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Let M be a compact orientable C* manifold and g a C* Riemannian metric
on M satisfying ’

(0.1) j V=1

where dV is the volume element of M measured by g. We denote the set
of all such metrics by H(M) or M. When g is fixed we have a Riemannian
manifold (M, g).

Let us take a covering {U} of M by coordinate neighborhoods and denote
the local coordinates in U by x". In each neighborhood U we use the natural
frame. Then the components of the curvature tensor of (M, g) in U is given

Kkjih:ak{]}-li}_aj{ Zi }"'_{ k}i’) }{ﬁ }_{jffb }{ lfr}

where {]};} are the Christoffel symbols derived from the components g;; of

g, Latin indices run the range {1,:--,n}, and the summation convention is
adopted. The Ricci tensor and the scalar curvature are given respectively
by

K;=Kp;?, K:gﬂKji
where g7' are defined by g;,g**=402 Similarly all tensors will be expressed
in terms of their components.

In a Riemannian manifold (M, g) indices can be raised and lowered by
g7 and g;; so that for example K*"=K,, "g%gg" are the contravariant
components of the curvature tensor. Thus Kj;;,K*/** is a scalar. Considering
this at each point of M we get a scalar field.

Now let us consider the integral

Jlgl={ Kdv,,

where we write K, and dV, for K and dV respectively in order to emphasize
that these depend on the metric g J[g] is the image of g by a map
J: MM)—R. Critical points of this map are known as FEinstein metrics.
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M. Berger studied the second derivative of J[g(#)] for curves g(t) of M(M)
and showed that it is not true that the index of J[g] and also the index of
—J[g] are finite for every critical point [I]. Recently the present author
proved that the index of /[ g] and the index of —J[g] are both positive at
each critical point [6]. This result diminishes our interest in J to a certain
extent.

Let us consider the integral

ITgl= fMKkjinKk”hd V.

Then [ is also a mapping [: H(M)—R. This integral has a remarkable
property that /[ g] is non-negative and moreover that, if M does not admit
a locally flat metric, then I[ g7 is strictly positive.

If » is a diffeomorphism of M and 7»* its pull back, we have [[g]l=
ITyp*(g)]. Hence we can deduce a mapping I:9%/9—R from the mapping
I: H%— R where 9 is the diffeomorphism group of M and /9 is the space
of orbits generated by 9 of Riemannian metrics [2].

If 2 is a critical point of I, then the orbit of & by 9 is a critical point
of T and vice versa. In this case let us say that g is a critical point of T for
convenience sake. This convention is useful since there can exist no local
minimum, in the strict sense, of the mapping I but fmay possibly have a
local minimum and the present paper concerns this.

Some years ago M. Berger obtained differential equations of g for the
critical point, namely the critical Riemannian metric, of the mapping / [1].
In the present paper it is shown that a metric of constant curvature is a
critical Riemannian metric. Moreover, the second derivative of I[g(?)] at a
critical point is calculated and the following Main Theorem is obtained.

THEOREM. If M is diffeomorphic to S™ and g is a metric of positive con-
stant curvature on M, then the index of I and also of T at g is zero and I has
a local mintmum at 2.

§1. Critical Riemannian metric.

Here and in the sequel we write

(L) ILg]= [ Ky K*i*dV .

We have dropped M and g in this formula. A C* curve in H will be
represented locally by g;(x* -+, x™; t) and we define a tensor field D;; on
(M, g(®)) by

(12) Dyx, ty= 2245 D)

ot
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This symmetric (0, 2)-tensor satisfies

(1.3) [Dyrdv=0
because of [0.1).

The curvature tensor K,,* changes with g and we get [6]
0
(1.4) ”a‘t“Kkjih:kajih_VjDkih
where the tensor D;* is defined by

)

and satisfies

1
(1.5) Dt =-5~(V;D*+V:D*~V"Dy,)

and V means covariant differentiation with respect to the metric tensor g(f).
As we have

~a7g”’ = —g“g""»aat—gk j=—D",
we get
a k'ih_a h 1~ @ kd yjC 10
‘E‘“(KkjihK / )—*a?(Kkji 208 %°87°8 G na)
=2V, D, "=V ;DM K*rit,
+ K ji" Kooy (—D*'g7°g " gna—g** D' gha
—g* g D¥gy,+28*'g7°g*" Dya) .

