The numbers $d_{r}$ are all finite.
PROOF. It follows trivially from the fact that $W_{r}\subset the$ vector space

generated by $\{x^{\alpha}y^{\beta}z^{\gamma} : \alpha, \beta, \gamma\leqq r\}$ . Q. E. D.
Let $\overline{U}_{r}=W_{r}\cap k[[y, z]]$ and $e_{r}=\dim\overline{U}_{r}$ . Then
THEOREM 4.1. Let the notations be as previous. One has
1) $d_{r}=\sum_{i}e_{i}$ where $i\in S\cap\{r+nZ\}\cap Z_{\gamma}$ .

$E_{S}pecially$

2) $d_{r}\leqq m$ if $r<n(n+1)$ .
3) $d_{r}=m+s$ if $n(n+s)\leqq r<n(n+s+1)$ and $r<(n+1)(n+2)$ .
PROOF. Clearly $d_{r}=number$ of monomials in $W_{r}$ . For a Pxed $\alpha$ let us

consider all possible monomials $x^{\alpha}y^{\beta}z^{\gamma}$ in $W_{r}$ . It is obvious that $\alpha n+\beta(n+1)$

$+\gamma(n+2)=r$ or $\beta(n+1)+\gamma(n+2)=r-\alpha n$ . Clearly any pair $(\beta, \gamma)$ which satis-
fies the above equation will correspond to a monomial in $\overline{U}_{r-\alpha n}$ . Conversely
any monomial in $\overline{U}_{r-\alpha n}$ will give a monomial in $W_{r}$ which is of the form
$x^{\alpha}y^{\beta}z^{\gamma}$ . Note that a necessary and sufficient condition for a given $(\beta, \gamma)$ to
satisfy $\beta(n+1)+\gamma(n+2)=r-\alpha n$ for some nonnegative integer $\alpha$ is $\beta(n+1)+$

$\gamma(n+2)\in S\cap\{r+nZ\}\cap Z_{r}$ . Hence if we let
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$W_{r,\alpha}=W_{r}\cap x^{\alpha}k[[y, z]]$

then

$W_{r}=\bigoplus_{\alpha}W_{r,\alpha}$

$\cong\bigoplus_{\alpha}\overline{U}_{r-\alpha n}$

$=\oplus\overline{U}_{i}$ where $i\in S\cap\{r+nZ\}\cap Z_{r}$ .
And

$d_{r}=\sum e_{i}$ .

Note that if $i\leqq r<(n+1)(n+2)$ and $\beta(n+1)+\gamma(n+2)=\epsilon(n+1)+\delta(n+2\rangle$

then $\beta=\epsilon$ and $\gamma=\delta$ . Hence $e_{i}=1\forall i<(n+1)(n+2)$ . Thus

$d_{r}=Card(S\cap\{r+nZ\}\cap Z_{\gamma})$ ,

if $r<(n+1)(n+2)$ . Now it follows from Theorem 3.1 that

Card $(S\cap\{r+nZ\}\cap Z_{r})\leqq m$

if $r<n(n+1)$ . Hence 2) follows.
To prove 3) it is enough to observe that $S\supset\{i:i\geqq n(n+1)\}$ (cf. the

property 1) listed in the proof of theorem 3.1). Q. E. D.
To use the results in \S 2, we shall dePne
DEFINITION 4.2. Let $x^{n}y^{\beta}z^{\gamma}$ be a monomial. Then the associated binomial

