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Introduction.

This PaPer deals with the convergence of nonlinear semigroups and the
difference approximation for the Cauchy problem, $(CP)$ , for the scalar quasi-
linear equation

(DE) $u_{t}+\sum_{i=1}^{d}(\phi_{i}(u))_{x\ell}=0$ for $t>0,$ $x=(x_{1}, x_{2}, \cdots , x_{d})\in R^{d}$

from the viewpoint of the aPproximation theory for nonlinear semigroups.
This investigation is motivated by the works of Kru kov $[13, 14]$ , Crandall

[5] and Kojima $[9, 10]$ . Kru kov treats this problem over the space $L^{\infty}(R^{d})$

and discusses the existence and uniqueness of the generalized solution of
$(CP)$ under the assumption that $\phi_{i}\in C^{1}(R^{1})$ for all $i$ . His proof is based on
the so-called method of vanishing viscosity and generalizes (DE) to allow the
$\phi_{i}$ to depend on $t$ and $x$ as well as $u$ . Kojima treats this problem by em-
ploying the finite-difference method and shows that the solution of the dif-
ference scheme formulated for (DE) converges in the topology of $L_{1oc}^{1}(R^{d})$ to
the generalized solution of $(CP)$ in the sense of Kru kov. On the other hand,
Crandall succeeded to treat this problem in $L^{1}(R^{d})$ via the theory of nonlinear
semigroups. He constructs a semigroup $\{T(t);t\geqq 0\}$ of nonlinear contractions
on $L^{1}(R^{d})$ such that $T(t)u$ gives the generalized solution of $(CP)$ in the sense
of $Kru\check{z}kov$ provided that $u$ belongs to $L^{1}(R^{d})\cap L^{\infty}(R^{d})$ . In order to construct
such a semigroup, it is needed to find a dissipative operatorA in $L^{1}(R^{d})$ such

that $-\sum_{i=1}^{d}(\phi_{i}(u))_{x_{i}}$ is a representative function of $Au$ for sufficiently many $u$

and then to verify that the $A$ satisfies the following condition:

$(R)$ $R(I-\lambda A)\supset D(A)$ for $\lambda>0$ ,

where $R(I-\lambda A)$ and $D(A)$ denote the range of $I-\lambda A$ and the domain of $A$

respectively. This condition is called the range condition and Crandall Proves
this $(R|)$ by applying a certain perturbation theorem due to Br\’ezis [1].
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Here we shall exhibit how the convergence of difference approximation
for $(CP)$ may be interpreted in $L^{1}(R^{a})\cap L^{\infty}(R^{d})$ via the aPproximation theory

for nonlinear semigroups. Our results furnish a semigroup theoretic aPproach
to the $d\lfloor ifference$ approximation for $(CP)$ and at the same time present another
method for constructing the semigroup solution of $(CP)$ . Our objects are
roughly stated as follows:

In this paper we shall employ the Friedrichs type difference approxima-
tion to (DE). This type of difference scheme is formulated according to
initial data, since the mesh ratio must be determined depending upon the
$L^{\infty}$-nornn of the initial-value $u$ . Accordingly, the convergence theorems given
for instance in Brezis-Pazy [2] and Miyadera-Oharu [15] can not directly be
applied to the problem of convergence of this approximation. Our first pur-
pose is to modify those convergence theorems to some appropriate forms which
are applicable to our arguments. Here we shall consider a monotone increas-
ing $seq_{\lfloor}uence$ of closed convex sets $\{X_{m}\}$ and make some assumptions which
yield that

$(S)$ There exists a family of semigroups $\{T_{m,n}(t);t\geqq 0\}$ of contractions
on $X_{m},$ $m,$ $n=1,2,$ $\cdots$ , such that $T_{m,n}(t)u$ is strongly continuously differenti-
able in $t\geqq 0$ for $u\in X_{m}$ and such that the infinitesimal generator $A_{m,n}$ is a
dissipative operator on $X_{m}$ .
With this setting, we want to obtain the following type of convergence
under some additional assumptions:

There exists a semigroup $\{T(t);t\geqq 0\}$ of nonlinear contractions on
$X_{0}=_{m}U_{\geq:1}X_{m}$ and for each $m$ ,

$\lim_{n\rightarrow\infty}T_{m,n}(t)u=T(t)u$ for $t\geqq 0$ and $u\in X_{m}$ .

The additional assumptions are stated as follows:
$(C)$ There exists a pseudo-resolvent $\{J_{\text{{\it \‘{A}}}} ; \lambda>0\}$ of contractions from $X_{0}$

into itself and for each $\lambda>0$ and $m$ , the sequence of resolvents $\{(I-\lambda A_{m,n})^{-1}\}$

converges to $J_{\lambda}$ on $X_{m}$ .
$(C_{L})$ There exists a single-valued operator $A_{1}$ in $X$ and a set $D\subset X_{0}$ such

that $A_{m,n}u$ converges to $A_{1}u\in X_{0}$ as $ n\rightarrow\infty$ for $u\in X_{m}\cap D$ and $m\geqq 1$ .
We wish to consider the difference approximation to (DE) in the space

$L^{1}(R^{d})$ . Our second purpose is to prove the $L^{1}$ -convergence of the difference
aPproximation by aPplying the above-mentioned modified convergence theo-
rems. We let $X_{m}$ be the closed convex set $\{u\in L^{1}(R^{d})\cap L^{\infty}(R^{d});\Vert u\Vert_{\infty}\leqq m\}$ .
By taking aPpropriate sequences $h_{m,n}\downarrow 0$ and $l_{m,n}\downarrow 0$ as the mesh. sizes of
time- and space-differences respectively, we define on each $X_{m}$ a difference
operator $C_{m,n}$ associated with the Friedrichs scheme and then construct a
sequence of approximate semigroups $\{T_{m,n}(t);t\geqq 0\}$ determined by $A_{m,n}=$
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$h_{m.n}^{-1}(C_{m,n}-I)$ : The difference scheme to (DE) can be written as

$h_{m.n}^{-1}[u_{m,n}(t+h_{m,n})-u_{m,n}(t)]=A_{m,n}u_{m,n}(t)$ , $u_{m,n}(0)=u_{0}\in X_{m}$

and $T_{m,n}(t)u_{0}$ gives the solution of

$(d/dt)u_{m,n}(t)=A_{m,n}u_{m,n}(t)$ , $u_{m,n}(0)=u_{0}$ .
In this setting, $(S)$ is referred to the stability condition. $(C_{1})$ is a non-

linear analogue of the consistency condition which is treated in Lax’s equi-
valence theorem (Richtmyer-Morton [18; Section 3.5]). In our case, the com-
bination of $(C)$ and $(C_{1})$ is referred to the consistency condition for the
difference approximation. $\{J_{\lambda} ; \lambda>0\}$ determines a dissipative operator $A$

satisfying $R(I-\lambda A)=X_{0}\supset D(A),$ $\lambda>0$ ; hence if condition $(C)$ is proved, then
it turns out that a dissipative operator which satisPes $(R)$ is automatically

obtained and the operator is a restriction of the operator: $u\rightarrow-\sum_{i=1}^{d}(\phi(u))_{x_{i}}$ . By

proving $(S),$ $(C)$ and $(C_{1})$ we can show not only the convergence of { $T_{m,n}(t)$ ;
$t\geqq 0\}$ but also the $L^{1}$ -convergence of $C_{m.n}^{\nu}u_{0}$ to the generalized solution of
$(CP)$ through the aPproximation theory for nonlinear semigroups. Moreover,
the Friedrichs type scheme is of the purely explicit form. This type of ex-
plicit difference scheme is changed to the implicit form by considering the
resolvents $(I-\lambda A_{m,n})^{-1}$ ; such an implicit scheme satisfies the stability condi-
tion. In this way, the covergence theorem of semigroups can be applied to
treat the so-called approximation-solvability of a Cauchy problem. For a
similar type of treatment, see Konishi [11].

This limit of the double sequence of approximate semigroups { $T_{m,n}(t)$ ;
$\mathcal{I}\geqq 0\}$ is obtained as an $L^{1}$ -contractive semigroup on $L^{1}(R^{d})\cap L^{\infty}(R^{d})$ . Our
third purpose is to investigate the relationship between this semigroup and
that of Crandall. We shall show by using the convergence of the approximate
semigroups that our semigroup gives the generalized solutions of Kru kov’s
type and coincides with the restriction of the semigroup of Crandall to
$L^{1}(R^{d})\cap L^{\infty}(R^{d})$ . Also, among others, we shall mention that the Properties of
the semigroup of Crandall are derived through the difference approximation.

This paPer consists of six sections. Section 1 contains some special
notations used in this paper, some basic notions and the fundamental facts
concerning those notions. Section 2 deals with the convergence and approxi-
mation of semigroups of nonlinear contractions. In Section 3, the approxi-
mating difference scheme formulated for $(CP)$ is introduced and the main
results are given. The proofs are given in the successive two sections. In
Section 4, we shall discuss the convergence of the approximation introduced
in Section 3. Section 5 is concerned with the relationships among our results
obtained in Section 3 and the works of Kru kov, Crandall and others. Finally,
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in Section 6 we shall give a variety of observations on our results.

\S 1. Preliminaries.

In this section we list some special notations, basic notions and some of
their fundamental Properties. For further explanations on them, we refer to
Oharu [16].

Let $X$ be a Banach space with elements $u,$ $v,$ $w,$ $\cdots$ and with the norm
$\Vert\cdot\Vert$ . By an oPerator $A$ in $X$ we mean a (possibly multi-valued) operator with
the domain $D(A)$ and the range $R(A)$ in $X$, that is, $A$ assigns to each $u\in X$

a subset $Au$ of $X;D(A)$ is the set $\{u\in X; Au\neq\emptyset\}$ and $R(A)=\bigcup_{u\in X}Au$ . Note

that a single-valued operator is a special case of a multi-valued operator in
which Au, $u\in D(A)$ , denotes the value of $A$ at $u$ or the singleton set con-
sisting of this element, and $Au$ is the empty set if $u\not\in D(A)$ .

Let $S\subset X$. We write $A[S]$ for $\bigcup_{u\in S}$ Au. By a restriction of $A$ to $S$ , denoted

by $A|S$ , we mean an operator such that $D(A|S)=D(A)\cap S$ and $(A|S)u=Au$

for $u\in D(A)\cap S$ . $\overline{S}$ denotes the closure of $S$ in $X$.
Let $A$ and $B$ be operators in $X$ . Then $B$ is called the closure of $A$ if

$C(B)=\overline{G(A})$ in $X\times X$ ; we write $B=\overline{A}$ , where $G(\cdot)$ denotes the graph of the
oPerator. Also, we say that $B$ is an extension of $A$ , and $A$ is a restriction
of $B$ (dlenoted by $B\supset A$ or $A\subset B$), if $D(A)\subset D(B)$ and $Au\subset Bu$ for $u\in D(A)$ .
For the notations of addition, scalar multiplication and composition of opera-
tors in $X$ , we use the same notations as in Oharu [16; Section $0$]. We write
$\gamma+\lambda A$ for the operator $\gamma I+\lambda A$ , where $I$ denotes the identity operator in $X$.
Also, we denote by $A^{-1}$ the inverse operator of an operatorA in $X$. Note
that $G(A^{-1})=\{(v, u);(u, v)\in G(A)\}$ .

Let $A$ be a single-valued operator in $X$ such that $R(A)\subset D(A)$ . Then
for any positive integer $i$ , we can define the iteration $A^{i}$ on $D(A)$ by $A^{i}u=$

$A(A^{i-1}u)$ ; we write $A^{0}=I$.
Lel: $C\subset X$ and let $T$ be a single-valued operator in X. $T$ is called a

contraction on $C$ if $\Vert Tu-Tv\Vert\leqq\Vert u-v\Vert$ for $u,$ $v\in C$ .
An operatorA in $X$ is said to be dissipative if for every $u,$ $v\in D(A)$ and

$u^{\prime}\in Au,$ $v^{\prime}\in Av$ , there exists an $f\in F(u-v)$ such that

${\rm Re}\langle u^{\prime}-v^{\prime}, f\rangle\leqq 0$ ,

where $F$ denotes the duality maPping from $X$ into its dual $x*defined$ by

$F(u)=\{f\in X^{*} ; {\rm Re}\langle u, f\rangle=\Vert u\Vert^{2}=\Vert f\Vert^{2}\}$ , $u\in X$ .

It is well-known (Kato [8; Lemma 1.1]) that $A$ is dissipative if and only if

\langle 1.1) $\Vert u_{1}-u_{2}\Vert\leqq\Vert(u_{1}-\lambda v_{1})-(u_{2}-\lambda v_{2})\Vert$
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for $u_{i}\in D(A),$ $v_{i}\in Au_{i},$ $i=1,2$ , and $\lambda>0$ . Note that (1.1) implies that for
every $\lambda>0,$ $(I-\lambda A)^{-1}$ exists as a contraction on $R(I-\lambda A)$ . Also, if $-A$ is
dissipative then $A$ is said to be accretive.

If $A$ is a dissipative operator such that $R(I-\lambda A)=X$ , then we say that
$A$ is $m$ -dissipative. If $A$ is dissipative in $X$ , then so is $\overline{A}$ . If $A$ is a dissipa-

tive operator such that $\overline{R(I-\lambda_{0}A)}=X$ for some $\lambda_{0}>0$ , then $\overline{A}$ is m-dissipative.
A one-parameter family $\{J_{\lambda} ; \lambda>0\}$ of contractions in $X$ is called a

Pseudo-resolvent (of contractions) if for every $\lambda,$ $\mu>0$ and $u\in D(J\lambda)$ ,

$R(\frac{\mu}{\lambda}+(1\frac{\mu}{\lambda})J_{\lambda})\subset D(J_{\mu})$ and

(1.2) $J_{\lambda}u=J_{\mu}[\frac{\mu}{\lambda}u+(1-\frac{\mu}{\lambda})J_{\lambda}u]$ for $u\in D(J_{\lambda})$ .

PROPOSITION 1.1. (i) Let $A$ be a dissipative operator in $X$ and let $J_{\lambda}=$

$(I-\lambda A)^{-1}$ for $\lambda>0$ . Then $\{J_{\lambda} ; \lambda>0\}$ forms a pseudo-resolvent of contractions
in X. If in addition, $A$ is single-valued, then each $J_{\lambda}$ is injective.

(ii) Let $\{J_{\lambda} ; \lambda>0\}$ be a pseudo-resolvent of contractions in X. Then $R(J_{\lambda})$

is constant with resPect to $\lambda>0$ and there is a dissiPative operatOr $A$ , defined
on $D\equiv R(J_{\lambda})$ , such that $J_{\lambda}=(I-\lambda A)^{-1}$ for every $\lambda>0$ . If in addition, some $J_{\lambda_{0}}$

is injective, then the associated $A$ is single-valued.
For a proof of Proposition 1.1, see Oharu [16; Propositions 3.1 and 3.2].

Let $C\subset X$. By Cont $(C)$ we mean the set of all contractions on $C$ into
itself. A one-parameter family $\{T(t);t\geqq 0\}\subset Cont(C)$ is called a semigroup
(of nonlinear contractions) on $C$ if it has the following properties:

(1.3) $T(O)=I|C$ , $T(t+s)=T(t)T(s)$ for $t,$ $s\geqq 0$ ;

(1.4) for each $u\in C,$ $T(t)u$ is strongly continuous in $t\geqq 0$ .
It is clear that if $T\in Cont(C)$ then $\overline{T}\in Cont(\overline{C})$ . Hence, if $\{T(t);t\geqq 0\}$

is a semigroup on $C$ , then $\{\overline{T(t)};t\geqq 0\}$ forms a semigroup on $\overline{C}$.
For the generation of the semigroup of nonlinear contractions, the fol-

lowing theorem due to Crandall-Liggett [6; Theorem I] is fundamental:
THEOREM 1.2. Let $A$ be a dissiPative operator in $X$ satisfying the range

condition $(R):R(I-\lambda A)\supset D(A)$ for $\lambda>0$ . Then there exists a semigroup{$T(t)$ ;
$t\geqq 0\}$ on $\overline{D(A}$) such that

$\Vert T(t)u-(I-hA)^{-[t/h]}u\Vert\leqq 2\sqrt{th}\Vert|Au\Vert|$ for $t\geqq 0$ and $u\in D(A)$ ,

where $[\cdot]$ denotes the Gaussian blacket and $\Vert|Au\Vert|=\inf\{\Vert v\Vert ; v\in Au\}$ . There-
fore,

$T(t)u=\lim_{h-\vdash 0}(I-hA)^{-[l/h]}u=\varliminf_{k}(I-\frac{t}{k}A)^{-k}u$

for $t\geqq 0$ and $u\in D(A)$ .
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We shall say that the semigroup $\{T(t);t\geqq 0\}$ is generated by $A$ (or, $A$

generates $\{T(t);t\geqq 0\})$ .
$R^{d}$ denotes the d-dimensional euclidean space. $L^{1}(R^{d})$ and $L^{\infty}(R^{d})$ denote

the ordinary Lebesgue spaces. Also, $C_{0}^{1}(R^{a})$ and $C_{0}^{\infty}(R^{d})$ have the usual mean-
ing. In this paper we write simply $L^{1}$ and $L^{\infty}$ for the spaces $L^{1}(R^{d})$ and
$L^{\infty}(R^{d})$ , respectively; we denote the $L^{1}$-norm and $L^{\infty}$-norm by $||\cdot\Vert_{1}$ and $\Vert\cdot\Vert_{\infty}$ ,
respectively. We write $u\in L^{1}$ (or $u\in L^{\infty}$) if a real-valued function $u(x)$ de-
fined on $R^{d}$ is a representative function of an element of $L^{1}$ (or $L^{\infty}$). Con-
versely, let $u\in L^{1}$ (or $u\in L^{\infty}$). Then we sometimes write $[u](x)$ for a repre-
sentative function of $u$ . Let $u\in L^{1}$ . We denote the integral of $u$ over $R^{d}$

with respect to the Lebesgue measure on $R^{d}$ by

$\int_{R^{d}}u(x)dx$ .

