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Introduction.

In this paper we shall determine global monodromy representations of
certain basic elliptic surfaces over a complex projective line $P^{1}(C)$ . Such a
surface has a following normal form (Kas [2]); Let $P^{2}(C)$ be a complex
projective plane with homogeneous coordinate $(x, y, z)$ . We take two copies
$W_{0}=P^{2}(C)\times C_{0}$ and $W_{1}=P^{2}(C)\times C_{1}$ of the $productP^{2}(C)\times C$ and form their
union

$W^{k}=W_{0}\cup W_{1}$ $(k=1, 2, )$

by identifying $(x, y, z, u)\in W_{0}$ with $(x_{1}, y_{1}, z_{1}, u_{1})\in W_{1}$ if and only if

$u^{2k}x_{1}=x$, $u^{3k}y_{1}=y$ , $z_{1}=z$, $uu_{1}=1$ .
Similarly we define

$\Delta=C_{0}\cup C_{1}$ ,

where we identify $u\in C_{0}$ with $u_{1}\in C_{1}$ if and only if $uu_{1}=1$ . For a point
$(\tau, \sigma)=(\tau_{0}, \tau_{1}, \cdots , \tau_{4k}, \sigma_{1}, \cdots , \sigma_{6k})$ in the space $C^{10k+1}$ , we set

$g_{4k}(u)=\tau_{0}u^{4k}+\tau_{1}u^{4k- 1}+\cdots+\tau_{4k}$ ,

$h_{6k}(u)=u^{6k}+\sigma_{1}u^{6k- 1}+\cdots+\sigma_{6k}$ .
Then the basic elliptic surface $B_{k}(\tau, \sigma)$ over $\Delta=P^{1}(C)$ is defined by

$y^{2}z-4x^{3}+g_{4k}(u)xz^{2}+h_{6k}(u)z^{3}=0$ in $W_{0}$ ,

$y_{1}^{2}z_{1}-4x_{1}^{3}+u_{1}^{4k}g_{4k}(1/u_{1})x_{1}z_{1}^{2}+u_{1}^{6k}h_{6k}(1/u_{1})z_{1}^{3}=0$ in $W_{1}$ .
The projection $\Psi$ of $B_{k}(\tau, \sigma)$ onto $\Delta$ is defined by

$\Psi:(x, y, z, u)\leftrightarrow u$

$(x_{1}, y_{1}, z_{1}, u_{1})-u_{1}$ .
We simply denote by $ u=\infty$ the point $u_{1}=0$ on $\Delta$ .

We define two polynomials $D_{k}(u)$ and $\tilde{D}_{k}(u_{1})$ , respectively, by



Monodromy representatjons of homology of certain elliptjc surfaces 297

$D_{k}(u)=g_{4k}^{3}(u)-27h_{6k}^{2}(u)$

and
$\tilde{D}_{k}(u_{1})=u_{1}^{12k}D_{k}(1/u_{1})$ .

We can easily verify that $C_{u}=\Psi^{-1}(u)(C_{\infty}=\Psi^{-1}(\infty))$ is a non-singular elliptic
curve if $D_{k}(u)\neq 0(\tilde{D}_{k}(0)\neq 0)$ . Such a fibre $C_{u}$ is called regular. If $D_{k}(u)=0$

$(\tilde{D}_{k}(0)=0)$ , we call $C_{u}(C_{\infty})$ a singular fibre.
Let $\{a_{j}\}$ be a Pnite set of all points $a_{j}$ ($j=1,2,$ $\cdots$ , r) such that $C_{a_{j}}$ are

singular. Let $\Delta^{\prime}=\Delta-\{a_{j}\}$ . Then $B_{k}(\tau, \sigma)|\Delta^{\prime}$ is a differentiable fibre bundle
over $\Delta^{\prime}$ with tori as Pbres. We fix a base point $0\in\Delta^{\prime}$ and choose a basis
for the first homology group $H_{1}(C_{o}, Z)$ . This determines a representation of
the fundamental group $\pi_{1}(\Delta$ ‘

$)$ into the group $SL(2, Z)$ . We call this repre-
sentation a monodromy representation of homology of $B_{h}(\tau, \sigma)$ or, simply, a
monodromy of $B_{k}(\tau, \sigma)$ . This representation determines a sheaf over $\Delta$ (the

homological invariant of $B_{k}(\tau, \sigma))$ which is locally constant over $\Delta^{\prime}$ with the
general stalk $Z\oplus Z$.

