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\S 0. Introduction.

The field in question is a non-Galois extension $\Omega$ of $Q$ of prime degree
$i>2$ , with the following three conditions:

(i) The Galois closure $K$ of $\Omega$ contains an absolutely cyclic subfield $k$

with $[K;k]=l$ .
(ii) The closure $K$ is abelian over no proper subfield of $k$ .
(iii) The class number $h_{k}$ of $k$ is prime to 1.

Put $d=[k:Q]=[K;\Omega]$ . As is shown in [7], \S 1, the condition (ii) implies
that $d|l-1$ . For each divisor $s$ of $d$ , denote by $\Omega_{s}$ the intermediate field of
$ K/\Omega$ with $[K;\Omega_{S}]=s$ . Furthermore, let $C_{K}$ be the ideal class group of $K$

and $\sigma$ be a fixed generator of the Galois group $G(K/k)$ . Define the integers
$v_{i}\geqq 0,$ $i=1,$ $\cdots,$

$l-1$ , by $(C_{K}^{(1y)^{i-1}}-\{C_{K}^{l} : C_{K}^{(1-\sigma)^{i}}C_{K}^{l})=l^{\nu_{i}}$ . The aim of this Paper is
to prove the following results.

THEOREM 1. Notations and assumptions being as above, let $\{p_{i}\}_{i=1}^{t}$ be the
set of all rational Primes totally ramified in $\Omega$ , and $g_{i},$ $i=1,$ $\cdots$ , $t$, be the order
of the decomposition group of $p_{i}$ in $k/Q$ . Then, for each divisor $s$ of $g=$

$(g_{1}, \cdots g_{t})$ (the $g$. $c$ . $d$ . of $g_{1},$ $\cdots,$ $g_{t}$ ), we have

$d^{(l)}C_{\rho_{S}}=\sum_{J=1}^{(l-1)/s}\nu_{J^{s}}$ ,

where $d^{(l)}C_{g_{S}}$ denotes the l-rank of the ideal class group $C_{\rho_{S}}$ of $\Omega_{s}$ .
If $g$ is equal to $d$ in Theorem 1, we get $d^{(l)}C_{9}$ , and this leads to several

consequences. On the one hand, we obtain $d^{(l)}C_{9}=\nu_{l-1}\leqq\nu_{1}$ in the case
$g=d=l-1$ , and this seems to be a substantial upper bound for $d^{(l)}C_{9}$ . For,
in this case, $\nu_{1}$ can not exceed $t-1$ , and we also know that $d^{(l)}C_{9}\geqq t-r_{9}$ ,
where $r_{Q}$ denotes the number of infinite primes in $\Omega$ (cf. [8]).

On the other hand, we can show that $\nu_{1}=\nu_{2}$ when $K$ is a dihedral ex-
tension and $g=2$ . This gives, together with Theorem 1, the exact value of
$d^{(3)}C_{9}$ for certain non-Galois cubic fields $\Omega$ (Theorem 2, \S 4). It also enables
us to get a generalization to the dihedral case of a theorem of Honda in [3],

which states that 3 $|h_{\rho}$ if and only if 3 $|h_{K}$ in the pure cubic case (Theorem

3, \S 5).
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\S \S 1 and 2 contain preliminary results and Theorem 1 is proved in \S 3.
We list below some notations used throughout this paper.

$l$ ; a fixed prime number $>2$ .
$F_{l}$ : the finite field with $l$ elements.
$C_{F}$ ; the ideal class group of a field $F$ (we mean by a field exclusively

a finite extension of $Q$).
$h_{F}$ : the class number of $F$.

$d^{(l)}C_{F}$ ; the l-rank of $C_{F}$ .
$E_{F}$ : the unit group of $F$.

$t_{F/E}$ : the number of primes in $E$ totally ramified in $F$ (in fact, we use
this only when $F/E=\Omega/Q$ or $K/k$).

$\zeta_{n}$ : a primitive n-th root of 1.
$g=(g_{1}, \cdots, g_{t})$ : as defined in Theorem 1 $(t=t_{9/Q})$ .

\S 1. A reduction step.

Let $F/E$ be a cyclic extension of degree prime to $l$ , and $fi^{i}$ (resp. $\tilde{E}$ ) be
the unramified abelian extension of $F$ (resp. $E$ ) corresponding to $C_{F}^{l}$ (resp. $C_{E}^{l}$)

in the sense of class field theory. As $ll^{\prime}[F:E]$ , the following Proposition is
obvious.

