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Let G be a finite group. By a G-manifold we mean a closed oriented
manifold together with an orientation preserving action of G without fixed
points or a closed weakly complex manifold together with a weakly complex
structure preserving action of G without fixed points. We denote a G-mani-
fold by a pair (M, f) where M is a G-manifold and f a free action of G on
M:GXM— M and its bordism class by [M, f]. Moreover we denote by
2%9(G) the oriented reduced bordism group of G of dimension m and by
27 (G) the weakly complex reduced bordism group of G of dimension m.

Let D, be the dihedral group of order 2n. In this paper the authors
show a mapping splitting theorem for 2$°(D,) and £Z(D,) when n is odd and
determine the additive structure of @Y(D,), » an odd prime.

In the following sections we denote 239(G) or 9%(G) by DL(G).

§1. A mapping splitting theorem for %(G).

Let G be a finite group and BG a classifying space of G. Let (M, f) be
a G-manifold of dimension m. Then zn: M— M/G is a principal G-bundle
and there exists a classifying map g: M/G— BG. The correspondence [M, f]
—[M/G, g] is well-defined homomorphism of $%(G) into GL(BG) and we have
the following known result.

THEOREM 1.1 (Conner-Floyd [1]). The above defined homomorphism px:
QL(G)— FE(BG) is an isomorphism of degree 0 as an Q%-module homomorphism.

Let a: H— G be a homomorphism of finite groups and Ba: BH— BG a
map induced by @. We denote by ax: QL(BH)— 3%(BG) the homomorphism
induced by Ba and we also denote pz'axpx: P%(H)— Q%(G) by ax. Then we
have

(L.1) ax(M, fD=0CGX M, fel, [Mf]e Q%L(H)
where G X M=GxM/(g, x)~(ga(h), f(h, x)), g€CG, he Hand x& M on which
G acts by the rule

fog, g X )=gg'Xx, 88 €G xeM.
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Let H be a normal subgroup of G, and put I'=G/H. Let i: H—G be
the inclusion of H and n: G— I’ the projection. Then we have

(1.2) Talsx =0

because (Br)(Bi)=0.
For an H-manifold (M, f) and g€ G, (M, f¢) denotes an H-manifold con-
sisting of the manifold M and the action f¢ defined by

feh, x)=f(g'hg, x), x=M, heHand g=G.

Then, since (M, f¢) and (M, f¢") are diffeomorphic as H-manifolds for any
h e H we can define an action of I" on 2%(H) by

1.3 (M, f1=[M, f<1  for [M,f]le QL(H) and y=gHe I .

By $L(H)T we denote a subgroup of $L(H) consisting of invariant elements
under the action of I.

Next we define a homomorphism ¢: Q%(G)— QL(H), which is called the
transfer: Regard a G-manifold (M, /) as an H-manifold with the restriction
fx of f to H and put t(CM, f1)=[M, fx]l.

When we denote the elements of I” by 74, 72 =+, 7% We have the following

THEOREM 1.2 (Conner-Floyd [11). Let H be a normal subgroup of G, then

M, £ = B IM, £

for any [M, fle Q5(H) and in particular, if [M, f1e QL(H)T, then tix((M, 1)
=k[M, 1 for every m=0 and L=S0 or U.

THEOREM 1.3. Let H be a normal and abelian subgroup of G, k=[I[":1],
l=[H:1] and assume that k and | are relatively prime. Then there exists a
homomorphism

0% : 35 (Y @ F5 (1) —> 34.(6)
and it 1s injective for every m=0 and L =50 or U.

PrOOF. First we define the homomorphism @%. From Theorem (7.5) of
Curtis and Reiner [3], we see that G is isomorphic to a semi-direct product
H-I" of H and I'. Namely there exists a homomorphism j: I"— G such that
77 =1. Then,

(1.4) Txjx=1
because (Br)(Bj)=~=1.
Let ix: OL (H)'— (L (G) be the restriction of ix to £X (H)Y', Then we

define @L by s+
Next we prove that @L is injective. Suppose that Q% (a, 8)=0 for

(a, )€ BL (H)YF P RL ('), then ix(a) = —jx(B). It follows from [1.2] and [1.4)
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‘that
B=rxjsx(f) = —msix(@)=0 and so ix(a)=ix(a)=0.

