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Introduction.

This paper deals with the convergence of nonlinear semigroups and the
difference approximation for the Cauchy problem, (CP), for the scalar quasi-
linear equation

(DE) iy le(gﬁi(u))“:o for >0, x=(x;, %, -, X)  R?

from the viewpoint of the approximation theory for nonlinear semigroups.
This investigation is motivated by the works of Kruzkov [13, 14], Crandall
and Kojima [9, 10]. KruZkov treats this problem over the space L*(R%)
and discusses the existence and uniqueness of the generalized solution of
(CP) under the assumption that ¢, = C(R") for all i. His proof is based on
the so-called method of vanishing viscosity and generalizes (DE) to allow the
¢; to depend on { and x as well as u. Kojima treats this problem by em-
ploying the finite-difference method and shows that the solution of the dif-
ference scheme formulated for (DE) converges in the topology of Ll..(R%) to
the generalized solution of (CP) in the sense of KruZkov. On the other hand,
Crandall succeeded to treat this problem in L*(R?) via the theory of nonlinear
semigroups. He constructs a semigroup {T(t); t =0} of nonlinear contractions
on L'(R% such that T(#)u gives the generalized solution of (CP) in the sense
of KruZkov provided that u belongs to L*(R%) " L*(R%. In order to construct
such a semigroup, it is needed to find a dissipative operator A in L'(R%) such

d

that — > (@,(w)),, is a representative function of Au for sufficiently many u
i=1

and then to verify that the A satisfies the following condition:

(R) R(I—1A)> D(A) for 1>0,

where R(/—2A) and D(A) denote the range of [—2A and the domain of A
respectively. This condition is called the range condition and Crandall proves
this (R) by applying a certain perturbation theorem due to Brézis [1].
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Here we shall exhibit how the convergence of difference approximation
for (CP) may be interpreted in L'(R%) ~ L*(R? via the approximation theory
for nonlinear semigroups. Our results furnish a semigroup theoretic approach
to the difference approximation for (CP) and at the same time present another
method for constructing the semigroup solution of (CP). Our objects are
roughly stated as follows:

In this paper we shall employ the Friedrichs type difference approxima-
tion to (DE). This type of difference scheme is formulated according to
initial data, since the mesh ratio must be determined depending upon the
L7-norm of the initial-value u. Accordingly, the convergence theorems given
for instance in Brezis-Pazy and Miyadera-Oharu can not directly be
applied to the problem of convergence of this approximation. Our first pur-
pose is to modify those convergence theorems to some appropriate forms which
are applicable to our arguments. Here we shall consider a monotone increas-
ing sequence of closed convex sets {X,} and make some assumptions which
yield that

(S) There exists a family of semigroups {Ty.(t); t=0} of contractions
on Xn, m, n=1,2, -, such that T, ,()u is strongly continuously differenti-
able in t=0 for u < X, and such that the infinitesimal generator An,,, is a
dissipative operator on X,.

With this setting, we want to obtain the following type of convergence
under some additional assumptions:

There exists a semigroup {7(f); =0} of nonlinear contractions on
X,=\U X,, and for each m,

mel

lim T n(Hu=T(Hu for t=0 and ue X,,.

The additional assumptions are stated as follows:

(C) There exists a pseudo-resolvent {J;; 4> 0} of contractions from X,
into itself and for each 2> 0 and m, the sequence of resolvents {(/—2A4,,)""}
converges to J, on X,,.

(C,) There exists a single-valued operator A; in X and a set DC X, such
that An.u converges to A,us X, as n—co for ue X,,nD and m=1.

We wish to consider the difference approximation to (DE) in the space
L*(R%. Our second purpose is to prove the L'-convergence of the difference
approximation by applying the above-mentioned modified convergence theo-
rems. We let X,, be the closed convex set {ue L'(R¥) N\ L*(RY; ||ul.=<m}.
By taking appropriate sequences /A, |0 and l,,|0 as the mesh, sizes of
time- and space-differences respectively, we define on each X, a difference
operator C,, associated with the Friedrichs scheme and then construct a
sequence of approximate semigroups {7, ,,(t); t=0} determined by Ap,=
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hon(C,n—1I): The difference scheme to (DE) can be written as

h'r—nl.n[um,n<t+hm,n)‘um,n(t)] - Am,num,n(t) ’ um,n(o) =UyE Xm

and Tn(Du, gives the solution of

(d/dt)um,n(t) - Am,num,n(t) ’ um,n(o) = U .

In this setting, (S) is referred to the stability condition. (C,) is a non-
linear analogue of the consistency condition which is treated in Lax’s equi-
valence theorem (Richtmyer-Morton [18; Section 3.5]). In our case, the com-
bination of (C) and (C,) is referred to the consistency condition for the
difference approximation. {J;; 4> 0} determines a dissipative operator A
satisfying R(J—AA)= X, D D(A), 1> 0; hence if condition (C) is proved, then
it turns out that a dissipative operator which satisfies (R) is automatically

d
obtained and the operator is a restriction of the operator: u— — X (¢(u)),;. By
i=1

proving (S), (C) and (C,) we can show not only the convergence of {T,.(1);
t=0} but also the L'-convergence of C2.,.u, to the generalized solution of
(CP) through the approximation theory for nonlinear semigroups. Moreover,
the Friedrichs type scheme is of the purely explicit form. This type of ex-
plicit difference scheme is changed to the implicit form by considering the
resolvents (/—24,,)""; such an implicit scheme satisfies the stability condi-
tion. In this way, the covergence theorem of semigroups can be applied to
treat the so-called approximation-solvability of a Cauchy problem. For a
similar type of treatment, see Konishi [11].

This limit of the double sequence of approximate sémigroups {Tant);
t=0} is obtained as an L’-contractive semigroup on L*(R%) N L*(R?%. Our
third purpose is to investigate the relationship between this semigroup and
that of Crandall. We shall show by using the convergence of the approximate
semigroups that our semigroup gives the generalized solutions of KruZkov’s
type and coincides with the restriction of the semigroup of Crandall to
LY(R* ~L=(R%. Also, among others, we shall mention that the properties of
the semigroup of Crandall are derived through the difference approximation.

This paper consists of six sections. Section 1 contains some special
notations used in this paper, some basic notions and the fundamental facts
concerning those notions. Section 2 deals with the convergence and approxi-
mation of semigroups of nonlinear contractions. In Section 3, the approxi-
mating difference scheme formulated for (CP) is introduced and the main
results are given. The proofs are given in the successive two sections. In
Section 4, we shall discuss the convergence of the approximation introduced
in Section 3. Section 5 is concerned with the relationships among our results
obtained in Section 3 and the works of Kruzkov, Crandall and others. Finally,
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in Section 6 we shall give a variety of observations on our results.

§1. Preliminaries.

In this section we list some special notations, basic notions and some of
their fundamental properties. For further explanations on them, we refer to
Oharu [16].

Let X be a Banach space with elements u, v, w, --- and with the norm
l-l. By an operator A in X we mean a (possibly multi-valued) operator with
the domain D(A) and the range R(A) in X, that is, A assigns to each ue X
a subset Au of X; D(A) is the set {ues X; Au=0} and R(A) :u&CJ;Au. Note

that a single-valued operator is a special case of a multi-valued operator in
which Au, u e D(A), denotes the value of A at u or the singleton set con-
sisting of this element, and Au is the empty set if u e D(A).

Let SCX. We write A[S] for USAu. By a restriction of A to S, denoted

by A|S, we mean an operator such that D(A|S)=D(A)NS and (A|S)u= Au
for ue D(A)NS. S denotes the closure of S in X.

Let A and B be operators in X. Then B is called the closure of A if
G(B)=G(A) in XX X; we write B=A4, where G(-) denotes the graph of the
operator. Also, we say that B is an extension of A, and A is a restriction
of B (denoted by BDA or ACB), if D(A)C D(B) and AuC Bu for u< D(A).
For the notations of addition, scalar multiplication and composition of opera-
tors in X, we use the same notations as in Oharu [16; Section 0]. We write
7+2A for the operator y/+2A, where I denotes the identity operator in X.
Also, we denote by A~?! the inverse operator of an operator A in X. Note
that G(A™Y) = {(v, u); (u, v) € G(A)}.

Let A be a single-valued operator in X such that R(A)C D(A). Then
for any positive integer i, we can define the iteration A* on D(A) by Alu=
A(A ) ; we write A°=1.

Let CC X and let T be a single-valued operator in X. T is called a
contraction on C if |Tu—Tv|| < |lu—v| for u, veC.

An operator A in X is said to be dissipative if for every u, v D(A) and
u’ € Au, v’ € Av, there exists an f < F(u—v) such that

Re (uw'—v', /> =0,
where F denotes the duality mapping from X into its dual X* defined by
Fuy={fe X*; Re<u, > =ul*=|/I}, ueX.
It is well-known (Kato [8; Lemma 1.1]) that A is dissipative if and only if
By Ny — 1, |l = | (uy—Av) — (U, —Av,)||
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for u; = D(A), v; < Au;, i=1,2, and 1>0. Note that (1.1) implies that for
every A>0, (I—1A)™! exists as a contraction on R(/—AA). Also, if —A is
dissipative then A is said to be accretive.

If A is a dissipative operator such that R(/—1A)= X, then we say that
A is m-dissipative. 1f A is dissipative in X, then so is A. If A is a dissipa-
tive operator such that RI—A,A)= X for some 2, >0, then A is m-dissipative.