vector $b(x^{\alpha}y^{\beta}z^{\gamma})$ is $b(\alpha,0, b_{\alpha,1}, \cdots , b_{\alpha,\alpha,0}, \cdots)\in k^{\infty}$ . The associated binomial m-vector
$b_{m}(x^{\alpha}y^{\beta}z^{\gamma})$ is defined to be $\rho_{m}b(x^{\alpha}y^{\beta}z^{\gamma})\in k^{m}$ , (cf. \S 2). Let $\sum c_{\alpha\beta^{\gamma}}x^{\alpha}y^{\beta}z^{\gamma}$ be
$\sigma$ -homogeneous. Then $b(\sum c_{\alpha\beta r}x^{\alpha}y^{\beta}z^{\gamma})$ is defined to be $\sum c_{\alpha\beta r}b(x^{\alpha}lz^{\gamma})$ and
$b_{m}(\sum C_{\alpha\beta^{\gamma}}x^{\alpha}y^{\beta}z^{\gamma})=\rho_{m}b(\sum C_{\alpha\beta^{\gamma}}x^{\alpha}y^{\beta}z^{\gamma})$ . In general let $f(x, y, z)$ be an element in
$k[[x, y, z]]$ , then $b(f(x, y, z))$ is defined to be $b$ ( $\sigma$ -leading form of $f(x,$ $y,$ $z)$ ) and
$b_{m}(f(x, y, z))$ is defined to be $\rho_{m}b(f(x, y, z))$ .

We shall prove
PROPOSITION 4.1. If $f(x, y, z)\in P=P_{n}$ , then

$b_{m}(f(x, y, z))=0$ .
PROOF. Let $ r=\sigma$-order of $f(x, y, z)$ . Then $f(x, y, z)$ can be written as

$g(x, y, z)+h(x, y, z)$ with $g(x, y, z)$ as its $\sigma$ -leading form. Let $a_{\alpha\beta^{\gamma}}x^{\alpha}y^{\beta}z^{\gamma}$ (resp.
$a_{\epsilon\delta\mu}x^{\epsilon}y^{\delta}z^{\mu})$ be a nonzero term in the expansion of $g(x, y, z)$ (resp. $h(x,$ $y,$ $z)$ ).

Let $\sigma$ -order of $a_{\epsilon\delta\mu}x^{\epsilon}y^{\delta}z^{\mu}$ be $s>r$ . Then

$\rho(a_{\alpha\beta^{\gamma}}x^{\alpha}y^{\beta}z^{\gamma})=a_{\alpha\beta^{\gamma}}[b_{\alpha,0}t^{rm}+b_{\alpha,1}t^{rm+\lambda}+ \cdot.. +b_{\alpha,m-1}t^{rm+(m-1)\lambda}+ ]$

and
$\rho(a_{\epsilon\delta\mu}x^{\epsilon}y^{\delta}z^{\mu})=a_{\epsilon\delta\mu}[b_{\epsilon,0}t^{sm}+b_{\epsilon,1}t^{sm+\lambda}+ +b_{\epsilon,m-1}t^{sm+(m-1)\lambda}+ ]$ .

Suppose $t^{rm+u\lambda}=t^{sm+v\lambda}$ with $u<m$ . Since $s>r$ , then $v<u<m$ . Moreover
$m|(u-v)$ . Thus $u=v$ and $t^{rm+u\lambda}\neq t^{sm+v\lambda}$ . In other words, terms of the form
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$t^{rm+u\lambda}$ can only be produced from $\sigma$ -leading forms of $f(x, y, z)$ and hence can
only be cancelled among them.

Now let us consider the equation $t^{rm+u\lambda}=t^{rm+v\lambda}$ with $u<m$ . Clearly $u=v$ .
Suppose

$g(x, y, z)=\sum a_{\alpha\beta^{\gamma}}x^{a}y^{\beta}z^{\gamma}$ ,

$h(x, y, z)=\sum a_{\epsilon\delta\mu}x^{\epsilon}y^{\delta}z^{\mu}$ .
Then

$\rho(f(x, y, z))=\rho(g(x, y, z))+\rho(h(x, y, z))$

$=\sum a_{\alpha\beta r}[b_{\alpha,0}t^{rm}+b_{\alpha,1}t^{rm+\lambda}+\cdots+b_{\alpha,m-1}t^{rm+(m- 1)\lambda}]$

$+$ [$non$-interference terms].

Clearly
$\Sigma a_{\alpha\beta r}b_{\alpha i}=0$ $\forall i\leqq m-1$ .

It is obviously equivalent to

$b_{m}(f(x, y, z))=0$ . Q. E. D.

