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In this paper we continue the investigation of quasi-permutation modules
over finite groups, begun in [4] and [6]. The notation and terminology are
the same as those in [5].

Let /I be a finite group and denote the projective class group of the
integral group algebra ZII by C(ZII). Let £,; be a maximal order in QI
containing ZII. As in [5] we put C(ZII)={[A]—[ZII1< C(ZII)|% is a pro-
jective ideal of ZII such that 2, UPL =2, B 2,1} and CHZII) ={[A]—[ZIT]
e C(ZII)| YU is a quasi-permutation projective ideal of ZII}. We further define
CQ(ZH): {{U]—[ZII] e C(ZII)|¥U is a projective ideal of ZII such that APS
=ZII DS for a permutation //-module S}.

In we raised the following basic problem on quasi-permutation pro-
jective modules :

‘For a finite group II C(ZIT)=Cy(ZII)?’

It was proved in [5] that if /I is an abelian group or a p-group where
p is an odd prime, then the answer to the problem is affirmative.

This study is mainly centered on this problem. We will show that, for
a fairly extensive class of finite groups, the answer to the problem is affir-
mative. But we will also give some examples of finite groups /I such that
cuzIly < C(zi).

First we will give the following :

LI1 The induction theorems hold for the functors CN(Z-), C«Z-) and C‘Q(Z-).

A finite group Il is said to be of split type over @ if any simple com-
ponent of QII is isomorphic to a full matrix algebra over its center.

As an application of [I] the following result can be shown.

[II] Let Il be one of the following groups:

(1) a nilpotent group whose 2-Sylow subgroup is of split type over Q;

(2) an extension of a p-group whose subgroups are of split type over @ by

a cyclic group of order prime to p.
Then C(ZITY=Cy(zZIT)=CcYZII).

Next, using the Rosen’s theorem ([14]) and the Artin’s theorem ([1]), we
prove the following :

CIII]  Let II be one of the following groups:
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(1) a semidirect product of a cyclic normal subgroup of order n and a
cyclic p-subgroup such that (p, n)=1 where p is an odd prime;
(2) a dihedral group D, of order 2n.
Then C(ZITy=Cu«ZIT)y=CYZII).
Furthermore, applying [I] and [III], we get the following :
[IV] Let II be one of the following groups:
(1) the projective special linear group PSL(2, p’) where p is a prime and
F=z0;
(2) the Janko simple group J,;
(3) the symmetric group S,, n<T1.
Then C(ZIT)=C«(ZIT)=C«ZII).
On the other hand, the following result can be deduced from the Artin’s
theorem and the Mackey’s subgroup theorem.
CV] Let IT be one of the following groups:
(1) the semidirect product of the cyclic normal subgroup C=<{¢> of order
15 and the cyclic subgroup P=<{z) of order 4 such that z7'ot=0?;
(2) the alternating group A,, n=3, 9.
Then CY(ZIT) <& C(ZIT).

§1. The induction theorems.

Let F be a Frobenius functor and let M be a Frobenius F-module (for
the definitions see [117]). Let M be a class of finite groups. For any finite
group Il we define Fn(Il) (resp. Mx(Il)) to be the sum of the images of the
maps ix: FUII— FI) (resp. MUIT")—M(I)) for all i: II’< II with II' M.
The following result is the most important one in the theory of Frobenius
modules.

(A) (117, (38.4).) Suppose that e-F(II)<S Fn(Il) for some positive integer
e. Then e-M(I) < My(IT).

Let R be a Dedekind domain and let I be a finite group. We will denote
the Grothendieck ring of RIT by G(RIT) ([16]). The functor G(R:) is the
most typical Frobenius functor.

From now we will assume that K is an algebraic number field and that
R is the ring of all algebraic integers in K. € will denote the class of all
cyclic groups. €x will denote the class of all K-elementary groups and,
especially, ® will denote the class of all hyperelementary groups. Now the
well-known induction theorem can be stated as follows:

(B) ([16]) Let II be a finite group. Then:

(1) [|-GQIIN S Ge(QIT) (Artin).

(2) Gep(KII)=G(KII), and especially Go(QIT)=G(QII)

(Brauer-Witt-Berman).
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Let II be a finite group and let £z; be a maximal R-order in KII con-
taining RII. We denote by C(RII) and C(2g:) the (reduced) projective class
group of RII and gy, respectively. Then we have the natural epimorphism
v: C(RII)—C(2zn) (e.g. [5]). Put 5(RH):Ker v. Then we easily see that
CRIN={[A]-[RIJeC(RIT)| Y is a projective ideal of RII such that 2z APB2rn
= QpnP e} = {[AJ—[RI] = C(RI)|A is a projective ideal of RII such that
ADX=RIIPX for some finitely generated RII-module X} (e.g. [5], (2.4)).
R.G. Swan proved in [16], §9 that the functor C(R-) is a Frobenius G(KX:)-
module so that by (A) and (B) the induction theorem holds for C(R-).

We first give

THEOREM 1.1. The functor C(R-) is a Frobenius G(K-)-submodule of C(R-).
Let Il be a finite group. Then:

Q) |-Gzl CyzI).

@) CeRIT)=C(RIT) and especially Co(ZIT)=C(ZIT).