A one-parameter family {/;; A>0} of contractions in X is called a
pseudo-resolvent (of contractions) if for every A, x>0 and u e D(J),

R(E-+(1—-*-)J))c D(J,) and

(1.2) Jau :j#[—ﬁ—u—}—(l——%—)hu] for ue D(J)).

PROPOSITION 1.1. (i) Let A be a dissipative operator in X and let J,=
(I—2A) for 2>0. Then {J;; 2> 0} forms a pseudo-resolvent of contractions
in X. If in addition, A 1is single-valued, then each J; is injective.

(ii) Let {J;; 2> 0} be a pseudo-resolvent of contractions in X. Then R(J)
1s constant with respect to A>0 and there is a dissipative operator A, defined
on D= R(]), such that [,={—2A)™" for every 2> 0. If in addition, some Jy,
is injective, then the associated A is single-valued.

For a proof of [Proposition 1.I, see Oharu [16; Propositions 3.1 and 3.2].

Let CC X. By Cont(C) we mean the set of all contractions on C into
itself. A one-parameter family {7(t); =0} < Cont(C) is called a semigroup
(of nonlinear contractions) on C if it has the following properties:

(1.3) TO)=1I|C, Tt+s)=THT(s) for t, s=0;

(1.4) for each u = C, T(H)u is strongly continuous in t=0.

It is clear that if T< Cont(C) then T € Cont (C). Hence, if {T(t); t=0}
is a semigroup on C, then {T(?#); t=0} forms a semigroup on C.

For the generation of the semigroup of nonlinear contractions, the fol-
lowing theorem due to Crandall-Liggett [6; Theorem I] is fundamental:

THEOREM 1.2. Let A be a dissipative operator in X satisfying the range
condition (R): R(I—AA)D D(A) for 2>0. Then there exists a semigroup {T(t);

t=0} on D(A) such that
| T u—T—hA) "My < 24/th || Aul) for t=0 and ues D(A),

where [ -] denotes the Gaussian blacket and ||Aul|=inf {|v|l; ve Au}. There-
fore, \

Tu = lim (I—hA) "y = lim (I—Lk A)"ku
B0 p—

for t=0 and u < D(A).
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We shall say that the semigroup {7(¢); t=0} is generated by A (or, A
generates {T(t); t=0}).

R® denotes the d-dimensional euclidean space. L*(R%) and L*(R%) denote
the ordinary Lebesgue spaces. Also, C{(R? and C{(R%) have the usual mean-
ing. In this paper we write simply L' and L for the spaces L'(R% and
L=(R%), respectively; we denote the L*-norm and L®norm by |-l and ||,
respectively. We write u< L' (or u e L®) if a real-valued function u(x) de-
fined on R? is a representative function of an element of L' (or L*). Con-
versely, let u€ L' (or u< L*). Then we sometimes write [u](x) for a repre-
sentative function of u. Let ue L. We denote the integral of u over R®
with respect to the Lebesgue measure on R® by

de u(x)dx.

We denote by <u,f) the pairing between u< L' and f< L*. Accordingly,
for every u= L' and f = Cy(R%), we write {u, f> for the integral

Ld w(x)f(x)dx.
We shall use the following notations:
1 if s>0
(1.5) sign (s) = 0 if s=0
-1 if s<0.

In particular, we shall frequently treat the composite function sign (u(x)—£k)
in later arguments, where 2 < R! and u(x) is a measurable function on R%
In order to approximate such a function, Crandall [5; Lemma 1.17 gives the
following functions:

—s if s<—1/5
(1.6) D,(s)=1 (J/2)s*+(1/2)) if |sl=1/5
s if s>1/7, i=12,3, .

Clearly, @,(s) has the derivative @7(s) which is piecewise continuous and non-
negative, and has a compact support [—1//, 1/j]. Moreover, it is easily seen
that

(L7 lim 51“@;!(5_1@)5;5(3)(13 = sign (s,— K)d(k)
(1.8) hfl.o D (s,—k) =sign (s,—k)

for s, ke R' and every function ¢ € CY(RY).



130 S. OHARU and T. TAKAHASHI

Let F be the duality mapping of L. Then it is proved ([5; Section 4]) that
llull, sign (u(:)) € F(u) for ues L.

Finally, we introduce some notations concerning the difference approxi-
mation. Let />0 and let u(x) be a real-valued function defined on R% Then
we write

CDu](x) = (21)"[u(x+le) —u(x—le;)],
(1.9) [Dyul(x) = I [u(x+les)—u(x)],
[Drul(x)=1"[u(x)—u(x—le)], x&R?,

for the central, forward and backward differences of u, respectively, where
e; denotes the unit vector whose i-th element is 1. Accordingly, we can
write as

[D; Dful(x) =1"*[u(x+le;)—2u(x)+u(x—Ile;)].

We shall apply these difference operations to u(x) which is a representative
function of ue L'~ L=, D, Di as well as D; depend on /. But there will
be no confusions in later arguments, even if [ is not specified in these sym-
bols. Also, these are regarded as bounded linear operators on L' in a natural
way, since they can be represented as linear combinations of translation
operators. It is easily seen that if u< L and f < CP(R%) then

(Db, f5=—<u, D}f7,

{D;Diu, f»={<u, Dy Dff>
and so on.

§2. Convergence Theorems.

In this section we treat some convergence theorems for semigroups of
nonlinear contractions.
Let {Xn}m=1,2,~ De a monotone increasing sequence of closed subsets of

X, Xo=\U X,, and let us consider a family {Am}mn=1,,- Of single-valued,
mz1

dissipative operators in X such that D(4,,,)= X, for m, n=1 and such that
R(I—2A4 ) D Xn for 2>0 and m, n=1. Then by each A,
generates a semigroup {Tn.(?); t=0} CCont (X,) such that

@.1) “Tm,n(t)u——(l—%—flm,n —kuué(Zt/\/E)llAm,nul] for 120 and ue X,,.

We start with a theorem on convergence of {T,,(f); t=0}.
THEOREM 2.1. Let {X,} and {An,,} be as above. If
(C) there exists a pseudo-resolvent {J; 2> 0} C Cont (X,) and

Jauw=lm ([—2An) "u for 2>0 and ue X,,,
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then we have:

(i) There exists a dissipative operator A in X such that RI—21A)=X,D
D(A) for 2> 0 and such that J;=I—21A)"* for 1>0;

(ii) A generates a semigroup {T(t); t=0} on D(A) such that

Tt X,NDAYJC XonD(A)  for t=0;

(iii) 71L1r013 Tpa(u=THu fort=0and ues X, N D(A), where the convergence
is uniform with respect to t in every bounded subinterval of [0, o).

PROOF. Since {J;; 4> 0} is a pseudo-resolvent of contractions from X,
into itself, (i) follows from [Proposition 1.1 (ii).

By virtue of (i) and A generates a semigroup {7(¢); t=0}
on D(A). Since (I—AAn,)* maps X, into itself for all m and n and since
Xn is closed in X, we see that each X, is invariant under J; 1>0. Thus,
X.ND(A), m=1,2, -, are invariant under T(f), t=0. This proves (ii).

(iii) is proved in a similar way to Brezis-Pazy [2; Theorem 3.1]: Let

ue X,\D(A) and 2>0. Since J[X,1C X, for £>0, we see that J¥ Ju
€ X, D(A) for all £ and ¢. Hence, we have the following estimates:

2.2) 1T n () Jatt— Ty a()I = AAm,0) bl £ | Jatb— (T — 2 Am,0) 0l

(23) | T U=24m 00— (T A) ™ U= 240

=@t/ VE(I—=2Ap) ' u—u|  (by (21),

¢ —k -1 k
24) | (- An) U=24n) u i S
< | (I—2A ) u—su
k-1 t ~k+tg ¢ ~k+g+1
+ (I Ann)  ThaTa—(T—pAna) Tt

S NU—=2Anp) " u—Jzu|

’

k-1 t -1
+ SN(I—Anpn)  JoaTa—Jen Tt
q=0

(2.5) I T Jau—T) u || < 2t/ VERD)| Jau—ull .
«Combining (2.2)-(2.5) with condition (C), we obtain

Um [ T, o) ;u—TO | =0.

Since ||Jiu—ull—0 as 4—0 and since T,,(t) and T(¢) are contractions, we
have the assertion (iii). Q.E.D.
COROLLARY 2.2. Let (C) be satisfied for {X,} and {An,}. Suppose that
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X, is a linear manifold in X and that : ‘
(Cy) - There exist a single-valued operator A, in X and a set DC X, such that

limAp ,u=AueX, forueX,nNDand m=1.
N—00

Then DC D(A) and Awue<s Au for ue D. If in addition, D is dense in X,
then the convergence (iii) of Theorem 2.1 holds on X,, instead of X, DCA).
PROOF. Let u= D and A>0. Since X, is a linear manifold, there exists
an integer m such -that u< X, and such that u—4,u=ve X,,. Let v,=
(I—2An)u. Then, (C,) implies that v,—v as n—oo, Since I—AAn,) 'V, =1u,
we have :
lu—Jwl S lve—vl+IT—2Anm) v —J] .

By virtue of conditions (C) and (C,), the right side goes to 0 as n—oco.
Hence, u= /v or v (I—21A)u, from which it follows that A,ue Au. QE.D.

REMARKS. (1) The convergence theorems given in Brezis-Pazy are
nonlinear analogues of Trotter-Kato’s theorem. is a modification
of Brezis-Pazy’s result and this type of modification seems to be proper to
the nonlinear setting.