Let $ V_{r}=W_{\gamma}\cap$ { $\sigma$ -leading forms of elements in $P$ } $\cup\{0\}$ . Then V. is a vector
space over $k$ . Let its dimension be $c_{r}$ . We shall establish

THEOREM 4.2. Let the notations be as previous. Then
1) $C_{r}=0$ if $r<n(n+1)$ .
2) $C.=d_{r}-m$ if $r\geqq n(n+1)$ .

Especially
3) $C_{r}=1$ if $n(n+1)\leqq r<n(n+2)$ .

Moreover the kernel of the maPping $b_{m}$ : $W_{r}\rightarrow k^{m}$ is $V_{r}$ .
PROOF. Let $r<n(n+1)$ . Let $\{x^{\alpha}y^{\beta}z^{\gamma}\}$ be the set of monomials in $W_{r}$ .
Note that
1) $\{x^{\alpha}y^{\beta}z^{\gamma}\}$ forms a basis for $W_{r}$ .
2) distinct elements in this set have distinct $\alpha$ indices.
3) $b_{m}(x^{\alpha}y^{\beta}z^{\gamma})=\rho_{m}b_{\alpha}$ .

Hence
$d_{r}=Card\{x^{\alpha}ffz^{\gamma}\}$

$=Card\{\rho_{m}b_{\alpha}\}$

$\leqq m$ .
It follows from Theorem 2.1 the set $\{\rho_{m}b_{\alpha}\}$ , hence the set $\{b_{m}(x^{a}y^{\beta}z^{\gamma})\}$ , is
linearly independent. Thus $b_{m}$ ; $W_{r}\rightarrow k^{m}$ is injective and ker $b_{m}=0$ . Now it
follows from Proposition 4.1 that $V_{r}\subset kerb_{m}$ . Hence $V_{r}=0$ . Case 1 has been
proved.



Unboundedness of generators of prime ideals 731

Suppose $r\geqq n(n+1)$ . We shall prove $b_{m}$ ; $W_{\gamma}\rightarrow k^{m}$ is surjective. It follows
from Theorem 3.1 that Card $(S\cap\{r+nZ\}\cap Z_{L})=m$ . Let $\beta_{t}(n+1)+\gamma_{i}(n+2)$

$\in S\cap\{r+nZ\}\cap Z_{L}$ and $\alpha_{\iota}n=r-(\beta_{i}(n+1)+\gamma_{i}(n+2))\forall 1\leqq i\leqq m$ . Then $x^{\alpha_{i}}y^{\beta_{i}}z^{\gamma s}$

$\in W_{r}$ and $\alpha_{i}\neq\alpha_{j}$ if $i\neq j$ . Since $b_{m}(x^{\alpha_{i}}y^{\beta_{i}}z^{\gamma i})=\rho_{m}b_{\alpha_{i}}$ . It follows from Theorem
2.1 that $\{\rho_{m}b_{\alpha_{i}}\}$ hence $\{b_{m}(x^{\alpha_{i}}y^{\beta_{i}}z^{\gamma i})\}$ forms a basis for $k^{m}$ . Thus $b_{m}$ : $W_{r}\rightarrow k^{m}$

is surjective and dim $(kerb_{m})=d_{r}-m$ . To finish our proof we shall show
that ker $ b_{m}\subset$ { $\sigma$ -leading forms of elements of $P$ } $\cup\{0\}$ , since the other in-
clusion follows from Proposition 4.1.

Let $f(x, y, z)$ be a non-zero element in ker $b_{m}$ . Inductively we shall find
elements $g_{i}(x, y, z)$ for all $ i\geqq rm+m\lambda$ such that

1) $ord_{t}\rho g_{i}(x, y, z)=s\geqq i$ ,
2) $ord_{t}\rho(g_{i+1}(x, y, z)-g_{i}(x, y, z))\geqq i$ ,
3) $\sigma$ -leading form of $g_{i}(x, y, z)$ is $f(x, y, z)$ ,
4) ord $(g_{i+1}(x, y, z)-g_{i}(x, y, z))\geqq(i-m\lambda)/(m(n+2))$ .