We denote by $\langle u, f\rangle$ the pairing between $u\in L^{1}$ and $f\in L^{\infty}$ . Accordingly,
for every $u\in L^{1}$ and $f\in C_{0}^{\infty}(R^{d})$ , we write $\langle u, f\rangle$ for the integral

$\int_{R^{d}}u(x)f(x)dx$ .

We shall use the following notations:

(1.5) sign $(s)=\left\{\begin{array}{ll}1 & if s>0\\0 & if s=0\\-1 & if s<0.\end{array}\right.$

In $partl[cular$ , we shall frequently treat the composite function sign $(u(x)-k)$

in later arguments, where $k\in R^{1}$ and $u(x)$ is a measurable function on $R^{d}$ .
In order to approximate such a function, Crandall [5; Lemma 1.1] gives the
following functions:

(1.6) $\Phi_{j}(s)=\left\{\begin{array}{l}-s ifs<-1/j\\(j/2)s^{2}+(1/2j)\\s ifs>1/j, j=1,2,3,\ldots\end{array}\right.$if $|s|\leqq 1/j$

Clearly, $\Phi_{j}(s)$ has the derivative $\Phi_{j}^{\prime\prime}(s)$ which is piecewise continuous and non-
negative, and has a compact support $[-1/j, 1/j]$ . Moreover, it is easily seen
that

(1.7) $\lim_{j-\infty}\int_{k}^{s_{0}}\Phi_{j}^{\prime\prime}(s-k)\phi(s)ds=sign(s_{0}-k)\phi(k)$

(1.8) $\lim_{j-\infty}\Phi_{f}^{\prime}(s_{0}-k)=sign(s_{0}-k)$

for $S_{0},$
$k\in R^{1}$ and every function $\phi\in C^{1}(R^{1})$ .
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Let $F$ be the duality mapping of $L^{1}$ . Then it is proved ([5; Section 4]) that
$\Vert u\Vert_{1}$ sign $(u(\cdot))\in F(u)$ for $u\in L^{1}$ .

Finally, we introduce some notations concerning the difference approxi-
mation. Let $l>0$ and let $u(x)$ be a real-valued function defined on $R^{d}$ . Then
we write

$[D_{t}^{0}u](x)=(2l)^{-1}[u(x+le_{i})-u(x-le_{i})]$ ,

\langle 1.9) $[D_{i}^{+}u](x)=l^{-1}[u(x+le_{i})-u(x)]$ ,

$[D_{i}^{-}u](x)=l^{-1}[u(x)-u(x-le_{i})]$ , $x\in R^{d}$ ,

for the central, forward and backward differences of $u$ , respectively, where
$\prime e_{i}$ denotes the unit vector whose i-th element is 1. Accordingly, we can
write as

$[D_{i}^{-}D_{i}^{+}u](x)=l^{-2}[u(x+le_{i})-2u(x)+u(x-le_{i})]$ .
We shall apply these difference operations to $u(x)$ which is a representative
function of $u\in L^{1}\cap L^{\infty}$ . $D_{i}^{0},$ $D_{i}^{+}$ as well as $D_{i}^{-}$ depend on 1. But there will
be no confusions in later arguments, even if $l$ is not specified in these sym-
bols. Also, these are regarded as bounded linear operators on $L^{1}$ in a natural
way, since they can be represented as linear combinations of translation
operators. It is easily seen that if $u\in L^{1}$ and $f\in C_{0}^{\infty}(R^{d})$ then

$\langle D_{i}^{0}u, f\rangle=-\langle u, D_{l}^{0}f\rangle$ ,

$\langle D_{i}^{-}D_{i}^{+}u, f\rangle=\langle u, D_{i}^{-}D_{i}^{+}f\rangle$

and so on.

\S 2. Convergence Theorems.

In this section we treat some convergence theorems for semigroups of
nonlinear contractions.

Let $\{X_{m}\}_{m=1,2},\ldots$ be a monotone increasing sequence of closed subsets of
$X,$

$X_{0}=_{m}U_{\geqq 1}X_{m}$ , and let us consider a family $\{A_{m,n}\}_{m,n=1,2},\cdots$ of single-valued,

dissipative operators in $X$ such that $D(A_{m,n})=X_{m}$ for $m,$ $n\geqq 1$ and such that
$R(I-\lambda A_{m,n})\supset X_{m}$ for $\lambda>0$ and $m,$ $n\geqq 1$ . Then by Theorem 1.2, each $A_{m,n}$

generates a semigroup $\{T_{m,n}(t);t\geqq 0\}\subset Cont(X_{m})$ such that

\langle 2.1) $\Vert T_{m,n}(t)u-(I-\frac{t}{k}A_{m,n})^{-k}u\Vert\leqq(2t/\sqrt{k})\Vert A_{m,n}u\Vert$ for $t\geqq 0$ and $u\in X_{m}$ .
We start with a theorem on convergence of $\{T_{m,n}(t);t\geqq 0\}$ .
THEOREM 2.1. Let $\{X_{m}\}$ and $\{A_{m,n}\}$ be as above. If
$(C)$ there exists a Pseudo-resolvent $\{J_{\lambda} ; \lambda>0\}\subset Cont(X_{0})$ and

$J_{\lambda}u=\varliminf_{n\infty}(I-\lambda A_{m,n})^{-1}u$ for $\lambda>0$ and $u\in X_{m}$ ,
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then we have:
(i) There exists a dissipative operator $A$ in $X$ such that $ R(I-\lambda A)=X_{0}\supset$

$D(A)$ for $\lambda>0$ and such that $j_{\lambda}=(I-\lambda A)^{-1}$ for $\lambda>0$ ;
(ii) A generates a semigroup $\{T(t);t\geqq 0\}$ on $\overline{D(A}$) such that

$T(t)[X_{0}\cap\overline{D(A})]\subset X_{0}\cap\overline{D(A})$ for $t\geqq 0$ ;

(iii) $\lim_{n-\infty}T_{m,n}(t)u=T(t)u$ for $t\geqq 0$ and $u\in X_{m}\cap\overline{D(A}$), where the convergence

is uniform with respect to $t$ in every bounded subinterval of $[0, \infty$).

PROOF. Since $\{J_{\lambda} ; \lambda>0\}$ is a pseudo-resolvent of contractions from $X_{\alpha}$

into itself, (i) follows from Proposition 1.1 (ii).
By virtue of (i) and Theorem 1.2, $A$ generates a semigroup $\{T(t);t\geqq 0\}$

on $\overline{D(A}$). Since $(I-\lambda A_{m,n})^{-1}$ maps $X_{m}$ into itself for all $m$ and $n$ and since
$X_{m}$ is closed in $X$, we see that each $X_{m}$ is invariant under $J_{\lambda},$ $\lambda>0$ . Thus,
$X_{m}\cap\overline{D(A}),$ $m=1,2,$ $\cdots$ , are invariant under $T(t),$ $t\geqq 0$ . This proves (ii).

(iii) is proved in a similar way to Brezis-Pazy [2; Theorem 3.1]: Let
$u\in X_{m}\cap D(A)$ and $\lambda>0$ . Since $J_{\mu}[X_{m}]\subset X_{m}$ for $\mu>0$ , we see that $J_{t/k}^{q}J_{\lambda}u$

$\in X_{m}\cap D(A)$ for all $k$ and $q$ . Hence, we have the following estimates:

\langle 2.2) $\Vert T_{m,n}(t)J_{\lambda}u-T_{m,n}(t)(I-\lambda A_{m,n})^{-1}u\Vert\leqq\Vert J_{\lambda}u-(I-\lambda A_{m,n})^{-1}u\Vert$ ,

\langle 2.3) $\Vert T_{m,n}(t)(I-\lambda A_{m,n})^{-1}u-(I-\frac{t}{k}A_{m,n})^{-k}(I-\lambda A_{m,n})^{-1}u\Vert$

$\leqq(2t/\sqrt{k}\lambda)\Vert(I-\lambda A_{m,n})^{-1}u-u\Vert$ (by (2.1)) ,

\langle 2.4) $\Vert(I-\frac{t}{k}A_{m,n})^{-k}(I-\lambda A_{m,n})^{-1}u-J_{t/k}^{k}J_{\lambda}u\Vert$

$\leqq\Vert(I-\lambda A_{m,n})^{-1}u-J_{\lambda}u\Vert$

$+\sum_{q=0}^{h-1}\Vert(I-\frac{t}{k}A_{m,n})^{-k+q}J_{l/k}^{q}J_{\lambda}u-(I-\frac{t}{k}A_{m,n})^{-k+q+1}JI^{+1}/kJ_{\lambda}u\Vert$

$\leqq\Vert(I-\lambda A_{m,n})^{-1}u-J_{\lambda}u\Vert$

$+\sum_{q=0}^{k-1}\Vert(I-\frac{t}{k}A_{m,n})^{-1}J_{t/k}^{q}J_{\lambda}u-J_{\iota/k}J_{t/k}^{q}J_{\lambda}u\Vert$ ,

\langle 2.5) $\Vert J_{t/k}^{k}J_{\lambda}u-T(t)J_{\lambda}u\Vert\leqq(2t/\sqrt{k}\lambda)\Vert J_{\lambda}u-u\Vert$ .
Combining $(2.2)-(2.5)$ with condition $(C)$ , we obtain

$\varliminf_{n}\Vert T_{m,n}(t)J_{\lambda}u-T(t)J_{\lambda}u\Vert=0$ .

Since $\Vert J_{\lambda}u-u\Vert\rightarrow 0$ as $\lambda\rightarrow 0$ and since $T_{m,n}(t)$ and $T(t)$ are contractions, we
have the assertion (iii). Q. E. D.

COROLLARY 2.2. Let $(C)$ be satisfied for $\{X_{m}\}$ and $\{A_{m,n}\}$ . SuppOse that
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$X_{0}$ is a linear manifold in $X$ and that
$(C_{1})$ There exist a single-valued operat0r $A_{1}$ in $X$ and a set $D\subset X_{0}$ such that

$\lim_{nr}A_{m,n}u=A_{1}u\in X_{0}$ for $u\in X_{m}\cap D$ and $m\geqq 1$ .

Then $D\subset D(A)$ and $A_{1}u\in Au$ for $u\in D$ . If in addition, $D$ is dense in $X_{0}$ ,

then the convergence (iii) of Theorem 2.1 holds on $X_{m}$ , instead of $X_{m}\cap\overline{D(A}$).

PROOF. Let $u\in D$ and $\lambda>0$ . Since $X_{0}$ is a linear manifold, there exists
an integer $m$ such that $u\in X_{m}$ and such that $u-\lambda A_{1}u=v\in X_{m}$ . Let $v_{n}=$

$(I-\lambda A_{m,n})u$ . Then, $(C_{1})$ implies that $v_{n}\rightarrow v$ as $ n\rightarrow\infty$ . Since $(I-\lambda A_{m,n})^{-1}v_{n}=u$ ,
we have

$|1u-\int_{\lambda}v\Vert\leqq\Vert v_{n}-v\Vert+\Vert(I-\lambda A_{m,n})^{-1}v-]_{\lambda}v\Vert$ .
By virtue of conditions $(C)$ and $(C_{1})$ , the right side goes to $0$ as $ n\rightarrow\infty$ .
$Hence\ovalbox{\tt\small REJECT}|u=J_{\lambda}v$ or $v\in(I-\lambda A)u$ , from which it follows that $A_{1}u\in Au$ . Q.E.D.

REMARKS. (1) The convergence theorems given in Brezis-Pazy [2] are
nonlinear analogues of Trotter-Kato’s theorem. Theorem 2.1 is a modification
of Brezis-Pazy’s result and this type of modification seems to be proper to
the nonlinear setting.

(2) If $X_{0}$ is a linear manifold in $X$, then condition $(C)$ can be regarded
as the combination of the following two conditions:

$(C^{\prime})$
$\varliminf_{n\infty}(I-\lambda A_{m,n})^{-1}u$ exists for $\lambda>0,$ $u\in X_{m}$ and $m\geqq 1$ ;

$(C^{\prime\prime})$ There exists a dissipative operator $B$ in $X$ such that $v_{m,\lambda}=$

$\lim_{nr}(I--\lambda A_{m,n})^{-1}u\in D(B)$ and $\varliminf_{n\infty}A_{m,n}(I-\lambda A_{m,n})^{-1}u\in Bv_{m,\lambda}$ for $\lambda>0,$ $u\in X_{m}$

and $m\geqq 1$ .
In fact, suppose that $(C)$ holds. Then $(C^{\prime})$ is trivially satisfied and in

virtue of Theorem 2.1 (i), we see that $(C^{\prime\prime})$ also holds for $B$ replaced by $A$ .
Conversely, assume that $(C^{\prime})$ and $(C^{\prime\prime})$ are satisfied. Then, $\varliminf_{n}A_{m,n}(I-\lambda A_{m,n})^{-1}u$

$=\lambda^{-1}(v_{m,\lambda}-u)\in Bv_{m,\lambda}$ for $\lambda>0,$ $u\in X_{m}$ and $m\geqq 1$ , and so, we see that $ u\in$

$R(I-\lambda B)$ and $v_{m,\lambda}=(I-\lambda B)^{-1}u$ . This means that $v_{m,\lambda}$ depends only on $\lambda$ and
$u$ . We set $J_{\lambda}u=v_{m,\lambda}$ for $\lambda>0,$ $u\in X_{m}$ and $m\geqq 1$ . Then $J_{\lambda}$ is defined on $X_{0}$

as a single-valued operator. Since $(I-\lambda A_{m,n})^{-1}$ satisfies the resolvent formula
(1.2) by Proposition1.1(i) and since $X_{0}$ is a linear manifold, it follows from
$(C^{\prime})$ that $\{J_{\lambda} ; \lambda>0\}$ forms a pseudo-resolvent of contractions belonging to
Cont $(X_{0})$ . Moreover, let $A$ be a dissipative operator associated with this
Pseudo-resolvent through Proposition 1.1 (ii). Then $A\subset B$ . See also Remark
(2) after Theorem 5.3.

(3) Condition $(C_{1})$ is referred to the consistency condition in the finite-
difference method. Condition $(C)$ might be also called the consistency con-
dition in a generalized sense (cf. Takahashi-Oharu [19; Section 2]). $(C_{1})$ does
not necessarily imply $(C)$ (see Remark after Theorem 4.5). However, if
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$D(A_{1})\subset X_{0}\subset R(I-\lambda A_{1})$ for $\lambda>0$ and if $(C_{1})$ is satisfied for the set $D$ replaced
by $D(A_{1})$ , then it is proved by the same way as in Brezis-Pazy [2; Theorem
4.1] that condition $(C)$ holds for the $A_{1}$ .

(4) If we do not assume that $\{X_{m}\}$ is monotone increasing, then we
consider conditions $(C)$ and $(C_{1})$ on $X_{0}=\lim_{fn-}\inf_{\infty}X_{m}$ and the above-mentioned

results are extended to more general cases. However, we shall not give any
in this paper, since the theorems mentioned above are sufficient for the
aPplications treated in later sections.

(5) As is seen from Theorem 2.1, $\{T(t)|X_{0}\cap\overline{D(A});t\geqq 0\}$ forms a semi-
group on $X_{0}\cap\overline{D(A}$). Hence, precisely saying, the limit semigroup of { $T_{m,n}(t)$ ;
$t\geqq 0\}$ is $\{T(t)|X_{0}\cap\overline{D(A});t\geqq 0\}$ (and $\{T(t)|X_{0}$ ; $t\geqq 0\}$ in Corollary 2.2).