(2) If X, is a linear manifold in X, then condition (C) can be regarded
as the combination of the following two conditions:

(09 ,I.LTO (I—2An) 'u exists for >0, ue X,, and m=1;

(C") There exists a dissipative operator B in X such that v,;=
lim (I~ 2An,.) "4 € D(B) and lim Ap,n(I—~2An) "1 € Bon,s for 2>0, ue Xy
and m=1.

In fact, suppose that (C) holds. Then (C’) is trivially satisfied and in
virtue of (i), we see that (C”) also holds for B replaced by A.
Conversely, assume that (C’) and (C”) are satisfied. Then, il_glo Apg(I—2Ap ) 1

=2"Wp,1—u) € Bup,, for >0, ue X,, and m=1, and so, we see that ue
R(I—2B) and v, ;={—2AB)*u. This means that v, ; depends only on 2 and
u. We set Jju=v,,; for >0, ue X,, and m=1. Then J; is defined on X,
as a single-valued operator. Since (I—2A4,,,)"" satisfies the resolvent formula
(1.2) by [Proposition 1.J] (i) and since X, is a linear manifold, it follows from
(C") that {J;; A>0} forms a pseudo-resolvent of contractions belonging to
Cont (X,). Moreover, let A be a dissipative operator associated with this
pseudo-resolvent through Proposition 1.1 (ii). Then AC B. See also Remark
(2) after

(3) Condition (C,) is referred to the consistency condition in the finite-
difference method. Condition (C) might be also called the consistency con-
dition in a generalized sense (cf. Takahashi-Oharu [19; Section 2]). (C,) does
not necessarily imply (C) (see Remark after [Theorem 4.5). However, if
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D(A)C X,C R(I—2A,) for 2> 0 and if (C,) is satisfied for the set D replaced
by D(A,), then it is proved by the same way as in Brezis-Pazy [2; Theorem
4,17 that condition (C) holds for the A,.

(4) If we do not assume that {X,} is monotone increasing, then we
consider conditions (C) and (C,) on X,=liminf X,, and the above-mentioned

M—0

results are extended to more general cases. However, we shall not give any
in this paper, since the theorems mentioned above are sufficient for the
applications treated in later sections. '

(5) As is seen from [Theorem 2.1, {T(®)|X,ND(A); t=0} forms a semi-
group on X, D(A). Hence, precisely saying, the limit semigroup of {Th (D)

t=0} is {TW|X,ND(A); t=0} (and {T(®)|X,; t=0} in [Corollary 2.2).
Next, we state a result on convergence of iterations of difference
operators.

Let {X.}nz: be a monotone increasing sequence of closed convex subsets
of X and {Cpnp}m,z1 be a family of operators in X such that

(2.6) {Cu,n} nz1 C Cont (X,) for each m=1.

Let {hm,n}mmnz1 be a double sequence of positive numbers such that 4,,—0
as n—oo for each m=1. We then set

(27) Am,n - h;tlm(cm,n—'l) for m, n=1,2,3, ---.

Then, yields that each A, is a dissipative operator on X, and satisfies
the range condition

2.8) RUI~2Apn) D Xp=D(An.) for >0 and m, n=1.

For the proof, we refer to Brezis-Pazy [2; Lemma 2.2]. Also, each A, is
continuous on X,. Hence, each A,, generates a semigroup {Tn,.(f); {=0}
on X, such that T, ,(H)u s CY[0, 0); X) for ue X, and
(d/d) T w(OU = Ao T, n(D
(2.9) Tm,n(t)u = hr—{] (I._GAm,n>—[t/5]u ,
e—~+0

A Tpau= lirf Ap(I—€Apn)"u  for tz0 and ue X,.
&e—-+0

THEOREM 2.3. (a) If {An,.} defined by (2.7) satisfies condition (C), then
we have the following convergence

(iv) lim Cy,u=T®Hu for t=0, uc X,ND(A) and m=1,
vh?n—:;o—"
" together with (1)-(iii) of Theorem 2.1.
(b) Suppose that the {An,} satisfies both (C) and (C,). If X, is a linear
manifold in X and if the set D in (C,) is dense in X,, then DC D(A), A,|DC
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A|D and furthermore, (iv) holds on X,, instead of X, D(A).

REMARK. Later, the operators C,, will be referred to the difference
operators which are induced from the Friedrichs scheme for (DE). The
assertion (a) states that under condition (C), the limit of iterations {Ck,.} is

the semigroup {T(H)|X,\D(A); t=0} and (b) states that the limit is the
semigroup {7(¢)| X,; t=0}. ;

PROOF OF THEOREM 2.3. Applying a result of Miyadera-Oharu [15; Ap-
pendix, Lemma 4] to {Tp,.(t); t=0} and {Cn,,} and then estimating [2.9), we
obtain

1T (= Crnill = ([ t=Yhmn| +V Thmn)| Amnte]

for ue Xy, t, vigp,€[0,7], >0 and m, n=1.

Now (iv) is proved in a similar way to Brezis-Pazy [2; Theorem 3.2]:
Let {T(t); t=0} be the semigroup determined by A through [Theorem 2.1 (ii).
Let ues X,,"nD(A), >0, 0=¢{=<7 and let A>0. Then Jju<s X, and

1T au—C o ol
= | TOSatb— T w022+ 1 T n (D38 — T (I — 2 A )]
H T p(T—2A0,) "t —Cn(I—2Am,n) " ul]
HCrnI—2Am )" u—Crn S|
S N TO b= T nOJsull +2((T—2Ap )" —Jaul
(| t=Yhnn | + VTl @) (I~ A Ap,0) " u—ul .

Combining this estimate with (iii) and with condition (C), we
see that
1T u—ChnJaull —> 0 as n—oo and vhy,—t.

Since Ju—u as A—0 and since T(t) and C%,, are contractions, we have the

assertion (a). (b) is now evident from (a) and [Corollary 2.2 Q.E.D.

§3. Difference approximation for (CP).

In this section we discuss the difference approximation to
d
(DE) ut_l_ §(¢L(u))x;:01 t>07 x:(xlr Xoy *** xd)e Rd

and then state our main theorem together with some comments on it. The
proof will be given in later sections.

Throughout the remainder of this paper, we assume that ¢; = C'(R*) and
©;(0)=0 for all ¢ and treat the Cauchy problem (CP) for the above-mentioned
(DE) over the space L'= LY(R%).
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As is well-known, we can not expect the exact solution of (CP) for a
general initial-value u,= L'. Here we define the generalized solution of (CP)
as follows:

DEFINITION 3.1. Givena u,s L'n L, L' L-valued function u(t)=u(t, )
defined on [0, o) is called a generalized solution of (CP) with the initial-value
u, if it satisfies the following conditions:

(G.1) u(t) is continuous with respect to L*-norm and |u(t)|ls is uniformly
bounded on [0, o).

(G.2) For every k< R' and every nonnegative function f € C3((0, o0) X R%),

[7F ottt 0= k1t 2
+ sign (u(t, x)—k)é Lou(u(t, x))—@i(k)]fz,(t, )} dxdt = 0.
(G.3) lim j . lu(t, x)—uy(x)|dx=0.
t—+0Y R

REMARKS. (1) The above definition of solution of (CP) is a modified
version of that proposed by KruZkov in the sense that the generalized solu-
tion of Kruzkov (which moves in L®) is also contained in L' Hence, the
meaning of our solution is more strict than that of KruZkov. The generalized
solution in the sense of KruZkov is always unique ([14; Theorem 2]); hence
we see that our solution is also unique.

(2) Crandall shows that the generalized solution of exists
if the initial-value u belongs to L'\ L~ and that such solutions are repre-
sented by an L'-contractive semigroup on L'. He also generalizes (DE) to
allow the ¢@; to be of class C°(R') and obtains a semigroup solution of (CP)
([5; Corollary 2.2]). It is possible to extend our results in this direction.
For details, we shall mention it in Section 6.

(3) The solution in the sense of KruZkov is the limit u of the (exact)
solutions u°, ¢ >0, of the Cauchy problems

Wt 3 (Puu s, = edus, >0, xe R
(CP).

U] gy = Uo(X) ,

and condition (G.2) is derived through the convergence u*—u as e—0. This

fact suggests that it is natural to employ the Friedrichs scheme to approxi-

mate (DE). Also, as in indicated in KruZkov [14; Section 2], (G.2) might be

regarded as the “ entropy condition” in the case of several space variables.
The Friedrichs scheme approximating (CP) for (DE) is written as
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(BT 0—2d)™ 3 (e +u(x—le))]
+@D) ST (e le)—f.(w(x—le))]1=0,

(DS)
h, >0, xeR%; vy=0, 1,2, -

u%(x) = uy(x) .
In this scheme, the mesh sizes of space differences are all taken to be
equal. However, as is seen from later arguments, we can generalize (DS) to

allow the mesh sizes to be distinct. (DS) approximates (CP) as h, [—0 if
the mesh ratio [/h lies in a compact interval contained in (0, ). Observe

that (DS) is also written as
AT () —w (91— (1 2R) 3 LD7 Dfw Y0+ 2 [0 (w10 =0,

where D¢, D} and D; mean the difference operators defined by (1.9). Hence
if I2/2dh=¢, then (DS) approximates (CP), as h, [—0 (cf. Oleinik [17; Section

5] and Remark (3) after Definition 3.1).
The difference operators Cy,, h, [>0, are defined by

BD LGl =(2d)" 3 (ux-+le)+ulx—led)—h S LD

for ue L', whenever Cp,ue L. Accordingly, (DS) is written as
(DS) U’ = ch,luv—l = C;:.luo ’ Y= 1’ 2; 39 .
Using these C,,, we define the operators Cm,n which are of the type of
as follows: Let
Xm:{uEleLw; Hu“wém}s m:1,2,3, St
Then
X,=UX,=L'NnL>.

mz21

Let
M, = max sup |@i(s)|

1Sisd |slsm

and let {6,}n=: be a sequence of positive numbers such that 7, =1/dM,, for
m=1. For these {M,} and {0,}, we choose two sequences {/nn}mnz1 and
{2} mmz1 Of positive numbers such that for each m, hpa, Inyn—0 as n—oo

and
(32) 5m é hm,n/lm,n é l/de for n g 1.