Substituting (1.5) into this formula and taking some property of the curvature
tensor into account, we can deduce

(16) D (KoK = 4K T,7,D 2K, KD,
Now, from [1.I)] we get
%I[g(t)] = ‘f [gT(Kkjithjih) +%Kka”“hngqp]dV .
Substituting into this and applying Green’s theorem, we get
4 ITe(t= [[4TT.K)D,"
—2K, ,.;ZKWDM+—§—Kk,.ihKWDpp]dV :

‘Then, applying Ricci’s identity and Bianchi’s identity, we get



Curvature and critical Riemannian metric 689

W7 Lrew= [[eVVK-4v, 97K 4K, K

_4qupqup___2Ksrqusrq1:+___%_deachbagji]DjidV .

A point g is a critical point of I if and only if (1.7) vanishes at =0 for
all curves g(f) such that g(0)=Z. Let us consider the integral which is
obtained from the right-hand member of (1.7) by replacing g(t) with 2. Then
we can say that Z is a critical point of I if and only if this integral vanishes
for all tensor fields D;; satisfying in which g is replaced with 2. Thus
we see that Z is a critical point of I if and only if

(1.8) VIV K— 4V NP K 4+ 4K K — 4K LK
- 2KSTQstrqi+'%7chba.KdCbagji - ngi

is satisfied by g=g and some constant ¢. Precisely, ¢ is obtained by trans-
vecting with g;;, hence

(19) c= —%VPVPK+ (_%___%_> chbachba. .

Thus we get the following theorem [1]. .

THEOREM 1.1. Let M be a compact orientable C* manifold and M be the
space of Riemannian metrics on M satisfying (0.1). Then a necessary and
sufficient condition for a Riemannian metric g to be a critical point of the
Sfunctional (1.1) is that (1.8) is satisfied by this metric g where ¢ is a constant
in M. At that time ¢ is given by (1.9).

ExamMpPLE. If M is diffeomorphic to S®, M admits a Riemannian metric
of positive constant curvature. Then

K
(1.10) Kyjin= "";L'(‘n—__fl)*(gkngji—gjngki)
satisfies with

2
e= (5= ) w1y -
Hence this metric is a critical point of the functional with the critical
value
2K*
n(n—1) *

Now, the purpose of the present paper is to prove the following theorem
‘which is equivalent with the Main Theorem stated in the introduction.

THEOREM 1.2. Let M be a C* manifold diffeomorphic to S™. Then the
mapping T: M/D— R given by the functional (1.1) has a local minimum at the
Riemannian metric § of positive constant curvature (1.10).
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§2. The second derivative of I[ g(¢)].

In order to prove the main theorem let us first calculate the second
derivative I”[ g(t)] for an arbitrary curve g(t) of .
If we define W7 by

(2.1) Wit =2V K—4Y NP K/ 4 4K7 KP'—AK TP

_ZKsrqusrqi +%chbachbagji ,

we get
0g;s 0°g; 1 0gj ., 0
@2 I'le S (S e ) 4V
where
oWt _ 9 0 :
(2.3) =25 VY K=,V K
4%(1(%“) (K@;qu) 2 (TR )

+ ; aalt (chba[(dcbagji) .

From the definition of D;;" we have the following identity which is valid

for any C= tensor field depending on ¢ differentiably, for example T
(2.4) DT =T, 2T DT D T

Applying this identity to the first and the second terms in the right-hand
member of (2.3), we get

2.5) DK =3 (¢9g77,7,K)
= —Di?Y, Vi K—D*YV, K

i 0 i
+ VIV K— DI, K,

_a_ b4 ji_i qap jt

(2.6) SV VK =2 (g T, K7

= —D®Y,V, K
+g®(— D"V, Ki' 4 Dy 3, K74 Dy, K77)

2,7, 2 KI5 4D, K4 D,, KT

From and (1.5) we get



.7)

(2.8

(2.9)

(2.10)

(2.11)

(2.12)
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%Kﬁ =—D?K,'—DPK,I

+—3-(V, VD T,V D#—T VP DA—TIT D7) ,

D K= DK,y 7,9, D7, 9D,

0 . )
(K KP)
— _D#K,, KP'— DYk, K?— KD, K7

A KT, WD 4T,7, DT, 77D~V 9/D,?)