ProOOF. The second part of the theorem is an immediate consequence of
(A), (B) and the first part. Hence we only need to prove the first part. Let
Il be a finite group, let /I’ be a subgroup of I/ and let i: II’— Il be the
inclusion map. In[16], § 9 the following maps have been defined : (i) i : C(RII")
—C(RII); (ii) *: C(RII)—C(RII"); (iii) p: G(KII)X C(RI[)—C(RII). In fact
Swan proved that these maps make C(R-) a Frobenius G(K-)-module. Accord-
ingly it suffices to check a) ix(C(RII')) <= C(RIT), b) i#*(C(RII)) < C(RII") and
w(G(KIT) x C(RITY) < C(RIT).

a) Let [ ]—[RII'] be an element of C(RII’). Then there is a finitely
generated RII’-module X’ such that W@ X' = RII'H X’. Tensoring this with
RII over RII’, we get (RIYI(EXH),%I’)@(RH;XH),X’) = RH@(RH@X’). This implies
that ix((A]—CRI'])=[RI QW]1-[RIl]e C(RI).

b) This is evident.

¢) By the definition of g it suffices to show that u(GRIT)xC(RII))<
C(RII). Let [W]—[RI1C(RI) and [M1=G(RII) where M is a finitely
generated R-projective RI[-module. Then we have AP X = RIIP X for some
finitely generated RI/-module X. Tensoring this with M over R, we get
(M(%)%I)EB(M;X)X) E(M(%R]I)EB(M@X). Since M is R-projective, both M(%)QI
and M@RH are RII-projective ([16], Prop. 5.1). Therefore p(CMJIX([AJ—
[RID)=[MQUI-[MQRI]e C(RID).

COROLLARY 1.2. C(2g.) is a Frobenius G(K-)-module.

PROOF. By the definition of C(R-) we have C(2z.)=C(R-)/C(R-). Since
C(R-) is a Frobenius G(K-)-submodule of C(R-) by (1.1), C(2z.) is a Frobenius
G(K-)-module.

COROLLARY 1.3 (Reiner-Ullom [12]). Let II be a finite p-group. Then
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G(Z]Z) is a p-group.

PrROOF. In case I is cyclic this can easily be proved ([2], p. 604, (5.9),
etc.). Therefore in the general case this follows from (1.1), (1).

Let R be a commutative ring with unit element. Let I/ be a finite group.

t
We define B(RII) to be the abelian group given by generators [ & RII/II}]
=1
where I1{, I1}, ---, II, are subgroups of II with relations

[(D RIS (& RIT/TI=L S RI/TI+LS RI/T.

Then it is clear that B(R-) is a Frobenius functor.
Now we consider the case where R=Z. Here we have the commutative
diagram of Frobenius functors:
a

B(Z-) ~————> G(Z)
iﬁ N lr
B(Q-)- G@Q-)
where 8 and y are epimorphisms while @y is a monomorphism. It is easily
seen (e.g. [16], Prop. 4.1) that |I7|-B(QII) < Beg(QII). Further we have

PROPOSITION 1.4. Let IT be a finite group. Then Be(QII)= B(QII).

ProoF. This can be seen, for example, in the Swan’s proof of the Witt-
Berman induction theorem ([16], §4). In fact, let p be a finite group with a
cyclic normal subgroup ¢ such that the extension 1—o—p—p/0—1 splits.
As in the proof of [16], Lemma 4.4 we can make Qo a Qp-module. Then,
for any subgroup ¢’ of o, we can find a subgroup p’ of p such that Qo/o’
=Qp/p’ as Qp-modules. Further it is easily seen that B(Qo)=G(Qo). Hence
a function f, in [16], Lemma 4.5 can be chosen in Bg(QII). Therefore, along
the same line as in the Swan’s proof ([16], p. 564), we can prove that Be(QII)
= B(QII).

REMARK 1.5. The monomorphism agz: B(QII)—G(QII) is not always an
isomorphism. In fact, J.-P. Serre noted in [15], p. 120, Ex. 4 that if IT is the
direct product of a cyclic group of order 3 and a quaternion group of order
8, then B(QII)< G(QII). Recently J. Ritter proved in that if Il is a
finite p-group then B(QII)=G(QII). For further informations, see (3.3), (5.3)
and [17].

Asin we define C{ZID)={[A]—[ZII1<C(ZI])| N is a quasi-permutation
projective ideal of ZII}. Further we define 5‘1(ZH)= {(A—-[ZIMeCZIH|A
is a projective ideal of ZII such that APS=ZIIPHS for some permutation
IT-module S}. Then both CX(ZIT) and CZII) are submodules of C(ZII) and
CozIly < C(zIl) n cx( ZI).

THEOREM 1.6. The functors C¥Z-) and (~3‘1(Z-) are Frobenius B(Q-)-sub-
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modules of C(Z-). In particular, for any finite group II, CL(ZII)=C%ZII) and
Ca(zIly=C(zIT).

PROOF. Both C%Z-) and C%Z-) are clearly Frobenius B(Z-)-submodules
of C(Z-). Since C(Z-) is a Frobenius B(Q-)-module, we have ker 8-C(Z-)=0.
Therefore both C%Z-) and C%Z-) are Frobenius B(Q-)-submodules of C(Z-).
The second part of the theorem follows immediately from the first part, (1.4)
and (A).

