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§1. Introduction.

Let & be a field of characteristic 0. If A is a central simple algebra over
k then [A] will denote the class of A in the Brauer group Br(k) of k. The
Schur subgroup S(k) of Br(k) consists of those algebra classes [A] of Br(k)
such that A is a simple component of the group algebra kG for some finite
group G. Let p be a prime number. Denote by @, the rational p-adic field.
When & is a finite extension of @, for an odd prime p, the Schur subgroup
S(k) has been completely determined in [3, Theorems 1 and 2].

In this paper we will determine the Schur subgroup S(k) for any finite
extension k of the rational 2-adic field Q,. By a result of Witt it has been
known that the order of S(k) is one or two. That is, either S(k)=1, or S(k)
consists of the two classes of Br(k) whose Hasse invariants are 0 and
1/2 (mod 1). For a positive integer n,{, will denote a primitive n-th root
of unity. Let %2 be a cyclotomic extension of @,. Let 2 be the smallest non-
negative integer such that % is contained in Q,({;»,) for some odd integer m.
We will call & the height of k. Clearly, either A=0 or h=2. h=0 if and
only if k/Q, is unramified. In this case k2=Q,({,r-1), f being the residue
class degree of k/Q,, and k({,)/k is ramified. Suppose next that A=2. Set
M =hk({,n) and let f be the residue class degree of M/Q,. It will be shown
that M= Q,({sn, Lor-1) and that M is the minimal cyclotomic field containing &.
Furthermore, if E is the maximal unramified extension of 2 contained in M,
then M=E(,). It turns out that if %({,)/k is ramified, then M/E is also
ramified and 2 =3. In this case, let @ be the generator of the Galois group
of M over E (0*=1). If

Coh="Cn 1

for some integer z, then z mod 2" is determined only by k. Here we state
our main result.
THEOREM 1. Let k be a cyclotomic extension of Q, and let h be the height

of k.

* This work was supported in part by The Sakkokai Foundation.
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(I) Suppose that k(L,)/k is ramified. Then, only the following three cases
happen:

i) h=0.

ii) h=3 and z=—1 (mod 2").

iii) Ah=3 and z=—1+2"" (mod 2").

For the cases i) and ii), S(k) is the subgroup of order 2 of Br(k). For the
case iii), S(k)=1.

(1) If R(L)/k is unramified (including the case {, < k), then S(k)=1.

We will mention an example for each of the above cases: (I-i) 2=0Q,.
(I-ii) k= Qx(v2) C Qx(&s). (I-iil) k= Qu(v'—2) T Qu(Ly). (ID) k= Qx(vV3) T Qu(1),
where k({,) =Q({,) and k({,)/k is unramified of degree 2.

The following two theorems are immediate consequences of [Theorem 1.

THEOREM 2. Keeping the notation of Theorem 1, the ovder of the Schur
subgroup S(k) is equal to the ramification index of the extension k({,)/k except
the case (I-iii), for which S(k)=1.

THEOREM 3. Let K be a finite extension of Q, Let k be the maximal
cyclotomic extension of Q, contained in K. Then we have:

(1) If [K: k] is even, then S(K)=1.

(2) If [K: k] is odd, then S(K)=S(k), and S(k) is determined by Theorem 1.

Notation and Terminology. Let { be a root of unity. Then the field @,({)
is called a cyclotomic field (over Q,). Let ¢ be an element of @,({) and let
K be a finite extension of Q,. Then the field K(d) is called a cyclotomic
extension of K. ¢(K) denotes the group consisting of roots of unity contained
in K. &,(K) (resp. ¢/(K)) denotes the subgroup of ¢(K) consisting of roots
of unity in K whose orders are of 2-power (resp. relatively prime to 2). Let
K and k be cyclotomic extensions of @, such that KDk, Then Q(K/k) is the
Galois group of K over & and for x& K, Ng,;(x) is the norm of x over k.
For o= G(K/k), x° is the image of x by o¢. For a positive integer n, the
multiplicative group of integers modulo n is denoted by Z mod* n. <a,b,-->
is the group generated by a,b, ---.

