Bordism groups of dihedral groups

By Masayoshi KAMATA and Haruo MINAMI

(Received June 6, 1972) (Revised Nov. 2, 1972)

Let G be a finite group. By a G-manifold we mean a closed oriented manifold together with an orientation preserving action of G without fixed points or a closed weakly complex manifold together with a weakly complex structure preserving action of G without fixed points. We denote a G-manifold by a pair (M, f) where M is a G-manifold and f a free action of G on $M: G \times M \to M$ and its bordism class by [M, f]. Moreover we denote by $\tilde{\Omega}_m^{SO}(G)$ the oriented reduced bordism group of G of dimension G and by $\tilde{\Omega}_m^{SO}(G)$ the weakly complex reduced bordism group of G of dimension G.

Let D_n be the dihedral group of order 2n. In this paper the authors show a mapping splitting theorem for $\tilde{\Omega}_m^{SO}(D_n)$ and $\tilde{\Omega}_m^U(D_n)$ when n is odd and determine the additive structure of $\tilde{\Omega}_m^U(D_n)$, p an odd prime.

In the following sections we denote $\tilde{\Omega}_m^{SO}(G)$ or $\tilde{\Omega}_m^U(G)$ by $\tilde{\Omega}_m^L(G)$.

§ 1. A mapping splitting theorem for $\tilde{\Omega}_m^L(G)$.

Let G be a finite group and BG a classifying space of G. Let (M, f) be a G-manifold of dimension m. Then $\pi: M \to M/G$ is a principal G-bundle and there exists a classifying map $g: M/G \to BG$. The correspondence $[M, f] \mapsto [M/G, g]$ is well-defined homomorphism of $\tilde{\Omega}_m^L(G)$ into $\tilde{\Omega}_m^L(BG)$ and we have the following known result.

Theorem 1.1 (Conner-Floyd [1]). The above defined homomorphism ρ_* : $\tilde{\Omega}_*^L(G) \to \tilde{\Omega}_*^L(BG)$ is an isomorphism of degree 0 as an Ω_*^L -module homomorphism.

Let $\alpha: H \to G$ be a homomorphism of finite groups and $B\alpha: BH \to BG$ a map induced by α . We denote by $\alpha_*: \tilde{\Omega}^L_*(BH) \to \tilde{\Omega}^L_*(BG)$ the homomorphism induced by $B\alpha$ and we also denote $\rho_*^{-1}\alpha_*\rho_*: \tilde{\Omega}^L_*(H) \to \tilde{\Omega}^L_*(G)$ by α_* . Then we have

(1.1)
$$\alpha_*(\llbracket M, f \rrbracket) = \llbracket G \underset{H}{\times} M, f_G \rrbracket, \qquad \llbracket M, f \rrbracket \in \tilde{\Omega}_*^L(H)$$

where $G \underset{H}{\times} M = G \times M/(g, x) \sim (g\alpha(h)^{-1}, f(h, x)), g \in G, h \in H \text{ and } x \in M \text{ on which } G \text{ acts by the rule}$

$$f_G(g, g' \underset{H}{\times} x) = gg' \underset{H}{\times} x, \quad g, g' \in G, x \in M.$$

Let H be a normal subgroup of G, and put $\Gamma = G/H$. Let $i: H \rightarrow G$ be the inclusion of H and $\pi: G \rightarrow \Gamma$ the projection. Then we have

$$\pi_* i_* = 0$$

because $(B\pi)(Bi) \simeq 0$.

For an H-manifold (M, f) and $g \in G$, (M, f^g) denotes an H-manifold consisting of the manifold M and the action f^g defined by

$$f^{g}(h, x) = f(g^{-1}hg, x), \quad x \in M, h \in H \text{ and } g \in G.$$

Then, since (M, f^g) and (M, f^{gh}) are diffeomorphic as H-manifolds for any $h \in H$ we can define an action of Γ on $\tilde{\Omega}_m^L(H)$ by

$$[M, f]^{\gamma} = [M, f^g] \quad \text{for } [M, f] \in \tilde{\Omega}_m^L(H) \text{ and } \gamma = gH \in \Gamma.$$

By $\tilde{\Omega}_m^L(H)^\Gamma$ we denote a subgroup of $\tilde{\Omega}_m^L(H)$ consisting of invariant elements under the action of Γ .