Once the set $\{g_{i}(x, y, z)\}$ has been found, if we let $g(x, y, z)=\lim_{i\rightarrow\infty}g_{i}(x, y, z)$ ,

then

1) $ord_{t}\rho g(x, y, z)=\infty$ ,
2) $g(x, y, z)\in P$ ,
3) $\sigma$ -leading form of $g(x, y, z)$ is $f(x, y, z)$ .

In other words ker $ b_{m}\subset$ { $\sigma$-leading forms of elements of $P$ } $\cup\{0\}$ .
Let $g_{i}(x, y, z)=f(x, y, z)$ for $ i=rm+m\lambda$ . Since $b_{m}(h(x, y, z))=0$ , then all

terms of the form $t^{rm+j\lambda}$ with $j<m$ in $\rho(f(x, y, z))$ are cancelled out. The
only possible terms left are with $j\geqq m$ . So that conditions 1) and 3) have
been proved. Note that conditions 2) and 4) are void for this step.

Inductively, suppose $g_{i}(x, y, z)$ has been found for certain $ i\geqq rm+m\lambda$ .
Let $ord_{t}\rho(g_{i}(x, y, z))=s\geqq i$ . We shall assume $ s<\infty$ . Let $s\in u\lambda+mZ$ with
$0\leqq u<m$ . Then $s-(rm+u\lambda)\geqq\lambda>n(n+1)m$ by the assumption on $\lambda$ . Note
that $s-(rm+u\lambda)\in mS$ (cf. the property 1) listed in the proof of Theorem 3.1).

Since $b_{m}$ : $W_{r}\rightarrow k^{m}$ is surjective, then there is a $h(x, y, z)\in W_{r}$ with $b_{m}(h(x, y, z))$

$=$ $(0,0, \cdots , 0,1,0, \cdots, 0)$ which is the $(u+1)$ -th element in the standard basis of
$k^{m}$ . Thus $ord_{t}\rho(h(x, y, z))=rm+u\lambda$ . Since $s-(rm+u\lambda)\in mS$, then there are
$\beta,$

$\gamma$ such that $s-(rm+u\lambda)=\beta m(n+1)+\gamma m(n+2)$ , or, $ord_{t}(\rho(y^{\beta}z^{\gamma}))=\beta m(n+1)+$

$\gamma m(n+2)=s-(rm+u\lambda)$ . We have established that $ord_{t}\rho(y^{\beta}z^{\gamma}h(x, y, z))=s$ and
a-order of $(y^{\beta}z^{\gamma}h(x, y, z))>r$ . Thus for suitable $a$ , one has 1) $ord_{t}\rho(g_{i}(x, y, z)$

$+ay^{\beta}z^{\gamma}h(x, y, z))>s\geqq i$ , 2) $ord_{t}\rho(ay^{\beta}z^{\gamma}h(x, y, z))=s\geqq i$ , 3) $\sigma$ -leading form of
$(g_{i}(x, y, z)+ay^{\beta}z^{\gamma}h(x, y, z))$ is $f(x, y, z)$ and 4) ord $(ay^{\beta}z^{\gamma}h(x, y, z))\geqq(i-m\lambda)$

$/(m(n+2))$ . The inductive process is finished by letting $g_{i+1}(x, y, z)=$

$g_{i}(x, y, z)+ay^{\beta}z^{\gamma}h(x, y, z)$ .
To state our next theorem we need the following
NOTATIONS: Let $\alpha$ be a maPping from $k[[x, y, z]]\rightarrow k[[x,y, z]]$ defined by
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$\alpha(x)=x^{\beta_{1}}$

$\alpha(y)=y^{\beta_{2}}$

$\alpha(z)=z^{\beta_{3}}$

with $\beta=\min(\beta_{1}, \beta_{2}, \beta_{3})$ . Let $\omega_{i}$ be the set of all $\alpha$ -homogeneous elements $oJ$

a-order $i$ in $k[[x, y, z]]$ .
THEOREM 4.3. Let $Q$ be an ideal in $k[[x, y, z]]$ . Let $ s=\min\{\alpha$-order of