§2. Preliminaries.

For the remainder of the paper k denotes a cyclotomic extension of the
rational 2-adic field Q,. Let n be a positive integer with n=2%’/, (2,n')=1.
Let f be the smallest positive integer such that 2/=1 (mod n’). It is well-
known that Q.({,) = Q:({sq, {»r-1) and that f is the residue class degree of
Q:(Cs) over Q..

LEMMA 1. Let h be the height of k. Set M=k({,s). Then M is a cyclo-
tomic field (over Q,) and contained in every cyclotomic field which contains k.
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That is, M is the minimal cyclotomic field containing k. If the residue class
degree of M/Q, is f then M=Q,(Cn, Lor o).

Proor. If A=0, the assertions are clear. Suppose that n=2. Let the
residue class degree of 2/Q, be f/ and set K = Q,({,n, {o5r-1). Then {p_ €k,
and so k({,,) DK. Let s be an integer such that L =Q,({,x, {;s_,) D k. Then
LDk(Z,,)DK. Hence [/ divides s and every subfield of L over K is of the
form Qu(Con, Coe_y), f/1, t]s; in particular, so is B({,s). If f is the residue class
degree of k({,,)/Q,, we conclude that k({,n) = Qo(Con, Lor-y)- If Tis a cyclotomic
field containing %, then it follows from the definition of the height & of % that
Lnel, and so IDE(L,s). The lemma is proved.

LEMMA 2. Let h be the height of k. Suppose that h=2. Let L=0Q,(Cyc, Lys_y)
(c=h) be a cyclotomic field containing k and let F be the maximal unramified
extension of k in L. Then F({,)=Qy(lon, Css-1). In particular, if c=~h then
F(&)=L. If k(C)/k 1is unramified, then F=F(,). If k()/k is ramified, then
F()/F is also ramified and F k(L) = k.

PROOF. Since the residue class degrees of L and F over @, are the same,
{,s_, belongs to F. Recall that the extension Q,({,.)/@.({,) is cyclic and that
if I is a subfield of Q.({,.) over Q,({,) with [Q.(C,r): [1=2" then I=Q,(,.-).
Since G(L/Qy(Cys_1, €4)) is canonically isomorphic to G(Q,({,.)/@.(L)) and
F(Z)DQu(Los-1 s, we have F({,)= Qo(Cs1s Czc-t); where 2'=[L: F()] (t=0).
Hence F(Z,) is a cyclotomic field containing k. It follows from that
F)DM=Fk(n) =Q:(len, Cor_1) Dk, f being the residue class degree of M
over Q,. Clearly, the ramification index of the extension F({,)/M is 2¢--",
We will prove that F({,)/M is unramified, so that c—t=h. Suppose first that
k(,)/k is unramified. Then {, € F, for F is the maximal unramified extension
of k£ in L. This implies that F=F({,) and F({,)/M is unramified. Suppose
next that 2({,)/k is ramified. Then {,& F and FNk({,)==F%k. It is evident
that F({,)/F is a ramified extension of degree 2. Since the ramification index
of F(¢)/k is equal to that of k({,)/k, F({,)/k({,) is unramified, a fortiori
F()/M is unramified. The lemma is established.

LEMMA 3. Keeping the notation of Lemma 1, suppose that h+0 and k({,)/k
is ramified. Then h=3. Let E be the maximal unramified extension of k in
M=Fk(,n). Then M=E,) and M/E is ramified. Let {w)=4(M/E) (0*=1)
and {8 ={% for some integer z. Then either z=—1 (mod 2") or z= —14-2""!
(mod 2").