Next, we state a result on convergence of iterations of difference
operators.

Let $\{X_{m}\}_{m\geqq 1}$ be a monotone increasing sequence of closed convex subsets
of $X$ and $\{C_{m,n}\}_{m,n\geqq 1}$ be a family of operators in $X$ such that

(2.6) $\{C_{m,n}\}_{n\geqq 1}\subset Cont(X_{m})$ for each $m\geqq 1$ .
Let $\{h_{m,n}\}_{m,n\geq 1}$ be a double sequence of positive numbers such that $h_{m,n}\rightarrow 0$

as $ n\rightarrow\infty$ for each $m\geqq 1$ . We then set

(2.7) $A_{m,n}=h_{m.n}^{-1}(C_{m,n}-I)$ for $m,$ $n=1,2,3,$ $\cdots$

Then, (2.6) yields that each $A_{m,n}$ is a dissipative operator on $X_{m}$ and satisfies
the range condition

(2.8) $R(I-\lambda A_{m,n})\supset X_{m}=D(A_{m,n})$ for $\lambda>0$ and $m,$ $n\geqq 1$ .
For the proof, we refer to Brezis-Pazy [2; Lemma 2.2]. Also, each $A_{m,n}$ is
continuous on $X_{m}$ . Hence, each $A_{m,n}$ generates a semigroup $\{T_{m,n}(t);t\geqq 0\}$

on $X_{m}$ such that $T_{m,n}(t)u\in C^{1}([0, \infty);X)$ for $u\in X_{m}$ and

(2.9) $\left\{\begin{array}{l}(d/dt)T_{m,n}(t)u=A_{m,n}T_{m,n}(t)u ,\\T_{m,n}(t)u=\lim_{\text{\’{e}}\rightarrow+0}(I-\epsilon A_{m,n})^{-[t/\epsilon]}u,\end{array}\right.$

$A_{m,n}T_{m,n}(t)u=\lim_{\leftarrow+0}A_{m,n}(I-\epsilon A_{m,n})^{-[t/\epsilon]}u$ for $t\geqq 0$ and $u\in X_{m}$ .
THEOREM 2.3. (a) If $\{A_{m,n}\}$ defined by (2.7) satisfies condition $(C)$ , then

we have the following convergence

(iv)
$\nu\hslash m’ n^{-t}\lim_{n-\infty}C_{m.n}^{\nu}u=T(t)u$

for $t\geqq 0,$ $u\in X_{m}\cap\overline{D(A}$) and $m\geqq 1$ ,

together with $(i)-(iii)$ of Theorem 2.1.
(b) Supp0se that the $\{A_{m,n}\}$ satisfies both $(C)$ and $(C_{1})$ . If $X_{0}$ is a linear

manifold in $X$ and if the set $D$ in $(C_{1})$ is dense in $X_{0}$ . then $D\subset D(A),$ $ A_{1}|D\subset$
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$A|D$ and furthermore, (iv) holds on $X_{m}$ , instead of $X_{m}\cap\overline{D(A}$).

REMARK. Later, the operators $C_{m,n}$ will be referred to the difference
operators which are induced from the Friedrichs scheme for (DE). The
assertion (a) states that under condition $(C)$ , the limit of iterations $\{C_{m,n}^{\nu}\}$ is
the semigroup $\{T(t)|X_{0}\cap\overline{D(A});t\geqq 0\}$ and (b) states that the limit is the
semigroup $\{T(t)|X_{0} ; t\geqq 0\}$ .

PROOF OF THEOREM 2.3. Applying a result of Miyadera-Oharu [15; Ap-
pendix, Lemma 4] to $\{T_{m,n}(t);t\geqq 0\}$ and $\{C_{m,n}\}$ and then estimating (2.9), we
obtain

1 $ T_{m,n}(t)u-C_{m,n}^{\nu}u\Vert\leqq(|t-\nu h_{m,n}|+\sqrt{\tau h_{m,n}})\Vert A_{m,n}u\Vert$

for $u\in X_{m},$ $t,$ $\nu h_{m,n}\in[0, \tau],$ $\tau>0$ and $m,$ $n\geqq 1$ .
Now (iv) is proved in a similar way to Brezis-Pazy [2; Theorem 3.2]:

Let $\{(\backslash t);t\geqq 0\}$ be the semigroup determined by $A$ through Theorem 2.1 (ii).

Let $u\in X_{m}\cap D(A),$ $\tau>0,0\leqq t\leqq\tau$ and let $\lambda>0$ . Then $J_{\lambda}u\in X_{m}$ and

$\Vert T(t)J_{\lambda}u-C_{m.n}^{\nu}J_{\lambda}u\Vert$

$\leqq\Vert T(t)J_{\lambda}u-T_{m,n}(i)J_{\lambda}u\Vert+\Vert T_{m,n}(t)J_{\lambda}u-T_{m,n}(t)(I-\lambda A_{m,n})^{-1}u\Vert$

$+\Vert T_{m,n}(t)(I-\lambda A_{m,n})^{-1}u-C_{mn}^{\nu}(I-\lambda A_{m,n})^{-1}u\Vert$

$+\Vert C_{m.n}^{\nu}(I-\lambda A_{m,n})^{-1}u-C_{m.n}^{\nu}J_{\lambda}u\Vert$

$\leqq\Vert T(t)J_{\lambda}u-T_{m,n}(i)J_{\lambda}u\Vert+2\Vert(I-\lambda A_{m,n})^{-1}-J_{\lambda}u\Vert$

$+(|t-\nu h_{m,n}|+\sqrt{\tau h_{m,n}})\lambda^{-1}\Vert(I-\lambda A_{m,n})^{-1}u-u\Vert$ .
Combining this estimate with Theorem 2.1 (iii) and with condition $(C)$ , we
see that

$\Vert T(t)J_{\lambda}u-C_{m.n}^{\nu}J_{\lambda}u\Vert\rightarrow 0$ as $ n\rightarrow\infty$ and $\nu h_{m,n}\rightarrow t$ .
Since $J_{\lambda}u\rightarrow u$ as $\lambda\rightarrow 0$ and since $T(t)$ and $C_{m.n}^{\nu}$ are contractions, we have the
assertion (a). (b) is now evident from (a) and Corollary 2.2. Q. E. D.

\S 3. Difference approximation for $(CP)$ .
In this section we discuss the difference approximation to

(DE) $u_{t}+\sum_{i=1}^{d}(\phi_{i}(u))_{x_{i}}=0$ , $t>0,$ $x=(x_{1}, x_{2}, \cdots, x_{d})\in R^{a}$

and then state our main theorem together with some comments on it. The
proof will be given in later sections.

Throughout the remainder of this paper, we assume that $\phi_{i}\in C^{1}(R^{1})$ and ‘

$\phi_{i}(0)=0$ for all $i$ and treat the Cauchy problem $(CP)$ for the above-mentioned
(DE) over the space $L^{1}=L^{1}(R^{d})$ .
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As is well-known, we can not expect the exact solution of $(CP)$ for a
general initial-value $u_{0}\in L^{1}$ . Here we define the generalized solution of $(CP)$

as follows:
DErINITION 3.1. Given a $u_{0}\in L^{1}\cap L^{\infty},$ $L^{1}\cap L^{\infty}$-valued function $u(t)=u(t, )$

defined on $[0, \infty$) is called a generalized solution of $(CP)$ with the initial-value
$u_{0}$ if it satisfies the following conditions:

$(G.]\lfloor)$ $u(t)$ is continuous with respect to $L^{1}$ -norm and $\Vert u(t)\{|_{\infty}$ is uniformly
bounded on $[0, \infty$).

(G.2) For every $k\in R^{1}$ and every nonnegative function $f\in C_{0}^{\infty}((0, \infty)\times R^{d})$ ,

$\int_{0}^{\infty}\int_{R^{d}}\{|u(t, x)-k|f_{t}(t, x)$

$+sign(u(t, x)-k)\sum_{i=1}^{d}[\phi_{i}(u(t, x))-\phi_{i}(k)]f_{x_{i}}(t, x)\}dxdt\geqq 0$ .

(G.3) $\lim_{t-+0}\int_{R^{d}}|u(t, x)-u_{0}(x)|dx=0$ .

REMARKS. (1) The above definition of solution of $(CP)$ is a modified
version of that Proposed by Kru kov in the sense that the generalized solu-
tion of Kru kov (which moves in $L^{\infty}$) is also contained in $L^{1}$ . Hence, the
meaning of our solution is more strict than that of Kru kov. The generalized
solution in the sense of Kru kov is always unique ([14; Theorem 2]); hence
we see that our solution is also unique.

(2) Crandall shows that the generalized solution of Definition 3.1 exists
if the initial-value $u$ belongs to $L^{1}\cap L^{\infty}$ and that such solutions are repre-
sented by an $L^{1}$-contractive semigroup on $L^{1}$ . He also generalizes (DE) to
allow the $\phi_{i}$ to be of class $C^{0}(R^{1})$ and obtains a semigroup solution of $(CP)$

([5; Corollary 2.2]). It is possible to extend our results in this direction.
For details, we shall mention it in Section 6.

(3) The solution in the sense of Kru kov is the limit $u$ of the (exact)
solutions $u^{\epsilon},$ $\epsilon>0$ , of the Cauchy problems

$(CP)_{\epsilon}$
$\left\{\begin{array}{l}u_{t}^{\epsilon}+\sum_{i=1}(\phi_{i}(u^{\text{\’{e}}}))_{x_{i}}=\epsilon\Delta u^{\text{\’{e}}}, t>0,x\in R^{a}\\u^{\epsilon}|_{t=0}=u_{0}(x),\end{array}\right.d$

and condition (G.2) is derived through the convergence $u^{\epsilon}\rightarrow u$ as $\epsilon\rightarrow 0$ . This
fact suggests that it is natural to employ the Friedrichs scheme to approxi-
mate (DE). Also, as in indicated in Kru kov [14; Section 2], (G.2) might be
regarded as the “ entroPy condition” in the case of several space variables.

The Friedrichs scheme aPproximating $(CP)$ for (DE) is written as
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$(DS)$ $(_{u^{0}(x)=u_{0}(x)}x_{h,I>0,x\in R^{d};\nu=0,1,2}\ldots$

In this scheme, the mesh sizes of space differences are all taken to be
equal. However, as is seen from later arguments, we can generalize $(DS)$ to
allow the mesh sizes to be distinct. $(DS)$ approximates $(CP)$ as $h,$ $l\rightarrow 0$ if
the mesh ratio $l/h$ lies in a compact interval contained in $(0, \infty)$ . Observe
that $(DS)$ is also written as

$h^{-1}[u^{v+1}(x)-u^{v}(x)]-(l^{2}/2dh)\sum_{i=1}^{f}[D_{i}^{-}D_{i}^{+}u^{\nu}](x)+\sum_{i=1}^{d}[D_{i}^{0}\phi_{i}(u^{\nu})](x)=0$ ,

where $D_{i}^{0},$ $D_{i}^{+}$ and $D_{i}^{-}$ mean the difference operators defined by (1.9). Hence
if $ l^{2}/2dh=\epsilon$ , then $(DS)$ approximates $(CP)_{\epsilon}$ as $h,$ $l\rightarrow 0$ (cf. Oleinik [17; Section
5] and Remark (3) after Definition 3.1).

The difference operators $C_{h,l},$ $h,$ $l>0$ , are defined by

(3.1) $[C_{h,l}u](x)=(2d)^{-1}\sum_{i=1}^{d}(u(x+le_{i})+u(x-le_{i}))-h\sum_{s=1}^{d}[D_{i}^{0}\phi_{i}(u)](x)$

for $u\in L^{1}$ , whenever $C_{h,l}u\in L^{1}$ . Accordingly, $(DS)$ is written as
$(DS)$ $u^{\nu}=C_{\hslash,l}u^{v-1}=C_{hl}^{\nu}u_{0}$ , $\nu=1,2,3,$ $\cdots$ .

Using these $C_{h,l}$ , we define the operators $C_{m,n}$ which are of the type of
Theorem 2.3 as follows: Let

$X_{m}=\{u\in L^{1}\cap L^{\infty} ; \Vert u\Vert_{\infty}\leqq m\}$ , $m=1,2,3,$ $\cdots$

Then
$X_{0}=\bigcup_{m\geqq 1}X_{m}=L^{1}\cap L^{\infty}$ .

Let
$M_{m}=\max_{1\leqq i\leqq d|}\sup_{s|\leq m}|\phi_{l}^{\prime}(s)|$

and let $\{\delta_{m}\}_{m\geqq 1}$ be a sequence of positive numbers such that $\delta_{m}\leqq 1/dM_{m}$ for
$m\geqq 1$ . For these $\{M_{m}\}$ and $\{\delta_{m}\}$ , we choose two sequences $\{h_{m,n}\}_{m,n\geqq 1}$ and
$\{l_{m,n}\}_{m,n\geqq 1}$ of positive numbers such that for each $m,$ $h_{m,n},$ $l_{m,n}\rightarrow 0$ as $ n\rightarrow\infty$

and

(3.2) $\delta_{m}\leqq h_{m,n}/l_{m,n}\leqq 1/dM_{m}$ for $n\geqq 1$ .
Then $C_{hm’ n^{l}m’ n}$ are well-defined on $X_{m}$ . We set

\langle 3.3) $C_{m,n}=C_{hm’ n^{l}m’ n}|X_{m}$ and $A_{m,n}=h_{m.n}^{-1}(C_{m,n}-I)$ .
Now, our main theorem is stated as follows:
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THEOREM 3.2. Let $\{C_{m,n}\}$ and $\{A_{m,n}\}$ are the operators defined by (3.3).
Then we have:

(i) There exists a single-valued dissipative operatOrA in $L^{1}$ such that
$C8(R^{d})\subset D(A)\subset L^{1}\cap L^{\infty}$ and such that

$Au=-\sum_{i=1}^{d}(\phi_{i}(u))_{x_{i}}$ for $u\in D(A)$ ,

where the differentiation is taken in the sense of distributions.
(ii) For every $\lambda>0$ and $u\in X_{m},$ $(I-\lambda A)^{-1}u=\varliminf(I-\lambda A_{m,n})^{-1}u$ and $(I-\lambda A)^{-1}u$

is a solution of the equation

$v+\lambda\sum_{t=1}^{d}(\phi_{i}(v))_{x_{i}}=u$ , $v\in D(A)$ .
Therefore, $R(I-\lambda A)=L^{1}\cap L^{\infty}$ for $\lambda>0$ .

(iii) There is an $L^{1}$ -contractive semigroup $\{T(t);t\geqq 0\}$ on $L^{1}\cap L^{\infty}$ such that

$T(t)u=\lim_{n\rightarrow\infty}(I-\frac{t}{n}A)^{-n}u$ for $i\geqq 0$ and $u\in L^{1}\cap L^{\infty}$

and such that for each $u\in L^{1}\cap L^{\infty},$ $u(t, x)=[T(t)u](x)$ gives a generalized solu-
tion of $(CP)$ with the initial-function $u(x)$ .

(iv) For every $u\in X_{m}$ and $t\geqq 0,$ $C_{m.n}^{\nu}u$ converges strongly to $T(t)u$ as $ n\rightarrow\infty$

and $\nu h_{m,n}\rightarrow t$ .
REMARKS. (1) When we apply Theorem 2.3 in the proof of this theorem,

we see that semigroup $\{T_{m,n}(t);t\geqq 0\}$ generated by $A_{m,n}$ converges to { $T(t)$ ;
$t\geqq 0\}$ in the form of Theorem 2.1. This means that the solution of the semi-
discrete approximation

$\left\{\begin{array}{l}(d/dt)u_{m,n}(t)=A_{m,n}u_{m,n}(t),\\u_{m,n}(0)=u\in X_{m},\end{array}\right.$

$t\geqq 0$

$n=1,2,3,$ $\cdots$ ; $m=1,2,3,$ $\cdots$

converges to the generalized solution of $(CP)$ .
(2) As is shown in Remark (1) after Theorem 5.3, $\overline{A}$ is m-dissipative.

Hence, the convergence $\lim_{n\rightarrow\infty}(I-\frac{t}{n}\overline{A})^{-n}u=\overline{T}(t)u$ holds for $t\geqq 0$ and $u\in L^{1}$ ,

where $\{\overline{T}(t);t\geqq 0\}$ is the semigroup on $L^{1}$ which is obtained by extending
$\{T(t);t\geqq 0\}$ in (iii) onto $L^{1}$ . This extended semigroup coincides with that
of Crandall.