From and ix(@) =0 we have
kot = tis(a) =0.

Since H is a finite abelian group of order [ and (/, ) =1, the elements of
H,(BH: Z) are divisible by k& So we see that the elements of QL (H) are
divisible by %k using the bordism spectral sequence. Therefore, « =0. Con-
sequently, (a, 8)=0. This shows that @L is injective. q.e.d.

§2. Hu«(D,:Z) and 2%(D,).
The dihedral group D,, n=3, is a subgroup of the symmetric group S,

generated by the permutations g=(1, 2, ---, n) and t:(}l” n—?l,, ” 7;) with
the relations g"=1%*=1 and igt=g"'. In particular, D,=S,. Let Z, and Z,
be the cyclic subgroups of D, generated by g and ¢ respectively. Then Z,
is normal in D,, the quotient group D,/Z, is isomorphic to Z, and D,=2,-Z,.
From now we shall construct a classifying space of D,. Let S%*!' denote
the unit (2/4+1)-dimensional sphere in C'** with the coordinate (z,, z,, -, 2;)
and let S™ denote the unit m-dimensional sphere in R™*! with the coordinate
(%o, X1, ***, Xm). Consider the product space S***XS™ and define an action ¢
of D, on S**'1xXS™ by the rule
&g, t), (z, x)) =(p'd(2), (—1)x), ze SHH xe S™
where p=exp ((2rv/'—1)/n), c(z) denotes the conjugate point of z and —x the
antipodal point of x and we define ¢/**(z) and (—1)"*'x inductively by
setting
I (z) =c(c?(2)) and (—1)"'x=—((—1)x) for j=1.

Then we see that this action of D, on S**'XS™ is a free action. Denote
by D(I, m) the quotient space (S***'xS™)/D,. Then the direct limit space of
D(m, m) with respect to the natural inclusions D(m, m)C D(m+1, m+1) be-
comes a classifying space of D,, that is, BDn::l%nm D(m, m).

Consider the product space of L'(n)XS™ and define a homeomorphism
T: L{n)x S™ —> L{n)x S™

by T([z], x) =([c(2)], —x), where L'(n) denotes the standard (2/41)-dimensional
lens space and [z] the point in the quotient space corresponding to z & S+,
Let D’(l, m) be the quotient space obtained from L'(n)XS™ by identifying
([z], x) with T((z], x). Then clearly we have



Bordism groups of dihedral groups 337

LEMMA 2.1.
D'(l, m) = D, m) for l, m=1.

Let P™R) be the real m-dimensional projective space. When we define
BZ, n>2, and BZ, by the direct limit spaces of L™(n) and P™(R) with
respect to the natural inclusions L™n)C L™(n) and P™R)C P™(R) respec-
tively, we have the maps

1: BZ,— BD, and j: BZ,—> BD,
by the definition of BD, and moreover the inclusion maps
i,: PMR)—> BZ, and 1i,: L™n)—> BZ,.
Let X be an oriented manifold. By [X] we denote the fundamental

class of X.
THEOREM 2.2. If n is odd, we have

H,BD,; Z)=0, H,\BD,;Z)=2,®Z,
where Z, is generated by (ji)«([P*"Y(R)]) and Z, by (ii)«([L* *(n)]), and
H «(BD,; Z)=1Z,

where Z, is generated by (ji)x(LP**~*(RY]) for every ¢q=0 and k=1.
PROOF. Let e**, ¢=0 or 1, denote an open (2k-+e¢)-cell of S¥+'C C'*

defined by
e¥t = {(zy, -+, 24, 0, -+, 0) = S¥*| 2, +0 and 2rj/n<arg z,<2zx(j+1)/n}

and
eg]c: {(Zm e Zp 0, e, 0) = Szz+11 Zk;&(), arg zk:ZEj/n}

for 0<j<n—1and 0=kl Let ¢,: S¥**'— LY(n) denote the projection and
put C,=0¢,(e5), 0=r=<2[+1, then C,=¢,(e}) =@,(e]) = -+ =@, (e5_,).