Now, for each point $u\in\Delta^{\prime}$ , we represent the elliptic curve $C_{u}$ as a com-
plex torus with the periods $(\omega(u), 1),$ ${\rm Im}\omega(u)>0$ , and denote by $J(\omega)$ the elliptic
modular function defined on the upper half plane $H=\{\omega|{\rm Im}\omega>0\}$ . Then
defining $\mathcal{J}(u)=J(\omega(u))$ , it follows that

$\mathcal{J}(u)=\frac{g_{4k}^{3}(u)}{g_{4k}^{3}(u)-27h_{6k}^{2}(u)}$

This is called the functional invariant of $B_{k}(\tau, \sigma)$ . Thus we obtain two
invariants, functional and homoIogical, of $B_{k}(\tau, \sigma)$ . Conversely Kodaira proved
the following important theorem.

THEOREM. When a meromorphic function $\mathcal{J}(u)$ on $\Delta$ and a sheaf $G$ over
$\Delta$ belonging to $\mathcal{J}(u)$ are given, it is Possible to construct a basic elliPtic surface
over $\Delta$ having $\mathcal{J}(u)$ and $G$ as its functional and homological invariants.

REMARK. This theorem is valid for arbitrary compact Riemann surface
$\Delta$ . For our purpose we have only to consider the case in which the base
space is $\Delta=P^{1}(C)$ ; for details, see Kodaira [3] p. 578-603.

Though his method of constructing the basic elliptic surface gives us
many detailed results, it is not so easy to obtain global expressions such as
a Picard-Fuchs differential equation of a basic elliptic surface. So we take
the global form $B_{k}(\tau, \sigma)$ of a basic elliptic surface mentioned above and
determine the monodromy of $B_{k}(\tau, \sigma)$ (consequently the homological invariant
of $B_{k}(\tau, \sigma))$ .

In \S 1 we construct an analytic fibre space $F$ over $C^{2}$ which induces
$B_{k}(\tau, \sigma)$ by a certain holomorphic mapping. In \S 2 we calculate the mono-
dromies of $F$ and some $B_{k}(\tau, \sigma)$ . In \S 3 we determine monodromies for cer-
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tain classes of basic elliptic surfaces (Theorem 3.1). As a corollary to this
theorem we obtain the monodromy representation groups of Picard-Fuchs
differential equations.

The author wishes to thank Professor H. Omori for his valuable sugges-
tions. He also expresses his hearty thanks to Professor M. Obata for his
encouragement and careful reading.

\S 1. Analytic fibre space $F$ over $C^{2}$ .
We define an analytic fibre space $F$ over $C^{2}$ as follows; Let (X, $Y,$ $Z$ ) be

a homogeneous coordinate of $P^{2}(C)$ and $(G, H)$ a complex euclidean coordi-
nate of $C^{2}$ . Then an analytic fibre space $F$ is defined in $P^{2}(C)\times C^{2}$ by

$Y^{2}Z-4X^{3}+GXZ^{2}+HZ^{3}=0$ .

The Projection $\Phi$ of $F$ onto $C^{2}$ is defined by

$\Phi:(X, Y, Z, G, H)-(G, H)$ .

Let $E=C^{2}-\{G^{3}-27H^{2}=0\}$ . Then $F|E$ is a differentiable fibre bundle over
$E$ with tori as fibres.