Then Chpynim,n are well-defined on X,. We set
(3-?’) Cm,n = Chm,nlm,n [ Xm and Am,n = hr_nl.n(cm,n_l) .

Now, our main theorem is stated as follows:
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THEOREM 3.2. Let {Cn,.} and {A,,} are the operators defined by (3.3).
Then we have: ‘

(i) There exists a single-valued dissipative operator A in L' such that
CHRYC D(A)C L*NL* and such that

d

Au=— 3 ($w)s,  for ue D(A),

=1
where the differentiation is taken in the sense of distributions.

(ii) Forevery >0 and ue X, I—2A)'u=lim (I—2A4,,,) 'u and (I—1A)"'u
is a solution of the equation

v+1 B @@ =u, veDA).

Therefore, RU—AA)=L*~\L* for 1> 0.
(ili) There is an L'-contractive semigroup {T(t); t =0} on L* ~ L such that

T()u=1lim (I——tTA)—nu for t=0 and ue L*n L~

N—00

and such that for each ue L* L=, u(t, x)=[T({)ul(x) gives a generalized solu-
tion of (CP) with the initial-function u(x).

(iv) For everyuec X,, and t =0, C},,,u converges strongly to T(t)u as n— oo
and vhy,—t.

REMARKS. (1) When we apply [Theorem 2.3 in the proof of this theorem,
we see that semigroup {T,.(); t=0} generated by A, converges to {7(t);
t=0} in the form of [Theorem 2.1. This means that the solution of the semi-
discrete approximation

(d/d)tm () = Anplima(®, 120
um,n(()):uEer n:l, 27 3; ety m:l, 2’ 3: o

converges to the generalized solution of (CP).
(2) As is shown in Remark (1) after A is m-dissipative.

Hence, the convergence lim (I——;—ﬁynu:T(t)u holds for t=0 and ue L?,

where {T(t); t=0} is the semigroup on L' which is obtained by extending
{T(); t=0} in (iii) onto L. This extended semigroup coincides with that
of Crandall.

(3) We can also define the difference operators C,, on the set X,=
{ue L°; |u|e=<m} in the same way as in (3.3). Kojima shows that for
every u= X, and (=0, C},,u converges to a generalized solution in the
sense of KruZkov of (CP) in the topology of Ll,.(R%. He proves this con-
vergence by employing KruZkov’s uniqueness theorem. We note the
3.2 (iv) is proved without the theorem.
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§4. Convergence of difference approximation.

In this section we show that the conditions imposed in are
satisfied for the operators {C,,} and {An,} which are defined by (3.3).

Throughout this and later sections, we write simply % and [ for A, and
Im,qa, respectively. We use these abbreviations just for brevity in notation.
The m and n to be specified will be indicated by the subscripts associated
with the operators Cpn, Anmn and (=247 2> 0.

We start with the following result which implies the stability condition
for (DS).

LEMMA 4.1. For each m=1, {Cp 1} rz: C Cont (X). Moreover,

ICnpull, = lul,  for ue Xp, m, nz1 and p=1, .

PrROOF. Let u, ve X,,. Then by and (3.3), we have
C8Y § 4| CCr 3@~ [Cru0](0)

= 2 1@d) Tulr+le)—v(a-+le)]
—(h/20)[¢:(u(x+le))—Pi(v(x+le))]| dx
+ 5 [ 10d) Tutx—le)—v(x—le)]
+(h/2DLP:(u(x—le))—di(v(x—Ile))1| dx
= 3 {1 Tu() — (1~ (h/2D04 ()~ o] dx

+ 5 [ 1Cd) Tu0—v(01+(h/2)[pu(x)—$i0(x)] dx

Applying the mean value theorem, we have
izEdl [(2d) Lu(x)—v(x)1—(h/2D)[ S (u(x))— ¢:(v(x))]]
+ 3 124) TR — (D14 (/2D $u(u()—~ $u(o()|

— 2 {L2d)"*—(h/2L)B0(x))]

+[(2d) " +(h/21)gi(0:(x)) 1} [ u(x)—v(x)]
=|u(x)—v(x)|,
for almost all x € R, where 0;(x) are certain values between u(x) and v(x);

note that (2d)~'==(h/2)¢i(s)=0 for |s|<m and for all i by condition [3.2).
Thus, we obtain

|Cantt—Cr vl = llu—vll; for u, ve X,, and m, n=1.
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Next let v X,,. Then, in view of and the mean value theorem,
d
[Cr,nu1(x) = P2 [d)'—(h/21)$(0:(x)) Ju(x+ley)

d
+ ?:_‘,1[(261 )7 (R/2D)$i(0.(0) Ju(x—les)
where 6,(x) are certain values between u(x+le;) and u(x—le;). Therefore,

|LCmntd(2)| = é [2d)"—(h/2D) ¢ 0(x)) 1] u]l.-

+ :El [@2d)~"4(h/20)pi0:(x) ][ ull--

= [ulle

for almost all x < R% and hence [|Cp 4l =< |ul.. This also means that each
Cn,» maps X, into itself.

Finally, observing that C,,0=0 for m, n=1, we have that |Cpul,=
llull,. Q.E.D.

REMARK. In the above proof we used only the condition that Amgn/lnm
<1/dM,, for m, n=1. Since {M,} is monotone increasing, we see that
Cpnl X € Cont (Xp,) for p>m and n=1.

From it follows that each A, is dissipative on the closed
convex set X,, and hence, in the same way as in ((2.8), we have that
R(I—AAn,,) D Xy for 2>0. Thus, by An,, generates a semi-
group {Tp.(); t=0} on X,

Next, we give a technical lemma which plays a central role in our
arguments.

LEMMA 4.2. Let ue X,,. Then for every constant k with |k|<m and
every nonnegative f € Cy(RY),

(42) <Sign (u_k)Am,nu; f>
=)™ 2 (|u—kl, (/D DIf
+ X sign (=BG —gu(B), DUy, nzl.

PROOF. Let %k be a constant such that |2{<m and let ue X,,. Then we
can write as

Sign (u (x) - k)[Am,nu](x)

= sign (u(H)—B){(#/24h) L D7 D)~ 3 [DIg:(wI(»)
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= sign (u(x)—B){(1*/24h) $ LD Di(u—B)I)
— B LDUG )~ BRI}

Fix an ¢ and let x € R® be such that |u(x+le,)|<m. Then
S(u(xtle;))—o(k) = ¢i(OF () (u(xxle;)—k)
by the mean value theorem. Hence, noting that

2d)'F(h/21)9i0:(x)) =0 (by

and
[sign (u(x=+le;)—k)—sign (u(x)— k) (u(x+le,)—k) =0,
we obtain

2d) [ u(xxle)—k| —sign (u(x)—k)(u(xxle)—k)]
F(h/2l)[sign (u(xxle;)—k)—sign (uw(x)—k)JLp(u(xtle;))—pi(k)]
=[(2d)"'F(h/21)$i(0; (x)) ] sign (u(xtle;)—k)
—sign (u(x)—R)J(u(x+le;)—k)=0
for almost all x= R¢, from which it follows that
sign (u(x)—k)(I*/2dh)[ D; Df (u—k))(x)
—sign (u(x)— k)L DY :(u)—¢:(k)I(x)
= (I?/2dn) Dy Df |u—Fk| J(x)—[ Di(sign (u—k)(@:(u)— (%)) 1(x)
for almost all x= R? and all i. Therefore,

sign (u(x)—"k)[Am,nu](-x)
< (I%/2dh) é [D; Df |lu—k|](x)— é [D¥(sign (u—k)(@:(u)—P:(k)))1(x)

for almost all x<= R% Multiplying both sides by a nonnegative function
fe Cy(R?% and integrating them over R¢, we have

(sign (u—k)An,att,

< (1/2dR) 3 <D7DF lu—k], £— 3 (Dsign w—RB0)— G, 75

=(I*/2dh) éﬂu*kl , Dy Do+ é (sign (u—k)(@:i(w)—@i(R), DIf> .

Q- E- D.
REMARK. Let v X,, and let f be a nonnegative C*-function on R¢ such
that f and f,, i=1,2, -+, d, are uniformly bounded on R% Then we see
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letting #=0 in the above proof and using that
4.3 <sign (V) An,nv, 1

S W/dR) E v, (2D DI+ 2 Gsign 0B, DI
= (U/dan) F (upl £o (O] , 10D dxt £ Mu(supl fu(DD] , 100)ldx

= [/ 43+ M1 Z suplFus ) DIl

In the remainder of this section we proceed with the proof of condition
(C) of

LEMMA 43. Letues X, 2>0,and let v,={I—2An ) "u,n=1,2,---. Then
we have the following estimates:

(1) Mvalp=lull, for n=1 and p=1, oo;

(i) f  lonGen)—va@ldx < luGty)—ux)ldx for yeR® and nz1;

(iii) j |vp(x)|dx —> 0 as p—-+co, uniformly in n.
x| >p

Consequently, {(I—2Ann.)"'u; n=1} is conditionally compact in L' for each
ue X, and 2> 0.