PROOF. Assume that A=2. Then it follows from that M= k()
=Q,(,, Cy5-1), f being the residue class degree of ~({,)/Q.. Hence, if k({,)/k
would be ramified, then 2= Q,({,s_,) and so the height % of %2 would be equal
to 0. This is a contradiction. Thus if 2({,)/# is ramified, then A+#2. The
second assertion is clear by Lemmas 1 and 2. Recall that &1 mod 2" and
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4+1+2"! mod 2" are the only elements of Z mod* 2" (h=3) whose (multiplica-
tive) orders divide 2. As w?=1, we have z°=1 (mod 2"), so that z=+1 or
+14+2"! (mod 2*). Because M=E(L)=E(,,) and {, < E, it follows that
C#L2=03 and so z%1, 14+2"* (mod 2*). Thus we have either z=—1 or
—1+2"* (mod 2"), proving the lemma.

proves part of the assertion in [Theorem 1, (I).

Let I be a cyclotomic extension of k. As usual, we write H*([/k) in
place of the 2-cohomology group H*G(I/k), [*). Set ¢=¢G(I/k). If a is a 2-
cocycle of ¢ with values in I*, then the element of H*(I/k) represented by
« is also denoted by a. The group ¢(I) consisting of roots of unity in [ is
a multiplicative ¢-module. We have a canonical homomorphism from the 2-
cohomology group H?(, ¢(I)) into H*(I/k). Denote by C(/k) the image of
H?*(G, ¢(I)) by this homomorphism. Let &,(J) (resp. ¢/(I)) denote the group
of roots of unity in I whose orders are of 2-power (resp. relatively prime to
2). Then ¢(I)=¢,(I)Xe’(I), and both &,(/) and ¢’(I) are ¢-modules. We also
have a canonical homomorphism from H?*, e, (I)) (resp. H*G,¢'(I)) into
H*(I/k), whose image is denoted by C,(I/k) (resp. C’(I/k)). Then it is evident
that C(I/k)=C,(I/R)xC'(I/k).

Let B be a cyclotomic algebra over %, i.e.,, B is a crossed product with
a factor set 8 of k({)/k:

B=(p, kO/R) =2 k(Du,  (direct sum),
) (2)

Usx =x%U; (x € k(Q)), Ugle = B(0, Dt (0, 7€ 4),

where { is some root of unity, & =G(k({)/k), and the values of 8 are in e(k(Q)).
In we have noticed that the Schur subgroup S(k) consists exactly of those
algebra classes of Br(k) which contain a cyclotomic algebra over k. Hence
in order to prove it suffices to show that for the cases (I-iii) and
(I) every cyclotomic algebra over % is similar to 2 and that for the cases
(I-1) and (I-ii) there exists a cyclotomic algebra over 2 with Hasse invariant
1/2. Now the factor set 3 in (2) is nothing but a 2-cocycle of ¢ with values
in e(R(Q)C k()*, and so determines an element of C(k({)/k)C H*(k(Q)/k),
denoted also by B. Let Q,({’) be a cyclotomic field (over @,) containing 2({).
Denote by a=Inf B the image of 8 by the inflation map from H?*(k({)/k) into
H*Q,(7")/k). Then the crossed product

A=(a, Qx(L)/k) &)

is a cyclotomic algebra over k and [A]1=[B] in Br(k). Hence we always
assume that a cyclotomic algebra over £ is of the form in (3). Set K=Q,({).
For any o, 7 < @(K/k), we have a(o,7)=71(0,7)-a'(0,7), 7(0,7) € &,(K), a'(0, )
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€¢/(K), so that y = Cy(K/k), a’ = C'(K/k), and
(o, K/R)~(y, K/R)Qu(a’, K/k). (4)

But it follows from a result of Witt [7, p. 243] that (a’, K/k)~k. Thus we
may assume that the values of the factor set @ in (3) belong to &,(K).
LEMMA 4. Let L and K be cyclotomic extensions of k such that LOKDE,

Inf Inf
If HYGK/R), x(K)) = HYG(L/), e(L)), then CuK/E) = CAL/R). If HGUK/B),

e'(K)) IgHz(g’(L/k), ¢’(L)), then C’(K/k)I:E:fC’(L/k). Here, Inf denotes the infla-
tion map.