Let $C_{0}=\Delta-\{u=\infty\}$ and $\Delta^{\prime\prime}=C_{0}-\{a_{j}\}$ . We define two holomorphic map-
pings $\varphi$ of $C_{0}$ into $C^{2}$ and $\overline{\varphi}$ of $B_{k}(\tau, \sigma)|C_{0}$ into $F$ by

$\varphi:u-(g_{4k}(u), h_{6k}(u))$

and
$\overline{\varphi}:(x, y, z, u)-(x, y, z, g_{4k}(u), h_{6k}(u))$ ,

respectively. Then we can easily verify
LEMMA 1.1. (1) $B_{k}(\tau, \sigma)|C_{0}$ is a fibre sPace induced by $\varphi$ from $F$ and $\overline{\varphi}$

is a fibre mapping induced by $\varphi$ . In Particular,
(2) $ B_{k}(\tau, \sigma)|\Delta$ “ is a differentiable fibre bundle induced by $\varphi|\Delta^{r}$ from $F|E$

and $\overline{\varphi}$ is a fibre mapping induced by $\varphi$ .
Since $F|E$ is a differentiable fibre bundle over $E$ with tori as fibres, we

can define a monodromy of $F$ in the same manner as in the case of $B_{k}(\tau, \sigma)$ .
It is a representation of $\pi_{1}(E)$ into $SL(2, Z)$ . We fix a point $O\in\Delta^{\prime\prime}$ and
choose a basis $\{\gamma_{1}, \gamma_{2}\}$ for $H_{1}(C_{O}, Z)$ . Let $\rho$ be the corresponding monodromy
of $B_{k}(\tau, \sigma)$ . We denote $\overline{\varphi}_{*}$ the natural homomorphism of $H_{1}(C_{o}, Z)$ into
$H_{1}(C_{\varphi(0)}, Z)$ induced by $\overline{\varphi}$ , where $C_{\varphi(0)}$ is a fibre of $F$ over $\varphi(O)$ . $\overline{\varphi}_{*}$ is an
isomorphism by Lemma 1.1. Therefore $\{\overline{\varphi}_{*}(\gamma_{1}),\overline{\varphi}_{*}(\gamma_{2})\}$ is a basis for $H_{1}(C_{\varphi(0)}$ ,
$Z)$ and determines the monodromy $\overline{\rho}$ of $F$.

LEMMA 1.2. The following diagram is commutative;
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$\pi_{1}(\Delta^{\prime\prime}, O)\frac{\varphi*}{\backslash _{\rho}\nearrow\tilde{\rho}}\pi_{1}(E, \varphi(O))$

$SL(2, Z)$

where $\varphi*is$ the natural homomorphism induced by $\varphi$ .
Next we state Lemma 1.3, which can be seen in [5] p. 102. Choose $(G, H)$

$=(3,0)$ as a base point and let $\lambda,$

$\mu$ be simple loops associated to two real
branches of a curve $G^{3}-27H^{2}=0$ .

LEMMA 1.3. $\pi_{1}(E)$ is generated by $\lambda,$

$\mu$ and subject only to the fundamental
relation $\lambda\mu\lambda=\mu\lambda\mu$ .

REMARK 1.4. In the sequel we use the same letter to denote a loop and
its homotopy class.

\S 2. Monodromy of $F$.
Let $a$ be a point in $C_{0}$ such that the fibre $C_{a}$ is singular. We take a

sufficiently small oriented disk $D_{a}$ around $a$ and put $\alpha=\partial D_{a}$ .
LEMMA 2.1. $C_{a}$ is a singular fibre of type $I_{1}$ , namely it is a rational curve

with one ordinary double Point, if $\varphi(\alpha)$ is homotoPic to either $\lambda$ or $\mu$ .
PROOF. An easy computation shows that $C_{a}$ has no singular point of the

surface if $u=a$ is a simple root of the equation $D_{k}(u)=0$ . On the other
hand we obtain from our assumption that $g_{4k}(a)h_{6k}(a)\neq 0$ and rank $(\varphi(u))_{u=a}$

$=rank(g_{4k}^{\prime}(a), h_{6k}^{\prime}(a))=1$ , where $g_{4k}^{\prime},$ $h_{6k}^{\prime}$ are the derivatives of $g_{4k},$ $h_{6k}$ with
respect to $u$ . Thus $u=a$ is a simple root of $D_{k}(u)=0$ . Therefore $C_{a}$ is a
singular fibre of type $I_{1}$ ([3], Theorem 6.2). $q$ . $e$ . $d$ .