PROPOSITION 1. Let $F_{0}$ be a subextention of $F/F$ which is Galois over $E$

and $E_{0}$ be the maximal subextension of $\tilde{E}/E$ contained in $F_{0}$ . Then $E_{0}F$ is the

fixed field of the commutator subgroup $[G(F_{0}/E), G(F_{0}/E)]$ of $G(F_{0}/E)$ .
Let $F_{0}$ be as in Proposition1 and $\eta$ be a fixed generator of $G(F/E)$ .

Then $\eta$ operates on $H=G(F_{0}/F)$ through the inner automorphism $\rho-\Rightarrow\eta\rho\eta^{-1}$

and $ G(F_{0}/E)=H.\langle\eta\rangle$ (semi-direct product). Since $H$ is a vector space of
finite dimension over $F_{l},$

$\eta$ is represented by a matrix $X$ over $F_{l}w$ . $r$ . $t$ . a
suitable basis of $H$. If we put (by identifying $H$ with the space of column
vectors over $F_{l}$ )

$\overline{H}=\{\left(\begin{array}{ll}I & a\\0 & 1\end{array}\right)|\alpha\in H\}$ , $\overline{X}=\left(\begin{array}{ll}X & 0\\0 & 1\end{array}\right)$ ,

we see
$\overline{X}\left(\begin{array}{ll}I & a\\0 & 1\end{array}\right)\overline{X}^{-1}=\left(\begin{array}{ll}I & Xa\\0 & 1\end{array}\right)$ ,

and hence we obtain $H\simeq\overline{H},$ $ G(F_{0}/E)\simeq\overline{H}.\langle\overline{X}\rangle$ (semi-direct product) and

[X, $\left(\begin{array}{ll}I & a\\0 & 1\end{array}\right)]=\left(\begin{array}{ll}I & (I-X^{-1})a\\0 & 1\end{array}\right)$ .

It is easy to see that $[G(F_{0}/E), G(F_{0}/E)]$ is equal to $(X-I)H$, so we must
know the rank of the matrix $X-I$. Let $X_{1}$ be the Jordan’s normal form of
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X. Then, as the order of $X$ is prime to $l$ , we see that the elements of $X_{1}$

just below the diagonal must be $0,$ $i$ . $e.,$ $X_{1}$ is a diagonal matrix. This proves
the following

PROPOSITION 2. The rank of the elementary abelian $l$-group $G(E_{0}/E)$ is
equal to the multipljcity of 1 appearing as an eigenvalue of $X$ .

\S 2. The descending central series.

Let $k$ be a field with $l\{h_{k}$ and $K/k$ be a cyclic extension of degree $l$.
Fix a generator $\sigma$ of $G(K/k)$ . We have the following sequences of subgroups
of $C_{K}$ and of unramified abelian extensions over $K$ corresponding to these
ideal groups:

$C_{K}\supset C_{K}^{1-\sigma}C_{K}^{l}\supset\ldots\supset C_{K}^{(1-\sigma)^{l-1}}C_{K}^{l}=C_{K}^{l}$ ,

$K\subset K_{1}\subset\ldots\subset K_{l-1}=\tilde{K}$ .

The equality on the right hand side is due to Proposition 1, [4], and $K_{1}$ is
what we denoted by $K_{0}$ in [4]. Put $G=G(\tilde{K}/k)$ and define $G^{(i)},$ $i=1,$ $\cdots,$

$l-1$ ,
successively by

$G^{(1)}=[G, G]$ , $G^{(i+1)}=[G^{(i)}, G]$ .

PROPOSITION 3. $G(\tilde{K}/K_{i})=G^{(i)}$ .
PROOF. $C_{K}/C_{K}^{l}$ is mapped isomorphically onto $G(\tilde{K}/K)$ by the Artin’s

reciprocity map $(^{\underline{\tilde{K}/K}})$ , and each $C_{K}^{(1-\sigma)}iC_{K}^{l}/C_{K}^{l}$ corresponds to $G(\tilde{K}/K_{i})$ under

this isomorphism. The assertion being verified for $i=1$ by Proposition 2, [4],

we assume inductively that $G(\tilde{K}/K_{i})=G^{(i)}$ . Then for any $c\in C_{K}$ , we have

$(\frac{\tilde{K}/K}{c^{(1-\sigma)}i+1})=[\tilde{\sigma},$ $(\frac{\tilde{K}/K}{c^{(1- 09^{i}}})]\in G^{(i+1)}$ ,

where we denoted by $\tilde{\sigma}$ an element of $G=G(\tilde{K}/k)$ extending $\sigma\in G(K/k)$ . The
inclusion $G^{(i+1)}\subset G(\tilde{K}/K_{i+1})$ is equally obvious (note that $\tilde{K}/K$ is abelian and
$G^{(1)}\subset G(\tilde{K}/K))$ . $q$ . $e$ . $d$ .