§2. Restatements of the problem.

Let II be a finite group. Let A; be the set of all subgroups of II and
let By be the set of all subgroups II’ of Il such that ZIT/Il’ satisfies the
Eichler’s condition (¢) ([5]). Weput To=( @ ZII/II"B( & [ZII/II")®).

nI'eBy n'edAn—-Bn

Let Cy be the class of all (finitely generated Z-free) I/-modules. Let M,
M eCy. We write M~ M’ if M, =M, for every prime p. Further we write
M=M if M~ M and 2,1M = Q,:M'. For M Cyr we put yy={X < Cp| X= M}
and denote by |7x| the number of all isomorphism types in 7.

PROPOSITION 2.1. For any finite group II the following statements are
equivalent:

(1) Any II-module L with L =Ty is a quasi-permutation module.

2 Gz < cyz).

Proor. (1)=(2): Let [A]—[ZIT] e@(ZH). There is a /T-module L with
L~=Ty such that AP T,=ZIIPL. By hypothesis L is a quasi-permutation
IT-module. Therefore [5], (1.4) shows that % is a quasi-permutation /I-module.
(2)=@1): Let L be a Il-module with L=T,;. Now there is a projective ideal
A of ZIT such that Ty@®ZI = LY. Hence [AI—[ZIM]eC(ZII). Then by
hypothesis % is a quasi-permutation I7-module, and therefore L is so.

PROPOSITION 2.2. For any finite group II the following statements are
equivalent:

(1) [TTH!:L

(2) There exists a faithful quasi-permutation II-module N satisfying (e)

such that |Ty|=1.

(3) Czimy=C«zIT).

Proor. (1)=(2) is evident and (1) © (3) can be shown in the same way
as in the proof of (2.1). Hence we only need to prove (2)=(1). To prove
this let L be a IT-module with L=T;. Then LON=T;P N because |7y|=1.
Since N is a quasi-permutation /7-module, there exists an exact sequence

0 N S S 0

where S and S’ are permutation I/-modules. Taking the pushout of
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LON=TON—-T;PDS, we get the commutative diagram with exact rows

l
LDS

and columns:

The second row and column of this diagram split and so
LPSPS' =2 X=T,HSEHS .

Using the cancelation theorem we get L=Ty. This shows that |7r,|=1.
REMARK 2.3. Let II be a finite abelian group. Let © be the set of all
subgroups, 117, of IT such that IT/II’ is cyclic and put T::HG}@ZII/H’. In [5],
=

(4.2) we have shown that if % is a quasi-permutation projective ideal of ZIT
then ADT=ZIIDT. However the proof of it in [5] was fairly complicated.
To prove this it suffices to show that |77|=1 because é(ZH)=Cq(ZH) by
[5], (2.5). Using £z instead of N in the proof of (2.2), (2)= (1) we can easily
show that |77|=1 along the same line as in the proof of (2.2).

LEMMA 2.4. Let II be a finite group and let A be a hereditary order in QI
containing ZII. Then |Tx»|=1. Let 2 be a maximal order in QII containing
A. Then the natural map 1: C(A)—C(2) is an isomorphism.

Proor. First we will prove the second assertion. It is clear that ¢ is
an epimorphism. Hence we only need to show that ¢ is a monomorphism.
Let 9 be a locally free ideal of 4 such that QA =QII. Then we can show
as in [5], (2.4) that AP L= AP LA, If QUPL=2P 2, then AP RP= AP 2.
Since 4 is hereditary, 2 is A-projective, and therefore AP AL = AP AP for
some [=0. This implies that ¢ is a monomorphism. Let M be a II-module
such that M~ A®, Then M can be regarded as a /-module. Since A®
satisfies (¢), we have QM=0® Hence the second assertion shows that
M=AM=A®. This proves that |7,»|=1.

PROPOSITION 2.5. Let Il be a finite group and suppose that there exists a
hereditary order A in QII containing ZII which is a quasi-permutation II-
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module. Then C(ZIT)=C«(ZID).

PRrROOF. By (2.4) we have |7,»|=1. Hence the IT-module A® satisfies
the condition (2) in (2.2).

Let II be a finite group. As usual we define the representation ring
A(ZIT) of ZII to be the abelian group with one generator for each MeCy
and relations [MPM,]=[M,]+[M,] and [M]=[M’] when M= M’. There
exists the natural ring homomorphism wy: B(ZII)— A(ZII). We denote the
image of wy by BA(ZII).

The torsion part of an abelian group A is denoted by t(A).

PROPOSITION 2.6. For any finite group Il the following statements are
equivalent:

(1) Any quasi-permutation IT-module L with L~ Ty satisfies L= Ty.

(2) t(BA(ZID)=0.

(3) cu«zm)<Cz).