PROOF. Let u€ X, and 2>0. Since A,,0=0 for m, n=1,
states that

lvallp =Il(I—=2Ana)"ull, < lull,  for n=1 and p=1, oo;

hence (i) is obtained.

Since each A,,, commutes with translations, so does (/—2A4n,,,)"'. There-
fore, again by Lemma 41,

J olona3)—v,(0)| dx
= NLT=240,0) (- +9) 10— LU= A (3 dx

éf UGy —ux)ldx,  yeR%, nzl,
) R

which proves (ii).

Next, to prove (iii), let / be a nonnegative C*-function on R? such that
f and fgy, 1=1,2, -+, d, are uniformly bounded on R? and put v=v, in (4.3).
Then, using the relations A, v, =17 (v,—u), n=1, 2, ---, we obtain
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(44) [ 2 1oa )= (o)1 f(x)dx

= A(1/d0,)+ M1 35 supl Fai(DDIl;

Now, we choose a family {d,,; p>r>0} of C~-functions defined on R' such
that 0=<0,,(s)=<1 for s R,

0r,0(8)=0 for [s|=7,
0r0(5)=1 for [s|=p

and such that sup|d;,,(s)|—0 as p—+oco for each fixed r>0. Set

Fos)=T18,,(x) for xcRe.
i=1

Then it follows from (4.4) that

o Joaldx=f 1001 A0 /d,)-+ Mo 3 18720l

This estimate implies (iii).

Finally, by the Fréchet-Kolmogorov theorem, (i), (ii) and (iii) imply that
{I—=2An,»)'u; n=1} is conditionally compact in L' Q.E.D.

By {(I—2Apn ) 'uln=, contains a convergent subsequence.
The following lemma proves that such a sequence has only one cluster point.
The crucial step of the proof is based on the method proposed by Crandall
{5; Lemma 2.1] (cf. KruZkov [14]).

LEMMA 44. Let u, ve X,, >0 and p=m. Let w,={I—2An)'u and
2, ={U—2Ap) v, n=1,2,---. If w is a cluster point of {w,} and z is that
of {z,}, then

lw—zl, = lu—vl,.

Therefore, for each 2>0 and ue Xy, {(I—2An) U}z, ts Cauchy in L' and
the limit is independent of m.

PROOF. For brevity in notation, we denote by the same symbols {w,}
and {z,} the subsequences converging in L' to w and z respectively, and also
by taking their subsequences if necessary, we assume that w,(x) and z,(x)
converge to w(x) and z(x) almost everywhere on R respectively. Also,
throughout this proof, we write 2’ and I’ for h,, and [, ,, respectively.

Now, let f(x, ¥) € C3(R?*X R%) and set u=w,, k= z,(y) and put f(x)=f(x, )
in (4.2). Using the relation A, ,w,=21"'(w,—u) and integrating with respect
to ¥, we have
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45) 0=( , sign (Wi (D—z()ux)—w((x, y)dxdy
2D B[, a2 (/WL DFC-, ¥)Yx)dxdy

15[, sign @a(0— 2N Bi(wa(x)— iz NI, I dxdy,

where [D{f(-, »)1(x) = QD Lf(x+ le;, y)—f(x—Ile;, )1 and the others denote
similar difference operations. Next, interchanging w, and z,, then x and y,

we obtain the inequality symmetric to (4.5). Add these two inequalities to
find

@6) 0=, sign (wa(®)— 20— v(3)—wn(2)+ 2z, )dxdy

+@2) B, lwa(0=200) (/WD 33
+(/ROLDF DEfCx, )X} dxdy

+2f , sign @a(0—2z(9) 2 [6:wa()— iz ()]

XALDISf (e, »I0+LDf(x, ()} dxdy,

where [D?f(x, -)1(»)=Q@I") [ f(x, y+1l'e)—f(x, y—1"e;)] and the others denote
similar difference operations.
Since

sign (Wx(x)—2,(¥)) —> sign (w(x)—2z(y))

a.e.on {(x,y) € R¢XR%; w(x) = z(»)}
and

Sign (w,()— 2a(3)) 2 [$u(wa()—~ Gilza()] —> 0

a.e. on {(x, ) € R*XR*; wx)=2(3)},

the Lebesgue convergence theorem yields that
@n osf , (u@—v()|—lw@)—2(3) )z ydxdy
d
+2f , sign @()—2(3) X L) — (NI fartfr)dxdy
Now, take a nonnegative function ¢ € C5(R") such that ff o(s)ds=1. Let

d
w(x)= 1:[1 a(x;), xe R¢

and
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x
w,(x)=p %w(—), >0, x€ R?.
(D=p (),
We then set for a nonnegative function g< C7(R%)
o Xty x+y
f(x) y)"‘g( 2 )a)p( 2 ).

Substituting this f into (4.7) and using transformations 2§ = x+, Zp:x—yeR?,
we find

4y o=[ [  (uEtn—vE—ni-lwE+n—2E-nhe®

A sign(w(E-+7)—2(E—7) T G wEFT)—peE—T)E O d¢ Jo i,
Let us denote the integral in [ ] by I,(5). Then we have
(4.9) 0< timinf [ L (dy

< lim sup I(9)
|7 i—0
< lim de {(uE+n)—vE—p)| — |wE+7)—2E— e
“?:31 |Chw(E+n)—u(2E—n))1ge(©)]} &
= (1u®—v®|—w®)—2(&) g(@)ds

22 [, L0 —pu(a(e) g (O] de

by the Lebesgue convergence theorem. Set g(&)=«x(|¢|/7) in [4.9), where
ke C7(RY), k=0 and «(s)=1 for |s|<1, and then let »— +4co to conclude that

0= (1@ —v(®)|—w®)—=@))dé,
that is, ,
lw—zl: < Ju—vl, - Q.E.D.

We are now in position to prove condition (C,) and (C) in
THEOREM 4.5. (i) For every us C{RY N Xy,

lim Am,nu = —i-—:il (¢’L(u)>xz = z=§1¢1{(u)uzl y

n—oo

where the differentiation is taken in the classical sense.
(i) There exists a pseudo-resolvent {J;; 2> 0} CCont (X,) such that
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Jau=1im (I—24,,,)'u for A>0, ues X,, and m=1.

Moreover, for every 2>0 and ue X,=L*'"\L>, J,u gives a solulion of the
equation

u=v+2 5 (G,

where the differentiation is taken in the sense of distributions.
PROOF. (i) Let uc X, N\CYR?%. Then

[ An100 = (1/2d1) 3 (D7 D)0 — D).

d
In view of [3.2), the first term goes to 0 and the second to — 2 i(uus,; as
1=

n—co, uniformly on R% Hence, we have the assertion (i).
(if) By we can define the operators J;, 4>0, on X, by Ju=
lim ([—4A,,)'u for ue X,. Since each {(/—2AA,.)"'; >0} satisfies the

resolvent formula (1.2), /—2A4,,,) [ X,]1C X, and since X, is linear, we see
that {J,; >0} forms a pseudo-resolvent of contractions from X, into itself.
Next, let 2>0 and u< X,. Noting that u € X,, for some m=1, we set v,=
(I—2Apq)u, n=1,2,3,---. We first demonstrate that A, ,v, converges to

d
— _21 (9:(Jaw)z; in the sense of distributions. For any fe& C7(R?%), we have
d a
<Am,nvm f> = (12/2dh) 1;_;1 <D1_D;;*_‘U-,,, f>'— El <Dg¢z(vn)r f>

= (/24R) 35 wa, DEDEFY+ 3 <Bulva), DI .

Employing (3.2) and passing to the limit as n—oco, we obtain

lim (A, £ = <010, foy  for f€ CF(RY.

This implies the desired convergence. On the other hand, A, ,v,=2""(v,—u)

d
— 2 (Ju—u) in L', from which it follows that 3 (¢:(J:u)),; becomes a
. =1
function and

d
(4.10) u=Ju+21 E}(gﬁi(];u))xi in L*.
This proves the last assertion of (ii). Q.E.D.

REMARK. [Theorem 4.5 (i) states that (C,) holds for X,=L'~L* and
d

D=C¥R?. Let us define the limit operator A, by Au=— 3 (¢,(W),;, U<
=1

{R%. Though A, is densely defined, R(J—A,) does not necessarily coincide
with L' (Crandall [5; Example 3.3]). This means that R(/—2A4,) D> X, and
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that even A, does not satisfy the range condition (R). In this way, (C,) does
not necessarily imply (C).

[Theorem 45 states that all of the assumptions of (b) are
satisfied for X,=L'nL* and D=C}R%. Therefore, there exists a dissipa-
tive operator A such that C{R*)C D(A)C L* N\ L* and J,=({—24)™* for 2>0.
Moreover, A is single-valued. In fact, let J;u=/,v, then from the relation
(4.10) it follows that u=v. This means that each J; is injective. Hence A
is single-valued by [Proposition 1.1 (ii) and furthermore, (4.10) implies that

d
Au=— ,_ZZ(SI%( u)),; for ue D(A). Consequently, the assertions (i) and (ii) of
are proved.