Let Df (D7) be an open j-cell of S*C R™! defined by X3 =Xj,= "=
Xn=0, x; >0 (x;<0). Then {C;xD3li=0,1,--,1;;=0,1,--,m} forms an
oriented cellular decomposition of L'(n)XS™ whose boundary relations are
given by

0(CosraX D) = (=1 Cyis.x(Df,—D5y), 0=i=1, 1<j<m,
0(Cys X D7) =nCyy_y X D5 +(—1)Cyy X (DF1— D7), 1=si=L15/5m,
a(C2i+1><D(:)t):0, 0=:i<1,
a(cziXDg):ncziﬂXD(:)t, 1=,
0(CoX D¥)=(—1YCyX(Dj—y— D7), 1=Zj<m.
The homeomorphism T is a cellular map with respect to the above cellular
decomposition and satisfies
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T(Czi+s>< D?) - (_1)i+j+sczi+s>< D;F
for e=0,1, 0<i</ and 07 < m.
Let ¢,: LY(n)xS™— D(l, m) denote the composition of the projection

LY (n)xS™— D’(l, m) and the homeomorphism D’(l, m)— D(l, m) in Lemma 2.1
and write (C;, D;)=¢,C;, D}). Then {(C;, D;)|i=0,1,--,1; j=0,1, -, m} is
a cellular decomposition of D(/, m) whose boundary relations are given by

a(C2i+1’ DJ) = ((_1)i+(—‘l)j+1>(c2i+ly Dj—l) ’ O é i é lr ]- g] —E m,

0(Cys, D) =n(Coi-yy Dp)+(—=1'+(=1))(Coi, D;-p), 1=i=L 1=j=m,

a(czi-n, D0>:Or Oélély

a(CZi’ D0>:n(c2i—1, DO) y 1§l§ly

a(COa Dj) — (1+(—1)j)(co, Dj—1) , 1=7Em.
From this formulas we obtain

f,((BD,; Z)=0 and H,..(BD,; 2)=Z,®2Z,
where Z, is generated by (Cy, Dy-1) and Z, by (C,-1, Dy) and
A, «BD,; Z)=2,

where Z, is generated by (Cy, D,-,). Furthermore (Cy, D,;_y) and (C,._yi, Do)
are (Ji)«([P* YR)]) and (@)«([L**'(n)]) respectiwely. This completes the
proof.
Denote by
pE: QL(G) —> Hy(BG; Z)

the Thom homomorphism for L =S0O or U defined by

p (M, f1) = g«(LM/G])

where [M/G] denotes the fundamental class of the quotient manifold M/G
and g a classifying map of the principal G-bundle M— M/G. Define an
action of Z,C D, on S™*C C™ and an action of Z,C D, on S‘"!CR' by

Tn(gx (20, Z1y "ty Zm—l)) - (pZOr ‘021’ Tty sz—l) y P exp (271"\/_—1/”)
and T(t, (xg, X4, ==+, Xi=1)) =(— Xy, — Xy, -+, —X,_,) respectively where g and ¢ are
the generators of D,. Then S®**'/Z,=L™n) and S'""'/Z,=P"Y(R). We
recall the following

THEOREM 2.3 (Conner-Floyd [1], Conner-Smith [2]).
(1) pr: QK ZY—H«(BZ,: Z) is onto for every n=2 and

LEESH Y T D) =1([PPY(R)])  for n=2
and
PRSP T, ) = k([L m)])  for n>2.
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(i) {[S¥ Y, T,1; i=1} forms a generating set for UZ,) as an 3Y-module
Sfor n=2.

Then we see that

PROPOSITION 2.4. The Thom homomorphism

pr: GYD,) —> H«(BD,; Z)
is onto when n is odd for L =350 or U.

PrROOF. Using the notation of [S#-t T J+[S* !, T,7 is
contained in $%_,(Z,)%* for each i=1 since *=1 where ¢ is the generator of
Z, and moreover it is divisible by 2 as n is odd. Consider the images of
Jx([S* 1, T,]) and tx((1/2)([S*, T, ]1+0S*Y T,19)) by g". Then, by [Theorem
2.3 and the naturality of u*

pEjx(LS*7%, Tol) = (Ji)«([P*{(R)])
and
pEi((1/2) S, TRl+0S*Y TodY) = (@)«([L* ' (n)])

for i=1. Therefore, from we get [Proposition 2.4
According to [Proposition 2.4 we obtain the following
COROLLARY 2.5. When n is odd, {j«([S*"1, T,)), ix((1/2)([S*-, T,1+[S*,
T,09); i=1} forms a generating set for Q%(D,) as an GY%-module.
From [Theorem 1.3 and [Corollary 2.5 we obtain immediately the following
THEOREM 2.6. If n is odd, then

0Y : QU(Z,)7D 2Y(Z,) —> Q%D,)

1s an isomorphism for every m=0.