$f(x, y, z):f(x, y, z)\in Q\}$ . Then the minimum number of generators of $ Q\geqq$

$\sum_{i}$ dim ( $\omega_{i}\cap\{\alpha$-leading forms of $Q\}\cup\{0\}$ ) $=r$ where $ s\leqq i<s+\beta$ .
PROOF. Let $\eta$ be a given number such that there is a set $\{g_{1}(x, y, z)$ ,

... , $g_{\eta}(x, y, z)$ } which generates $Q$ . We shall prove $\eta\geqq r$ .
Pick arbitrary $\{f_{i,1}(x, y, z), \cdots , f_{i,l\iota}((x, y, z)\}\subset Q$ with $\alpha$ -leading forms of

$f_{i,j}(x, y, z)$ form a basis for $\omega_{i}\cap$ { $\alpha$ -leading forms of $Q$ } $\cup\{0\}$ . Note that
$r=\sum_{s=t<s+\beta}d_{i}$ . Let the $\alpha$ -leading forms of $g_{j}(x, y, z)$ be $h_{j}(x, y, z)$ . Let the $\alpha-$

leading forms of $f_{i,j}(x, y, z)$ be $h_{i,j}(x, y, z)$ . Since $f_{s,1}(x, y, z),$ $\cdots$ , $f_{s,a_{s}}(x, y, z)\in Q$ ,

then we have

$f_{s,j}(x, y, z)=\sum_{\mathfrak{i}}u_{i,j}(x, y, z)g_{i}(x, y, z)$
$\forall 1\leqq j\leqq d_{s}$ .

Note that the $\alpha$ -order of $g_{i}(x, y, z)\geqq s$ . By considering $\alpha$ -homogeneous forms
of $\alpha$ -order $s$ on both sides we have

$h_{s,j}(x, y, z)=\sum_{l}u_{j,i}h_{i}(x, y, z)$

where $u_{j,i}$ are constants which are zeroes if the $\alpha$ -order of $h_{i}(x, y, z)>s$ .
Hence $\omega_{s}\cap\{h_{i}(x, y, z)\}$ generates $\omega_{s}\cap$ { $\alpha$ -leading forms of $Q$ } $\cup\{0\}$ . Let
us assume $h_{1}(x, y, z),$ $\cdots$ , $h_{a_{s}}(x, y, z)$ form a basis. Replacing $g_{j}(x, y, z)$ by

$g_{j}+\sum_{1\leqq i\leqq d_{\$}}a_{j,i}g_{i}$ where $i>d_{s}$ and $a_{j,i}\in k$ , we shall assume the $\alpha$ -order of
$g_{j}(x, y, z)>s$ . Note that we have proved $r\geqq d_{s}$ . Inductively let us assume
that we have proved that for the given $\eta$ there is a set $\{g_{1}, \cdots , g_{\eta}\}$ which
generates $Q$ with

1) $r\geqq\sum_{s\leqq i<s^{l}}d_{i}$ ,

2) $\{h_{j}(x, y, z):\sum_{s\leqq i<\overline{s}-1}d_{i}<j\leqq\sum_{s\leqq t<\overline{s}}d_{i}\}$ form a basis for $\omega_{\overline{s}}\cap\{\alpha$-leading forms
of elements in $Q$ } $\cup\{0\}$ for all $\overline{s}<s^{\prime}$ ,

3) $\alpha$ -order of $g_{j}(x, y, z)>s^{\prime}-1\forall j>\sum_{s\leqq i<s},d_{i}$ .
Note that what we proved previously are the above statements for $s^{\prime}=s+1$ .
Now we shall finish our inductive process by proving the above statements
for $s^{\prime}+1$ . Since $f_{s^{J},j}\in Q\forall 1\leqq i\leqq d_{s^{\prime}}$ , then we have

$f_{s^{l},j}(x, y, z)=\sum_{i}u_{j,i}(x, y, z)g_{i}(x, y, z)$ .
Suppose for some $i\leqq\sum_{s\leqq i<s^{\prime}}d_{i},$