PrROOF. The inflation map from H2%(K/k) into H*(L/k), which is one-to-one,
induces an isomorphism (denoted also by Inf) from C,(K/k) into C,(L/k). If
the inflation map from H2*(Q(K/k), e,(K)) into H*(G(L/k), e,(L)) is surjective,
then it is evident that the inflation map from C,(K/k) into C,(L/k) is also

Inf
surjective, so that C,(K/k) = C,(L/k). The proof is identical for C'(K/k)

Inf
=~ C'(L/k).

LEMMA 5. Let G be a finite group and let W be a finite G-module. Let H
be a normal subgroup of G. Suppose that H is cyclic. Set N=h. If the
heH

image N(W) of W by N equals WH, the subset of elements of W fixed by every
element of H, then we have

H*G/H, WH)=H*G, W).

The inflation map gives this isomorphism.

PROOF. Let n be any non-negative integer. As H is cyclic, H*(H, W)
depends only on the evenness or oddness of n. If n is even then H"(H, W)
=WH®/N(W). Since W is finite, the Herbrand quotient of the H-module W
equals 1, and so the orders of H*(H, W) and H""'(H, W) are the same. Thus
if NOW)=W¥ then H"(H, W) =0 for every non-negative integer n. (For the
above arguments, see [2, VIII, §4].) Now we have

Inf ' Res
0 —> H¥G/H, WB) — H*G, W) —> H*H, W) (exact)

because H'(H, W)=0 (cf. [2, Proposition 5, p. 126]). As H*H, W)=, it
follows that the above inflation map is an isomorphism from H*G/H, WH)
onto H¥G, W).

LEMMA 6. Let L and K be cyclotomic extensions of k such that LOKDEk

Inf
and L/K s cyclic. If Npjg(e(L))=e,(K) then Cy(K/k) I; Co(L/R). If Nypg(e'(L))
Inf
=¢'(K) then C'(K/k) ; C'(L/k).
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PROOF. If Npx(e(L))=¢e,(K) then it follows from [emma 5 that
Inf
H*(G(K/k), e(K)) = H*(Q(L/k), e,(L)), and so by we have C,(K/k)

Inf Inf
=~ Cy(L/k). The same proof holds for C'(K/k) = C'(L/k).
The following fact is well-known :
LEMMA 7. Let K be an unramified extension of k. Then C(K/k)=1.
PROOF. The Galois group ¢=¢(K/k) of K over k is cyclic. Let ¢ be a
generator of ¢. Set s=[K:k]. Let a be any element of C(K/k). Then «
can be regarded as a factor set of K/k such that a(o, r)=e(K) for any
0,7 < 4. Consider a crossed product B with the factor set a:

B=(a, K/k) =¢§Kua (direct sum),

U = (o, Ty, UsX = XU, (xeK).

Then we have
B= :§ Kul, = (uy, K/, ¢),
=0

uy=a(p, p)a(¢?, @) - ale’™, p)a(l, 1) e e(K) .

This cyclic algebra is similar to &, because uj is a unit of 2 and so a norm
of an element of K. This implies that as an element of C(K/k)C H* K/k),
a is equal to 1.

LEMMA 8. Let | and a be positive integers such that 2=<a=l. Set
K=0Qx,) and k=Q,({,0). Then Ng;({,) is a primitive 2%-th root of unity,
il Nem({au>) =< Coar-

PROOF. This fact is also well-known, and so we will sketch the proof.
The extension K/k is cyclic of degree 2'-* A generator of its Galois group
is given by ¢ : {,—{5, r=142% The number ¢ defined by

t=14r+ - +r¥ % 1=(?"—1)/(r—1) (a=2)

is exactly divisible by 2% Because Ng/({) =C4, it follows that Ngui(C,0)
is a primitive 2%th root of unity, proving the lemma.

§3. Proof of Theorem 1.