Finally, we see from the above-mentioned that A generates a semigroup
{T(t); t=0} on L'=D(A). Set T(H)=T({)|X, for t=0. Then by Remark (5)
after [Corollary 2.2, {T(#); t=0} forms an L'-contractive semigroup on X,=
L'NL* such that T(H)u = lim (I———;—A)_nu for t=0 and ue L*~L>. There-

N—00

fore, we have the assertion (iv) of [Theorem 3.2 by applying (b).

§5. Generalized solution of (CP).

In this section we discuss the generalized solution of (CP) and give some
comments on the semigroup {7(¢); { =0} constructed in the preceding section.
We start with the following theorem which proves the assertion (iii) of
[Theorem 3.2:

THEOREM 5.1. Let {T(t); t=0} be a semigroup on L'~ L™ obtained in the
preceding section. Then for any ues L*N\L>, u(t)=T{)u gives a generalized
solution of (CP) with the initial-value u.

PrOOF. We want to show that (G.1), (G.2) and (G.3) stated in
3.1 hold for u(t, x)=[T{#ul(x). First, (G.1) and (G.3) are evident from the
property of {T(¢); t=0} and from the fact that T(H)[ X,]1C X, for t=0 and
m=1. We then prove (G.2). Let ue L*nL”. Noting that u< X,, for some
m=1, we set u(t)=I—eAn,») ¥ and ut, x) =[u(t)](x) for €>0, =0 and
xe R% Then lirféue(t): Tma(Du € X, holds uniformly for ¢ on bounded sub-

intervals of [0, o) by [2.9), and

(5.1) sign (u.(t, X)— k) An ut)1(x)
— 1 sign (u(t, O)—BL(lt, )—B)—(ult—e, 1)—k)]
>e ' (ludt, x)—k|—|ult—e, x)—k|) for k= R' and x = R®.

Let |k|<m and let feC&(0, ©)XRY, f=0. Set u(x)=uJt, x) and f(x)=
f(t, x) in (4.2). Then we see using (5.1) and integrating both sides of (4.2)
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over ¢ <t < oo that
{5.2) 0= Li(e)+1y(e)+1y(e),

where

L©="{ e (ult—e, D=kl = |ut, D—EDSf, Ddxdt
= y:_fRd lu(t, x)— ke (f(t+e, x)—f(t, x))dxdt
+ jo § o7t D=k 1ftt, Ddxat,

L) ={f,ludt, D—k|(@/240) S D: Diftt, )0dxat

:and
Igey={ | signut, 0k BLuudt, 0)—=gRILDUC, I (Ddxdt.

Since f(t, x) has a support which is compact in (0, )X R? the second term
of I,(¢) is equal to O for sufficiently small e > 0. Hence,

lim @)= [ [T Oul9—kIfit, ¥)dxdt.
e—+0 0Y R
Since u.(t, )= X, and [/2dh <1/2do, by (3.2), we obtain

lim ixoxp I,(e) £ const (m, f)L.

Also, |@;(ut, 0)— ¢i(R)| =2mM, and [[D}f(¢, -)]1(x)—fz,(t, X)| = const (f)I,
‘where M, is the constant associated with X,, through [3.2); hence,

lim sup I,(e)

e-+0
< const (m, f)I
+{ § _sign CTmnul0—0) z [PuL Trmyn(Dud(0)— Gu(R)) (8, X)dxdt .

Combining these estimates with [5.2), we have

63 0= M+[ [ ([T aOul0)—klf,

5180 ([ Tnn DU — k) 2 [Pl T uDuI@)— $u (W1 fo vt

for |k|=<m, f€CF(0, 0)xR%), f=0, and for some constant M depending on
m as well as f.

Now we proceed with the same argument as in the proof of Lemma 44.
First, by [Theorem 2.1, we have that Wllirg T n(Hu=T(Hu holds uniformly on
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bounded ¢-intervals. Next, by taking a suitable subsequence if necessary,
d

we see that sign ([T, (Hul(x)—k) X [¢:[(Th,(ul(x) — (k)] converges to
i=1

sign ([T(t)u](x)—k)é[% CT®ul(x)—¢(k)] a.e. on {(t x) € [0, c0) X R?;
[Tul(x)=k} and to 0 a.e. on {(t, x) €[0, )X R*; [T(H)ul(x)="Fk}. Hence,
passing to the limit as n—oo in [5.3), we have

o= {f  ULTOuI@—kIS,

+sign (T(Hul(x)—k) é Lo«(CTOul(x)—Pu(R) 1S} dxdt

for |k|<m and fe Cy((0, o)X R?) with f=0. The m can be arbitrarily large,
and so, k can be arbitrary in R'. This means that u(¢, x) =[T(#)u](x) satisfies
(G.2). Q.E.D.

In the preceding section we obtained a dissipative operator A from the
pseudo-resolvent {/;; 4>0} on X,. Crandall introduced in [5; Definition 1.1]
the following operator A,.

DEFINITION 52. u< D(A,) and veAu if u,vel?!, ¢,(w)el?, i=1,2,-,d,
and if

GO [ sign @H—B B ISUE)— GBI+ (S0} dxdt 20

for every fe CP(R?) with /=0 and every k< R*.
A, should be treated as a multi-valued operator in L!, but it is easily

seen that A,|L> is single-valued and for each u € D(A,) N\ L=, Aju= é(ﬂﬁi(u))xi
in the sense of distributions. See [5; Lemma 1.1]. -
Crandall proves that —A, is dissipative in L' and its closure —A4, is m-
dissipative. The following shows the relationship between A and A,; the
central part of the proof is based on the method due to Brézis (see [5;
Appendix]).
THEOREM 5.3, AC —A,. More precisely, if we define B, by

Bou=Au  for us D(By)={ue D(A,); u, Ajus L},

then A= —B,.

PROOF. Let usL'NL>, 2>0, k= R' and let m be such that |u|.<m
and |k+1], |[k—1|=m. Let @;(s) be the functions defined by and put
;) =05(s—k) and v,=I—AAn) 'y, n=1,2,3, -, for simplicity. Then
P5(s) exists almost everywhere on R?, p}(s) is =0 and has a compact support
contained in [k—1, 2+17. Hence, in view of lemma 4.2,
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65 0=[ peH{f sign 0,(0—I0W/2h) T o)) D7 DI 1)

+ B I00n0) =G DY I~ A, IS0 Jdx}ds

for fe C7(R?) with f=0, where the integral makes sense since supp[p;]C
[k—1, k+11C[—m, m]. Put

Fo() = (#/2dR)va() S D7 DIF 1)
+ 2 @D I —LAma2nd WD),
Ga()=(1*/24R)s ZLDFDIF Y0+ E $ILDU ),

and apply the Fubini’s theorem to find

(56) 5§ ([ sign @a()—9IF(0dx)ds
= —%—jﬂd F,(x) (lesign (Va(0)—9)P} (s)ds) dx
R0 s

o] ICREN AL

and

5.7 Lﬂp} (s) (Ld sign (V,(x)—8)Gp(x)dx )ds
={ /241 SO0 IN([ _sign @a(x)—s)sp)(s)ds)dx

-l—fRdié CD2fI(x) (fmsign (Wa(X)—5)Pi()D) ( S)ds) dx .

Also, observe that the integral Llsign (Wa(x)—3)@i(s)p;(s)ds can be written as

(f " +2f™ = [")gu;(s)ds. Therefore, combining (55)-(5.7), we have
—o0 k k
0= §_#5)J,,sign a0 —9)(Fa(®)—Calx))dx} ds
=2f D, wn()Fa(x)dx
—§ /241 S 0rDrF A0 ([ _sign wan)—s)sp; (s)ds) dx

[ 2o (w2l = )edsmsrdsd.
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Passing to the limit as 7n—oo and using the convergence Ay v, —— Z} (D:(V)) 24

in 9’ (Theorem 4.5 (ii)), where v=Ju € X,,, it follows that

(58) 0= [0 B SN e+ 3 @)y 21
15[ (2 [TV ge (s

d oo . :

Since 2 ({ fzi(x)dx>(f — [ )$u(5)p;(s)ds =0, we have letting j—oo in
i=1 R —oo k .

and then using and that

69 0=[ sign(W—B{ 3 60— et TGS} dx

d
This means that v=J;u & D(4,) and Av=— 3 ()., € —Aw. Since v, Av
=1

=AY Jau—u)e L, it follows that AC —B,. To show the converse, it suffices
to prove that D(B,) C D(A). Let we D(B,), A>0 and let u=w-+4Bw. Then,
w and u belong to some X,. Hence, we see from the above-mentioned proof

d

that Jyu e D(B,) and X (@:(Ju)),; = BoJiu. Therefore, in view of
=1

4.5 (ii), we have that

u=Jout 2 3 @l Jit))as = I+ 2B

From this it follows that (I+ABy)w={+AB,)Ju. Since —B,(C —A4,) is dis-
sipative, J;u = w(=({-+21B,) 'u). This states that D(B,) C D(A) and consequently,
A=—B,. - Q.E.D.

REMARKS. (1) Combining [Theorem 5.3 with [Theorem 4.5, it follows that
RUI+24.)D L' AL for 2>0. Since L'NL* is dense in L', A=—A4, and 4
is m-dissipative. This means that the semigroup {7(t); t=0} on L' which is
generated by A coincides with the semigroup of Crandall.