$u_{j,i}(x, y, z)$ is a unit. Let us take the minimum
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one. Clearly the $\alpha$ -order of $ f_{s^{l},j}(x, y, z)=the\alpha$-order of $g_{i}(x, y, z)<s^{\prime}$ which
is impossible. Hence $u_{j,i}(x, y, z)$ must be non-unit for all $i\leqq\sum_{s\leqq t<s}d_{i}$ and the

a-order of $u_{j,i}(x, y, z)g_{i}(x, y, z)\geqq\beta+s>s^{\prime}$ . By considering $\alpha$ -homogeneous
forms of $\alpha$ -order $s^{\prime}$ on both sides of the above equation, we have

$h_{s^{\prime},j}(x, y, z)=\sum_{i}u_{j,i}h_{i}(x, y, z)$

where $i>\sum_{s\leqq i<s},$
$d_{i}$ and $u_{j,i}$ are constants which are zeroes if the $\alpha$ -order of

$h_{i}(x, y, z)>s^{\prime}$ . Hence $\omega_{s^{J}}\cap\{h_{i}(x, y, z):i>\sum_{s\leqq i<S^{\prime}}d_{i}\}$ generates $\omega_{S^{\prime}}\cap\{\alpha$ -leading

forms of $Q$ } $\cup\{0\}$ . Let us assume that $\{h_{i}(x, y, z):\sum_{s\leqq i<s^{\prime}}d_{i}<i\leqq\sum_{s\leqq i<s^{\prime}+1}d_{i}\}$ forms

a basis. Note that 1) and 2) have been established. Replacing $g_{j}(x, y, z)$ by

$g_{j}(x, y, z)+\sum_{i}a_{j,i}g_{i}(x, y, z)$ where $j>\sum_{s\leqq i\backslash s+1}d_{i},\sum_{s\leqq i<s},$ $d_{i}<i\leqq\sum_{s\leqq i<s^{\prime}+1}d_{i}$ and $a_{j,i}\in k$ ,

we shall assume that the $\alpha$ -order of $g_{j}(x, y, z)>s^{\prime}$ . Q. E. D.
Now we shall prove the theorem listed in \S 1 by establishing
THEOREM 4.4. There are at least $n$ generators for $P_{n}$ .
PROOF. In Theorem 4.3 let $\alpha=\sigma$ and $Q=P$. Then $W_{r}=\omega_{r},$ $\beta=n$ and

dim ( $\omega_{i}\cap\{\alpha$-leading forms of $Q\}\cup\{0\}$ ) $=c_{i}$ . Note that it follows from Theorem
4.2 that $s=n(n+1)$ . We have the minimum number of generators $\geqq\sum_{s\leqq i<s+n}c_{i}$

$=n$ . Q. E. D.
To finish this article we list several remarks.
REMARK 1. The curves given in this section are ideal theoretically highly

non-complete intersections. Are they set theoretic complete intersections?
REMARK 2. From some point of view it is very important to have many

examples of curves which are idealtheoretic non-complete intersections to Pnd
out a set theoretic one if there is any. What are other examples which share
the property of unboundedness of generators?

REMARK 3. M. Hochster suggested that examples of analytically irre-
ducible prime ideals which require a large number of generators probably
could be constructed by specializing Macaulay’s curves.

REMARK 4. R. Harthorne gave (cf. 3.4.5 of [5]) a prime ideal (of space
curves) in $k[[x, y, z]]$ which required 3 generators. J. Herzog extended the
above result. In fact he has established (cf. [6]) for a certain class of curves
either two or three generators are sufficient while for some members three
generators are necessary. Lately J. Roberts had some unpublished examples
which included one prime ideal in 7 variables which needed 9 generators,
and generally in $(2r-1)$ variables there are prime ideals which need $(r-1)^{2}$

generators.
REMARK 5. In the construction of $\{P_{n}\}$ of this section the restriction on

$m$ , namely $m=(n+1)/2$ , is not necessary. It suffices to pick $m\geqq(n+1)/2$ .
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