PROPOSITION 1. Let I be a cyclotomic extension of k. Then C'(I/k)=1,
so that C(I/k)=Cy(I/k). The order of C(I/k) is at most 2. If k()/k is un-
ramified, then C(I/k)=1.

PROOF. Let L be a cyclotomic field over Q, containing I and {,. We
may write L =Qy({,, {,s_,) for some ¢=2 and s. For simplicity, set ¢=2°
The inflation map from HZ2(I/k) into H?(L/k) is one-to-one and maps C'(I/k),



174 T. YAMADA

C,(I/k) and C(I/k) into C'(L/k), Cy(L/k) and C(L/k) respectively. Hence it
suffices to prove that if k({,)/k is unramified then C(L/k)=1 and that if
k(L,)/k is ramified then C’(L/k)=1 and the order of C(L/k) is at most 2.
Let h be the height of k. Let F be the maximal unramified extension of %
in L. If h=0 then F/Q, is unramified, so that F=Q,(,.,) and F()=
Qo(g-1, &), If h=2, then by F(£)=Qy(Lsn Lg-1). Hence for any
h, the extension L/F({,) is totally ramified and cyclic of degree 2% where
a=c¢—2 for h=0 and a=c—h for h=2. For simplicity, put K=F(,). We
have

Nyx(e/(L) =<Gh> =LEe-> =e/(K),  (2,¢—-1)=1.

Since the Galois group ¢(L/K) is canonically isomorphic to @(Q:({,0)/Qs(Cye-a))
and c—a =2, implies that

Npx(eo(K)) = NL/K(<C2C>) - <C2c—a> =e&y(K).

Inf Inf
It follows from that C/(K/k) = C'(L/k), C,(K/k) = Cy(L/k), and

consequently C(K/k)lil:—fC(L/k). If k(L)/k is unramified, then 2= 2 and
2 implies that K=F. Hence K/k is unramified, and so by C(L/k)
=~ C(K/k)=1. Suppose that k({,)/k is ramified. Then K/F is also ramified
with [K: F]=2, and Ng,p(e/(K)) =<} > ={{g-1y =¢'(F). Hence by Lemma

Inf Inf
6, we have C'(F/k) = C'(K/k), so that C'(F/k) = C’'(L/k). As F/k is unramified,

it follows from that C'(F/k)=1, and consequently C/(L/k)=1.
Denote by Res the restriction homomorphism of H*(K/k) into H*(K/k(L,)).
Then Res maps C(K/k) into C(K/k({,)). For any element a of C(K/k), we
have inv (Res (a))=[k(,): k]-inv (a)=2inv («), where inv (Res (a)) (resp.
inv («)) denotes the (Hasse) invariant of Res(a) (resp. a). (See [2, p. 175].)
Since K/k(Z,) is unramified, it follows from that C(K/k(Z,))=1, and
so inv(Res(a))=0. Hence inv(a)=0 or 1/2. This implies that the order of
C(K/k)=C(L/k) is at most 2.

PROPOSITION 2. Let h be the height of k. Set |=h for h=2 and [=2
for h=0. Then any cyclotomic algebra (B, k({)/k) over k (defined by (2)) is
similar to a cyclotomic algebra of the form (a, K/k), where K=Q,({y, {ss_,), S
being some integer. The values of the above factor set « may be assumed to
be in e, (K).

PROOF. Let L=0Q,(,., {,s.,) be a cyclotomic field containing 2({) and {,,
where ¢ (=2) and s are some integers. Let F be the maximal unramified
extension of £ in L. Then from the proof of it follows that

Inf
F(C)=K=0Q,&,, {s_,) and that C(K/k) = C(L/k). The factor set B deter-
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mines an element of C(k({)/k), denoted also by 3. Let 5’ be the image of
B by the inflation map from C(k({)/k) into C(L/k): 8’=Inf B. Then there
exists an element a of C(K/k) such that 8’ =Inf«, the inflation map being
from C(K/k) onto C(L/k). Therefore we have (a, K/k)~(8’, L/k)~(B, k(L)/k).
Since C(K/k)=C,(K/k), the values of @ may be assumed to be in &,(K).