(2) We mentioned in Remark (2) after [Corollary 2.2 that condition (C) is
divided into two conditions (C’) and (C”). In fact, in the case of the difference
approximation (3.3), (ii) proves (C’) and [Theorem 5.3 shows that
(C”) holds for B= —A,.

In the remainder of this section we give some comments on the results
mentioned in Section 3.

First, we give a result related to the domain of dependence.

PROPOSITION 54. Let u,veX, and t>0. Let K.={x&R?%; |x;| 7,
1=1,2,--,d} for r>0. Then we have:

(1) IChau—Cravliikp = U=V, for vi€[0, o].

(i)  NTOu—TOvlskp S lu—Vlrge  for tE[0, ur].
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PROOF. Similarly to the proof of Lemma 4.1, we have
[ ICa @ —[CravI®ldx< [ |u(x)—v(x)dx.
Kr Kr4l

Hence, we can write as IICm,nu—Cm,nvllLch,)§Ilu——vllLl(xm,. Inductively, we
have that [|C%.u—Ch.V]Licxp = |4—V|lL1cxrsp, from which (i) follows. Since
lwl L1k < W], for we L' and since vl < vh/d,, (ii) is easily seen from Theo-
rem 3.2 (iv). Q.E.D.

REMARKS. (1) The above proposition together with its proof reflects the
shape of the domain of dependence. Lemma 4.1 can be regarded as a special
case of this proposition. .

(2) [Proposition 5.4 (ii) represents a hyperbolic character: For every 7,
r and m, [T®ul(x)=[T(Hv](x) a.e. on K, if u, ve X,, t[0, d,7] and if
u(x)=wv(x) a.e. on K.

Next, we introduce two important classes which are invariant under 7(¢).
By BV =BV(R%) we mean the set of those elements u & L'~ L™ such that
for every compact domain £, there is a constant Mg > 0 and

fglu(x+dx)—u(x)|dx§M9|Ax! for 4dx < R?,

It is proved (cf. Krickeberg that every element u < BV is of locally
bounded variation in the sense of Tonelli-Cesari. By UBV =UBV(R% we
denote the set consisting of those elements v € L' N\ L™ such that |u(-+4x)—ul|,
< M,|4x| for 4x= R® and for some constant M,>0. Observe that CF(R%)
C UBVCBYV.

For the following two results, we refer to Conway-Smoller and Kojima
91

THEOREM 5.5. BV and UBV are invariant under T(t) as well as C,,,.

PrOOF., Let u€ BV X,, and let z, »>0. As was mentioned in the
proof of Cn,» commutes with translations. Hence, we see letting
v(x) = u(x+4x) in Proposition 5.4 that

ICCmnul( +4x)—C,ul LUKy = [Ch,nte( +Ax)—cfn.nu”u<m)

= lu(- +4x)—ull L1cgpen = const.| 4x| for vle[0, 7],
where the constant depends only on 7, = and #. Since 7 is arbitrary, this
means that C%,,u< BV. Also, (iv) and [Proposition 5.4 (ii) yield
that

ILT@ul(- +4x)—T(u] L1k, = const. | 4 x|

for te [0, 0,7] and dx<= R?% Since 7 is arbitrary, it follows that T(Hu e BV

for t=0. The invariantness of UBV follows immediately from
and @iv). Q.E.D.
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REMARK. In view of this theorem, {7(f)| BV ; t=0} and {T()|UBV; t=0}
form L'-contractive semigroups on BV and UBYV, respectively.

Classes BV and UBV are closely related to the continuity of T(#) in t.

THEOREM 5.6. (i) Let us BV. Then for everyr>0 and >0, there is a
constant M, ., >0 such that

1T u—T(Syull rcxp S Myyeult—s|  for £, s€[0, 7].

Therefore, if we define T )yu=u for t <0, then the function [T(t)ul(x) belongs
to BV(R%),
(ii) Let u= UBV. Then T(t)u is uniformly Lipschitz continuous in t with
respect to ||-|l,-norm. Therefore, the function [T(t)ul(x) belongs to UBV(R**Y),
(iii) Let wue L*N\L>. If u is uniformly Lipschitz continuous on R® (hence
ue UBV), then there is a constant M, >0, depending only on u, such that
ITHOu—ulle=M,t  for t=0.

PROOF. (i) Let ue BVNX,, 0<r<p and let >0. Then

[Cn,nul(x)—u(x) = (2d)7* ié Lu(x-+le)—2u(x)+u(x—le;)]

—(h/21) 2 [pu(u(x-+led)— pelux—le)],

whence
{ o IECpud()—u(x)] dx
P
<d B{f  uCeHled—u() | de [, Juo—u(r—le|dz}
+0/2) B [, |9t te))—i(ux—le) dx
< (24)* 3 2M, -+ (h/20) 3 M Ju(x+le)—u(x—le)|dx
=1 i=1 0

= M,u(0m+dMu)h

that is,

“Cm,nu_'u“Ll(Kp) = Mp,u,mh .

Now, let 0<s<t=<rt and p=r+70,. Then r+[i{/h]l<p for te[0, 7] and
[Proposition 5.4 yields that

[t/h]—1
ICRRu—CRlul trckpy S %hlllcfnﬂl u—Crnthllrcxy
y=18,

= (C/h]—Cs/ID|Coath—ull 21k S F—5+ W) Mpuym -

‘Therefore, we have



Convergence theorem of nonlinear semigroups 153

I TOu—T(S)ull 1car = Mpuymlt—s|

by (iv). This implies that the function [7(¢)](x) belongs to
BV(R3+Y),
(ii) Let ue UBV N\ X,,. Then, in a similar way to the proof of (i), we
have
1Cmntt—ull, < My, mh

for some constant M, ,. Hence, we have

ITOu—T(s)ull, = Mymlt—s|  for t, s=0

by Lemma 4.1l and [Theorem 3.2 (iv). This fact also yields that the function
[T(t)u](x) belongs to UBV(R%*Y),

(iii) Let ue X, and let |u(x)—u(y)|< M|x—y| for x, y= R® and for some
M>0. Then, by applying the mean value theorem we have

[Cnnul(x) = é L@2d)™"—(h/21) P 0:(x))Ju(x+le;)

+ B0 (B 2O TuCx—le),

where 0;(x) are certain values between u(x+le;) and u(x—Ile;). This means
that [C,,u](x) is a convex combination of u(x+jle), i=1,2,-,d; j==L
Inductively, we see that [C4,.uJ(x) is a convex combination of u(x-jle;),
where i1=1,2,---,d; j==*1, +3, -+, +v if v is odd and j=0, +2, +4, -+, v
if v is even. Let us write

[Crnul(®) =T ay(Nu(x+jle;),  ai;(x) 20, Bay(x)=1
for this combination. Then
I[Cmau](0)—u(x)| = Za;(x) | u(x+jle) —u(x)]
= Sa()M|j|l < Moz vh= My zvh .
In view of (iv), we have that

[LTHul(x)—u(x)| = M, ,t a.e. on R%.
Hence,
1Tu—ulle < M, t  for t=0. Q.E.D.

REMARK. Crandall introduced a notion of generalized domain D(A)
of a dissipative operator A. In view of Remark (2) after
(ii) states that UBV — D(A), where D(A) denotes the generalized
domain associated with the m-dissipative operator A.
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§6. Notes and Remarks.

In this section we give a variety of observations on the results obtained
in the preceding sections.

I. First, we review the result of in the case of d=1. In
this case we can write (DE) as follows:

u,+(d(u), =0 for t>0, x& R!.

Then (ii) states that (¢(J,u)), = L* L, 2> 0. Hence, the Radon-

Nikodym theorem yields that &(/J;u) is absolutely continuous and the deriva-
tive of ¢(J;u) in the ordinary sense coincides with (¢(J,u)); a.e. on R:. Con-

sequently, [ J;u](x) satisfies the differential equation v+ A(¢(v)),=u at almost
all x R

Now, let L be the infinitesimal generator of the group {e*; t= R'} of
translation operators on L' and @ be the operator defined by

[Ou](x) = ¢(u(x)) for ue L*nL>.
Then, we have

(6.1) A=—LQ® on D(A)={ue D(A,); u, Ajucs L~} ,

where A, is the operator introduced in
® maps D(L) into itself and is Lipschitz continuous on every X, with
Lipschitz constant Mm—-:IS}xép |@’(s)|. In fact,let ue D(L). Then |ulle= |4zl

so ue L, Hence, ue X,, for some m. Since |¢(u(x))|=M,|u(x)|, we see
that Que L* N L=. On the other hand, ¢ = C'(R'); hence ¢(u) is absolutely
continuous and (¢(u)),=¢’(w)u, a.e. on R'. Thus,

[IICIOOREEES A IREATES

This means that @u = D(L). The second assertion is clear from the fact that
Pu—Qv|, < M, llu—vj, for u, ve X,,.

Therefore, it follows that

6.2) (RYC D(L)C D(LD).

Moreover, the approximate operators A, can be written as

(6.3) Ap b =h"1 (e —=2]+e )u—20) (eL—e  B)Qu,

where ue X, 0< 0, =h/I=1/M, and h= hm,ny l= lm,n-
Now we have the following :
THEOREM 6.1. (i) For every ue D(L) N\ Xy, lim A, ,u=—LOu.
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(ii) For every ue Xy, Jju=I1lim (I—2An ) 'u gives a unique solution of
n—oo

v+ALQv=u, ve D(A), 2>0.