Proor. (1)=(2): Let [S1—-[S]etBA(ZIl)). Then we have S~
There is a quasi-permutation I/-module L such that To@S=LPHS’. Since
L~Ty, L=Ty; by assumption. Hence [S]1—[S1=[L]1—-[T1=0 in A(ZII).
Thus {B4(ZI1))=0. (2)=(3): Let U be a quasi-permutation projective ideal
of ZII. Then there is a quasi-permutation I/-module L such that ADT,
=ZIIPH L. By definition there exist permutation //-modules S, S’ such that
LBHS' =S, Hence [A]—[ZII=[L]—[Ty]1=[S]—[TrHS’1=0in A(ZII). This
shows that [QI]—[ZH]E@(ZH). (3)=(1): Let L be a quasi-permutation I7-
module with L~ T;. Then we can find a quasi-permutation projective ideal
W of ZII such that LP ZIT=T,DA. Since CUZII) S CzIh, up zll = zZI S ZI1.
Therefore LPZI® =T, PZI® so that L=Ty.

PROPOSITION 2.7. For any finite group II the following statements are
equivalent :

(1) Any quasi-permutation II-module L with L~Ty 1is isomorphic to Thy.

(2) t(B(ZI))=0.

() cuzi)=C«z).

ProOOF. This can be proved in the same way as in (2.6).

REMARK 2.8. We can show that wy: B(ZII)— A(ZII) is a monomorphism
(i.e., BAZI)=B(ZIT)) if and only if C«(ZI)=C(ZIT)nCY(ZII).

§ 3. Nilpotent groups and cyclic extensions of p-groups.

We begin with

PROPOSITION 3.1. Let II be a finite group which is a cyclic extension of a
p-subgroup. Then CYZIT)=CYZII).

PrROOF. By the Conlon’s theorem ([3], (8.1)), we have #(B(ZII))=0. There-
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fore this follows immediately from (2.7).

The following theorem is a generalization of [5], (3.4), (1) and (3.9), (1).

THEOREM 3.2. Let IT be a finite nilpotent group. Then CYUZIT)=C(ZID).
Furthermore suppose that the 2-Sylow subgroup of II is of split type over Q.
Then C(ZIT)=CuZIT)=C(ZID).

PROOF. For each prime p||/]| we denote the p-Sylow subgroup of /I by
I, By (1.1) and (1.6) it suffices to prove the theorem in the case of I/ =
II®x I’ where II’ is a cyclic group with p+m=|II"|. In this case the first
part of the theorem follows directly from (3.1). Further, if p is odd, we
have shown in the proof of [5], (3.4), (1) that there is a faithful quasi-
permutation //-module N such that |7y|=1. Hence (2.2) implies that 5(2]])
=Cy(zIl).

Now it remains to prove that 6(217):6‘1(2]]) under the assumption that
II=1II®x1II" where II® is of split type over Q and /I’ is a cyclic group of
odd order m. Let U,, U,, -+, U, be the isomorphism types of irreducible QII-
modules. We will construct a quasi-permutation I7/-module N; such that
Q@Niz U; and |7y;|=1. Since 2+m there exist an irreducible QI/‘”-module

V. and m;|m such that U;= Vi(?Q[Cmi]. Let &, be the rational character

of II® afforded by V; and let X; be an absolutely irreducible character of
IT® such that (X, &)+0. By the Feit’s theorem ([6], (14.3)) there exist a
subgroup II; of II® and an absolutely irreducible character X; of II} such
that X;=Xi*, Q(X;)=QX}) and II}=1II;/Ker X} has a cyclic normal subgroup
of index 2. Then it is clear that mg(X;) =mg(X}). Accordingly we can find
a rational character & such that &,=&* and (X}, &)+0. Since II®® is of
split type over Q, mg(X;) =mqo(X;)=1, and so each II} must be cyclic, dihedral
or semidihedral. Let V; be the irreducible QIIi-module with character &
and let A; be the maximal order in Q(X;). Then there exists a quasi-permuta-
tion IT}-module N} such that Vi= Q@N’ and Endzni (N})=A; (see the proof

of [5], (3.4)). We put N; —(ZH‘Z’(X)N’)@Z[C,M] Then N; is clearly a quasi-
permutation II-module. Because 2+m A; (X)Z[C,M] is a Dedekind domain. It
is easily seen that Endzz(N;)= A, ®Z[Cm] and therefore, by [5], §3, (E),

|7x,/=1. Finally put N:té_]% N;. Then N is a faithful quasi-permutation I7-

module such that |7y|=1. Again by (2.2) this concludes that C(ZI=C(ZI).
REMARK 3.3. J. Ritter proved that, if /] is a finite nilpotent group whose
2-Sylow subgroup is of split type over Q, then B(QII)=G(QII). However
this result follows immediately from (1.4) and [6], (14.3).
Let II be a finite group which is a semidirect product of a cyclic normal
subgroup C=<o) of order n and an abelian p-subgroup P such that pin.
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Then we have QI = E{IB QI /(®,(0)). For every m|n the abelian p-group F
acts naturally on C. Denote the kernel of this action by P, and let QP,

s(M

=@ Q(,m) be the decomposition of @QP, into simple algebras. Then
i=1 K

QII/(®,(c)) can be expressed as the direct sum of the crossed products
Z'm,i:A(S‘Qém); Q(Cmplém)% P/P'm,>

where each @™ is a {{,m)-valued 2-cocycle of P/P,. Now it is easily seen
that the image of ZII in X, ; coincides with the crossed product

Am,i:A((p§m)y Z[Cmpl,f:’”‘)]’ P/Pm) .
RO
Put A= P 4,,,;. Then 4 is an order of QII containing ZII.

min i=1

LEMMA 34. Let II, ¥, and A, be as above. Then each A, ; is a here-
ditary order in X, ; which is a quasi-permutation II-module.