Next we define a homomorphism $t: \tilde{\mathcal{Q}}_m^L(G) \to \tilde{\mathcal{Q}}_m^L(H)$, which is called the transfer: Regard a G-manifold (M, f) as an H-manifold with the restriction f_H of f to H and put $t([M, f]) = [M, f_H]$.

When we denote the elements of Γ by $\gamma_1, \gamma_2, \dots, \gamma_k$, we have the following Theorem 1.2 (Conner-Floyd [1]). Let H be a normal subgroup of G, then

$$ti_*([M, f]) = \sum_{j=1}^k [M, f]^{\gamma_j}$$

for any $[M, f] \in \tilde{\Omega}_m^L(H)$ and in particular, if $[M, f] \in \tilde{\Omega}_m^L(H)^\Gamma$, then $ti_*([M, f]) = k[M, f]$ for every $m \ge 0$ and L = SO or U.

THEOREM 1.3. Let H be a normal and abelian subgroup of G, $k = [\Gamma: 1]$, l = [H: 1] and assume that k and l are relatively prime. Then there exists a homomorphism

$$\Phi_m^L: \tilde{\Omega}_m^L(H)^{\Gamma} \oplus \tilde{\Omega}_m^L(\Gamma) \longrightarrow \tilde{\Omega}_m^L(G)$$

and it is injective for every $m \ge 0$ and L = SO or U.

PROOF. First we define the homomorphism Φ_m^L . From Theorem (7.5) of Curtis and Reiner [3], we see that G is isomorphic to a semi-direct product $H \cdot \Gamma$ of H and Γ . Namely there exists a homomorphism $j: \Gamma \to G$ such that $\pi j = 1$. Then,

$$(1.4) \pi_* j_* = 1$$

because $(B\pi)(Bj) \approx 1$.

Let $\tilde{i}_*: \tilde{\mathcal{Q}}_m^L(H)^{\Gamma} \to \tilde{\mathcal{Q}}_m^L(G)$ be the restriction of i_* to $\tilde{\mathcal{Q}}_m^L(H)^{\Gamma}$. Then we define Φ_m^L by \tilde{i}_*+j_* .

Next we prove that Φ_m^L is injective. Suppose that $\Phi_m^L(\alpha, \beta) = 0$ for $(\alpha, \beta) \in \tilde{\Omega}_m^L(H)^{\Gamma} \oplus \tilde{\Omega}_m^L(\Gamma)$, then $\tilde{i}_*(\alpha) = -j_*(\beta)$. It follows from (1.2) and (1.4)

that

$$\beta = \pi_* j_*(\beta) = -\pi_* i_*(\alpha) = 0$$
 and so $i_*(\alpha) = \tilde{i}_*(\alpha) = 0$.

From Theorem 1.2 and $i_*(\alpha) = 0$ we have

$$k\alpha = ti_*(\alpha) = 0$$
.

Since H is a finite abelian group of order l and (l, k) = 1, the elements of $\widetilde{H}_m(BH; Z)$ are divisible by k. So we see that the elements of $\widetilde{\Omega}_m^L(H)$ are divisible by k using the bordism spectral sequence. Therefore, $\alpha = 0$. Consequently, $(\alpha, \beta) = 0$. This shows that Φ_m^L is injective. q. e. d.

§ 2.
$$\widetilde{H}_*(D_n:Z)$$
 and $\widetilde{\Omega}_*^L(D_n)$.