A KO, D+ T,9, DT, 97D, =V, D, ),

DK )
— K,y KD J (DY KP4+ DP K,
+3- KV, D, V77, D~V Dy,
VD,V ¥, DIV, VD,)
+—%—Kfqp"(V,V‘1DPT+V,VquT—VTVTD‘“’—VQVPD,T) ,
D KTIK,

=(V Vs DI+ N Dy —N NI Dy, ) Ko
+(V ¥y D+ Vo Dyt =V VD, K€%
. Kbsijas‘r‘iDba-_KSDTstaTiDba
— K™K, Dy,
D (KoK
=(4K**N VyDog— 2K, K4 D ) g7

_chbachbaDji .
Applying (1.5), and (2.8) we get from and (2.6)"
0 gigi
—a—t—V’V K

(2.13)

= — DY VK~ DuY VK
+VIVi(—DPK,,+Y N, D®—Y VD, P)

__%__(ijiq_l_viqu_leDﬁ)vqK,

1y
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In this paper VAB always means (VA)B. Thus we have V(AB)=VAB+AVB.
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@) VT

= ‘—ququiji-—VqurVTKﬁ—!—%V'quer”
(D147, D=7 D,,) VKT
(VD 4+, D, =D, VK

+5-2(T, D4V, D= D, K™

+-9-97(T, D, + 7, Dy =D, ) K

— (DI, DK~ D S~V T D
_4_;,1,,_:7 VsDji—%——1~VjViD s)
2 s 2 s .
Let us define F by
(2.15) Fe @g{i D,

and the notation = by A= A4-divergence. Then we get
(2.16) F=D,[ —4D"V, V'K

+ 209V (— DK, +V ¥, D —,V4D,7)
— VDY, K+V1DiV, K+4D%wY Y, K7t
+4Y, D%V, Kii—279D 7V, Kt
—8(V, D+, D —7D ) VP
— 4V, D+, D, —V'D,,) K?!
42V, VUADIP K, — 2V, VDY NP DI 4TI D, P)
—8DIUK,, KP'—4K#D,, K
+ 4K,V D P+, ¥, D?P—Y NPD i —V ViD,?)
+4K, ., KD +4K7 (DU K,?+ D?" K, 9)
—2K®(7IY, D, 4V, D, '—ViV'D,,

— Y,V D=V ¥, D4V VD,)
—2K7,}(N, VDTN, NP D -V, N"D?—VV?D,")
— 4K Ny D'+ N, D, —V V'D,,)
+4KbqpraqpiDba_|_qupijqpaiDba
@KV Ty Deg— Koo KD ) g7

___%_chbachbaDji] )
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This formula is valid for any value of £

We now want to evaluate the integral (2.2) at t=0, namely, at a critical
point.
As we have W/i=cg’t at t=0, we get

L7 0% 1 0g 0
e[ rea( e+ g ey av

where [ ], means that we have put {=0.

From [(0.1) we get

J.[gji‘a‘;‘%—i_DﬁDjﬁ-%(Dpp)z]dV::O )

Hence we can deduce
(2.17) IrLg1={Gdv
where G is given by
~ 2 ]- 2 cha i
(2.18) G = FH{—=V, 7K+ <T“T>Kd°'w KD, D ]0 ,

for we have (1.9).

§3. The integrand of /”[g(0)].

According to M. Berger and D. Ebin [1], we can deduce properties
of the Hessian of I[g] at a critical point Z if we study I”[g(0)] for all
curves g(f) such that g(0)=2 and such that the tensor field D;;=[0g;:/0t],
satisfies V/D;;=0.