PROOF. Since p+n the extension Q(,,um)/Q(,,m)"Fm is tamely
ramified. Hence the crossed product Am,i is a hereditary order in Zm,,; (e. g.
[18]). We denote the kernel of the natural projection P,—Q({,im) by Pp;.
Then P,/P,, is cyclic and An;=4(¢{™, Z[Lppim], P/Pui| Pu/Pny). There-
fore we may assume that P, is cyclic. Let |P,|=p" and P,=<z). Then
Api=ZI/(D,,,,(s7)). As in the proof of [5], (2.3) we can show that
ZIT1/(®,,,.(07)) is a quasi-permutation /I-module. Consequently A,; is a
quasi-permutation I7-module.

PROPOSITION 3.5. Let Il be a finite group whose Sylow subgroups are abelian.
Then C(ZIT)=C(ZII).

Proor. To prove this we may assume by (1.1) and (1.6) that II is hyper-
elementary. Then II is expressible as the semidirect product of a cyclic
normal subgroup C and an abelian p-subgroup P such that p+n=|C|. Let
A be the order of QII containing ZII as given in the preceding lines of (3.4).
Then (3.4) shows that 4 is a hereditary order in QII which is a quasi-
permutation //-module. By (2.5) this concludes that 5(ZH):5‘1(ZH).

THEOREM 3.6. Let Il be a finite group which is an extension of a p-group
P by a cyclic group C with p+|C|. In case p=2 suppose that all subgroups of
P are of split type over Q. Then Cq(ZH)zéq(ZH)zé(ZH).

PROOF. By (3.1) we have C«ZII)=CZII). Hence we only need to show
that éq(ZH):é(ZH). Let II’ be a hyperelementary subgroup of II. We
can write

1 (04 I P’ 1

where C’ is a cyclic group and P’ is a p’/-group such that p’+|C’|. When
p'=p, PSP so that II’=P'xXC’. Hence CYZII"Y=C(ZII") by (3.2). On the
other hand, when p’# p, P’ can be considered as a subgroup of ¢’ and there-
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fore P’ is cyclic. So we can deduce the same conclusion from (3.5). Using
(1.1) and (1.6) we get C«(ZIT)=C(ZI).

§4. Metacyclic groups.

Let /I be a finite group which is a semidirect product of a cyclic normal
subgroup C=<{o) of order n and an abelian p-subgroup P with p+n. Then for
each m|n there exists the natural homomorphism g, : P—Aut C/{c™™). We
denote the kernel of y, by P,.

Now we suppose that P,={1}. Then both QII/(®,(s)) and ZII/(®,(0))
can be identified with the trivial crossed products 4(1, Q(,), P) and
4Q, Z[L,], P), respectively. We denote 4(1, Q(,), P) and 4(1, Z[{,], P) by
2, and 4,, respectively. By (3.4) 4, is a hereditary order in 2,. Further
let A,=Z[¢,] and R,=Z[{,1?. Then A, can be considered as a 4,-module.
If Mis a 4,-module, Hom, (A, M) can be regarded as an R,-module.

LEMMA 4.1. Let II, 4,, A,, R, be as above.

(1) Let II' be a subgroup of II. If |II'| is a power of p, then
Hom,, (A, AngZﬂ/H’)EAZ’ as R,-modules, while, if |Il’| is not a power of

P, Homy,(A,, /1,,(28;]2]]/17’) is a torsion R,-module.

(2) Let A be a projective ideal of ZII. Then A, A=A, as A,-modules if
and only if Homy,(A,, 4,0)= A, as R,-modules.

Proor. The first assertion can easily be proved, and the second assertion
is only a special case of the Rosen’s theorem ([14], p. 22, Theorem 8).

Here we return to the general situation. Let n=gkg% ... g¥ be the de-
composition of n=|C]| into prime factors where ¢,, ¢, -*, ¢; are distinct primes,
and put ri:jl;[iq?f and C,=<¢"". Then P acts on each C,. We denotes the

number of the suffixes, 7, such that P acts nontrivially on C; by m{I).

THEOREM 4.2. Let II be a finite group which is a semidirect product of a
cyclic normal subgroup C and a cyclic p-subgroup P with p+|C|. Suppose that
II satisfies one of the following conditions:

a) pis odd;

b) p=2 and m(I[)<1;

c) p=2 and P,+ {1};

d) p=2 and |P|=2.
Then C(ZIT)=C(ZIT) = Cc«ZI).