(3) We can also define the difference operators $C_{m,n}$ on the set $X_{m}=$

$\{u\in L^{\infty} ; \Vert u\Vert_{\infty}\leqq m\}$ in the same way as in (3.3). Kojima [10] shows that for
every $u\in X_{m}$ and $t\geqq 0,$ $C_{m.n}^{\nu}u$ converges to a generalized solution in the
sense of $Kru\check{z}kov$ of $(CP)$ in the topology of $L_{1oc}^{1}(R^{a})$ . He proves this con-
vergence by employing Kru kov’s uniqueness theorem. We note the Theorem
3.2 (iv) is proved without the theorem.
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\S 4. Convergence of difference approximation.

In this section we show that the conditions imposed in Theorem 2.3 are
satisfied for the operators $\{C_{m,n}\}$ and $\{A_{m,n}\}$ which are dePned by (3.3).

Throughout this and later sections, we write simply $h$ and 1 for $h_{m,n}$ and
$l_{m,n}$ , respectively. We use these abbreviations just for brevity in notation.
The $m$ and $n$ to be speciPed will be indicated by the subscripts associated
with the operators $C_{m,n},$ $A_{m,n}$ and $(I-\lambda A_{m,n})^{-1},$ $\lambda>0$ .

We start with the following result which implies the stability condition
for $(DS)$ .

LEMMA 4.1. For each $m\geqq 1,$ $\{C_{m,n}\}_{n\geqq 1}\subset Cont(X_{m})$ . Moreover.
$\Vert C_{m,n}u\Vert_{p}\leqq\Vert u\Vert_{p}$ for $u\in X_{m},$ $m,$ $n\geqq 1$ and $p=1,$ $\infty$ .

PROOF. Let $u,$ $v\in X_{m}$ . Then by (3.1) and (3.3), we have

(4.1) $\int_{R^{f}}|[C_{m,n}u](x)-[C_{m,n}v](x)|dx$

$\leqq\sum_{i=1}^{d}\int_{R^{d}}|(2d)^{-1}[u(x+le_{i})-v(x+le_{i})]$

$-(h/2l)[\phi_{l}(u(x+le_{i}))-\phi_{i}(v(x+le_{i}))]|dx$

$+\sum_{t=1}^{d}\int_{R^{d}}|(2d)^{-1}[u(x-le_{i})-v(x-le_{i})]$

$+(h/2l)[\phi_{i}(u(x-le_{i}))-\phi_{i}(v(x-le_{i}))]|dx$

$=\sum_{i=1}^{d}\int_{R^{d}}|(2d)^{-1}[u(x)-v(x)]-(h/2l)[\phi_{i}(u(x))-\phi_{i}(v(x))]|dx$

$+\sum_{i=1}^{d}\int_{R^{d}}|(2d)^{-1}[u(x)-v(x)]+(h/2l)[\phi_{i}(u(x))-\phi_{i}(v(x))]|dx$ .

Applying the mean value theorem, we have

$\sum_{i=1}^{d}|(2d)^{-1}[u(x)-v(x)]-(h/2l)[\phi_{i}(u(x))-\phi_{i}(v(x))]|$

$+\sum_{i=1}^{d}|(2d)^{-1}[u(x)-v(x)]+(h/2l)[\phi_{i}(u(x))-\phi_{i}(v(x))]|$

$=\sum_{t=1}^{d}\{[(2d)^{-1}-(h/2l)\phi_{i}^{\prime}(\theta_{i}(x))]$

$+[(2d)^{-1}+(h/2l)\phi_{i}^{\prime}(\theta_{i}(x))]\}|u(x)-v(x)|$

$=|u(x)-v(x)|$ ,

for almost all $x\in R^{d}$ , where $\theta_{i}(x)$ are certain values between $u(x)$ and $v(x)$ ;
note that $(2d)^{-1}\pm(h/2l)\phi_{i}^{\prime}(s)\geqq 0$ for $|s|\leqq m$ and for all $i$ by condition (3.2).
Thus, we obtain

$\Vert C_{m,n}u-C_{m,n}v\Vert_{1}\leqq\Vert u-v\Vert_{1}$ for $u,$ $v\in X_{m}$ and $m,$ $n\geqq 1$ .
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Next let $u\in X_{m}$ . Then, in view of (3.1) and the mean value theorem,

$[C_{m,n}u](x)=\sum_{i=1}^{d}[(2d)^{-1}-(h/2l)\phi_{i}^{\prime}(\theta_{i}(x))]u(x+le_{i})$

$+\sum_{i=1}^{d}[(2d)^{-1}+(h/2l)\phi_{i}^{\prime}(\theta_{i}(x))]u(x-le_{i})$ ,

where $\theta_{i}(x)$ are certain values between $u(x+le_{l})$ and $u(x-le_{i})$ . Therefore,

$|[C_{m,n}u](x)|\leqq\sum_{\iota=1}^{d}[(2d)^{-1}-(h/2l)\phi_{i}^{\prime}(\theta_{i}(x))]\Vert u\Vert_{\infty}$

$+\sum_{i=1}^{d}[(2d)^{-1}+(h/2l)\phi_{i}^{\prime}(\theta_{i}(x))]\Vert u\Vert_{\infty}$

$=\Vert u\Vert_{\infty}$ ,

for almost all $x\in R^{\prime i}$ , and hence $\Vert C_{m,n}u\Vert_{\infty}\leqq\Vert u\Vert_{\infty}$ . This also means that each
$C_{m,n}$ maps $X_{m}$ into itself.

Finally, observing that $C_{m,n}0=0$ for $m,$ $n\geqq 1$ , we have that $\Vert C_{m,n}u\Vert_{1}\leqq$

$\Vert u\Vert_{1}$ . Q. E. D.
REMARK. In the above proof we used only the condition that $h_{m,n}/l_{m,n}$

$\leqq 1/dM_{m}$ for $m,$ $n\geqq 1$ . Since $\{M_{m}\}$ is monotone increasing, we see that
$C_{p,n}|X_{m}\in Cont(X_{m})$ for $p>m$ and $n\geqq 1$ .

From Lemma 4.1 it follows that each $A_{m,n}$ is dissipative on the closed
convex set $X_{m}$ and hence, in the same way as in (2.8), we have that
$R(I-\lambda A_{m,n})\supset X_{m}$ for $\lambda>0$ . Thus, by Theorem 1.2, $A_{m,n}$ generates a semi-
group $\{T_{m,n}(t);t\geqq 0\}$ on $X_{m}$ .

Next, we give a technical lemma which plays a central role in our
arguments.

LEMMA 4.2. Let $u\in X_{m}$ . Then for every constant $k$ with $|k|\leqq m$ and
every nonnegative $f\in C_{0}^{\infty}(R^{d})$ ,

(4.2) \langle sign $(u-k)A_{m,n}u,$ $ f\rangle$

$\leqq(2d)^{-1}\sum_{\llcorner-1}^{d}\langle|u-k|, (l^{2}/h)D_{i}^{-}D_{i}^{+}f\rangle$

$+\sum_{i=1}^{d}$ \langle sign $(u-k)(\phi_{i}(u)-\phi_{i}(k)),$ $ D_{i}^{0}f\rangle$

$-$

, $n\geqq 1$ .
PROOF. Let $k$ be a constant such that $|k|\leqq m$ and let $u\in X_{m}$ . Then we

can write as

sign $(u(x)-k)[A_{m,n}u](x)$

$=sign(u(x)-k)\{(l^{2}/2dh)\sum_{i=1}^{d}[D_{i}^{-}D_{i}^{+}u](x)-\sum_{i=1}^{d}[D_{\ell}^{0}\phi_{i}(u)](x)\}$
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$=sign(u(x)-k)\{(l^{2}/2dh)\sum_{i=1}^{d}[D_{i}^{-}D_{i}^{+}(u-k)](x)$

$-\sum_{=j1}^{d}[D_{i}^{0}(\phi_{i}(u)-\phi_{i}(k))](x)\}$ .

Fix an $i$ and let $x\in R^{d}$ be such that $|u(x\pm le_{i})|\leqq m$ . Then
$\phi_{i}(u(x\pm le_{i}))-\phi_{i}(k)=\phi_{i}^{\prime}(\theta_{i}^{\pm}(x))(u(x\pm le_{i})-k)$

by the mean value theorem. Hence, noting that

$(2d)^{-1}\mp(h/2l)\phi_{i}^{\prime}(\theta_{i}^{\pm}(x))\geqq 0$ (by (3.2))
and

[sign $(u(x\pm le_{i})-k)$–sign $(u(x)-k)$] $(u(x\pm le_{i})-k)\geqq 0$ ,
we obtain

$(2d)^{-1}$[ $|u(x\pm le_{i})-k|$ –sign $(u(x)-k)(u(x\pm le_{i})-k)$]

$\mp(h/2l)$[$sign(u(x\pm le_{i})-k)$–sign $(u(x)-k)$] $[\phi_{i}(u(x\pm le_{i}))-\phi_{i}(k)]$

$=[(2d)^{-1}\mp(h/2l)\phi_{i}^{\prime}(\theta_{l}^{\pm}(x))][sign(u(x\pm le_{i})-k)$

-sign $(u(x)-k)$] $(u(x\pm le_{i})-k)\geqq 0$

for almost all $x\in R^{d}$ , from which it follows that

sign $(u(x)-k)(l^{2}/2dh)[D_{i}^{-}D_{i}^{+}(u-k)](x)$

-sign $(u(x)-k)[D_{i}^{0}(\phi_{i}(u)-\phi_{i}(k))](x)$

$\leqq(l^{2}/2dh)[D_{i}^{-}D_{i}^{+}|u-k|](x)-[D_{i}^{0}(sign(u-k)(\phi_{i}(u)-\phi_{i}(k)))](x)$

for almost all $x\in R^{d}$ and all $i$ . Therefore,

sign $(u(x)-k)[A_{m,n}u](x)$

$\leqq(l^{2}/2dh)\sum_{t=1}^{a}[D_{i}^{-}D_{i}^{+}|u-k|](x)-\sum_{i=1}^{l}[D_{i}^{0}(sign(u-k)(\phi_{i}(u)-\phi_{i}(k)))](x)$

for almost all $x\in R^{d}$ . Multiplying both sides by a nonnegative function
$f\in C_{0}^{\infty}(R^{d})$ and integrating them over $R^{d}$ , we have

\langle sign $(u-k)A_{m,n}u,$ $ f\rangle$

$\leqq(l^{2}/2dh)\sum_{\iota=1}^{d}\langle D_{i}^{-}D_{i}^{+}|u-k|, f\rangle-\sum_{i=1}^{t}\langle D_{i}^{0}(sign(u-k)(\phi_{i}(u)-\phi_{i}(k))), f\rangle$

$=(l^{2}/2dh)\sum_{i=1}^{d}\langle|u-k|, D_{i}^{-}D_{i}^{+}f\rangle+\sum_{i=1}^{d}$ \langle sign $(u-k)(\phi_{i}(u)-\phi_{i}(k)),$ $ D_{i}^{0}f\rangle$ .
Q. E. D.

REMARK. Let $v\in X_{m}$ and let $f$ be a nonnegative $C^{\infty}$-function on $R^{d}$ such
that $f$ and $f_{x_{i}},$ $i=1,2,$ $\cdots$ , $d$ , are uniformly bounded on $R^{d}$ . Then we see
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letting $k=0$ in the above proof and using (3.2) that

(4.3) \langle sign $(v)A_{m,n}v,$ $ f\rangle$

$\leqq(l/dh)\sum_{i=1}^{d}\langle|v|, (l/2)D_{i}^{-}D_{i}^{+}f\rangle+\sum_{t=1}^{a}$ \langle sign $(v)\phi_{i}(v),$ $ D_{i}^{0}f\rangle$

$\leqq(1/d\delta_{m})\sum_{i=1}^{d}(\sup_{x}|f_{x_{i}}(x)|)\int_{R^{d}}|v(x)|dx+\sum_{i=1}^{d}M_{m}(\sup_{x}|f_{x_{i}}(x)|)\int_{R^{d}}|v(x)|dx$

$=[(1/d\delta_{m})+M_{m}](\sum_{l=1}^{d}\sup_{x}|f_{x_{i}}(x)|)\Vert v\Vert_{1}$ .

In the remainder of this section we proceed with the proof of condition
$(C)$ of Theorem 2.1.

LEMMA 4.3. Let $u\in X_{m},$ $\lambda>0$ , and let $v_{n}=(I-\lambda A_{m,n})^{-1}u,$ $n=1,2,$ $\cdots$ Then
we have the following estimates:

(i) $\Vert v_{n}\Vert_{p}\leqq\Vert u\Vert_{p}$ for $n\geqq 1$ and $p=1,$ $\infty$ ;

(ii) $\int_{R^{d}}|v_{n}(x+y)-v_{n}(x)|dx\leqq\int_{R^{d}}|u(x+y)-u(x)|dx$ for $y\in R^{d}$ and $n\geqq 1$ ;

(iii) $\int_{|x|>\rho}|v_{n}(x)|dx\rightarrow 0$ as $\rho\rightarrow+\infty$ , uniformly in $n$ .

Consequently, $\{(I-\lambda A_{m,n})^{-1}u;n\geqq 1\}$ is conditionally compact in $L^{1}$ for each
$u\in X_{m}$ and $\lambda>0$ .

PROOF. Let $u\in X_{m}$ and $\lambda>0$ . Since $A_{m,n}0=0$ for $m,$ $n\geqq 1$ , Lemma 4.1
states that

$\Vert v_{n}\Vert_{p}=\Vert(I-\lambda A_{m,n})^{-1}u\Vert_{p}\leqq\Vert u\Vert_{p}$ for $n\geqq 1$ and $P=1,$ $\infty$ ;

hence (i) is obtained.
Since each $A_{m,n}$ commutes with translations, so does $(I-\lambda A_{m,n})^{-1}$ . There-

fore, again by Lemma 4.1,

$\int_{R^{d}}|v_{n}(x+y)-v_{n}(x)|dx$

$=\int_{R^{d}}|[(I-\lambda A_{m,n})^{-1}u(\cdot+y)](x)-[(I-\lambda A_{m,n})^{-1}u](x)|dx$

$\leqq\int_{R^{d}}|u(x+y)-u(x)|dx$ , $y\in R^{d},$ $n\geqq 1$ ,

which proves (ii).
Next, to prove (iii), let $f$ be a nonnegative $C^{\infty}$-function on $R^{(f}$ such that

$f$ and $f_{x_{i}},$ $i=1,2,$ $\cdots$ , $d$ , are uniformly bounded on $R^{(f}$ and put $v=v_{n}$ in (4.3).
Then, using the relations $A_{m,n}v_{n}=\lambda^{-1}(v_{n}-u),$ $n=1,2,$ $\cdots$ , we obtain
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\langle 4.4) $\int_{R^{d}}|v_{n}(x)|f(x)dx-\int_{R}a|u(x)|f(x)dx$

$\leqq\lambda[(1/d\delta_{m})+M_{m}](\sum_{i=1}^{d}\sup|f_{x_{i}}(x)|)\Vert u\Vert_{1}$ .

Now, we choose a family $\{\delta_{r,\rho} ; \rho>r>0\}$ of $C^{\infty}$-functions defined on $R^{1}$ such
that $0\leqq\delta_{r,\rho}(s)\leqq 1$ for $s\in R^{1}$ ,

$\delta_{r,\rho}(s)=0$ for $|s|\leqq r$ ,

$\delta_{r,\rho}(s)=1$ for $|s|\geqq\rho$

and such that $\sup_{l}|\delta_{r.p}^{\prime}(s)|\rightarrow 0$ as $\rho\rightarrow+\infty$ for each fixed $r>0$ . Set

$f_{\tau,\rho}(x)=\prod_{i=1}^{d}\delta_{r,\rho}(x_{i})$ for $x\in R^{d}$ .

Then it follows from (4.4) that

$\int_{|x|>\rho}|v_{n}(X)|dx\leqq\int_{|x|>r}\rho$ .

This estimate implies (iii).
Finally, by the Fr\’echet-Kolmogorov theorem, (i), (ii) and (iii) imply that

$\{(I-\lambda A_{m,n})^{-1}u;n\geqq 1\}$ is conditionally compact in $L^{1}$ . Q. E. D.
By Lemma 4.3, $\{(I-\lambda A_{m,n})^{-1}u\}_{n\geqq 1}$ contains a convergent subsequence.

The following lemma proves that such a sequence has only one cluster point.
The crucial step of the proof is based on the method proposed by Crandall
[5; Lemma 2.1] (cf. Kru kov [14]).