By Lemma 1.3, Lemma 2.1 and the results of Kodaira [3, p. 604] we can
normalize the monodromy $\tilde{\rho}$ of $F$ in such a way that $\tilde{\rho}(\lambda)=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ . Then,

by Lemma 1.3, $\tilde{\rho}(\mu)$ is equal to either $\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}2-d & (d-1)^{2}\\-1 & d\end{array}\right)$ , where $d$ is

an integer. Let $S=\left(\begin{array}{ll}1 & 1-d\\0 & 1\end{array}\right)$ . Then
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$S\cdot\tilde{\rho}(\lambda)\cdot S^{-1}=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$

and

$S\cdot\left(\begin{array}{ll}2-d & (d-1)^{2}\\-1 & d\end{array}\right)\cdot S^{-1}=(_{-1}1$ $01$).

Thus we can take either $\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0\\-1 & 1\end{array}\right)$ for $\tilde{\rho}(\mu)$ . On the other hand

since it must be determined uniquely by $F$, we shall show the form of $\overline{\rho}(\mu)$

by the calculation of the following example.
EXAMPLE A. $g_{4k}(u)=3,$ $h_{6k}(u)=u^{6k}$ .
REMARK 2.2. If $C_{\infty}$ is regular, it suffices to consider a monodromy over

$C_{0}$ . In fact, the matrix which corresponds to $ u=\infty$ is $\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ .
Now $D_{k}(u)=27-27u^{12k}$ . Then the singular fibres of this surface exist

over $u=\zeta_{12k}^{j}$ $(j=1,2, -- , 12k)$ , where $\zeta_{12k}=\exp(2\pi i/12k)$ . Choose loops $\alpha_{j}$

$(j=1,2, ’\cdot. , 12k)$ which start at the origin $0$ , round $\zeta_{12k}^{j}$ in the positive direc-
tion and return to the origin.

We note that $\varphi(u)=(3, u^{6k})$ . Therefore $\varphi(\alpha_{2m})=\lambda,$ $\varphi(\alpha_{2m-1})=\mu(m=1,2, \cdots, 6k)$ .
If we take $\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ for $\tilde{\rho}(\mu)$ , then

$\alpha_{1}\cdot\alpha_{2}\cdot$

$\alpha_{12k}=\left(\begin{array}{ll}1 & 12k\\0 & 1\end{array}\right)$ ,

while $\alpha_{1}\cdot\alpha_{2}\cdot$
$\alpha_{12k}=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ on $\Delta^{\prime}$ (Remark 2.2). This is a contradiction.

Therefore $\overline{\rho}(\mu)=\left(\begin{array}{ll}1 & 0\\-l & 1\end{array}\right)$ . Thus we obtain the following two results.

THEOREM 2.3. If
$\tilde{\rho}(\lambda)=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ ,

then

$\tilde{\rho}(\mu)=\left(\begin{array}{ll}1 & 0\\-l & 1\end{array}\right)$ .
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LEMMA 2.4. When $g_{4k}(u)=3,$ $h_{6k}(u)=u^{6k}$ , the monodromy of $B_{k}(\tau, \sigma)$ is
determined by

$\rho(\alpha_{2m})=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ ,

$(m=1, 2, 6k)$
$\rho(\alpha_{2m- 1})=\left(\begin{array}{ll}1 & 0\\-1 & 1\end{array}\right)$ .

Moreover $\rho(\pi_{1}(\Delta^{\prime}, 0))=\rho(\pi_{1}(\Delta^{r}, 0))=SL(2, Z)$ .
REMARK 2.5. $SL(2, Z)$ is generated by $\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right),$ $\left(\begin{array}{ll}1 & 0\\-1 & 1\end{array}\right)$ and subject only

to the fundamental relation $\{\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)\cdot\left(\begin{array}{ll}1 & 0\\-1 & 1\end{array}\right)\}^{6}=1$ .
Now we examine some other examples.
EXAMPLE $B$ (Elliptic surface of Fermat type, Sasakura [4]). $g_{4k}(u)=0$ ,

$h_{6k}(u)=u^{6k}-1$ . Then $D_{k}(u)=-27(u^{6k}-1)^{2}$ . The singular fibres of this surface
exist over $u=\zeta_{6k}^{j}$ $(j=1,2, \cdots , 6k)$ , where $\zeta_{6k}=\exp(2\pi i/6k)$ . An easy com-
putation shows that all singular fibres are of type II ([3] Theorem 6.2).