PrROOF. By (3.5) we have 5(ZII):5‘1(ZH). Hence we only need to prove

m)

that Cq(ZH)gCN(ZIZ). Let n=|C|. Let /1:698@ An; be the order of QII

min t=1

containing ZII as given in the preceding line of (3.4). Let 2 be a projective
ideal of ZII such that AH S, = ZI[ DS, for some permutation //-modules S,
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and S,. Now to prove that C¥ZIT) < C(ZIT) it suffices to show that /IR, (S5 g
= A D An,; for each m|n and each 1<i<s"™, Using the induction on 7 it
suffices to show this in case m=mn. Let II’=+ {1} be a subgroup of II. If
[Il’| is not a power of p, then I’ ~C=+ {1}, hence An,igZﬂ/H’ is a torsion

module. If |/I’| is a power of p, then II’ is conjugate to a subgroup P’ of
P. Suppose that P,# {1}. Because P is cyclic, we have P’ P, + {1}, and
therefore /In,i;@H)ZIY/II’zAn,i%)ZH/P’ is also a torsion module. Tensoring

APS, = ZIIPS, with 4,; over ZII and eliminating the torsion parts from
both sides, we get 4, , AP A, =4, DA, .

Next suppose that P,={1}. Then s =1 and 4,=4,, is the trivial
crossed product 4(1, Z[{,1, P). We put A,=Z[¢,] and R,=Z[{,]F. Let
Py, Dy, -+, b, be all the primes of A, ramified over R,, and, for each 1=<j=7,
denote by T; the inertia group of p;. Since P is a cyclic p-group, the set of
all subgroups of P is linearly ordered. Therefore there is the largest sub-
group T=T,, in {T;}is;s,. Then the extension AZ/R, is unramified and the
prime ideal p=p;, has the ramification index |T'| in A,/AZ. Let A,=2 A,u.

=T
<A, Then 4} is the R,-subalgebra of 4,. Let I’ be a p-subgroup of I1.
Then I’ is conjugate to a subgroup P’ of P. Regarding /In@Zﬂ/H’ as a
Al-module, we easilv see that
ALE: P13 when TS P’

A QZI/ =A,QZIT /P =] T *)
zi b2 [Aw & ZCT/PI?" when T2 P’

Tensor ADS, = ZII DS, with A, over ZII and eliminate the torsion parts from
both sides. Then we have

A %D D[4, QZIH /P 177" = A,D D [4,RQZI /P ]°r?
pcp -z pcp " zm

for some integers 7p and sp.. Localize both sides at p and regard them as
(4y)p-modules. Using the same argument as in [14], pp. 14~15, it follows from
(*) that 7p.=sp, for any P"C7T. Hence we may assume that 7p =sp, =0 when
P'CT. Applying the functor Hom, (A, ) to them, we get, by (4.1), (1),

Homy, (An 4, 20@ @ [APIR =A@ @ [AT)ee.
TeP'eP TCP'CP

Here every AZ'/R, is unramified because T& P'E P. Therefore, if p is odd,
it follows from the Artin’s theorem ([1], [7]) that every AL is R,-free. Hence
we have Homy,(4,, 4,A)= A, as R,-modules. By (41), (2) this shows that
A A=A, If p=2 and |P|=2, we have P/=P or P’={1} and, if p=2 and
m(II)=1, we have T=P. In each of these cases we also have Hom, (A,, 4,%)
=~ A, as R,-modules. Hence it follows from (4.1), (2) that 4,A=4,. In the
case where p=2 and P, # {1}, the assertion has already been proved. Thus
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the proof of the theorem is completed.

If II does not satisfy any of the conditions a)~d) in (4.2), it does not
always hold that C«ZIT)=C%ZII). In fact we have

ExAMPLE 4.3. Let C=<o) be a cyclic group of order 15 and let P=<z)>
be a cyclic group of order 4. Define the homomorphism y¢: P— AutC by
p(z)(e)=0* and let II be the semidirect product of C and P defined by pg.
Then we have P,;={1} and m([)=2. R,;=AL is the maximal order in
Q(+/—15). Further we have T=<{¢%. It is easily seen that A% is the maximal
order in Q(+/—3, 4/5). Using the Artin’s theorem we can show that A% is
not R,;-free. Then by (4.1) and (*) in the proof of (4.2) there exists a non-
principal ideal b of R,; such that A15§ZH/T§A15@A15B as A,s-modules.

Since both /115;(1§Z)ZH/T and A,; are quasi-permutation //-modules, A6 is also

a quasi-permutation //-module. Now there exists a projective ideal % of ZII
such that APA,,=ZIIP A, ;5. Then U is clearly a quasi-permutation /7-module.
However we have A, & A;,. This implies that C«(ZIT) & &(ZIT)=C«(ZII).

COROLLARY 4.4. If I is a finite group of squarefree order, then C(ZII)
=CyzIly=CcyzIl).

PRrOOF. This follows directly from (1.1), (1.6) and (4.2).

Next we consider another type of metacyclic groups.

PROPOSITION 4.5. Let Il be a finite group which is a semidirect product
of a cyclic normal subgroup C and a p-subgroup P of order p. Then é(Z[])
=Cy(ZzIl).