PROPOSITION 4. Let $\nu_{i},$ $i=1,$ $\cdots$ , $l-1$ , be as defined in Theorem 1. Then
$l^{\nu_{i}}$ is equal to the l-part of the index $(Ck^{1-\sigma)^{i-1}} : ck^{1-\sigma)^{i}})$ .

PROOF. By Proposition 1, [4], the Sylow l-subgroup of $C_{K}/ck^{1-\sigma)^{l-1}}$ is
elementary ( $i$ . $e$ . of type ( $l,$ $\cdots$ , $l$ )). So it suffices to show that the map:
$C_{K}^{(1-\sigma)^{i}}$

‘

$1/C_{K}^{l(1-\sigma)^{i-1}}C_{K}^{(1-\sigma)^{i}}\rightarrow C_{K}^{(1-\sigma)^{i-1}}C_{K}^{l}/C_{K}^{(1-\sigma)^{i}}C_{R}^{l}$ is an isomorphism. The sur-
jectivity is obvious. So let $c\in C_{K}^{(1-\sigma)^{i-1}}\cap C_{K}^{\iota}$ , $c=c_{1}^{l}$ , $c_{1}\in C_{K}$ . Then putting
$a=$ $(C_{K}^{l} : C_{K}^{(1-t)l-1})$ , we get $c^{a}\in C_{K}^{(1-\sigma)^{l- 1}}$ , hence by $l+a,$ $c\in C_{K}^{l(1-\sigma)^{i- 1}}C_{R}^{(1-\sigma)^{i}}$ . $q$ . $e$ . $d$ .
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\S 3. Inertia generators.

Let $\Omega,$ $K$, and $k$ satisfy the conditions (i) to (iii) in \S $0$ , and $\sigma$ and $\tau$ be
fixed generators of $G(K/k)$ and $G(K/\Omega)$ respectively. We have a relation
$\tau\sigma\tau^{-1}=\sigma^{r}$ for some $r\in Z$, and the condition (ii) implies that $d=[k:Q]$ is
equal to the order of rmod $l$ (cf. [7], \S 1). In order to carry out the proce-
dure described in \S 1, we have to find suitable generators for $H=G(\tilde{K}/K)$ .
But as we have seen in \S 2, $H$ has the following sequence of subspaces:

$H\supset G^{(1)}\supset\ldots\supset G^{(l1)}=\{1\}$ ,

(where we put $G=G(\tilde{K}/k)$ ), and each $G^{(i)}$ is invariant under $\tau$ . So, in fact.
it suffices to find convenient generators for each of the factor spaces $G^{(i)}/G^{(t+1)}$ .

This is done exactly as in [5]. Namely, $G(K_{1}/k)$ is an elementary

l-extension. For each prime $\mathfrak{p}$ in $k$ , ramiPed in $K$, denote by $T_{\mathfrak{p}}$ the inertia
group of $\mathfrak{p}$ in $G(K_{1}/k)$ . They are all of order $l$ , and by the assumption 1 $\dagger h_{k}$ ,

their composite coincides with $G(K_{1}/k)$ . So we can choose a basis $\{\sigma_{1}, \cdots , \sigma_{m}\}$

of $G(K_{1}/k)$ such that each $\sigma_{i}$ is a generator of some $T_{\mathfrak{p}}$ . Extend $\sigma_{i}$ to an
element of $G=G(\tilde{K}/k)$ and use the same symbol. Then, by the theory of
$p$ -groups, $\{\sigma_{1}, \cdots , \sigma_{m}\}$ is a minimal system of generators of $G$ .

LEMMA 1. $H/G^{(1)}$ is generated by $\sigma_{j}\sigma_{j+1}^{-1},$ $j=1,$ $\cdots$ , $m-1$ (with a suitable
choice of $\sigma_{j}’ s$ ).