LEMMA 4.4. Let $u,$ $v\in X_{m},$ $\lambda>0$ and $P\geqq m$ . Let $w_{n}=(I-\lambda A_{m,n})^{-1}u$ and
$z_{n}=(I-\lambda A_{p,n})^{-1}v,$ $n=1,2,$ $\cdots$ . If $w$ is a cluster poinf of $\{w_{n}\}$ and $z$ is that
of $\{z_{n}\}$ , then

$\Vert w-z\Vert_{1}\leqq\Vert u-v\Vert_{1}$ .
Therefore, for each $\lambda>0$ and $u\in X_{m},$ $\{(I-\lambda A_{m,n})^{-1}u\}_{n\geqq 1}$ is Cauchy in $L^{1}$ and
the limit is independent of $m$ .

PROOF. For brevity in notation, we denote by the same symbols $\{w_{n}\}$

and $\{z_{n}\}$ the subsequences converging in $L^{1}$ to $w$ and $z$ respectively, and also
by taking their subsequences if necessary, we assume that $w_{n}(x)$ and $z_{n}(x)$

converge to $w(x)$ and $z(x)$ almost everywhere on $R^{d}$ respectively. Also,
throughout this proof, we write $h^{\prime}$ and $l^{\prime}$ for $h_{p,n}$ and $I_{p,n},$ respectively.

Now, let $f(x, y)\in C_{0}^{\infty}(R^{d}\times R^{d})$ and set $u=w_{n},$ $k=z_{n}(y)$ and put $f(x)=f(x, y)$

in (4.2). Using the relation $A_{m,n}w_{n}=\lambda^{-1}(w_{n}-u)$ and integrating with respect
to $y$ , we have
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(4.5) $0\leqq\int_{R^{d}\times R^{d}}$ sign $(w_{n}(x)-z_{n}(y))(u(x)-w_{n}(x))f(x, y)dxdy$

$+(\lambda/2d)\sum_{i=1}^{d}\int_{R^{d}\times R^{d}}|w_{n}(x)-z_{n}(y)|(l^{2}/h)[D_{i}^{-}D_{i}^{+}f(\cdot, y)](x)dxdy$

$+\lambda\sum_{r=1}^{d}\int_{R^{d}\times R^{d}}$ sign $(w_{n}(x)-z_{n}(y))[\phi_{i}(w_{n}(x))-\phi_{i}(z_{n}(y))][D_{i}^{0}f(\cdot, y)](x)dxdy$ ,

where $[.D_{i}^{0}f(\cdot, y)](x)=(2l)^{-1}[f(x+le_{i}, y)-f(x-le_{i}, y)]$ and the others denote
similar difference operations. Next, interchanging $w_{n}$ and $z_{n}$ , then $x$ and $y$ ,

we obtain the inequality symmetric to (4.5). Add these two inequalities to
find

(4.6) $0\leqq\int_{R^{d}\times R^{d}}$ sign $(w_{n}(x)-z_{n}(y))(u(x)-v(y)-w_{n}(x)+z_{n}(y))f(x, y)dxdy$

$+(\lambda/2d)\sum_{i=1}^{d}\int_{R^{d}\times R^{d}}|w_{n}(x)-z_{n}(y)|\{(l^{2}/h)[D_{i}^{-}D_{i}^{+}f(\cdot, y)](x)$

$+(l^{\prime 2}/h^{\prime})[D_{i}^{-}D_{l}^{+}f(x, )](y)\}dxdy$

$+\lambda\int_{R^{d}\times R^{d}}$ sign $(w_{n}(x)-z_{n}(y))\sum_{i=1}^{d}[\phi_{i}(w_{n}(x))-\phi_{i}(z_{n}(y))]$

$\times\{[D_{i}^{0}f(\cdot, y)](x)+[D_{i}^{0}f(x, )](y)\}dxdy$ ,

where $[D_{i}^{0}f(x, )](y)=(2l^{\prime})^{-1}[f(x, y+l^{\prime}e_{i})-f(x, y-l^{\prime}e_{i})]$ and the others denote
similar difference operations.

Since
sign $(w_{n}(x)-z_{n}(y))\rightarrow sign(w(x)-z(y))$

$a$ . $e$ . on $\{(x, y)\in R^{d}\times R^{d} ; w(x)\gtrless z(y)\}$

and

sign $(w_{n}(x)-z_{n}(y))\sum_{i=1}^{d}[\phi_{i}(w_{n}(x))-\phi_{i}(z_{n}(y))]\rightarrow 0$

$a$ . $e$ . on $\{(x, y)\in R^{a}\times R^{d} ; w(x)=z(y)\}$ ,

the Lebesgue convergence theorem yields that

(4.7) $0\leqq\int_{R^{d}\times R^{d}}(|u(x)-v(y)|-|w(x)-z(y)|)f(x, y)dxdy$

$+\lambda\int_{R^{d}\times R^{d}}$ sign $(w(x)-z(y))\sum_{i=1}^{d}[\phi_{i}(w(x))-\phi_{i}(z(y))](f_{x_{i}}+f_{yi})dxdy$ .

Now, take a nonnegative function $\sigma\in C_{0}^{\infty}(R^{1})$ such that $\int_{-\infty}^{\infty}\sigma(s)ds=1$ . Let

$\omega(x)=\prod_{i=1}^{d}\sigma(x_{i})$ , $x\in R^{d}$

and
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$\omega_{\rho}(x)=\rho^{-d}\omega(\frac{\chi}{\rho})$ , $\rho>0,$ $x\in R^{a}$ .

We then set for a nonnegative function $g\in C_{0}^{\infty}(R^{d})$

$f(x, y)=g(\frac{x+y}{2})\omega_{\rho}(\frac{x+y}{2})$ .

Substituting this $f$ into (4.7) and using transformations $2\xi=x+y,$ $2\eta=x-y\in R^{a}$ ,

we find

(4.8) $0\leqq\int_{R^{d}}[\int_{R^{d}}\{(|u(\xi+\eta f-v(\xi-\eta)|-|w(\xi+\eta)-z(\xi-\eta)|)g(\xi)$

$+\lambda sign(w(\xi+\eta)-z(\xi-\eta))\sum_{i=1}^{d}(\phi_{i}(w(\xi+\eta))-\phi_{i}(z(\xi-\eta)))g_{\xi_{i}}(\xi)\}d\xi]\omega_{\rho}(\eta)d\eta$ .

Let us denote the integral in $[]$ by $I_{g}(\eta)$ . Then we have

(4.9) $ 0\leqq\lim_{\rho-}\inf_{+0}\int_{R^{d}}I_{g}(\eta)\omega_{\rho}(\eta)d\eta$

$\leqq\lim_{1\eta^{1}}\sup_{0}I_{g}(\eta)$

$\leqq\lim_{1\eta|-0}\int_{R^{d}}\{(|u(\xi+\eta)-v(\xi-\eta)|-|w(\xi+\eta)-z(\xi-\eta)|)g(\xi)$

$+\lambda\sum_{i=1}^{d}|[\phi_{i}(w(\xi+\eta))-\phi_{i}(z(\xi-\eta))]g_{\xi_{i}}(\xi)|\}d\xi$

$=\int_{R^{d}}(|u(\xi)-v(\xi)|-|w(\xi)-z(\xi)|)g(\xi)d\xi$

$+\lambda\sum_{i=1}^{d}\int_{R^{d}}|[\phi_{i}(w(\xi))-\phi_{i}(z(\xi))]g_{\xi_{i}}(\xi)|d\xi$

by the Lebesgue convergence theorem. Set $g(\xi)=\kappa(|\xi|/r)$ in (4.9), where
$\kappa\in C_{0}^{\infty}(R^{1}),$ $\kappa\geqq 0$ and $\kappa(s)=1$ for $|s|\leqq 1$ , and then let $ r\rightarrow+\infty$ to conclude that

$ 0\leqq\int_{R^{d}}(|u(\xi)-v(\xi)|-|w(\xi)-z(\xi)|)d\xi$ ,

that is,
$\Vert w-z\Vert_{1}\leqq\Vert u-v\Vert_{1}$ . Q. E. D.

We are now in position to prove condition $(C_{1})$ and $(C)$ in Theorem 2.3.
THEOREM 4.5. (i) For every $u\in C_{0}^{1}(R^{d})\cap X_{m}$ ,

$\lim_{n-\infty}A_{m,n}u=-\sum_{i=1}^{d}(\phi_{i}(u))_{x_{i}}=-\sum_{i=1}^{d}\phi_{i}^{\prime}(u)u_{x_{i}}$ ,

where the differentiation is taken in the classical sense.
(ii) There exists a pseudo-resolvent $\{J_{\lambda} ; \lambda>0\}\subset Cont(X_{0})$ such that
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$J_{\lambda}u=\varliminf_{n\infty}(I-\lambda A_{m,n})^{-1}u$ for $\lambda>0,$ $u\in X_{m}$ and $m\geqq 1$ .

Moreover, for every $\lambda>0$ and $u\in X_{0}=L^{1}\cap L^{\infty},$ $J_{\lambda}u$ gives a solulion of the
equation

$u=v+\lambda\sum_{i=1}^{d}(\phi_{i}(v))_{x_{i}}$ ,

where the differentiation is taken in the sense of distributions.
PROOF. (i) Let $u\in X_{m}\cap C_{0}^{1}(R^{d})$ . Then

$[A_{m,n}u](x)=(l/2dh)\sum_{i=1}^{d}[lD_{i}^{-}D_{i}^{+}u](x)-\sum_{t=1}^{d}[D_{i}^{0}\phi_{i}(u)](x)$ .

In view of (3.2), the first term goes to $0$ and the second to $-\sum_{i=1}^{d}\phi_{i}^{\prime}(u)u_{x_{i}}$ as
$ n\rightarrow\infty$ , uniformly on $R^{d}$ . Hence, we have the assertion (i).

(ii) By Lemma 4.4, we can define the operators $J_{\lambda},$ $\lambda>0$ , on $X_{0}$ by $J_{\lambda}u=$

$\lim_{n-}(I-\lambda A_{m,n})^{-1}u$ for $u\in X_{m}$ . Since each $\{(I-\lambda A_{m,n})^{-1} ; \lambda>0\}$ satisfies the

resolvent formula (1.2), $(I-\lambda A_{m,n})^{-1}[X_{m}]\subset X_{m}$ , and since $X_{0}$ is linear, we see
that $\{J_{\dot{\Lambda}}!;\lambda>0\}$ forms a pseudo-resolvent of contractions from $X_{0}$ into itself.
Next, let $\lambda>0$ and $u\in X_{0}$ . Noting that $u\in X_{m}$ for some $m\geqq 1$ , we set $v_{n}=$

$(I-\lambda A_{m,n})^{-1}u,$ $n=1,2,3,$ $\cdots$ We first demonstrate that $A_{m,n}v_{n}$ converges to
$-\sum_{i=1}^{d}(\phi_{i}(J_{\lambda}u))_{x_{i}}$ in the sense of distributions. For any $f\in C_{0}^{\infty}(R^{d})$ , we have

$\langle A_{m,n}v_{n}, f\rangle=(l^{2}/2dh)\sum_{i=1}^{d}\langle D_{l}^{-}D_{\dot{t}}^{+}v_{n}, f\rangle-\sum_{i=1}^{d}\langle D_{i}^{0}\phi_{i}(v_{n}), f\rangle$

$=(l^{2}/2dh)\sum_{i=1}^{f}(\langle v_{n}, D_{i}^{-}D_{i}^{+}f\rangle+\sum_{i=1}^{d}\langle\phi_{i}(v_{n}), D_{i}^{0}f\rangle$ .

Employing(3.2) and passing to the limit as $ n\rightarrow\infty$ , we obtain

$\lim_{n-\infty}\langle A_{m,n}v_{n}, f\rangle=\sum_{t=1}^{i}(\langle\phi_{i}(J_{\lambda}u), f_{x_{i}}\rangle$ for $f\in C_{0}^{\infty}(R^{d})$ .

This implies the desired convergence. On the other hand, $A_{m,n}v_{n}=\lambda^{-1}(v_{n}-u)$

$\rightarrow\lambda^{-1}(J_{\lambda}u-u)$ in $L^{1}$ , from which it follows that $\sum_{i=1}^{d}(\phi_{i}(J_{\lambda}u))_{x_{i}}$ becomes a
function and

(4.10) $u=J_{\lambda}u+\lambda\sum_{i=1}^{a}(\phi_{i}(J_{\lambda}u))_{x_{i}}$ in $L^{1}$

This proves the last assertion of (ii). Q. E. D.
REMARK. Theorem 4.5 (i) states that $(C_{1})$ holds for $X_{0}=L^{1}\cap L^{\infty}$ and

$D=C_{0}^{1}(R^{d})$ . Let us define the limit operator $A_{1}$ by $A_{1}u=-\sum_{i=1}^{d}(\phi_{i}(u))_{x_{i}},$ $ u\in$

$C_{0}^{1}(R^{a})$ . Though $A_{1}$ is densely defined, $\overline{R(I-A_{1})}$ does not necessarily coincide
with $L^{1}$ (Crandall [5; Example3.3]). This means that $R(I-\lambda A_{1})DX_{0}$ and
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that even $\overline{A}_{1}$ does not satisfy the range condition $(R)$ . In this way, $(C_{1})$ does
not necessarily imply $(C)$ .

Theorem 4.5 states that all of the assumptions of Theorem 2.3 (b) are
satisfied for $X_{0}=L^{1}\cap L^{\infty}$ and $D=C_{0}^{1}(R^{d})$ . Therefore, there exists a dissipa-
tive operator $A$ such that $C_{0}^{1}(R^{d})\subset D(A)\subset L^{1}\cap L^{\infty}$ and $J_{\lambda}=(I-\lambda A)^{-1}$ for $\lambda>0$ .
Moreover, $A$ is single-valued. In fact, let $J_{\lambda}u=J_{\lambda}v$ , then from the relation
(4.10) it follows that $u=v$ . This means that each $J_{\lambda}$ is injective. Hence $A$

is single-valued by Proposition 1.1 (ii) and furthermore, (4.10) implies that
$Au=-\sum_{i=1}^{d}(\phi_{i}(u))_{x_{i}}$ for $u\in D(A)$ . Consequently, the assertions (i) and (ii) of

Theorem 3.2 are proved.
Finally, we see from the above-mentioned that $A$ generates a semigroup

$\{T(t);t\geqq 0\}$ on $L^{1}=\overline{D(A}$). Set $T(t)=\overline{T}(t)|X_{0}$ for $t\geqq 0$ . Then by Remark (5)
after Corollary 2.2, $\{T(t);t\geqq 0\}$ forms an $L^{1}$ -contractive semigroup on $X_{0}=$

$L^{1}\cap L^{\infty}$ such that $T(t)u=\varliminf_{n}(I-\frac{t}{n}A)^{-n}u$ for $t\geqq 0$ and $u\in L^{1}\cap L^{\infty}$ . There-

fore, we have the assertion (iv) of Theorem 3.2 by applying Theorem 2.3 (b).

\S 5. Generalized solution of $(CP)$ .
In this section we discuss the generalized solution of $(CP)$ and give some

comments on the semigroup $\{T(t);t\geqq 0\}$ constructed in the preceding section.
We start with the following theorem which proves the assertion (iii) of
Theorem 3.2:,

THBOREM 5.1. Let $\{T(t);t\geqq 0\}$ be a semigroup on $L^{1}\cap L^{\infty}$ obtained in the
preceding section. Then for any $u\in L^{1}\cap L^{\infty},$ $u(t)=T(t)u$ gives a generalized
solution of $(CP)$ with the initial-value $u$ .