The dihedral group D_n , $n \ge 3$, is a subgroup of the symmetric group S_n generated by the permutations $g = (1, 2, \cdots, n)$ and $t = \begin{pmatrix} 1, & 2, \cdots, n \\ n, & n-1, \cdots, 1 \end{pmatrix}$ with the relations $g^n = t^2 = 1$ and $tgt = g^{-1}$. In particular, $D_3 = S_3$. Let Z_n and Z_2 be the cyclic subgroups of D_n generated by g and t respectively. Then Z_n is normal in D_n , the quotient group D_n/Z_n is isomorphic to Z_2 and $D_n = Z_n \cdot Z_2$.

From now we shall construct a classifying space of D_n . Let S^{2l+1} denote the unit (2l+1)-dimensional sphere in C^{l+1} with the coordinate (z_0, z_1, \cdots, z_l) and let S^m denote the unit m-dimensional sphere in R^{m+1} with the coordinate (x_0, x_1, \cdots, x_m) . Consider the product space $S^{2l+1} \times S^m$ and define an action ϕ of D_n on $S^{2l+1} \times S^m$ by the rule

$$\phi((g^i, t^j), (z, x)) = (\rho^i c^j(z), (-1)^j x), \quad z \in S^{2l+1}, x \in S^m$$

where $\rho = \exp((2\pi\sqrt{-1})/n)$, c(z) denotes the conjugate point of z and -x the antipodal point of x and we define $c^{j+1}(z)$ and $(-1)^{j+1}x$ inductively by setting

$$c^{j+1}(z) = c(c^{j}(z))$$
 and $(-1)^{j+1}x = -((-1)^{j}x)$ for $j \ge 1$.

Then we see that this action of D_n on $S^{2l+1} \times S^m$ is a free action. Denote by D(l,m) the quotient space $(S^{2l+1} \times S^m)/D_n$. Then the direct limit space of D(m,m) with respect to the natural inclusions $D(m,m) \subset D(m+1,m+1)$ becomes a classifying space of D_n , that is, $BD_n = \lim D(m,m)$.

Consider the product space of $L^{l}(n) \times S^{m}$ and define a homeomorphism

$$T: L^{l}(n) \times S^{m} \longrightarrow L^{l}(n) \times S^{m}$$

by T([z], x) = ([c(z)], -x), where $L^{l}(n)$ denotes the standard (2l+1)-dimensional lens space and [z] the point in the quotient space corresponding to $z \in S^{2l+1}$. Let D'(l, m) be the quotient space obtained from $L^{l}(n) \times S^{m}$ by identifying ([z], x) with T([z], x). Then clearly we have

LEMMA 2.1.

$$D'(l, m) \approx D(l, m)$$
 for $l, m \ge 1$.

Let $P^m(R)$ be the real m-dimensional projective space. When we define BZ_n , n>2, and BZ_2 by the direct limit spaces of $L^m(n)$ and $P^m(R)$ with respect to the natural inclusions $L^m(n) \subset L^{m+1}(n)$ and $P^m(R) \subset P^{m+1}(R)$ respectively, we have the maps

$$i: BZ_n \longrightarrow BD_n$$
 and $j: BZ_2 \longrightarrow BD_n$

by the definition of BD_n and moreover the inclusion maps

$$i_1: P^m(R) \longrightarrow BZ_2$$
 and $i_2: L^m(n) \longrightarrow BZ_n$.

Let X be an oriented manifold. By [X] we denote the fundamental class of X.

THEOREM 2.2. If n is odd, we have

$$\widetilde{H}_{2\sigma}(BD_n; Z) = 0$$
, $\widetilde{H}_{4k-1}(BD_n; Z) = Z_2 \oplus Z_n$

where Z_2 is generated by $(ji_1)_*([P^{4k-1}(R)])$ and Z_n by $(ii_2)_*([L^{2k-1}(n)])$, and

$$\widetilde{H}_{4k-3}(BD_n;Z) = Z_2$$

where Z_2 is generated by $(ji_1)_*([P^{4k-3}(R)])$ for every $q \ge 0$ and $k \ge 1$.