PROOF. The same as we stated in [5], \S 3. $H/G^{(1)}$ is an $(m-1)$ -dimensional

subspace of $G(K_{1}/k)$ and is defined by a linear equation $\sum_{J=1}^{m}c_{j}x_{j}\equiv 0(mod l)$

for the exponents $x_{j}$ of $\sigma_{j}$ . Each $c_{j}\not\equiv 0(mod l)$ , so replacing $\sigma_{j}$ by a suitable
power of it, we can assume that $c_{j}\equiv 1(mod l),$ $j=1,$ $\cdots$ , $m$ . $q$ . $e$ . $d$ .

LEMMA 2. For $i\geqq 2,$ $G^{(i-1)}/G^{(i)}$ is generated by the elements of the form
$[\sigma_{j_{1}}, \cdots’\sigma_{ji}]$ .

PROOF. As $G$ is generated by $\sigma_{1},$ $\cdots,$ $\sigma_{m}$ and $G(\tilde{K}/K)$ is abelian, we have
only to show that the i-variable function $[x_{1}, \cdots, x_{t}]$ mod $G^{(i)}$ is “ multilinear”.
The assertion being verified easily by a direct computation for $i=2$ , we
assume it to be valid for $i-1$ . Then

$[x_{1}, \cdot, x_{i}x:]=[[x_{1}, \cdot, x_{i-1}], x:][[x_{1}, \cdot, x_{i1}], x_{i}][[x_{1}, \cdot , x_{i-1}], x_{i}, x:]$

$\equiv[x_{1}, \cdot, x_{i}][x_{1}, , x_{i}^{\prime}]$ mod $G^{(i)}$ .
For $a<i$ , by the induction hypothesis,

$[x_{1}, \cdot, x_{a}x_{a}^{\prime}, \cdot, x_{i}]$

$=[[x_{1}, \cdot, x_{a}x_{a}^{\prime}, x_{i-1}], x_{i}]$

$=[[x_{1}, \cdot, x_{a}, \cdot, x_{l-1}][x_{1}, \cdot, x_{a}^{\prime}, \cdot, x_{i-1}]y, x_{i}]$
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$=[[\cdot, x_{a}, ][\cdot\prime x_{a}^{\prime}, ], x_{l}][[\cdot\prime x_{a}, ][\cdot\prime x_{a}^{\prime}, ],$ $x_{i},$ $y$] $[y, x_{i}]$

$\equiv[[\cdot\prime x_{a}, ],$ $x_{i}$] $[[\cdot, x_{a}, ], x_{i}, [\cdot, x_{a}^{\prime}, ]][[\cdot, x_{a}^{\prime}, ], x_{i}]$

$\equiv[\cdot, x_{a}, \cdot, x_{i}][\cdot, x_{a}^{\prime}, \cdot, x_{i}]$ mod $G^{(i)}$ ,

where $y\in G^{(i-1)}$ . $q$ . $ed$ .
PROOF OF THEOREM 1. Put $d=sn$ . Then $ G(K/\Omega_{s})=\langle\tau^{n}\rangle$ and we can

apply the procedure given in \S 1 to $F/E=K/\Omega_{s},$ $F_{0}=\tilde{K}$. By the assumption
that $s|g,$ $g=$ $(g_{1}, \cdots , g_{t})$ , $\tau^{n}\langle\sigma_{j}\rangle\tau^{-n}=\langle\sigma_{j}\rangle$ in $G(K_{1}/k)$ , hence we can put
$\tau^{n}\sigma_{j}\tau^{-n}=\sigma_{j}^{a_{j}}x_{j},$ $x_{j}\in G^{(1)}$ . Apply this on $K$. Since $\sigma_{j}$ is non-trivial on $K$, the
relation $\tau^{n}\sigma\tau^{-n}=\sigma^{r^{n}}$ implies the same for $\sigma_{j}$ and we get $a_{j}=r^{n}$ . Now on
$H/G^{(1)}$ ,

$\tau^{n}(\sigma_{j}\sigma_{j+1}^{-1})\tau^{-n}\equiv(\sigma_{j}\sigma_{j+1}^{-1})^{r^{n}}$ mod $G^{(1)}$ .
On $G^{(i-1)}/G^{(i)},$ $i\geqq 2$ ,