§3. The structure of 9%(Z,)%, p an odd prime.

In this section we suppose that p is an odd prime. Consider an element
Lk — [Szk+1, Tp]+[s2k+l’ Tp]t

where ¢ is the generator of Z,. The element L* belongs to $%.,(Z,)%.
Denote by ['«(p) the polynomial subring in Q% =Z[x, x,, ---] which is
generated by x; (G#p—1).
PROPOSITION 3.1. Suppose that

n
k;)’ Oopran-as L =0, Agpvin-1x € L opran-ar(D) .

Then,

2kj-11 T r
Aspign-sc EP- P st+an-ak(D)

where [ ] is the Gaussian symbol.
PrOOF. Consider the Thom homomorphism
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1 GUZ,) — Hu(BZ,; Z)

where BZ, is the classifying space of Z,. It is easy to see that x¥(L™) =
{1+(—=1)™*} g, where g is the generator of H,,.;(BZ,; Z). According to
Kamata [4], we have the following representation

2k+1 .
L2k+1 - ]g aj[SZJH: Tp] ’ aj € F4k—zj+2(p) (1) .
Applying the homomorphism ¢V to the above equation, we have
Aoy =2 (mod p) -+ (2).

Using (1), we describe the equation é}azmn_mﬁ"“:o as follows:
2n
Qons1@o (S, T1+H X b,LS¥ T, T,]=0
j=0

where the coefficient b; belongs to ['x(p). -
Therefore it follows from Kamata and (2) that ocztep[' pa I«(p).

Since L* has order of pL 771" by induction, Proposition 3.1 follows.
We put

v S [ ]a
Wt <n>:’§0F2;+4n—4k(p)/p r-1 Isevin-a(D)

where I';,(p) =0, 1 <0.
THEOREM 3.2. The homomorphism

O: Wg](n) I §Z1+2E+S(Zp)zz
given by

n n
@(kgo st sn-sk) = §0a2£+4n_4ksz+1

s isomorphic for ¢ =0, —1.

PrOOF. It follows from [Proposition 3.1l that @ is injective. We compute
the order of 2%,.5(Z,)?> and 9Y,.,(Z,)%2. Consider the spectral sequence of
@Y%(BD,) Ei, with E,=H(BD,; QV). From [Proposition 2.4, the spectral
sequence collapses. Consider the filtration of Q%(BD,) [, with [, ;/Je-1,001
EE;‘jzzﬁs(BDp; QY). Denote by o, the number of partitions of . Then we
have

o g
]4s+3,2t/]4s+1,2t+2:Zp+ +Zp+Zz+ +Zz

and
g

—_———
]4s+1,2t/]4s—1,2t+2 = Zz+ +Zz .



Bordism groups of dihedral groups 31

~ 2n+1 n
Therefore, the order of 2¥.4(BD,) is 2%° a= X o; and b= X 0,;, and the
i=0 i=0
~ 2n n—1
order of 2¥,.(BD,) is 2% ¢= X 0; and d= X 0,;,;.
j=0 j=0
On the other hand the order of 9¥,..(BZ,)is 2/, f= X 0, From
Jj=0
2.6, it follows that QZIH(ZP)ZZ and .@er(Zp)Z2 have order of p® and p? respec-
tively. Denote by =z, the number of partitions of ?, containing no p—1.
W,n) and W_,(n) have order of p* and p’ respectively, where

u :}é}) {I:—“%bkjll :I—I— 1}T2<n—k) ]

nd 2k+1
v ———k;) {[—pé_‘]-":l+l}fz(n—k)—1 .
Using the same method as Conner and Floyd [I], p. 97, we have b=u and

d=v. q.e.d.
From [Theorem 2.0l and [Theorem 3.2, we can determine the additive struc-
ture of QY(D,), p an odd prime.
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