PROOF. We want to show that (G.1), (G.2) and (G.3) stated in Definition
3.1 hold for $u(t, x)=[T(t)u](x)$ . First, (G.1) and (G.3) are evident from the
property of $\{T(t);t\geqq 0\}$ and from the fact that $T(t)[X_{m}]\subset X_{m}$ for $t\geqq 0$ and
$m\geqq 1$ . We then prove (G.2). Let $u\in L^{1}\cap L^{\infty}$ . Noting that $u\in X_{m}$ for some
$m\geqq 1$ , we set $u_{\epsilon}(t)=(I-\epsilon A_{m,n})^{-[l/\text{\’{e}}]}u$ and $u_{\epsilon}(t, x)=[u_{\epsilon}(t)](x)$ for $\epsilon>0,$ $t\geqq 0$ and
$x\in R^{d}$ . Then $\varliminf_{\epsilon+0}u_{\epsilon}(i)=T_{m,n}(t)u\in X_{m}$ holds uniformly for $t$ on bounded sub-

intervals of $[0, \infty$) by (2.9), and

\langle 5.1) sign $(u_{\epsilon}(t, x)-k)[A_{m,n}u_{\epsilon}(t)](x)$

$=\epsilon^{-1}$ sign $(u_{\epsilon}(t, x)-k)[(u_{\epsilon}(t, x)-k)-(u_{\epsilon}(t-\epsilon, x)-k)]$

$\geqq\epsilon^{-1}(|u_{\epsilon}(t, x)-k|-|u_{\epsilon}(t-\epsilon, x)-k|)$ for $k\in R^{1}$ and $x\in R^{d}$ .
Let $|k|\leqq m$ and let $f\in C_{0}^{\infty}((0, \infty)\times R^{d}),$ $f\geqq 0$ . Set $u(x)=u_{\epsilon}(t, x)$ and $f(x)=$

$f(t, x)$ in (4.2). Then we see using (5.1) and integrating both sides of (4.2)
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over $\epsilon\leqq t<\infty$ that

(5.2) $0\leqq I_{1}(\epsilon)+I_{2}(\epsilon)+I_{3}(\epsilon)$ ,

where

$I_{1}(\epsilon)=\int_{\epsilon}^{\infty}\int_{R^{d}}\epsilon^{-1}(|u_{\epsilon}(t-\epsilon, x)-k|-|u_{\epsilon}(t, x)-k|)f(t, x)dxdt$

$=\int_{0}^{\infty}\int_{R^{d}}|u_{\epsilon}(t, x)-k|\epsilon^{-1}(f(t+\epsilon, x)-f(t, x))dxdt$

$+\int_{0}^{\vee}\int_{R^{d}}\epsilon^{-1}|u_{\epsilon}(t, x)-k|f(t_{v}x)dxdt$ ,

$I_{2}(\epsilon)=\int_{\epsilon}^{\infty}\int_{R^{d}}|u_{\epsilon}(t, x)-k|(l^{2}/2dh)\sum_{i=1}^{a}[D_{i}^{-}D_{i}^{+}f(t, )](x)dxdt$

and

$f_{3}(\epsilon)=\int_{\zeta}^{\infty}\int_{R^{d}}$ sign $(u_{\text{\’{e}}}(t, x)-k)\sum_{i=1}^{d}[\phi_{i}(u_{\epsilon}(t, x))-\phi_{i}(k)][D_{i}^{0}f(t, )](x)dxdt$ .

Since $f(t, x)$ has a support which is compact in $(0, \infty)\times R^{d}$ , the second term
.of $I_{1}(\epsilon)$ is equal to $0$ for sufficiently small $\epsilon>0$ . Hence,

$\lim_{\epsilon-+0}I_{1}(\epsilon)=\int_{0}^{\infty}\int_{R^{d}}|[T_{m,n}(t)u](x)-k|f_{t}(t, x)dxdt$ .
Since $u_{\epsilon}(t, )\in X_{m}$ and $l/2dh\leqq 1/2d\delta_{m}$ by (3.2), we obtain

$\lim_{\rightarrow}\sup_{+0}I_{2}(\epsilon)\leqq const(m, f)l$ .

Also, $|\phi_{i}(u_{\epsilon}(t, x))-\phi_{i}(k)|\leqq 2mM_{m}$ and $|[D_{i}^{0}f(t, )](x)-f_{x_{i}}(t, x)|\leqq const(f)l_{r}$

where $M_{m}$ is the constant associated with $X_{m}$ through (3.2); hence,

$\lim_{\rightarrow}\sup_{+0}I_{3}(\epsilon)$

$\leqq const(m, f)l$

$+\int_{0}^{\infty}\int_{R^{d}}$ sign $([T_{m,n}(t)u](x)-k)\sum_{i=1}^{d}[\phi_{\ell}([T_{m,n}(t)u](x))-\phi_{i}(k)]f_{x_{i}}(t, x)dxdi$ .
$\mathbb{C}ombi3ing$ these estimates with (5.2), we have

(5.3) $0\leqq Ml+\int_{0}^{\infty}\int_{R^{d}}\{|[T_{m,n}(t)u](x)-k|f_{t}$

$+sign([T_{m,n}(t)u](x)-k)\sum_{\iota=1}^{d}[\phi_{i}([T_{m,n}(t)u](x))-\phi_{i}(k)]f_{x\ell}\}$ dxdt

for $|k|\leqq m,$ $f\in C_{0}^{\infty}((0, \infty)\times R^{d}),$ $f\geqq 0$ , and for some constant $M$ depending on
$m$ as well as $f$.

Now we proceed with the same argument as in the proof of Lemma 4.4.
First, by Theorem 2.1, we have that $\lim_{n-\infty}T_{m,n}(i)u=T(t)u$ holds uniformly on
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bounded t-intervals. Next, by taking a suitable subsequence if necessary,

we see that sign $([T_{m,n}(t)u](x)-k)\sum_{\mathfrak{t}=1}^{d}[\phi_{i}([T_{m,n}(t)u](x))-\phi_{i}(k)]$ converges to

sign $([T(t)u](x)-k)\sum_{s=\iota}^{\ell}[\phi_{i}([T(t)u](x))-\phi_{i}(k)]$ $a$ . $e$ . on { $(i, x)\in[0, \infty)\times R^{cX}$ ;

$[T(t)u](x)\gtrless k\}$ and to $0a$ . $e$ . on $\{(t, x)\in[0, \infty)\times R^{d} ; [T(t)u](x)=k\}$ . Hence,
passing to the limit as $ n\rightarrow\infty$ in (5.3), we have

$0\leqq\int_{0}^{\infty}\int_{R^{d}}\{|[T(t)u](x)-k|f_{t}$

$+sign([T(t)u](x)-k)\sum_{t=1}^{l}[\phi_{i}([T(t)u](x))-\phi_{i}(k)]f_{x_{i}}\}dxdt$

for $|k|\leqq m$ and $f\in C_{0}^{\infty}((0, \infty)\times R^{d})$ with $f\geqq 0$ . The $m$ can be arbitrarily large,
and so, $k$ can be arbitrary in $R^{1}$ . This means that $u(t, x)=[T(t)u](x)$ satisfies
(G.2). Q. E. D.

In the preceding section we obtained a dissipative operator $A$ from the
pseudo-resolvent $\{J_{\lambda} ; \lambda>0\}$ on $X_{0}$ . Crandall introduced in [5; Definition 1.1]

the following operator $A_{0}$ .
DEFINITION 5.2. $u\in D(A_{0})$ and $v\in A_{0}u$ if $u,$ $v\in L^{1},$ $\phi_{i}(u)\in L^{1},$ $i=1,2,$ $\cdots,$

$d$ ,

and if

(5.4) $\int_{R^{d}}$ sign $(u(x)-k)t\sum_{i=1}^{d}[\phi_{i}(u(x))-\phi_{i}(k)]f_{x_{i}}(x)+v(x)f(x)$ } $dxdt\geqq 0$

for every $f\in C_{0}^{\infty}(R^{d})$ with $f\geqq 0$ and every $k\in R^{1}$ .
$A_{0}$ should be treated as a multi-valued operator in $L^{1}$ , but it is easily

seen that $A_{0}|L^{\infty}$ is single-valued and for each $u\in D(A_{0})\cap L^{\infty},$ $A_{0}u=\sum_{l=1}^{t}(\phi_{i}(u))_{x_{i}}$

in the sense of distributions. See [5; Lemma 1.1].

Crandall proves that $-A_{0}$ is dissipative in $L^{1}$ and its closure $-\overline{A}_{0}$ is m-
dissipative. The following shows the relationship between $A$ and $A_{0}$ ; the
central part of the proof is based on the method due to Br\’ezis (see [5;
Appendix]).

THEOREM 5.3. $A\subset-A_{0}$ . More precisely, if we define $B_{0}$ by

$B_{0}u=A_{0}u$ for $u\in D(B_{0})=\{u\in D(A_{0});u, A_{0}u\in L^{\infty}\}$ ,

then $A=-B_{0}$ .
PROOF. Let $u\in L^{1}\cap L^{\infty},$ $\lambda>0,$ $k\in R^{1}$ and let $m$ be such that $\Vert u\Vert_{\infty}\leqq m$

and $|k+1|,$ $|k-1|\leqq m$ . Let $\Phi_{j}(s)$ be the functions defined by (1.6) and put
$p_{j}(s)=\Phi_{j}^{\prime}(s-k)$ and $v_{n}=(I-\lambda A_{m,n})^{-1}u,$ $n=1,2,3,$ $\cdots$ , for simplicity. Then
$p_{j}^{\prime}(s)$ exists almost everywhere on $R^{1},$ $p_{j}^{\prime}(s)$ is $\geqq 0$ and has a compact support
contained in $[k-1, k+1]$ . Hence, in view of lemma 4.2,
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(5.5) $0\leqq\int_{R^{1}}p_{j}^{\prime}(s)\{\int_{R^{d}}$ sign $(v_{n}(x)-s)[(l^{2}/2dh)\sum_{i=1}^{d}(v_{n}(x)-s)[D_{i}^{-}D_{i}^{+}f](x)$

$+\sum_{i=1}^{\prime l}[\phi_{i}(v_{n}(x))-\phi_{i}(s)][D_{i}^{0}f](x)-[A_{m,n}v_{n}](x)f(x)]dx\}ds$

for $f\in C_{0}^{\infty}(R^{d})$ with $f\geqq 0$ , where the integral makes sense since supp $[p_{j}^{\prime}]\subset$

$[k-1, k+1]\subset[-m, m]$ . Put

$F_{n}(x)=(l^{2}/2dh)v_{n}(x)\sum_{\leftarrow-1}^{d}[D_{i}^{-}D_{i}^{+}f](x)$

$+\sum_{i=1}^{d}\phi_{i}(v_{n}(x))[D_{i}^{0}f](x)-[A_{m,n}v_{n}](x)f(x)$ ,

$G_{n}(x)=(l^{2}/2dh)s\sum_{i=1}^{a}[D_{i}^{-}D_{i}^{+}f](x)+\sum_{i=1}^{d}\phi_{i}(s)[D_{i}^{0}f](x)$ ,

and apply the Fubini’s theorem to find

(5.6) $\frac{1}{2}\int_{R^{1}}p_{j}^{\prime}(s)(\int_{R^{d}}$ sign $(v_{n}(x)-s)F_{n}(x)dx)ds$

$=\frac{1}{2}\int_{R^{d}}F_{n}(x)(\int_{R^{1}}sign(v_{n}(x)-s)p_{j}^{\prime}(s)ds)dx$

$=\frac{1}{2}\int_{R^{d}}F_{n}(x)(\int_{-\infty}^{v_{n}(x)}-\int_{v_{n}(x)}^{\infty})p_{j}^{\prime}(s)dsdx$

$=\int_{R^{d}}p_{j}(v_{n}(x))F_{n}(x)dx$

and

(5.7) $\int_{R^{1}}p_{j}^{\prime}(s)(\int_{R^{d}}$ sign $(v_{n}(x)-s)G_{n}(x)dx)ds$

$=\int_{R^{d}}(l^{2}/2dh)\sum_{i=1}^{d}[D_{i}^{-}D_{i}^{+}f](x)(\int_{R^{1}}sign(v_{n}(x)-s)sp_{j}^{\prime}(s)ds)dx$

$+\int_{R^{d}}\sum_{i=1}^{d}[D_{i}^{0}f](x)(\int_{R^{1}}$ sign $(v_{n}(x)-s)\phi_{i}(s)p_{j}^{r}(s)ds)dx$ .

Also, observe that the integral $\int_{R^{1}}sign(v_{n}(x)-s)\phi_{i}(s)p_{f}^{\prime}(s)ds$ can be written as
$(\int_{-\infty}^{k}+2\int_{k}^{v_{n}(x)}-\int_{k}^{\infty})\phi_{i}(s)p_{j}^{\prime}(s)ds$ . Therefore, combining $(5.5)-(5.7)$ , we have

$0\leqq\int_{R^{1}}p_{j}^{J}(s)\{\int_{R^{d}}$ sign $(v_{n}(x)-s)(F_{n}(x)-G_{n}(x))dx\}ds$

$=2\int_{R^{d}}p_{j}(v_{n}(x))F_{n}(x)dx$

$-\int_{R^{\delta}}(l^{2}/2dh)\sum_{\not\in 1}^{i}([D_{i}^{-}D_{i}^{+}f](x)(\int_{R^{1}}$sign $(v_{n}(x)-s)sp_{j}^{\prime}(s)ds)dx$

$-\int_{R^{d}}\sum_{i=1}^{d}[D_{i}^{0}f](x)(\int_{-\infty}^{k}+2\int_{k}^{v_{n}(x)}-\int_{k}^{\infty})\phi_{i}(s)p_{j}^{\prime}(s)dsdx$ .
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Passing to $th\underline{e}li$-mit$-$

as $ n\rightarrow\infty$ and using the convergence $A_{m,n}v_{n}\rightarrow-\sum_{i=1}^{d}(\phi_{i}(v))_{x}$.
in $\mathcal{D}^{\prime}$ ($Theo\overline{rem}4.5$ (ii)), where $v=J_{\lambda}u\in X_{m}$ , it follows that

(5.8) $0\leqq\int_{R^{d}}p_{j}(v(x))[\sum_{i=1}^{d}\phi_{i}(v(x))f_{x_{i}}(x)+\sum_{i=1}^{d}(\phi_{i}(v(x))_{x_{i}}f(x)]dx$

$-\frac{1}{2}\sum_{i=1}^{d}\int_{R^{d}}f_{x_{i}}(x)(\int_{-\infty}^{k}+2\int_{k}^{v(x)}-\int_{k}^{\infty})\phi_{i}(s)p_{j}^{\prime}(s)dsdx$ .

Since $\sum_{i=1}^{d}(\int_{R^{d}}f_{x_{i}}(x)dx)(\int_{-\infty}^{k}-\int_{k}^{\infty})\phi_{i}(s)p_{j}^{\prime}(s)ds=0$ , we have letting $ j\rightarrow\infty$ in (5.8)

and then using (1.7) and (1.8) that

(5.9) $0\leqq\int_{R^{d}}$ sign $(v(x)-k)$ $\{ \sum_{t=1}^{\prime f}[\phi_{i}(v(x))-\phi_{i}(k)]f_{x_{i}}+\sum_{i=1}^{d}(\phi_{i}(v(x)))_{x_{t}}f\}dx$ .

This means that $v=J_{\tilde{\lambda}}u\in D(A_{0})$ and $Av=-\sum_{i=1}^{d}(\phi_{i}(v))_{x_{i}}\in-A_{0}v$ . Since $v,$ $Av$

$=\lambda^{-1}(J_{\lambda}u-u)\in L^{\infty}$ , it follows that $A\subset-B_{0}$ . To show the converse, it suffices
to prove that $D(B_{0})\subset D(A)$ . Let $w\in D(B_{0}),$ $\lambda>0$ and let $u=w+\lambda B_{0}w$ . Then,
$w$ and $u$ belong to some $X_{m}$ . Hence, we see from the above-mentioned proof

that $J_{\lambda}u\in D(B_{0})$ and $\sum_{i=1}^{d}(\phi_{i}(J_{\lambda}u))_{x_{i}}=B_{0}J_{\lambda}u$ . Therefore, in view of Theorem
4.5 (ii), we have that

$u=J_{\lambda}u+\lambda\sum_{i=1}^{d}(\phi_{i}(J_{\lambda}u))_{x_{i}}=(I+\lambda B_{0})J_{\lambda}u$ .
From this it follows that $(I+\lambda B_{0})w=(I+\lambda B_{0})J_{\lambda}u$ . Since $-B_{0}(\subset-A_{0})$ is dis-
sipative, $J_{\lambda}u=w(=(I+\lambda B_{0})^{-1}u)$ . This states that $D(B_{0})\subset D(A)$ and consequently,
$A=-B_{0}$ . Q. E. D.

REMARKS. (1) Combining Theorem 5.3 with Theorem 4.5, it follows that
$R(I+\lambda A_{0})\supset L^{1}\cap L^{\infty}$ for $\lambda>0$ . Since $L^{1}\cap L^{\infty}$ is dense in $L^{1},\overline{A}=-\overline{A}_{0}$ and $\overline{A}$

is $m$-dissipative. This means that the semigroup $\{\overline{T}(t);t\geqq 0\}$ on $L^{1}$ which is
generated by $A$ coincides with the semigroup of Crandall.

(2) We mentioned in Remark (2) after Corollary 2.2 that condition $(C)$ is
divided into two conditions $(C^{\prime})$ and $(C^{\prime\prime})$ . In fact, in the case of the difference
approximation (3.3), Theorem 4.5 (ii) proves $(C^{\prime})$ and Theorem 5.3 shows that
$(C^{\prime\prime})$ holds for $B=-A_{0}$ .

In the remainder of this section we give some comments on the results
mentioned in Section 3.