$\tau^{n}[\sigma_{j_{1}}, \cdots , \sigma_{Ji}]\tau n\equiv[\sigma_{j1}, \cdots , \sigma_{Jt}]^{r^{in}}$ mod $G^{(i)}$ .
For this we note that the function $[\cdot, \cdots , ]$ is “ multilinear” and
$[x_{1}, \cdot, [y, y^{\prime}], \cdot, x_{i}]\equiv[[x_{1}, \cdot, y, x_{\ell}], [x_{1}, \cdot, y^{\prime}, x_{i}]]\equiv 1$ mod $G^{(i)}$ . On each
$G^{(i-1)}/G^{(i)}$ , therefore, $\tau^{n}$ is represented by a scalar matrix and its eigen-value
is $r^{in}$ , which is $\equiv 1(mod 1)$ if and only if $i\equiv 0(mod s)$ . $q$ . $e$ . $d$ .

\S 4. Calculation of $\nu_{1}$ and $\nu_{2}$ in the dihedral case.

In this section, we assume $d=2$ in the conditions (i) to (iii), so $G(K/Q)$

is a dihedral group of order 21 and $k$ is a quadratic field. Define the integer
$\delta$ by $(E_{k} ; E_{k}\cap N_{K/k}(K^{\times}))=l^{\delta}$ . Then we have two cases:

Case (A): $\delta=0,$ $i$ . $e.,$
$k$ is real and the fundamental unit $\epsilon_{0}$ of $k$ belongs

to $N_{K/k}(K^{\times})$ , or $1=3,$ $k=Q(\sqrt{-3})$ and $\zeta_{3}\in N_{K/k}(K^{x})$ , or $k$ is imaginary and
either $l\neq 3$ or $k\neq Q(\sqrt{-3})$ .

Case (B): $\delta=1$ .
Then by Satz 13, [2], we get

PROPOSITION 5. $\nu_{1}=t_{K/k}-1-\delta$ .
As for $\nu_{2}$ , by Proposition 4, \S 2, it is equal to the exponent of the l-part

of the index $(C_{K}^{1-\sigma} : C_{K}^{(1-\sigma)^{2}})=|C_{K}^{1-\sigma}\cap C_{K}^{G}|$ , where $C_{K}^{G}$ is the subgroup of $G=$

$G(K/k)$ -invariant classes in $K$ So we must find the Sylow l-subgroup of
$C_{K}^{1-\sigma}\cap C_{K}^{G}$ . As we have seen in [5], an ideal $\mathfrak{a}$ in $K$ belongs to $C_{K}^{1-\sigma}$ if and

\langle ) $nly$ if $N_{K/k}(a)$ is a principal ideal generated by an element of $N_{K/k}(K^{\times})$ .
From now on, we assume $g=$ $(g_{1}, \cdots , g_{t})=2$ . We first study the subgroup

$D_{K}$ of $C_{K}^{G}$ generated by G-invariant ideals in $K$. Let $p_{1},$ $\cdots$ , $p_{t},$ $t=t_{\rho/Q}=t_{K/k}$ ,
be the rational primes totally ramified in $\Omega$ . If $l$ is among them, we put
$p_{t}=l$. For each $p_{i}$ , let $\mathfrak{P}_{i}$ be the prime factor of $p_{i}$ in $K$ If $p_{t}=l$ , denote



l-class rank in some algebraic number fields 673

the prime factors of 1 in $k$ and $K$ by I and $\mathfrak{L}$ respectively, and put $\mathfrak{P}_{t}=\mathfrak{L}^{\epsilon}$,
where $e$ is the ramification index of 1 in $k/Q$ . Then the Sylow 1-subgroup of
$D_{K}$ is generated by $\mathfrak{P}_{1},$

$\cdots,$
$\mathfrak{P}_{t}$ (cf. [7], Satz V, VI).