Proor. Let n=|C| and put C=<{o) and P=<{z)>. There exists an integer
v such that t'¢tr=¢". Then (n,7)=1 and *?’=1modn. Now we have
Qﬂzﬁ%@ﬁ/@m(o)). For m|n QII/(®,(c)) is commutative if and only if

m|r—1. If m|r—1 we denote the maximal order in QI1/(®,,(¢)) by A,,.. Then
A, is clearly a quasi-permutation /7/-module. On the other hand, if m+r—1,
QI /(D ,(0)=M,(Q&)E). Put A,=Zl/(D,(0)) and A,=Z[{,]. Then 4,
can be considered as an order in M,(Q({,)?). Regarding A, as a A-module,
we easily see that A, = Am%) ZIl /P as A,-modules. Hence A, is also a quasi-

permutation /7/-module. Further it is seen that End,,(A,)= AL . Therefore,
by [5], §3, (E’), we have |74,|=1. Let N=@ A,. Then N is a faithful

min

quasi-permutation I7/-module such that |7y|=1. Therefore it follows from.
(2.2) that C(zIl)=C(zII).

It should be noted that (4.5) is not a special case of (3.5).

THEOREM 4.6. Let D, be the dihedral group of order 2n. Then C(ZD,L)
=C4ZD,)=CYZD,).

PROOF. By (4.5) we have C(ZD,)=C%ZD,). 1f 2+n, we have C(ZD,)
=C%(ZD,) by (4.2) and, if n is a power of 2, we also have C(ZD,)=C«ZD,)
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by [5], (3.9). Hence we only need to prove that Cq(ZDn)gé(ZDn) under the
assumption that 2|n and 7 is not a power of 2. Let {0, z} be the generators
of D, satisfying the relations ¢"=7*=1 and t"'ec=¢"'. The group D, con-
tains subgroups <{o'z), 0=<1<n—1, of order 2 and every {o'r) is conjugate
to {z) or {oz)>. Now we have QDn:m@ QD,/(D,(s)). When m=1 or 2,

QD,/(@,(0)) is commutative and we denote by £, the maximal order in
QD,/(®,(s)). On the other hand, when m>2, QD,/(®,(0))=4Q1, Q(,), {z>)
=My (QEn+EC)). Put A,=ZD,/(@n(0))=A(, Z[LaT, <z>). Then A, is a
Z[,n+Ca 0-order in QD,/(@,(s)). Let £,, be a maximal order in QD,/(®,(0))
containing 4,. We put =@ £2,. Then £ is a maximal order in QD,

min
containing ZD,. Let % be a projective ideal of ZD, such that AP S, = ZD, DS,
for some permutation D,-modules S, and S,. To prove that Cq(ZDn)gé(ZDn)
it suffices to show that £,A =%, for each m|n. Using the induction on n
we only need to show that £2,%=£2,.

Suppose that % is odd. Then 4, is a hereditary order in QD,/(®,(0)).

Regarding A,=Z[{,] as a 4,-module, we have Hom,,(A,, Anz@ ZD,/{t))=As>
and Homy,(A4,, /Iny@ ZD,/{otd) = AL by (4.1). However we have A;*>=

Ag>=Z[¢,+ 5. nTherefore, as in the proof of (4.2), we get 4,% =4, hence
A=02,.

Next suppose that 4|n. Now put v=¢,—(' and w=1+4{,. Then o(v)
=—v and o(w)=_;'w. Since n is not a power of 2, both v and w are units of
A,. We can define 4,-homomorphisms f: 4,(1+7)—A4,(1—7) and g: 4,(1+07)
— A, (14+7) by f(14+7)=v(l—7) and g(1+o7)=w(1+7), respectively. Then it
is easily seen that both f and g are isomorphisms. Accordingly we have
A,(1—7)= A,(14+7)= 4,(1407) as A,-modules. Let II’ + {1} be a subgroup of
D,. If I’ n<o) +# {1}, A"z@ ZD,/Il" is a torsion module. On the other hand, if
II'"\<{e)={1}, I’ is conjugate to <{z) or {or) and so /lné% ZD,/ 11" = A,(1+7)
= A,(1+07). Tensoring UDS,=ZD,PBS, with 4, over ZD, and eliminating
‘the torsion parts from both sides, we get

AU AP BLA+)ID = 4, AP DLA 1+

Hence we have
2,4Q 2P OLA1+0)] = 2, D P L2, (1+7)]%.
‘There exists an exact sequence:
0 — Ay(l—7) — 4, — A,(1+7) — 0.

From this we get 2,=22,01—7)@®2,(1+7). Since A,(1—7)=A,(14+7), this
shows that 2, =[2,(1+7)]®. Thus we get 2,A=0,.
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§5. The projective special linear group, the symmetric group,
the alternating group, etc.

In this section we will apply the induction theorems to some types of
finite groups.

LEMMA 5.1. Let Il be a finite group and let P be an elementary abelian
2-group. If C(ZI)=CYZIT)=C«ZII), then C(ZIxP))=CZUIIx P))=
CUZUI x P)).

ProOF. As this is easy, we omit it.

THEOREM 5.2. Let II be one of the following groups:

(1) the projective special linear group PSL(2, p*) where p is a prime and

fz0;

(2) the Janko simple group J,;

(3) the symmetric group S,, n<7.

Then C(ZIT)=C(ZIT)= c«(zII).

PROOF. By the induction theorems (1.1) and (1.6) it suffices to show that
Gzt =C«zIl"y=C«ZIT") for every (maximal) hyperelementary subgroup
11’ of II.