(iii) L®@|D(A) generates an L*-contractive semigroup {T(t); t=0} on LN L=
and for every ue L'\ L=,

THu—u= —Lf zQ)T(s)uds for t=0.
0 M
PROOF. (i) follows from [(6.2), and the fact that L is the infinitesimal
generator of {¢f; t= R'}. (ii) is evident from (ii) and (6.1).

We then demonstrate that (iii) holds. Since J;={U—14)"* 1>0,and AC
— L@, we have

Ju—u="3 2AJ2 u—2A{Au— AJ%u}
p=0

for ue D(A), A>0 and v=1, 2,3, --- (cf. Oharu [16; p. 543, (6.3)]).
Noting that J¥Pu=J%u for pA<s<(p+1)A, we see that J¥Pu and AJ}¥ u
are step functions and summable on every finite interval and that

y— v
EIZA]fu:‘f AJ%¥Ryds |
P=0 0

Now, let ue D(A)N\X,. Then [|AJFul,=[Aul, and Jfues X,. Hence, we
have that

| <32 Aul; .
1

jamuu_u~f tA]Ef’“uds

0

Also,

5. tA]S‘/“uds = ——Ly c<D,]55;”“uds .
0 0

(iii) yields that J¥*u—T(s)u as A— 40, uniformly on [0, t].

Since @ is Lipschitz continuous on X,, @J%¥"u—@T(s)u uniformly on [0, ¢].
Therefore, 5t¢]53/’13uds->jt@7‘(s)uds and —Lft@]ES/‘3uds——>T(t)u—u as 1— +0.
0 0 0

t
Since L is a closed linear operator, j OT(s)uds = D(L) and
0

T(t)u—u_—.—Ljo'q)T(swds for ue D(A) and ¢=0.

Next, let ue L* n\L*. Then, by the definition of L, a sequence {u,} CD(L)
(C D(A)) can be chosen such that {u,} and u are contained in some X,, and
such that |u,—u|,—0 as n—oo. Hence, we see that

jt@T(s)unds—%thT(s)uds as n—oo for t=90.
0 0
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t
On the other hand, —Lj OT(s)u,ds—T(t)u—u. Consequently, it follows that
0 .
[“@T(s)uds & D(L) and
0

T(t)u—u:_Lj”@ns)uds, we l'AL. Q.E.D.
0

REMARKS. (1) Flaschka [7; Section 3.3] proves that if u < Cy(R") then
the solution v of v-+(¢(v)),=wu is of bounded variation and that such a v
becomes an “ entropy solution”.

(2) The formula given in (iii) states that T(f)u is a generalized solution
of (CP) in the sense that if @T(s)u < D(L) a.e., then

T(Wu—u= | (~LOT(s)uds,

which means that 7(f)u is a strict solution of (CP). From the assertion (iii)
we can derive the following integral relation (cf. [7; Theorem 2]):

(6.4 § KT Ou, £y —@T(u, LAf(e)}dt=0

for every f(-) € C¥((0, o0); D(L*)), where L* denotes the dual operator of L.
In fact, for every feD(L*), (Tu—u, f>=—< J oT(uds, L¥f y=
— @T(9u, Lef>ds. Now let f(-) € Ci(O, 00); DIL¥). Then <T(t-+hu—T(D)u,
f@)y =—[ " (@T()u, LA(1)>ds for h sufficiently small. Since supp (£) is com-

pact in (0, c0), it follows from the Fubini’s theorem that
[+ =T, ftpdr= [T, ft—m) =)t

= [ @T(s, Lrftpdsat.

Dividing both integrals by —#h and then passing to the limit as A— 40, we
obtain

{ 0°°<T(t>u, Fpdr= 0°°<q>T<t)u, L*f(t)>dt .

The relation is an operator theoretic version of the weak solution in
the ordinary sense. But it should be noted that this type of solution need
not be unique. [Theorem 5.1 gives a sharper result than [6.4).

Next, we consider some generalizations of (DE).

II. We can extend to the case in which

(6.5) ¢:(0)=0 and ¢, is locally Lipschitz continuous on R* for 1=1, 2, ---, d.
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First, for each ¢;, we choose a sequence {¢} C C*(R') such that ¢{”(0)=0,
o™ converges to ¢; uniformly on bounded intervals of R' and such that for
each positive integer m,

max sup |9/ ()| = My = [@:lLip t~m,m1 »
1sigd |s|lsm

where | @;llLipr-m,m1 denotes the smallest Lipschitz constant of ¢; on the
interval [—m, m]. Next we take sequences {0}, {fn,»} and {{n,,} of positive
numbers such that lim A, ,=0 for each m=1 and such that holds. We

then define the difference operators C,, and A, ., m, n=1, by
d d
(6.6) [Craul(x)=(2d)™" g)l(u(X+lei)+u(x~—lei))—hi§ CDYp{(u)1(x) ,

(6.7) Apat=h"[Cpo—IJu, for ue X, and m, n=1,

where h=h,, and [=1[,,. Then, we have the same assertion as in
4.1 and the same form of inequalities as in (4.2) and in (4.3). Hence, we can
obtain the estimates in On the other hand, ¢{® converges to ¢;
uniformly on every bounded interval, so Lemma 4.4 remains true. Thus, the
assertion (ii) in can be obtained for the operators Cy,, and Ap,s.
By this result we can define a dissipative operator A. We see that D(A) also
contains C}(R?%. In fact, let us C}(R*) N X,. Then ¢,(u) is uniformly Lip-
schitz continuous on R% Hence, by the Radon-Nikodym theorem, the deriva-
tives (p:(u)),; in the sense of distributions exist as elements of L' L~
Moreover, the convergence D¢ (u(x))— (¢;(u(x)),;, holds a.e. on a neighbor-
hood of supp(u). Therefore, by the dominated convergence theorem,

d d
‘21 D2¢i(u)——>§% (¢i(u)); in L'. Hence, A,,,u converges to —._21 (¢s(u))y; in L'

This is the assertion (i) in Thus, A generates an L'-contractive
semigroup {7(¢);t=0} on L* L= Also, it is proved in the same way as in
that for each ue L'\ L*®, u(t, x) =[T(H)ul(x) becomes a gener-
alized solution of (CP) with the initial-value u. Consequently, we obtain
under condition (6.5) the following extension of

THEOREM 6.2. Let {Cp,n} and {An,} be the operators determined by (6.6)
and (6.7). Then we have the same assertions (i)-(iv) as in Theorem 3.2.

III. As mentioned in Remark (2) after [Definition 3., we can generalize
(DE) to allow the ¢; to be of class C°(R') and obtain a semigroup solution
of (CP). Suppose that

6.8) ¢, =C(RY), ¢:(0)=0 and limj)up|¢i(s)/s| < 4oo  fori=1,2, ,d.

In this case we choose, for each ¢;, a sequence {¢{} CC!(R") such that
{(0)=0 and @™ converges to ¢; uniformly on bounded intervals.
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Let {/{; 2> 0} be the pseudo-resoivent associated with ¢{” via
45 (ii). Let ue X,=L'"L> and 21>0. Then for each n, J{ = Cont (X,),
1 JPullp, < llull, for p=1, oo, J{ commutes with translations, and

ILJ@ulC-+n)—JPulli = [u(-+y)—ul,  for ye R?.

Hence, {/{Pu},z, is conditionally compact in Li,.(R%. Let {v,} be a con-
vergent subsequence of {J/{"u} and v be its limit. Then, [|v]|, <|ul, for
bp=1,00. We wish to prove that v=(/4+14,)"'u, where A, is the accretive
operator of which is associated with the ¢; in (6.8). Let p,(s),
J=1,2, -, be the functions treated in the proof of [Theorem 53. Then for
each n, (cf. [5.9)) states that

69 0= p{f sien @u0—L D @) -0
+ 3 (B (0n(0))e, f T} drds.
Set
Fo)= £ $P0a()fu()+ 3 G 0n(0)e S0
and

d
Ga(x)= E A (8)f z4(%)
for n=1. Then, in the same way as in (5.6) and (5.7), we get

*‘lz‘jm;bﬁ- (s) URd sign (vn(x)——s)Fn(x)dx> ds= fdej(pn(x))Fn(x)dx

and

jmplj <S)(j3d sign (Un(x)*S)Gn(x)dx>d5

=[ B +2f =) o dsax

Hence, passing to the limit as n—oo in (6.9) and using the convergence
i(@"’(vn(x)))xi—’i (¢:(v))s; in 9, we obtain the same inequality as in [5.8).
glgserve that giii(v)l_e1 L'~ L= by (6.8). Thus, we see letting j—co that ve D(4,)
and 2_51 (¢:(v))z;= Av.  Since >::‘1 (¢:(v))s; coincides with the Llclimit of
i_él (P (Vn))e, = A (u—v,) almost everywhere on RY it follows that A=

A (u—v), or [+AAy)v=u. Thus, v=(I+21A4,)*u. This means that the whole
sequence {J%u} converges in Li,.(R% to (I +1A4,) 'u as n— oo,

Now, let J;={+24,)7"|X, for 2>0. Then {J;; A>0} forms a pseudo-
resolvent of contractions on X, into itself and the dissipative operator A
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determined by it is a restriction of —A,. Hence, A generates an L!-contrac-
tive semigroup {7(¢); t=0} on D(A). Note that D(A) depends on the {9}
and D(4A)# L' in general. Also, it is easily seen from a similar argument to
the proof of that for each u € D(A) N L=, u(t, x) =[T(H)u](x) gives
the generalized solution of (CP) with the initial-value u.
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