Choose loops $\alpha_{j}$
$(j=_{1}1,2, \cdots , 6k)$ which start at the origin, round $\zeta_{6k}^{j}$ in the

positive direction and return to the origin. We note that $\varphi(u)=(O, u^{6k}-1)$ .

$\varphi$

Then $\varphi(\alpha_{j})$ is homotopic to $\lambda\mu$ . Therefore by an appropriate choice of a
basis $\{\gamma_{1}, \gamma_{2}\}$ for $H_{1}(C_{0}, Z)$ ,

$\rho(\alpha_{j})=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0\\-1 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1\\-1 & 1\end{array}\right)$ for all $j=1,2,$ $\cdots$ , $6k$ .

REMARK 2.6. Before examining the next example, we note that we can
make the same discussion over $C_{1}=\Delta-\{u=0\}$ as in \S 1. More generally, let

$u_{2}=\frac{au+b}{cu+d}$ ,

where $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in GL(2, C)$ and $c\neq 0$ . We consider $u_{2}$ as a local coordinate
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over $C_{2}=\Delta-\{u=-d/c\}$ with center $u=-b/a$ or $\infty$ according as $a\neq 0$ or $a=0$ ,
respectively. Let $W_{2}=P^{2}(C)\times C_{2}$ . We identify $(x, y, z, u)\in W_{0}$ and $(x_{2},$ $y_{2},$ $z_{2}$ ,
$u_{2})\in\cdot W_{2}$ if and only if

$u_{2}=\frac{au+b}{cu+d},$ $(\frac{cu+d}{bc-ad})^{2k}x_{2}=X,$ $(\frac{cu+d}{bc-ad})^{3k}y_{2}=y,$ $z_{2}=z$ .

Then this system of coordinate transformations determines exactly the same
analytic Pbre space as $W^{k}$ defined in the introduction and the dePning equa-
tion of $B_{k}(\tau, \sigma)$ in $W_{2}$ is

$y_{2}^{2}z_{2}-4x_{2}^{3}+(cu_{2}-a)^{4k}g_{4k}(\frac{du_{2}-b}{a-cu_{2}})x_{2}z_{2}^{2}+(cu_{2}-a)^{6k}h_{6k}(\frac{du_{2}-b}{a-cu_{2}})z_{2}^{3}=0$ .
We set

$\tilde{\varphi}(u_{2})=((cu_{2}-a)^{4k}\cdot g_{4k}(\frac{du_{2}-b}{a-cu_{2}}),$ $(cu-a)^{6k}\cdot h_{6k}(\frac{du_{2}-b}{a-cu_{2}}))$

for $\varphi$ . Then obviously the same discussion as in \S 1 is valid over $C_{2}$ .
EXAMPLE C. $g_{4k}(u)=3u^{4k},$ $h_{6k}(u)=u^{6k}-1$ . By the above remark we cal-

culate a monodromy over $C_{1}$ . We note that the fibre over $u=0$ is regular
(cf. Remark 2.2). The singular fibres of this surface exist over $u_{1}=0$ ,

$\forall^{k}\overline{2}\zeta_{6k}^{j}$ $(i=1,2, \cdots , 6k)$ . Choose a base point $u_{1}=-\forall^{k}\overline{2}/2$ and loops $\alpha,$ $\alpha_{j}$

$(i=1,2, \cdots , 6k)$ as shown below.

We note that $\tilde{\varphi}(u_{1})=(3,1-u_{1}^{6k})$ . Therefore $\tilde{\varphi}(\alpha)$ is homotopic to $\lambda^{6k}$ and $\tilde{\varphi}(\alpha_{j})$

to $\lambda^{-3k+j}\mu\lambda^{3k-j}$ . Thus
$\rho(\alpha)=\left(\begin{array}{ll}1 & 6k\\0 & 1\end{array}\right)$

and

$\rho(\alpha_{j})=\left(\begin{array}{ll}1+(3k-j) & 3k-j\\-1 & 1-(3k-j)\end{array}\right)$ .