If D;; satisfies

3.1 VD, =0,
we get
3.2) VD = Ki, DV + K7,*D?

and D;;V/T*=0 for any vector field 7" on M. Applying such results we get
after some straightforward calculation

(3.3) = —4D;; DIV N K—=2D ;N DUV K
+D V9DV, K+4D,;, D,V , K7
—2V4D, DV, K7
—8D;i(V, Dy +V, Dy — V7D, )V K P
—4D (V0¥ D+ KD J— KitD ) K7
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+2V,99D (4D K, — 2,7,  D"P— 2K, D" 4- NIV D P+ ,97 D7)
—8D,, DI K, K7

44D ;; K19(K ., DP—Y V7D —V VD ,?)
+4K,,' K D™D,

—2K®(2D ;N9 D, —D ;NN D, ,— D ;¥ ¥, D)
—2D,, K70, {2(K, 2,7 DV + K, 2 DP")— ¥, N7 DI —VV? D, "}
+2D;; KK 3,7 D,

—4D ;; KV ¥ Dy'—V VD)

+4K%P K "Dy, D

+2K%%Y ¥, D,q D7

— Ky KD, D,

(=29, VK2 K 10y K% D, D"
at t=0, that is, at §=g(0).

§4. I"[g(0)] when g(0) is the metric of constant curvature.

If g(0) is a metric of constant curvature, we have

Kijin=—77—7v (8rn&ji—8in&ri) »
n(n—1)

dedj i 2K* 4
K Jchb - 712(71—1) gj ’

kqpifi h K* kj ik ki 5 jh
K*PIK @ — n2(n—1)2 {(n—2)g igth4-gkigity

and V,K*=0, V,K=0.
Hence we get from (3.3)

~ i ji 2K ji ji
G =2V,9D,{VIViD,?+V, V7D’ i) (87 Dy D’ )}
2K

—T

2K 2K 1y
_n—m::D_(qugji_Dji){ n D7*—

D ;i V4D

2K
n(n—1

) (Dppgji_ D”)
—V, V2D —ViVD, P}

4K? ”
Ty P’
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“Wfil——-[g—l)—Dﬁ(qujDiq—VqV‘lDﬁ)
_%DQQVTVTDJ 2(2;( 7 (D,P)?

since such terms as D,;;V/V:D,? are divergences because of [3.1).
We use Ricci’s identities and identities such as and get

2V,V9D VIV, P = —2VIV, VD,V D,?

=- n(n—1)

by virtue of [3.1) We also get

D K
DV, V9D = s D D

and finally
“.1) G =2V, ND; N ,N?D*

4K

D,?V,ND,"

~07+ LD,

— 2K (D”V va;z_AL

_|_ 4(71’ 2) KZD D]‘L

n*(n— 1)2

2(n—3)
nz(n_l)z

§5. Proof of the main theorem.

If we put
(GRY D= er’"%]—gji ,

we get g/°H;;=0. Let us define G,, G, by

KZ(Dpp)Z .

D,?Y D, )

H:Dppy

62 G=2[ VY, v Ky e 20D ey g

—1

(3 Gu=—=[VVHY,VH—— e,

n*(n—1)
Then we have G =G,+G, and

‘(n—1)*

(5.4) I"[ g(0)] :jcldwrj@dv.

It

695
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Writing Af=—V, V?f we get
{@anav=_{rv v, rav
:jqu(vpqupf—f(pqvpfmv

= (v @9, Hav+Erarav,
Since we have
(V992 g AL ) (VT f 4, AF) = (V0921 Y(V,T, ) ——-(AF )7,

we get
frrav={ v ritgar) (9,9, f+-g, A )aV

1 9 K
+—-f@rrav4+—-(fardv,
hence

f(Af)deg%vafvpfd‘V.

It is well-known that, if A, is the first positive eigenvalue of the
equation Ap=2p, and if f satisfies ffd V=0, then

(Vorvravzafrav.
Moreover,

for a space of positive constant curvature [5], [7]. Hence we have

j(Af)Zdv> Yo Dz KijZdV
in our case.

If H does not vanish identically, we have

j(AH)ZdV ( KZ[HZdV [(n 1)2__712(71 1>]K2jHZdV>0

hence szdV>O. Since we have ledVgO always, we have proved
5(G1+G2)dV>0 in this case.

Let us now assume [/ =0. If moreover H;; also vanishes everywhere
on M, we have D;;=0. We need not consider this case. If H;; does not
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identically vanish, we have j‘GldV>O, hence j(G1+G2)dV> 0.

Thus we have proved the main theorem.
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