(1) Let II =PSL(2, p’). Then all the subgroups of I/ are completely
determined by the Dickson’s theorem (e.g. [8], (8.27)). It can easily be shown
that any hyperelementary subgroup /I’ of II has one of the following forms:

a) an abelian group;

b) a dihedral group;

¢) a semidirect product of a cyclic normal subgroup of order p and a

cyclic ¢g-subgroup where g is a prime such that g|p—1.
Therefore the result follows from (3.2), (4.6) and (4.2).

(2) Let II=], be the Janko simple group ([10]). The order of /I is
2%.3-5-7-11-19. A 2-Sylow subgroup of /7 is elementary abelian and all Sylow
subgroups of /7 of odd order are cyclic. All the maximal subgroups of I7
are given in [10]. We easily see that each maximal hyperelementary sub-
group I’ of Il has one of the following forms:

a) an abelian group;

b) a semidirect product of a cyclic normal subgroup of order m and a

cyclic p-group of order p such that p+m;

¢) a direct product of a cyclic group of order 2 and a dihedral group;

d) a maximal hyperelementary subgroup of PSL(2, 11);

e) a semidirect product of a cyclic normal subgroup C of order 15 and

an elementary abelian 2-subgroup P of order 4 such that P acts faith-
fully on C.
In the cases a), b) and c) the assertion follows from (3.2), (4.2), (4.6) and (5.1),



712 S. Enpo and T. MivaTA

and in the case d) the assertion has been proved in (1). Suppose that /I’
has the form e). Then, for every subgroup P’ of P, Z[ (P is Z[{s)P-free.
Therefore we can prove the assertion in the same way as in the proof of
4.1).

(3) All the maximal hyperelementary subgroups of S,, =<7, can easily
be determined. If n<6, the assertion follows directly from (3.2), (4.2), (4.6)
and (5.1). A maximal hyperelementary subgroup [I’ of S, for which the
assertion does not follow directly from the preceding results is conjugate to
123), 23)yx4567), (46)) (=2=D,xD,). However, in this case, it is clear
that C«(ZII’) < C(ZII"Y=C(ZIT’). Further, using [5), §3, (E’), we can construct
a faiEhful quasi-permutation /7’-module N such that |7y|=1. Therefore we
get C(zIl")=C(ZIT") by (2.2).

REMARK 5.3. It can be shown that B(Q/I)=G(QII) for II as in (5.2), (1)
and (2), and it is well known that B(QS,)=G(QS,) for any n. We will show
in our forthcoming paper that C(ZS,)=C(ZS,)=C1(ZS,)=C%ZS,) for any n.

LEMMA 5.4. Let IT be a finite group and let I1’ be a subgroup of Il such
that Ny(IT")=1II". Suppose that C(ZII'y & C(ZII') and that CH(ZII")S C(ZII")
for every proper subgroup II” of II’. Then C4ZII) « Gz,

PrOOF. Let 9’ be a quasi-permutation projective ideal of ZII’ such that
(W ]—[ZI1']& C(ZIT"). Then Zl]éSI;QI’ is a quasi-permutation projective ideal

of ZIl. Suppose that [ZH%W]{Z[[]eé(Zm. According to [3] (2.4),

there exists a I7-module M such that (ZH;@I;QI’)EBM; ZIT P M. Regarding

both sides as //’-modules, the Mackey’s subgroup theorem shows that
@z _1)(oZH’§%’)]@M;H@I[ZH’ & _1)(aZH’§ZH’)]@M,

g’ ZUl'Noll'o Zl'Noll'g

where the sum is taken over all (/7/, I")-double cosets of II. Since Nz(II’)
=Il', I[I'Noll’'67* S II’ for any II’¢ll’ #1I’. However each oZIY’g@l;IQI’ is a
quasi-permutation projective I’ Noll’67*-module. Hence by hypothesis
[oZH’ﬁ,%I’]—[aZH’g%ZH’]eé(Z(H’maH’a“)) for any Il'¢Il’ +1II’, so that
[ZII! ® (oZI'QU)—[ZII' Q (oZI'QZzIN1eC(ZIl") for any
ZI'Noll’'c™1) ZI ZUI'Nell’6™1) ZI

II'gIl" +#II'. Therefore we can find a //’-module M’ such that AP M’ =
ZII"PM’. This implies that [QI’]—[ZH’]EE(ZH’) which is a contradiction.
Thus we have [ZII @ W[z« C(ZIT).

PROPOSITION 5.5. Let A, be the alternating group of degree n. For n<6
C(zA,)=CYZA,)=CYZA,). But, for n=8, 9, CY(ZA,) € C(ZA,).

ProoF. It is well known that A, = PSL(2,9). Hence the first part of the
proposition follows directly from (the proof of) (5.2), (1). Suppose that I]=A,
or A, and put II'=<12345)(678), (2354)(67)>. Then II' is a subgroup
of II with Nz(II’)=1II" which is isomorphic to the group as in (4.3). Hence
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we have C4(ZII") & C(ZII’). Furthermore by (4.2) CY(ZII")=C(ZII") for any
proper subgroup 1”7 of II’. Thus (5.4) concludes that C«(ZIT) < C(ZII).
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