We obtain that the singular fibre over $u_{1}=0$ is of type $I_{6k}$ and the singular

fibres over $u_{1}=\sqrt[k]{2}\zeta_{6k}^{j}$ $(j=1,2, \cdots , 6k)$ are of tyPe $I_{1}$ .
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3. Monodromy and Picard-Fuchs equation of $B_{k}(\tau, \sigma)$ .
In this section we prove the following theorem.
THEOREM 3.1. Let $B_{k}(\tau, \sigma)$ be an arbitrary basic elliptic surface over $P^{1}(C)$

which satisfies the following condition $(^{*})$ .
$(^{*})$ The roots of the equation $D_{k}(u)=0,$ $D_{k}(u_{1})=0$ are all simPle.

Then, by an aPpropriate choice of a base Point $O$ of $\pi_{1}(\Delta^{\prime})$ , a basis for $H_{1}(C_{o}, Z)$

and $\iota_{o0}p_{S}\beta_{j}$ $(j=1,2, \cdots , 12k)$ generating $\pi_{1}(\Delta^{\prime}, O)$ , the global monodromy of
$B_{k}(\tau, \sigma)$ is determined by

$\rho(\beta_{2j})=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$

$(j=1, 2, 6k)$ .
$\rho(\beta_{2j-1})=\left(\begin{array}{ll}1 & 0\\-1 & 1\end{array}\right)$

PROOF. By an appropriate choice of a coordinate over $\Delta$ (cf. Remark
2.6), it suffices to consider the case in which the fibre $C_{\infty}$ over $ u=\infty$ is
regular. First we fix our notation. In the $(10k+1)$ -dimentional complex space
$C^{10k+1}\ni(\tau, \sigma)=(\tau_{0}, \tau_{1}, \cdots , \tau_{4k}, \sigma_{1}, \cdots , \sigma_{6k})$ , we set

$X_{1}=\{(\tau, \sigma)|\tau_{0}^{3}-27=0\}$ .
For a point $(\tau, \sigma)\in C^{10k+1}-X_{1}$ , we denote the discriminant of the algebraic
equation $D_{k}(u)=0$ by $\delta(\tau, \sigma)$ . We may consider it as a polynomial in $\tau,$

$\sigma$ .
We set

$X_{2}=\{(\tau, \sigma)\in C^{10k+1}-X_{1}|\delta(\tau, \sigma)=0\}$

and
$\tilde{X}=C^{10k+1}-X_{1}\cup X_{2}$ .

If a point $(\tau, \sigma)$ belongs to $\tilde{X},$
$B_{k}(\tau, \sigma)$ satisfies the condition $(^{*})$ , and the fibre

$C_{\infty}$ over $ u=\infty$ is regular. We note that the point $(\tau_{0}, \cdots , \tau_{4k-1}, \tau_{4k}, \sigma_{1}, \cdots , \sigma_{6k})$

$=$ $(0, \cdots , 0,3,0, \cdots , 0)$ belongs to $\tilde{X}$ (Example A). From now on we denote
this point by $\Sigma_{0}$ . Let $\Sigma_{1}$ be an arbitrary point in $\tilde{X}$. Since $\tilde{X}$ is arc-wise
connected, we can choose a path $\alpha(t)=(\tau(t), \sigma(t))(0\leqq t\leqq 1)$ in $\tilde{X}$ such that

(1) $\alpha(t)$ depends continuously on $t$ ,

(2) $\alpha(0)=\Sigma_{0},$ $\alpha(1)=\Sigma_{1}$ .
Henceforth we denote by $B_{k}(t)$ and $\Delta(t)$ , respectively, the basic elliptic sur-
face and its base space which correspond to $(\tau(t), \sigma(t))$ . Similarly we denote
$D_{k}(u),$ $C_{0},$ $\varphi(u),$

$\rho,$
$\cdots$ by $D_{k,t}(u),$ $C_{0}(t),$ $\varphi_{t}(u),$

$\rho_{t},$
$\cdots$ , respectively.