LEMMA 3. If $g=2,$ $\mathfrak{P}_{i},$ $i=1,$ $\cdots$ , $t$ , belong to $C_{K}^{1-\sigma}$ .
PROOF. We take $p_{i}$ as a generator of $N_{K/k}(\mathfrak{P}_{i})$ . Put $Q^{\prime}=Q(\zeta_{l}),$ $k^{\prime}=k(\zeta_{l})$ ,

$K^{\prime}=K(\zeta_{l})$ , and $K^{\prime}=k^{\prime}(\sqrt[\iota]{\alpha}),$ $\alpha\in k^{\prime\times}$ . By virtue of the results in [1], Chapter
III, $p_{i}\in N_{K/k}(K^{\times})$ if and only if $p_{i}\in N_{K^{\prime}/k^{\prime}}(K^{\prime x})$ , and furthermore, the Hilbert’s

norm residue symbol $(\underline{p}_{i}\frac{\alpha}{\mathfrak{P}^{\prime}})$ defined in $k^{\prime}$ depends only on the prime in $k$

under $\mathfrak{P}^{\prime}$ . In particular, we have only to check the symbol for those $\mathfrak{P}^{\prime}’ s$ in
$k^{\prime}$ not dividing 1 (the number of prime factors of $l$ in $k^{\prime}$ is either 1 or 2).

Since $(p_{i})$ is a norm from $K$, the symbol equals to 1 except for the $\mathfrak{P}^{\prime}’ s$

ramified in $K^{\prime}/k^{\prime},$ $i$ . $e.,$ $\mathfrak{P}^{\prime}|p_{j}$ for some $j$ . Note that $p_{t}\equiv-1(mod l)$ if $p_{i}\neq l$

(Satz V, VI, [7]). Now we have three cases:
a) $k$ is not contained in $Q^{\prime}$ .
b) $l\equiv 3(mod 4)$ and $k=Q(\sqrt{-l})\subset Q^{\prime}$ .
c) $l\equiv 1(mod 4)$ and $k=Q(\sqrt{l})\subset Q^{\prime}$ .

But in c), $p_{i}\neq l$ are necessarily decomposed in $k$ and hence we can exclude
this case (if no $p_{i}\neq l$ exists, we have $t=1,$ $C_{K}^{G}=\{1\}$ , and the assertion is
trivial). In case a), let $k=Q(\sqrt{m})$ and put $\tilde{k}=Q((\zeta_{l}-\zeta_{l}^{-1})\sqrt{m})$ . In case b),

put $\tilde{k}=Q(\zeta_{l}+\zeta_{l}^{-1})$ . In both cases, we can find $\alpha\in\tilde{k}^{x}$ such that $K^{\prime}=k^{\prime}(\sqrt[\iota]{\alpha})$

(cf. [6], Chapter IV). Apply the automorphism of $G(k^{\prime}/\tilde{k})$ on $(\underline{p}_{i\mathfrak{P}’}\underline{\alpha}),$ $\mathfrak{P}^{\prime}|p_{j}$ .
Then it leaves invariant $p_{i},$ $\alpha$ and also $\mathfrak{P}^{\prime}$ In fact, by the assumption $g=2$ ,
we can easily see that $\mathfrak{P}^{\prime}$ is inert in $k^{\prime}/\tilde{k}$ . But the automorphism maps $\zeta_{l}$

to $\zeta_{l}^{-1}$ . Hence we must have $(\frac{p_{i},\alpha}{\mathfrak{P}’})=1$ . $q$ . $e$ . $d$ .
PROPOSITION 6. If $G(K/Q)$ is a dihedral group of order 21 and $g=2$ , we

have $\nu_{1}=\nu_{2}$ .
PROOF. If $C_{K}^{G}=D_{K}$ , the assertion is already proved by Lemma 3. By the

formula (7) in the proof of Satz 13, [2], $(C_{K}^{G} : D_{K})=1$ or $l$ , and it is equal to
1 if and only if $k$ is real, $\delta=0$ and $\epsilon_{0}\not\in N_{K/k}(E_{K})$ , or $1=3,$ $k=Q(\sqrt{-3}),$ $\delta=0$

and $\zeta_{3}\not\in 1V_{K/k}(E_{K})$ . The latter case has already been finished in [5], and the
former is done exactly by the same argument. Namely, let $c$ be an element
of $C_{K}^{G}$ not contained in $D_{K}$ and choose an ideal $\mathfrak{a}$ in $c$ . Since $N_{K/k}(\mathfrak{a}^{1+\tau})=$