PROPOSITION 3. The order of the Schur subgroup S(k) of k is at most 2.
If kR(C)/k is unramified then S(k)=1.

PROOF. As was already mentioned, S(k) consists exactly of those algebra
classes of Br(k) that are represented by a cyclotomic algebra over k. Let
B=(B, k({)/k) (defined by (2)) be any cyclotomic algebra over .. Then the
factor set S8 determines an element of C(k({)/k), denoted also by 5. Then
implies that the invariant of 8 (i.e., the Hasse invariant of B)
is 0 or 1/2 and that if k({,)/k is unramified then the invariant of 8is 0. As
B is an arbitrary cyclotomic algebra over k, the proposition is proved.

For the remainder of the paper we will use the same notation as in
fTheorem 1. We have just proved part (II) of Theorem 1. Next we will deal
with the case (I)-iii). Namely, suppose that k({,)/k is ramified and that A>3
and z= —1+2"" (mod 2"). Let B be any cyclotomic algebra over . We
need to show that B~k. By we may write

B= ((X, K/k) :,,%gKu” y K= Qz(Czh; Czs-1> ’ (5>

where ¢=¢(K/k) and s is some integer. We may also assume that a(o, 7)
€ g,(K)=<(,n> for every g, 7 = 4. Let F be the maximal unramified extension
of £ in K. Then by Cemma 2, K=F-k(,) and FNk(,)=k. Recall that the
field M= k() = Q+(&sn, Cor-1) 1s the minimal cyclotomic field containing %, f
being the residue class degree of k({,,)/Q, and that if E is the maximal
unramified extension of % in M then G¢(M/E)=<{w) with {8 ={_%. Since
G(K/F) is canonically isomorphic to G(M/FE), we may write

QK/F)=<w), (&=, z=-—1+2"" (mod?2").

Set t=[K: k({)]=[F:k] and let ¢ be a generating automorphism of K/k({,).
Then G(K/k)=<{w)xX{p)>, ®*=¢'=1, and

B= 3 3 k(C)- Fuu ®)

We may assume that u;=1, i.e., a(c,1)=a(l,o)=1 for any o< Q(K/k).
Since the values of a are in &,(K)=<{{,), it follows that

a((l), SD)/a(SDy Cl)) — Cg’h ’ a<wy (U) - Cgﬁ ’ (7)
a(e, plale?, @) - alp"™, ¢) =
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for some integers a, b/, c. Then we have

— 2 ’ —
ua)ugp o Cghugpuw ’ Uy = gh. s ugﬂ - gh . (8)

Because A=3 and
m142h=1) _ fen N . Y
CoHETD = (L5) = ugunugy' =

it follows that 2" divides &/, and so u%, = (—1)® for some integer b. Since
a is a factor set of K/k, the above integers aq, b and ¢ must satisfy some
relations. This subject has been studied in [6, Section 1]. By [6, (1.11)] we
have

1= (=1 = (e = = (=1)°.
Hence 2 divides a. Consider the following congruence with the indeterminate
X:

22" ?*—1)X=—a (mod 2"). 9)

Since 2 divides a, this congruence has a solution X=x, which is unique
mod 2"*, For this integer x, we have

uw(cghu¢) — C;,-’i-uzh-l)umuw — C;}g-mzh—l)mupuw

= Cﬁx(—uzh-m“u,‘,uw = ((HUy) U .