First, we give a result related to the domain of dependence.
PROPOSITION 5.4. Let $u,$ $v\in X_{m}$ and $\tau>0$ . Let $K_{r}=\{x\in R^{d}$ ; $|x_{i}|\leqq r$,

$i=1,2,$ $\cdots$ , $d$} for $r>0$ . Then we have:

(i) $\Vert C_{m.n}^{\nu}u-C_{m.n}^{\nu}v\Vert_{L^{1}(K\tau)}\leqq\Vert u-v\Vert_{L^{1}(K_{r+\tau})}$ for $\nu l\in[0, \tau]$ .
(ii) $\Vert T(t)u-T(t)v\Vert_{L^{1}(K_{r})}\leqq\Vert u-v\Vert_{L^{1}(K_{r+r})}$ for $t\in[0, \delta_{m}\tau]$ .
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PROOF. Similarly to the proof of Lemma 4.1, we have

$\int_{Kr}|[C_{m,n}u](x)-[C_{m,n}v](x)|dx\leqq\int_{Kr+l}|u(x)-v(x)|dx$ .

Hence, we can write as $\Vert C_{m,n}u-C_{m,n}v\Vert_{L^{1}(K_{r})}\leqq\Vert u-v\Vert_{L^{1}(Kr+l)}$ . Inductively, we
have that $\Vert C_{m.n}^{\nu}u-C_{m.n}^{\nu}v\Vert_{L^{1}(K_{r})}\leqq\Vert u-v\Vert_{L^{1}(Kr+\nu l)}$ , from which (i) follows. Since
$\Vert w\Vert_{L^{1}(Kr})\leqq\Vert w\Vert_{1}$ for $w\in L^{1}$ and since $\nu l\leqq\nu h/\delta_{m}$ , (ii) is easily seen from Theo-
rem 3.2 (iv). Q. E. D.

REMARKS. (1) The above proposition together with its proof reflects the
shape of the domain of dependence. Lemma 4.1 can be regarded as a special

case of this proposition.
(2) Proposition5.4 (ii) represents a hyPerbolic character: For every $r$,

$\tau$ and $m,$ $[T(t)u](x)=[T(t)v](x)a$ . $e$ . on $K_{r}$ if $u,$ $v\in X_{m},$ $t\in[0, \delta_{m^{T}}]$ and if
$u(x)=v(x)a$ . $e$ . on $K_{r+r}$ .

Next, we introduce two important classes which are invariant under $T(t)$ .
By $BV\equiv BV(R^{d})$ we mean the set of those elements $u\in L^{1}\cap L^{\infty}$ such that
for every compact domain $\Omega$ , there is a constant $M_{9}>0$ and

$\int_{\Omega}|u(x+\Delta x)-u(x)|dx\leqq M_{\rho}|\Delta x|$ for $\Delta x\in R^{d}$

It is proved (cf. Krickeberg [12]) that every element $u\in BV$ is of locally
bounded variation in the sense of Tonelli-Cesari. By $UBV\equiv UBV(R^{d})$ we
denote the set consisting of those elements $u\in L^{1}\cap L^{\infty}$ such that $\Vert u(\cdot+\Delta x)-u\Vert_{1}$

$\leqq M_{u}|\Delta x|$ for $\Delta x\in R^{d}$ and for some constant $M_{u}>0$ . Observe that $ C_{0}^{\infty}(R^{d}\rangle$

$\subset UBV\subset BV$ .
For the following two results, we refer to Conway-Smoller [3] and Kojima

[9].

THEOREM 5.5. $BV$ and UBV are invariant under $T(t)$ as well as $C_{m,n}$ .
PROOF. Let $u\in BV\cap X_{m}$ and let $\tau,$ $r>0$ . As was mentioned in the

proof of Lemma 4.3, $C_{m,n}$ commutes with translations. Hence, we see letting
$v(x)=u(x+\Delta x)$ in Proposition 5.4 that

$\Vert[C_{m.n}^{\nu}u](\cdot+\Delta x)-C_{m.n}^{\nu}u\Vert_{L^{1}(K_{r})}=\Vert C_{m.n}^{\nu}u(\cdot+\Delta x)-C_{m.n}^{\nu}u\Vert_{L^{1}(K_{r})}$

$\leqq\Vert u(\cdot+\Delta x)-u\Vert_{L^{1}(K_{r+\nu l})}\leqq const.|\Delta x|$ for $\nu 1\in[0, \tau]$ ,

where the constant depends only on $r,$ $\tau$ and $u$ . Since $r$ is arbitrary, this
means that $C_{m.n}^{\nu}u\in BV$ . Also, Theorem 3.2 (iv) and Proposition 5.4 (ii) yield
that

$\Vert[T(t)u](\cdot+\Delta x)-T(t)u\Vert_{L^{1}(K_{r})}\leqq const.|\Delta x|$

for $t\in[0, \delta_{m}\tau]$ and $\Delta x\in R^{d}$ . Since $\tau$ is arbitrary, it follows that $T(t)u\in BV$

for $t\geqq 0$ . The invariantness of UBV follows immediately from Lemma 4.1
and Theorem 3.2 (iv). Q. E. D.
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REMARK. In view of this theorem, $\{T(t)|BV;t\geqq 0\}$ and $\{T(i)|UBV;t\geqq 0\}$

form $L^{1}$ -contractive semigroups on B $V$ and $UBV$, respectively.
Classes $BV$ and UBV are closely related to the continuity of $T(t)$ in $t$ .
THEOREM 5.6. (i) Let $u\in BV$ . Then for every $r>0$ and $\tau>0$ , there is a

constant $M_{r,r,u}>0$ such that

$\Vert T(t)u-T(s)u\Vert_{L^{1}(Kr)}\leqq M_{r,\tau,u}|t-s|$ for $t,$ $s\in[0, \tau]$ .
Therefore, if we define $T(t)u\equiv u$ for $t<0$ , then the function $[T(t)u](x)$ belongs
to B $V(R^{d+1})$ .

(ii) Let $u\in UBV$. Then $T(t)u$ is uniformly Lipschitz continuous in $t$ with
respect to $\Vert\cdot\Vert_{1}$ -norm. Therefore, the function $[T(t)u](x)$ belongs to $UBV(R^{d+1})$ .

(iii) Let $u\in L^{1}\cap L^{\infty}$ . If $u$ is uniformly Lipschitz continuous on $R^{d}$ (hence
$u\in UBV)$ , then there is a constant $M_{u}>0$ , depending only on $u$ , such that

$\Vert T(t)u-u\Vert_{\infty}\leqq M_{u}t$ for $t\geqq 0$ .
PROOF. (i) Let $u\in BV\cap X_{m},$ $ 0<r<\rho$ and let $\tau>0$ . Then

$[C_{m,n}u](x)-u(x)=(2d)^{-1}\sum_{i\overline{\leftarrow}1}^{d}[u(x+le_{i})-2u(x)+u(x-le_{i})]$

$-(h/2l)\sum_{i=1}^{d}[\phi_{i}(u(x+le_{i}))-\phi_{i}(u(x-le_{i}))]$ ,

whence

$\int_{z_{\rho}}|[C_{m,n}u](x)-u(x)|dx$

$\leqq(2d)^{-1}\sum_{i=1}^{d}\{\int_{x_{\rho}}|u(x+le_{i})-u(x)|dx+\int_{K_{\rho}}|u(x)-u(x-le_{i})|dx\}$

$+(h/2l)\sum_{i=1}^{d}\int_{K_{\rho}}|\phi_{i}(u(x+le_{i}))-\phi_{i}(u(x-le_{i}))|dx$

$\leqq(2d)^{-1}\sum_{i=1}^{d}2M_{\rho,u}l+(h/2l)\sum_{i=1}^{d}M_{m}\int_{K_{\rho}}|u(x+le_{i})-u(x-le_{i})|dx$

$\leqq M_{\rho’ u}(\delta_{m}^{-1}+dM_{m})h$ ,

that is,
$\Vert C_{m,n}u-u\Vert_{L^{1}(K_{\rho})}\leqq M_{\rho,u,m}h$ .

Now, let $ 0\leqq s<t\leqq\tau$ and $\rho=r+\tau\delta_{m}^{-1}$ . Then $ r+[t/h]l\leqq\rho$ for $t\in[0, \tau]$ and
Proposition 5.4 yields that

$\Vert C_{m*n}^{\mathfrak{c}t/hJ}u-C_{m.n}^{[s/h]}u\Vert_{L^{1}(K)}r\leqq\sum_{\nu=[s/h]}^{\underline{\lceil}t/hJ-1}\Vert C_{m}^{\nu+}Au-C_{m.n}^{\nu}u\Vert_{L^{1}(Kr})$

$\leqq([t/h]-[s/h])\Vert C_{m,n}u-u\Vert_{L^{1}(K_{\rho})}\leqq(t-s+h)M_{\rho,u,m}$ .
Therefore, we have
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$\Vert T(t)u-T(s)u\Vert_{L^{1}(Kr})\leqq M_{\rho,u,m}|t-s|$

by Theorem 3.2 (iv). This implies that the function $[T(t)](x)$ belongs to
$BV(R^{d+1})$ .

(ii) Let $u\in UBV\cap X_{m}$ . Then, in a similar way to the proof of (i), we
have

$\Vert C_{m,n}u-u\Vert_{1}\leqq M_{u,m}h$

for some constant $M_{u,m}$ . Hence, we have

$\Vert T(t)u-T(s)u\Vert_{1}\leqq M_{u,m}|t-s|$ for $t,$ $s\geqq 0$

by Lemma 4.1 and Theorem 3.2 (iv). This fact also yields that the function
$[T(t)u](x)$ belongs to $UBV(R^{d+1})$ .

(iii) Let $u\in X_{m}$ and let $|u(x)-u(y)|\leqq M|x-y|$ for $x,$ $y\in R^{d}$ and for some
$M>0$ . Then, by applying the mean value theorem we have

$[C_{m,n}u](x)=\sum_{i=1}^{d}[(2d)^{-1}-(h/2l)\phi_{i}^{\prime}(\theta_{i}(x))]u(x+le_{i})$

$+\sum_{c=\iota}^{d}[(2d)^{-1}+(h/2l)\phi_{i}^{\prime}(\theta_{i}(x))]u(x-le_{i})$ ,

where $\theta_{i}(x)$ are certain values between $u(x+le_{i})$ and $u(x-le_{i})$ . This means
that $[C_{m,n}u](x)$ is a convex combination of $u(x+jle_{i}),$ $i=1,2,$ $\cdots$ , $d;i=\pm 1$ .
Inductively, we see that $[C_{mn}^{\nu}u](x)$ is a convex combination of $u(x+jle_{i})$ ,
where $i=1,2,$ $\cdots$ , $d;j=\pm 1,$ $\pm 3,$ $\cdots$ , $\pm\nu$ if $\nu$ is odd and $j=0,$ $\pm 2,$ $\pm 4,$ $\cdots$ , $\pm\nu$

if $\nu$ is even. Let us write

$[C_{m.n}^{\nu}u](x)=\sum\alpha_{ij}(x)u(x+jle_{i})$ , $\alpha_{ij}(x)\geqq 0,$ $\sum\alpha_{ij}(x)=1$

for this combination. Then

$|[C_{m.n}^{\nu}u](x)-u(x)|\leqq\sum\alpha_{ij}(x)|u(x+jle_{i})-u(x)|$

$\leqq\sum\alpha_{ij}(x)M|j|l\leqq M\delta_{m}^{-1}\nu h=M_{u,m}\nu h$ .
In view of Theorem 3.2 (iv), we have that

$|[T(t)u](x)-u(x)|\leqq M_{u,m}t$ $a$ . $e$ . on $R^{d}$ .
Hence,

$\Vert T(t)u-u\Vert_{\infty}\leqq M_{u,m}t$ for $t\geqq 0$ . Q. E. D.

REMARK. Crandall [4] introduced a notion of generalized domain $\hat{D}(A)$

of a dissipative operator $A$ . In view of Remark (2) after Theorem 3.2,
Theorem 5.5 (ii) states that $UBV\subset\hat{D}(\overline{A})$ , where $\hat{D}(\overline{A})$ denotes the generalized
domain associated with the m-dissipative operator $\overline{A}$ .
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\S 6. Notes and Remarks.

In this section we give a variety of observations on the results obtained
in the preceding sections.

I. First, we review the result of Theorem 4.5 in the case of $d=1$ . In
this case we can write (DE) as follows:

$u_{t}+(\phi(u))_{x}=0$ for $t>0,$ $\chi\in R^{1}$

Then Theorem 4.5 (ii) states that $(\phi(J_{\lambda}u))_{x}\in L^{1}\cap L^{\infty},$ $\lambda>0$ . Hence, the Radon-
Nikodym theorem yields that $\phi(J_{\lambda}u)$ is absolutely continuous and the deriva-
tive of $\phi(J_{\lambda}u)$ in the ordinary sense coincides with $(\phi(J_{\lambda}u))_{x}a$ . $e$ . on $R^{1}$ . Con-
sequently, $[J_{\lambda}u](x)$ satisfies the differential equation $v+\lambda(\phi(v))_{x}=u$ at almost
all $x\in R^{1}$ .

Now, let $L$ be the inPnitesimal generator of the group $\{e^{tL} ; t\in R^{1}\}$ of
translation operators on $L^{1}$ and $\Phi$ be the operator defined by

$[\Phi u](x)=\phi(u(x))$ for $u\in L^{1}\cap L^{\infty}$

Then, we have

(6.1) $ A=-L\Phi$ on $D(A)=\{u\in D(A_{0});u, A_{0}u\in L^{\infty}\}$ ,

where $A_{0}$ is the operator introduced in Definition 5.2.
$\Phi$ maps $D(L)$ into itself and is Lipschitz continuous on every $X_{m}$ with

Lipschitz constant $M_{m}=\sup_{|s|\leqq m}|\phi^{\prime}(s)|$ . In fact, let $u\in D(L)$ . Then $\Vert u\Vert_{\infty}\leqq\Vert u_{x}\Vert_{1}$ ,

so $u\in L^{\infty}$ . Hence, $u\in X_{m}$ for some $m$ . Since $|\phi(u(x))|\leqq M_{m}|u(x)|$ , we see
that $\Phi u\in L^{1}\cap L^{\infty}$ . On the other hand, $\phi\in C^{1}(R^{1})$ ; hence $\phi(u)$ is absolutely
continuous and $(\phi(u))_{x}=\phi^{\prime}(u)u_{x}a$ . $e$ . on $R^{1}$ . Thus,

$\int_{R^{1}}|(\phi(u))_{x}|dx\leqq M_{m}\int_{R^{1}}|u_{x}|dx$ .

This means that $\Phi u\in D(L)$ . The second assertion is clear from the fact that

$\Vert\Phi u-\Phi v\Vert_{1}\leqq M_{m}\Vert u-v\Vert_{1}$ for $u,$ $v\in X_{m}$ .
Therefore, it follows that

(6.2) $C_{0}^{1}(R^{1})\subset D(L)\subset D(L\Phi)$ .
Moreover, the aPproximate operators $A_{m,n}$ can be written as

(6.3) $A_{m,n}u=h^{-1}(e^{lL}-2I+e^{-lL})u-(2l)^{-1}(\mu_{-e^{-lL})\Phi u}$

where $u\in X_{m},$ $0<\delta_{m}\leqq h/l\leqq 1/M_{m}$ and $h=h_{m,n},$ $l=l_{m,n}$ .
Now we have the following:
THEOREM 6.1. (i) For every $u\in D(L)\cap X_{m},\lim_{n\rightarrow\infty}A_{m,n}u=-L\Phi u$ .
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(ii) For every $u\in X_{m},$
$J_{\lambda}u=\varliminf_{n\infty}(I-\lambda A_{m,n})^{-1}u$ gives a unique solution of

$v+\lambda L\Phi v=u$ , $v\in D(A),$ $\lambda>0$ .
(iii) $L\Phi|D(A)$ generates an $L^{1}$ -contractive semigroup $\{T(t);t\geqq 0\}$ on $L^{1}\cap L^{\infty}$

and for every $u\in L^{1}\cap L^{\infty}$ ,

$T(t)u-u=-L\int_{0}^{t}\Phi T(s)uds$ for $t\geqq 0$ .

PROOF. (i) follows from (6.2), (6.3) and the fact that $L$ is the infinitesimal
generator of $\{e^{tL} ; t\in R^{1}\}$ . (ii) is evident from Theorem 4.5 (ii) and (6.1).