$N_{K/Q}(\mathfrak{a})$ is generated by a rational number, we have only to show that $\mathfrak{b}=\mathfrak{a}^{1+\tau}$

again belongs to $C_{K}^{G}$ but not to $D_{K}$ (cf. Proof of Lemma 3). Put $\mathfrak{a}^{1-\sigma}=(\beta)$ ,
$\beta\in K^{\times}$ . Then $N_{K/k}(\beta)=\pm\epsilon_{0}^{x},$ $x\not\equiv O(mod l)$ . If we can write $\mathfrak{b}=\mathfrak{b}_{1}\beta_{1}$ with
$\mathfrak{b}_{1}^{1-\sigma}=(1),$ $\beta_{1}\in K^{\times}$ , we get $\beta^{1+(1+\sigma+\cdots+\sigma^{l2})\tau}=\epsilon\beta_{1}^{1-\sigma},$ $\epsilon\in E_{K}$ , hence $N_{K/k}(\beta)^{1+(l- 1)\tau}=$

$N_{K/k}(\epsilon)$ , which is a contradiction, since $\epsilon_{0}^{\tau}=\pm\epsilon_{0}^{-1}$ . $q$ . $e$ . $d$ .
THEOREM 2. If $G(K/Q)$ is isomorPhic to the symmetric group of degree 3,
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$3+h_{k}$ and $g=$ $(g_{1}, \cdots , g_{t})=2$ , we have

$d^{(3)}C_{\rho}=\nu_{1}$ , $d^{(3)}C_{K}=2\nu_{1}$ .

PROOF. Immediate from Theorem 1 and Proposition 6.
REMARK. In the course of preparation of this paper, Mr. G. Gras has

communicated to me another proof of Theorem 2. His proof is based on a
more general study of l-class groups in dihedral extensions (without the as-
sumption (iii) in \S 0).

\S 5. A generalization of a Theorem of Honda.

We first assume that $\Omega,$ $K$, and $k$ satisfy only the conditions (i) and (ii)

in \S $0$ .
PROPOSITION 7. If a prime number $p\neq l$ totally ramified in $\Omega$ is completely

decomp0sed in $k,$ $h_{\rho}$ is divisible by 1.
PROOF. By Satz V, [7], we have $p\equiv 1(mod 1)$ . Let $M_{p}$ be the unique

cyclic extension of $Q$ of degree 1 contained in $Q(\zeta_{p})$ . Then $\Omega M_{p}/\Omega$ is an un-
ramiPed cyclic extension of degree 1. In fact, $\Omega M_{p}/\Omega$ is unramified outside $p$ .
So let $\mathfrak{P}$ be a prime factor of $p$ in $M_{p}K$. Then $\mathfrak{P}$ is ramiPed in $\Omega M_{p}/\Omega\Leftrightarrow \mathfrak{P}$

is ramified in $M_{p}K/K$. But $\mathfrak{P}$ is already ramified in $K/k$ and it can not be
totally ramified in $M_{p}K/k$ . Hence $\mathfrak{P}$ is unramiPed in $\Omega M_{p}/\Omega$ . $q$ . $e$ . $d$ .

Now we can prove the announced result.
THEOREM 3. If $G(K/Q)$ is a dihedral group of order $2l$ and [ $\dagger h_{k},$ $l|h_{\Omega}$ if

and only if $l|h_{K}$ .
PROOF. The “ only if “ part is obvious and we show that $1|h_{9}$ if $l|h_{K}$ .

If either $g=$ $(g_{1}, \cdots , g_{t})=2$ , or there exists a rational prime $p\neq l$ which is
totally ramified in $\Omega$ and decomposed in $k$ , Theorem 1 with Proposition 6 or
Proposition 7 proves the assertion. So assume that $p_{1},$

$\cdots,$
$p_{t-1}$ and 1 are

totally ramified in $\Omega$ and only $l$ is decomposed in $k$ , and put $l=\mathfrak{l}_{1}\mathfrak{l}_{2}$ in $k$ .
In particular, $k\neq Q(\sqrt{-3})$ if $l=3$ . In case (A) (cf. \S 4), we apply the Prop-
ositions 1 and 2 to $ F/E=K/\Omega$ and $F_{0}=K_{1}$ . Let $\sigma$ and $\tau$ be generators of
$G(K/k)$ and $G(K/\Omega)$ as before. We have $\tau\sigma\tau^{-1}=\sigma^{-1}$ . Denote generators of
the inertia groups of $p_{1},$

$\cdots,$ $p_{t-1},$ $\mathfrak{l}_{1},$ $t_{2}$ in $G(K_{1}/k)$ by $\sigma_{1},$ $\cdots,$ $\sigma_{t-1},$ $\rho_{1},$
$\rho_{2}=\tau\rho_{1}^{-1}\tau^{-1}$ .