That is, u, commutes with (%u,. Since each element of k({,) (resp. F)
commutes with {%u, (resp. u,), we have

1 ¢t—1 .
B =i=20 jf-.v"'ok(g) - Fuly(Chu,)’

=[Zrcons] [ SF ]

= (U, k(G R, ©) Q@i (Ciky)', F/k, @) . (10)

We will show that the above cyclic algebras are both similar to 2. From the
assumption 2 =3 it follows that k/Q, is ramified and so [%k: Q.] is even.
Recall that u% = =1 and that the index of the cyclic algebra (X1, 2({,)/k, )
is equal to the order of the (local) norm residue symbol (£1, 2({,)/k). But
(£1, R/ ) = (Nigu(£1), R(LD/Q2) =(1, k/Q,) =1, for [k: Q.] is even. Hence
(ud, k(L) /k, w)~k. Next we note that

(Chup)’ = Gt ety = (girerretbie e (L5

Since F/k is unramified, we conclude that the second cyclic algebra in
is similar to k. This proves for the case (I)-iii).

Finally we must show that for the cases (I)-i) and (I)-ii), there exists a
cyclotomic algebra over k with Hasse invariant 1/2. Suppose that k(,)/k is
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ramified. By Lemma 3} either h=0 or h=3. If h=3, then put K=k({,;). By
Lemma 2, K is the minimal cyclotomic field containing % and K=Q,({,n, Cor_1),
f being the residue class degree of k({,n)/Q.. If h=0, then put K=~%(,), so
that K=Q,(&,, {,5_), / being the residue class degree of %2/Q, Set I=h
for h=3 and [=2 for h=0. Then we can write K=Q,,, {s_,). Put
L=0Q,,, Lpsr_1). Then L is the unramified extension of K of degree 2.
Denote by F the maximal unramified extension of 2 in L. By
L=Fk({)-F and R )NF=Fk. (For h=0, this statement is obvious, because
F=0Q,(,ss.,) and k=0Q,({,s.,).) Let E be the maximal unramified extension
of kin K (E=Fk for h=0). Then @(L/F) is canonically isomorphic to ¢(K/E),
so that for the cases (I)-i) and (I)-ii), we have

GL/IF)=(wy, o'=1, =G (11)

Let ¢ be a generating automorphism of the unramified extension L/k({,).
Then G(L/R)=<w)X{p)y. Set r=[K:k({,)], so that [L: k()I=[F:k]=2r
and ¢ =1. We choose the odd numbers 3,5,:-,2'—1,2'41 as a system of
representatives of integers mod 2‘ relatively prime to 2. Let ¢ denote the
restriction of ¢ onto K, i.e, ¢ is the generating automorphism of K/k({,)
defined by x¢=x% (x K). Then G(K/k())=<¢>, ¢"=1, and

(a=C4=Ck (12)
for some integer ¢ such that (2,{)=1 and 3<¢=<2'+1. Note that t=1+2?
for h=0, because K =£(,) and ¢ =1. Write t =1+2%n, 2,m)=1,2=2m < 2,
Since &i=¢f=¢,, it follows that 2=<a(<!). Consequently, the order of
t mod 2 in Z mod* 2! equals 2'°% (For [=3, this fact is well-known and
follows easily, for instance, from [4, Lemma 1]. See also [1, I, §4,5]. For
=2, the statement is evident, because {=1+2% a=2.) Hence the order of

¢, which is equal to 7, is divisible by 2'"% It follows easily from this that
t*7—1=(1+2*m)*"—1 is divisible by 2"*'m. Now we set

y=@"-1/2"'m . (13)
We will construct a cyclotomic algebra B over k as follows: Set
he=0d, ho=1, hoo=0ou, hpo=0) (&"=0Cd). (14)

Then (f=Cla=C0 and so (h,)?=h, Obviously, (h,)”=h, We have
h¢1=1 and AYe={;"""=1, so that h%'=hi'¢. ' Because 1-+i+ --- 12771
=" —1)/(t—1) =y2'""*"%, it follows that

ireeter-l C1+t+---+t2f-1 — oy
¥ — Lol — Loa -

On the other hand, we have Ag'=({d)'"'={%  Consequently, hg™'=
RUer+¢"1 Thus the elements Ay, ha, ho, hew satisfy the relations of
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[6, (1.9)-(1.11)] and so give rise to a cyclotomic algebra B over & (cf. [6, Section
1]):