We then demonstrate that (iii) holds. Since $J_{\lambda}=(I-\lambda A)^{-1},$ $\lambda>0$ , and $ A\subset$

$-L\Phi$ , we have

$ J_{\lambda}^{\nu}u-u=\sum_{p=0}^{\nu-1}\lambda AJfu-\lambda$ $\{Au-AJ_{\lambda}^{\nu}u\}$

for $u\in D(A),$ $\lambda>0$ and $\nu=1,2,3,$ $\cdots$ (cf. Oharu [16; p. 543, (6.3)]).

Noting that $J\#^{/\mathcal{X}J}u=Jfu$ for $ P\lambda\leqq s<(p+1)\lambda$ , we see that $IP^{/lJ}u$ and $AJ\Psi_{-}^{jj}u$

are step functions and summable on every finite interval and that

$\sum_{p=0}^{\nu-1}\lambda AJfu=\int_{0}^{\nu\lambda}AJ\#^{/2j}uds$ .

Now, ]$\lfloor etu\in D(A)\cap X_{m}$ . Then $\Vert AJ_{\lambda}^{p}u\Vert_{1}\leqq\Vert Au\Vert_{1}$ and $J_{\lambda}^{p}u\in X_{m}$ . Hence, we
have that

$\Vert J\#^{/\lambda 3}u-u-\int_{0}^{t}AJ\#^{/\lambda 1}uds\Vert_{1}\leqq 3\lambda\Vert Au\Vert_{1}$ .
Also,

$\int_{0}^{t}AJf^{/\lambda j}uds=-L\int_{0}^{t}\Phi J\ovalbox{\tt\small REJECT}^{/\lambda J}uds$ .

Theorem 3.2 (iii) yields that $J_{\lambda}^{[s/\lambda]}u\rightarrow T(s)u$ as $\lambda\rightarrow+0$ , uniformly on $[0, t]$ .
Since $\Phi$ is Lipschitz continuous on $X_{m},$ $\Phi J_{\lambda}^{[s/\lambda]}u\rightarrow\Phi T(s)u$ uniformly on $[0, t]$ .
Therefore, $\int_{0}^{t}\Phi J_{\lambda}^{[s/\lambda]}uds\rightarrow\int_{0}^{t}\Phi T(s)uds$ and $-L\int_{0}^{t}\Phi J_{\lambda}^{[s/\lambda]}uds\rightarrow T(t)u-u$ as $\lambda\rightarrow+0$ .
Since $L$ is a closed linear operator, $\int_{0}^{t}\Phi T(s)uds\in D(L)$ and

$T(t)u-u=-L\int_{0}^{t}\Phi T(s)uds$ for $u\in D(A)$ and $t\geqq 0$ .

Next, let $u\in L^{1}\cap L^{\infty}$ . Then, by the definition of $L$ , a sequence $\{u_{n}\}\subset D(L)$

$(\subset D(A))$ can be chosen such that $\{u_{n}\}$ and $u$ are contained in some $X_{m}$ and
such that $\Vert u_{n}-u\Vert_{1}\rightarrow 0$ as $ n\rightarrow\infty$ . Hence, we see that

$\int_{0}^{t}\Phi T(s)u_{n}ds\rightarrow\int_{0}^{t}\Phi T(s)uds$ as $ n\rightarrow\infty$ for $t\geqq 0$ .
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On the other hand, $-L\int_{0}^{t}\Phi T(s)u_{n}ds\rightarrow T(t)u-u$ . Consequently, it follows that

$\int_{0}^{t}\Phi T(\backslash 1^{\backslash }))uds\in D(L)$ and

$T(t)u-u=-L\int_{0}^{t}\Phi T(s)uds$ , $u\in L^{1}\cap L^{\infty}$ Q. E. D.

REMARKS. (1) Flaschka [7; Section 3.3] proves that if $u\in C_{0}^{\infty}(R^{1})$ then
the solution $v$ of $v+(\phi(v))_{x}=u$ is of bounded variation and that such a $v$

becomes an “ entropy solution “.
(2) The formula given in (iii) states that $T(t)u$ is a generalized solution

of $(CP)$ in the sense that if $\Phi T(s)u\in D(L)a$ . $e.$ , then

$T(t)u-u=\int_{0}^{t}(-L\Phi)T(s)uds$ ,

which means that $T(t)u$ is a strict solution of $(CP)$ . From the assertion (iii)

we can derive the following integral relation (cf. [7; Theorem 2]):

(6.4) $\int_{0}^{\infty}\{\langle T(t)u, f^{\prime}(t)\rangle-\langle\Phi T(t)u, L^{*}f(t)\rangle\}dt=0$

for every $f(\cdot)\in C_{0}^{1}((0, \infty);D(L^{*}))$ , where $L^{*}$ denotes the dual operator of $L$ .
In fact, for every $f\in D(L^{*})$ , $\langle T(t)u-u, f\rangle=-\langle\int_{0}^{t}\Phi T(s)uds,$ $L^{*}f\rangle=$

$-\int_{0}^{t}\langle\Phi T(s)u, L^{*}f\rangle ds$ . Now let $f(\cdot)\in C_{0}^{1}((0, \infty);D(L^{*}))$ . Then $\langle T(t+h)u-T(t)u$ ,

$f(t)\rangle=-\int_{\iota}^{\iota+r_{(1}}\langle\Phi T(s)u, L^{*}f(t)\rangle ds$ for $h$ sufficiently small. Since $supp(f)$ is com-
pact in $(0, \infty)$ , it follows from the Fubini’s theorem that

$\int_{0}^{\infty}\langle T(t+h)u-T(t)u, f(t)\rangle dt=\int_{0}^{\infty}\langle T(t)u, f(t-h)-f(t)\rangle dt$

$=-\int_{0}^{\infty}\int_{t}^{t+h}\langle\Phi T(s)u, L^{*}f(t)\rangle dsdt$ .
Dividing both integrals by $-h$ and then passing to the limit as $h\rightarrow+O$ , we
obtain

$\int_{0}^{\infty}\langle T(t)u, f^{\prime}(t)\rangle dt=\int_{0}^{\infty}\langle\Phi T(t)u, L^{*}f(t)\rangle dt$ .

The relation (6.4) is an operator theoretic version of the weak solution in
the ordinary sense. But it should be noted that this type of solution need
not be unique. Theorem 5.1 gives a sharper result than (6.4).

Next, we consider some generalizations of (DE).

II. We can extend Theorem 3.2 to the case in which

(6.5) $\phi_{i}(0)=0$ and $\phi_{i}$ is locally Lipschitz continuous on $R^{1}$ for $i=1,$ 2, $d$ .
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First, for each $\phi_{l}$ , we choose a sequence $\{\phi_{i}^{(n)}\}\subset C^{1}(R^{1})$ such that $\phi_{i}^{(n)}(0)=0$ ,
$\phi_{i}^{(n)}$ converges to $\phi_{i}$ uniformly on bounded intervals of $R^{1}$ and such that for
each positive integer $m$ ,

$\max_{1\leq i\leqq d}\sup_{\{s|\leqq m}|\phi_{i}^{(n)\prime}(s)|\leqq M_{m}=\Vert\phi_{i}\Vert_{Lip[-m.m]}$ ,

where I $\phi_{i}\Vert_{Lip[-m,m]}$ denotes the smallest Lipschitz constant of $\phi_{i}$ on the
interval $[-m, m]$ . Next we take sequences $\{\delta_{m}\},$ $\{h_{m,n}\}$ and $\{l_{m,n}\}$ of positive
numbers such that $\lim h_{m,n}=0$ for each $m\geqq 1$ and such that (3.2) holds. We

then define the difference operators $C_{m,n}$ and $A_{m,n},$ $m,$ $n\geqq 1$ , by

(6.6) $[C_{m,n}u](x)=(2d)^{-1}\sum_{i=1}^{d}(u(x+le_{i})+u(x-le_{i}))-h\sum_{i=1}^{d}[D_{i}^{0}\phi_{i}^{(n)}(u)](x)$ ,

(6.7) $A_{m,n}u=h^{-1}[C_{m,n}-I]u$ , for $u\in X_{m}$ and $m,$ $n\geqq 1$ ,

where $h=h_{m,n}$ and $l=l_{m,n}$ . Then, we have the same assertion as in Lemma
4.1 and the same form of inequalities as in (4.2) and in (4.3). Hence, we can
obtain the estimates in Lemma 4.3. On the other hand, $\phi_{i}^{(n)}$ converges to $\phi_{i}$

uniformly on every bounded interval, so Lemma 4.4 remains true. Thus, the
assertion (ii) in Theorem 4.5 can be obtained for the operators $C_{m,n}$ and $A_{m,n}$ .
By this result we can define a dissipative operator $A$ . We see that $D(A)$ also
contains $C_{0}^{1}(R^{d})$ . In fact, let $u\in C_{0}^{1}(R^{d})\cap X_{m}$ . Then $\phi_{i}(u)$ is uniformly Lip-
schitz continuous on $R^{d}$ . Hence, by the Radon-Nikodym theorem, the deriva-
tives $(\phi_{i}(u))_{x_{i}}$ in the sense of distributions exist as elements of $L^{1}\cap L^{\infty}$ .
Moreover, the convergence $D_{i}^{0}\phi_{i}(u(x))\rightarrow(\phi_{i}(u(x))_{x_{i}}$ holds $a$ . $e$ . on a neighbor-
hood of supp $(u)$ . Therefore, by the dominated convergence theorem,

$\sum_{t=1}^{l}D_{i}^{0}\phi_{i}(u)\rightarrow\sum_{i=1}^{d}(\phi_{i}(u))_{x_{i}}$ in $L^{1}$ . Hence, $A_{m,n}u$ converges to $-\sum_{i=1}^{d}(\phi_{i}(u))_{x_{i}}$ in $L^{1}$ .
This is the assertion (i) in Theorem 4.5. Thus, $A$ generates an $L^{1}$ -contractive
semigroup $\{T(t);t\geqq 0\}$ on $L^{1}\cap L^{\infty}$ . Also, it is proved in the same way as in
Theorem 5.1 that for each $u\in L^{1}\cap L^{\infty},$ $u(t, x)=[T(t)u](x)$ becomes a gener-
alized solution of $(CP)$ with the initial-value $u$ . Consequently, we obtain
under condition (6.5) the following extension of Theorem 3.2.

THEOREM 6.2. Let $\{C_{m,n}\}$ and $\{A_{m,n}\}$ be the operators determined by (6.6)
and (6.7). Then we have the same assertions $(i)-(iv)$ as in Theorem 3.2.

III. As mentioned in Remark (2) after Definition 3.1, we can generalize
(DE) to allow the $\phi_{i}$ to be of class $C^{0}(R^{1})$ and obtain a semigroup solution
of $(CP)$ . SuPpose that

(6.8) $\phi_{i}\in C^{0}(R^{1}),$ $\phi_{i}(0)=0$ and $\lim_{s-}\sup_{0}|\phi_{i}(s)/s|<+\infty$ for $i=1,2,$ $\cdots$ , $d$ .

In this case we choose, for each $\phi_{i}$ , a sequence $\{\phi_{i}^{(n)}\}\subset C^{1}(R^{1})$ such that
$\phi_{i}^{(n)}(0)=0$ and $\phi_{i}^{(n)}$ converges to $\phi_{i}$ uniformly on bounded intervals.
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Let $\{J_{\lambda}^{(n)} ; \lambda>0\}$ be the pseudo-resolvent associated with $\phi_{i}^{(n)}$ via Theorem
4.5 (ii). Let $u\in X_{0}=L^{1}\cap L^{\infty}$ and $\lambda>0$ . Then for each $n,$ $ J_{\lambda}^{(n)}\in$ Cont $(X_{0})$ ,
$\Vert J\}^{n)}u\Vert_{p}\leqq\Vert u\Vert_{p}$ for $p=1,$ $\infty,$ $J\}^{n)}$ commutes with translations, and

$\Vert[J_{\lambda}^{(n)}u](\cdot+y)-J_{\lambda}^{(n)}u\Vert_{1}\leqq\Vert u(\cdot+y)-u\Vert_{1}$ for $y\in R^{d}$

Hence, $\{J_{\lambda}^{(n)}u\}_{n\geqq 1}$ is conditionally compact in $L_{1oc}^{1}(R^{d})$ . Let $\{v_{n}\}$ be a con-
vergent subsequence of $\{J_{\lambda}^{(n)}u\}$ and $v$ be its limit. Then, $\Vert v\Vert_{p}\leqq\Vert u\Vert_{p}$ for
$P=1,$ $\infty$ . We wish to prove that $v=(I+\lambda A_{0})^{-1}u$ , where $A_{0}$ is the accretive
operator of Definition 5.2 which is associated with the $\phi_{i}$ in (6.8). Let $p_{j}(s)$ ,
$j=1,2,$ $\cdots$ , be the functions treated in the proof of Theorem 5.3. Then for
each $n$ , Theorem 5.3 (cf. (5.9)) states that

\langle 6.9) $0\leqq\int_{R^{1}}p_{j}^{\prime}(s)\{\int_{R^{d}}$ sign $(v_{n}(x)-s)[\sum_{i=1}^{d}(\phi\}^{n)}(v_{n}(x))-\phi\}^{n)}(s))f_{x_{i}}$

$+\sum_{\iota=1}^{d}(\phi|^{n)}(v_{n}(x)))_{x_{i}}f]\}dxds$ .
Set

$F_{n}(x)=\sum_{\iota=1}^{d}\phi\ell^{n)}(v_{n}(x))f_{x_{i}}(x)+\sum_{t=1}^{a}(\phi t^{n)}(v_{n}(x)))_{x_{i}}f(x)$

and
$G_{n}(x)=\sum_{i=1}^{d}\phi_{t}^{(n)}(s)f_{x_{i}}(x)$

for $n\geqq 1$ . Then, in the same way as in (5.6) and (5.7), we get

$\frac{1}{2}\int_{R^{1}}p_{j}^{\prime}(s)(\int_{R^{d}}$ sign $(v_{n}(x)-s)F_{n}(x)dx)ds=\int_{R^{d}}P_{j}(v_{n}(x))F_{n}(x)dx$

and

$\int_{R^{1}}p_{j}^{\prime}(s)(\int_{R^{d}}$ sign $(v_{n}(x)-s)G_{n}(x)dx)ds$

$=\int_{R^{d}}\sum_{i=1}^{d}f_{x_{t}}(x)(\int_{-\infty}^{k}+2\int_{k}^{v_{n}(x)}-\int_{k}^{\infty})\phi\downarrow^{n)}(s)p_{j}(s)dsdx$ .

Hence, passing to the limit as $ n\rightarrow\infty$ in (6.9) and using the convergence
$\sum_{i=1}^{d}(\phi_{i}^{(n)}(v_{n}(x)))_{x_{i}}\rightarrow\sum_{i=1}^{i}t(\phi_{i}(v))_{x_{i}}$ in $\mathcal{D}^{\prime}$ , we obtain the same inequality as in (5.8).

Observe that $\phi_{i}(v)\in L^{1}\cap L^{\infty}$ by (6.8). Thus, we see letting $ i\rightarrow\infty$ that $v\in D(A_{0})$

and $\sum_{i=1}^{d}(\phi_{i}(v))_{x_{i}}=A_{0}v$ . Since $\sum_{\llcorner-1}^{d}(\phi_{i}(v))_{x_{i}}$ coincides with the $L_{1oc}^{1}$-limit of

$\sum_{i=1}^{d}(\phi_{t}^{(n)}(v_{n}))_{x_{i}}=\lambda^{-1}(u-v_{n})$ almost everywhere on $R^{d}$ , it follows that $A_{0}v=$

$\lambda^{-1}(u-v)$ , or $(I+\lambda A_{0})v=u$ . Thus, $v=(I+\lambda A_{0})^{-1}u$ . This means that the whole
sequence $\{J_{\lambda}^{(n)}u\}$ converges in $L_{1oc}^{1}(R^{d})$ to $(I+\lambda A_{0})^{-1}u$ as $ n\rightarrow\infty$ .

Now, let $J_{\lambda}=(I+\lambda A_{0})^{-1}|X_{0}$ for $\lambda>0$ . Then $\{J_{\lambda} ; \lambda>0\}$ forms a pseudo-
resolvent of contractions on $X_{0}$ into itself and the dissipative operator $A$
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determined by it is a restriction $of-A_{0}$ . Hence, $A$ generates an $L^{1}$ -contrac-
tive semigroup $\{T(t);t\geqq 0\}$ on $\overline{D(A}$). Note that $\overline{D(A}$) depends on the $\{\phi_{i}\}$

and $\overline{D(A}$) $\neq L^{1}$ in general. Also, it is easily seen from a similar argument to
the proof of Theorem 5.1 that for each $u\in\overline{D(A}$) $\cap L^{\infty},$ $u(t, x)=[T(t)u](x)$ gives
the generalized solution of $(CP)$ with the initial-value $u$ .
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