Now we define a fibre space $\mathcal{F}$ over the unit interval $I=\{0\leqq t\leqq 1\}$ as
follows: we denote a point in $P^{1}(C)\times C$ by $(u, t)$ , where $u$ is a non-homo-
geneous coordinate of $P^{1}(C)$ . Let $a_{j}(t)$ be the root of $D_{k,t}(u)=0$ such that
$a_{j}(0)=\zeta_{12k}^{j}$ . Then $\mathcal{F}$ is a subset of $P^{1}(C)\times C$ such that the fibre $\mathcal{F}_{t}$ over
$t\in I$ is defined by
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$\mathcal{F}_{t}=\{P^{1}(C)\times t\}-\{(a_{1}(t), t), \cdots , (a_{12k}(i), i), (\infty, t)\}$

$=\Delta^{\nu}(t)$ .
The projection $\phi$ of $\mathcal{F}$ onto $I$ is dePned by

$\phi:(u, t)\rightarrow t$ .
Obviously $\mathcal{F}$ is a locally trivial fibre space. Since $I$ is contractible, $\mathcal{F}$ is
trivial. Thus there exists a fibre mapping $\psi$ of $\Delta^{\prime\prime}(0)\times I$ onto $\mathcal{F}$ such that

(1) $\psi$ is a homeomorphism,
(2) the following diagram is commutative:

$\Delta^{\prime\prime}(0)\times I\frac{\psi}{\backslash ,p\backslash _{I}\nearrow\phi}\mathcal{F}$

where $p$ is the natural projection. Let $\psi_{t}$ be the homeomorphism of $\Delta$ “(0)

onto $\mathcal{F}_{t}=\Delta^{\prime\prime}(t)$ induced by $\psi i$ . $e$ .

$\psi_{t}(u)=\psi(u, t)$ .
We note that $\psi_{0}$ is the identity mapping.

We set $O=\psi_{1}(0)$ and $\beta_{j}=\psi_{1}(\alpha_{j})$ . Then $\varphi_{0}(\alpha_{j})=\varphi_{0}\circ\psi_{0}(\alpha_{j})$ is homotopic
to $\varphi_{1}(\beta_{j})$ , for we can take $(\varphi_{t}\circ\psi_{t})(\alpha_{j})$ as a homotopy. This completes the
proof of Theorem 3.1.

Now we refer to Griffiths ([1], p. 1305) for the general definition of the
Picard-Fuchs differential equation. He stated it as a higher order differential
equation, and it is easy to modify it to a system of equations of the first
order. Then an easy computation shows that the Picard-Fuchs differential
equation of $B_{k}(\tau, \sigma)$ is

$(\#)$ $\frac{d}{du}\left(\begin{array}{l}Y_{1}\\Y_{2}\end{array}\right)=\left(\begin{array}{l}\frac{3\delta_{k}(u)}{2D_{k}(u)}-\frac{1}{12}\frac{d}{du}logD_{k}(u)\\-\frac{g_{4k}(u)\delta_{k}(u)}{8D_{k}(u)} \frac{1}{12}\frac{d}{du}logD_{k}(u)\end{array}\right)\left(\begin{array}{l}Y_{1}\\Y_{2}\end{array}\right)$

where

$\delta_{k}(u)=3h_{6k}(u)\frac{d}{du}g_{4k}(u)-2g_{4k}(u)\frac{d}{du}h_{6k}(u)$ .

As a corollary to Theorem 3.1 we obtain the following.
THEOREM 3.2. If the roots of the algebraic $e\acute{q}$ uations $D_{k}(u)=0,$ $D_{k}(u_{1})=0$

are all simple, then, by an appr0priate choice of a base point, a system of
fundamental solutions of $(\#)$ and loops $\beta_{j}$ on $P^{1}(C)$ , the global monodromy
representati0n $\rho$ of $(\#)$ is determined by
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$\rho(\beta_{2j})=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$

$\rho(\beta_{2j- 1})=\left(\begin{array}{ll}1 & 0\\-1 & 1\end{array}\right)$

$(i=1, 2, ’ 6k)$ .
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