They make a basis of $G(K_{1}/k)$ and we can assume that $G(K_{1}/K)$ is generated
by $\sigma_{1}\sigma_{2}^{-1},$ $\cdots$ , $\sigma_{t-1}\rho_{1}^{-1},$ $\rho_{1}\rho_{2}^{-1}$ (cf. Lemma 1. Note that if $G(K_{1}/K)$ is defined by

the linear equation $\sum_{i=1}^{f-1}c_{i}x_{i}+ay+bz\equiv 0(mod 1)$ for the exponents $x_{i},$ $y,$ $z$ of
$\sigma_{i},$ $\rho_{1},$ $\rho_{2}$ , we have $a\equiv b(mod l)$ . In fact, we can assume that $\rho_{1}|K=\sigma$ , which
gives $\rho_{2}|K=\sigma$ . By the equation above, we see $\rho_{1}^{b}\rho_{2}^{-a}\in G(K_{1}/K)$ , hence
$\sigma^{b- a}=id.)$ . The matrix $X$ representing $\tau w$ . $r$ . $t$ . this basis has the form
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So by Proposition 2, we get $1|h_{\rho}$ .
In case (B), we can use the same procedure if $\rho_{1}$ and $\rho_{2}$ are linearly

independent in $G(K_{1}/k)$ . If not, we can apply the argument used in the proof
of Theorem 1, and we have to show that $\nu_{2}>0$ if $\nu_{1}>0,$ $i$ . $e.$ , if $t\geqq 2$ . Let

$\mathfrak{P}_{1},$ $\cdots$ , $\mathfrak{P}_{i1},$ $\mathfrak{L}_{1},$ $\mathfrak{L}_{2}$ be the prime factors of $p_{1},$ $\cdots$ , $p_{t1},$ $I_{1},$ $I_{2}$ in $K$, and let $e$ be
the order of $I_{i}$ in $C_{k}$ . Then the Sylow l-subgroup of $C_{K}^{G}=D_{K}$ is generated
by $\mathfrak{P}_{1},$

$\cdots,$
$\mathfrak{P}_{t1},$ $\mathfrak{L}_{1}^{e},$ $\mathfrak{L}_{2}^{e}$ . Just as in Lemma 3, $\mathfrak{P}_{1},$

$\cdots,$
$\mathfrak{P}_{t1},$ $\mathfrak{L}_{1}^{e}\mathfrak{L}_{2}^{e}$ belong to $C_{K}^{1-\sigma}$

(since $l$ is decomposed in $k,$ $k$ is not contained in $Q(\zeta_{l})$ and we are in case a)

of Lemma 3). So if $\mathfrak{L}_{1}^{e}\mathfrak{L}_{2}^{e}\psi 1$ in $K$, we get $\nu_{2}>0$ . Suppose $\mathfrak{L}_{1}^{e}\mathfrak{L}_{2}^{e}\sim 1$ . Then the
Sylow l-subgroup of $C_{K}^{G}$ is generated by $\mathfrak{P}_{1},$

$\cdots,$
$\mathfrak{P}_{t1}$ and $\mathfrak{L}_{1}^{e}$ . Hence some $\mathfrak{P}_{i}$

must be non-principal if $t\geqq 3$ . If $t=2$ , put $I_{1}^{e}=(\lambda),$ $\lambda\in k^{\times}$ . Case (B) means
that $k$ is real and $\epsilon_{0}\not\in N_{K/k}(K^{\times})$ . Then we can choose a power of $\epsilon_{0}$ such

that $\epsilon_{0}^{x}\lambda\in N_{K/k}(K^{\times})(because$ the only norm residue symbol to be checked is

$(\frac{\epsilon_{0}^{x}\lambda,\alpha}{\mathfrak{P}’}),$ $\mathfrak{P}^{\prime}|p_{1}$ in $k^{\prime}$ and we have $(\frac{\epsilon_{0},\alpha}{\mathfrak{P}’})\neq 1$ by $\delta=1)$ . Hence $\mathfrak{P}_{1}$ and $\mathfrak{L}_{1}^{e}$

belong to $C_{K}^{1-\sigma}$ and $\nu_{2}>0$ . $q$ . $e$ . $d$ .
REMARK. As $\nu_{1}\geqq\ldots\geqq\nu_{l- 1}$ , we see that $l|h_{K}$ if and only if $\nu_{1}>0$ .
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