1 2r—1
B=3 > Luiuj (direct sum),
1=0 j=0

— P 2r — -
uwugp - Czlugouw 3 uw - 1 ’ u(ﬁr - 2ay ’

utuf x = x 7yt ud, (xe L),
Because
Uy {<1+C21)ugo} = (1+C2_L1)Czluzpum = {(1+Czl)ugo} Uy,

it follows that u, commutes with (1+4,)u,. Since L=F~({,)-F and each
element of k({,) (resp. F) commutes with (1+C,)u, (resp. u,), we have

1 2r—1
> 2
1=0 j=0

B

(L)) Fuf(1+8,0u,)’

=[Brcou ][ EFQ+Gn)]
= (42, KL/ b, @) @ (A+-Luug)”, Fb, 93, Flky9)  (w=1),

0 = ((1+L)u,)™"
=(1+L)A+LE) - A+L8 Duy

2r—1 .
= g(1+ ek,

For each i, —{% is a primitive 2'-th root of unity. Because L =Q,({zs_,, Cu),
it follows that

IH+8a=1—(=¢%) (@=0,1,--,2r—1)

is a prime element of L. Denote by v, (resp. v,) the normalized discrete
valuation of L (resp. k), i.e., vi(JlI)=v,(x)=1, where IIT (resp. =) is a prime
element of L (resp. k). Then v, (x)=2v,(x) for every x of k, for the rami-
fication index of L/k equals 2. Now we have

205(8) = 2(0) = & v2(1+ L +02(G) = 2

and so v,(0)=r=[F:k]/2. Because F/k is unramified, it follows from the
definition of Hasse invariant that the abeve cyclic algebra (4, F/%, ¢) has
Hasse invariant v,(6)/[F: k]1=1/2, so that the cyclotomic algebra B has Hasse
invariant 1/2. This proves for the cases (I)-i) and (D-ii). Thus
the proof of is completed.

PROOF OF THEOREM 3. Keeping the notation of let [A] be
an element of S(K). Then A may be assumed to be a cyclotomic algebra
over K: A=(a, K({)/K), where { is a root of unity and the values of the
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factor set a belong to €(K({)), the group of roots of unity contained in K({).
Let ' be a generator of the cyclic group ¢(K({)). Then the values of a
belong to <{’'>C k({’) and K({)=K({’). Because k is the maximal cyclotomic
extension of @, in K and k({’) is a cyclotomic extension of @Q,, it follows that
k('YK =kFk. Therefore the Galois group of K({)/K is canonically isomorphic
to that of k({’)/k, and so a can be regarded as a factor set of 2({’)/k. Let
B be the cyclotomic algebra over k with the factor set a:B=/{(a, k({)/k).
Then it is evident that A~B®,K, [B]le S(k). This implies that S(K)C
S(k)®, K. Conversely, for any cyclotomic algebra B over 2, BQ,K is also
a cyclotomic algebra over K, and consequently we have S(K)=S(k)X;K.
From this, follows immediately.

References

[1] H. Hasse, Zahlentheorie, 2nd edition, Akademie-Verlag, Berlin, 1963.

[2] J.-P. Serre, Corps locaux, 2nd edition, Hermann, Paris, 1968,

[3] T. Yamada, Characterization of the simple components of the group algebras
over the p-adic number field, J. Math. Soc. Japan, 23 (1971), 295-310.

[4] T. Yamada, Central simple algebras over totally real fields which appear in
Q[G], J. Algebra, 23 (1972), 382-403.

[5] T. Yamada, The Schur subgroup of the Brauer group, (to appear).

[6] T. Yamada, The Schur subgroup of the Brauer group I, to appear in J. Algebra,
27 (1973).

[7] E. Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe
iiber einem Zahlkorper, J. Reine Angew. Math., 190 (1952), 231-245.

Toshihiko YAMADA

Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya-ku
Tokyo, Japan



	\S 1. Introduction.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...

	\S 2. Preliminaries.
	\S 3. Proof of Theorem ...
	References