PROOF. Let $e^{2k+\varepsilon}$, $\varepsilon=0$ or 1, denote an open $(2k+\varepsilon)$ -cell of $S^{2l+1} \subset C^{l+1}$ defined by

$$e_j^{2k+1} = \{(z_0, \cdots, z_k, 0, \cdots, 0) \in S^{2l+1} | \ z_k \neq 0 \ \text{and} \ 2\pi j/n < \arg z_k < 2\pi (j+1)/n\}$$

and

$$e_i^{2k} = \{(z_0, \dots, z_k, 0, \dots, 0) \in S^{2l+1} | z_k \neq 0, \text{ arg } z_k = 2\pi j/n\}$$

for $0 \le j \le n-1$ and $0 \le k \le l$. Let $\phi_1: S^{2l+1} \to L^l(n)$ denote the projection and put $C_r = \phi_1(e_1^r)$, $0 \le r \le 2l+1$, then $C_r = \phi_1(e_0^r) = \phi_1(e_1^r) = \cdots = \phi_1(e_{n-1}^r)$.

Let D_j^+ (D_j^-) be an open j-cell of $S^m \subset R^{m+1}$ defined by $x_{j+1} = x_{j+2} = \cdots = x_m = 0$, $x_j > 0$ $(x_j < 0)$. Then $\{C_i \times D_j^+ | i = 0, 1, \cdots, l; j = 0, 1, \cdots, m\}$ forms an oriented cellular decomposition of $L^l(n) \times S^m$ whose boundary relations are given by

$$\partial (C_{2i+1} \times D_j^{\pm}) = (-1)^{j+1} C_{2i+1} \times (D_{j-1}^+ - D_{j-1}^-) , \qquad 0 \leq i \leq 1, \ 1 \leq j \leq m ,$$

$$\partial (C_{2i} \times D_i^{\pm}) = nC_{2i-1} \times D_i^{\pm} + (-1)^j C_{2i} \times (D_{i-1}^+ - D_{i-1}^-), \quad 1 \le i \le l, \ 1 \le j \le m$$

$$\partial (C_{2i+1} \times D_0^{\pm}) = 0$$
, $0 \le i \le l$.

$$\partial (C_{2i} \times D_0^{\pm}) = nC_{2i-1} \times D_0^{\pm}, \qquad 1 \leq i \leq l$$

$$\partial (C_0 \times D_j^{\pm}) = (-1)^j C_0 \times (D_{j-1}^+ - D_{j-1}^-), \qquad 1 \le j \le m.$$

The homeomorphism T is a cellular map with respect to the above cellular decomposition and satisfies

$$T(C_{2i+\varepsilon}\!\!\times\!D_j^{\scriptscriptstyle\pm})\!=\!(-1)^{i+j+\varepsilon}C_{2i+\varepsilon}\!\!\times\!D_j^{\scriptscriptstyle\mp}$$

for $\varepsilon = 0, 1, 0 \le i \le l$ and $0 \le j \le m$.

Let $\phi_2: L^l(n) \times S^m \to D(l, m)$ denote the composition of the projection $L^l(n) \times S^m \to D'(l, m)$ and the homeomorphism $D'(l, m) \to D(l, m)$ in Lemma 2.1 and write $(C_i, D_j) = \phi_2(C_j, D_j^+)$. Then $\{(C_i, D_j) | i = 0, 1, \dots, l; j = 0, 1, \dots, m\}$ is a cellular decomposition of D(l, m) whose boundary relations are given by

$$\begin{split} &\partial(C_{2i+1},\,D_j) = ((-1)^i + (-1)^{j+1})(C_{2i+1},\,D_{j-1})\,, \qquad 0 \leq i \leq l,\,\, 1 \leq j \leq m\,\,, \\ &\partial(C_{2i},\,D_j) = n(C_{2i-1},\,D_j) + ((-1)^i + (-1)^j)(C_{2i},\,D_{j-1})\,, \qquad 1 \leq i \leq l,\,\, 1 \leq j \leq m\,\,, \\ &\partial(C_{2i+1},\,D_0) = 0\,, \qquad 0 \leq i \leq l\,\,, \\ &\partial(C_{2i},\,D_0) = n(C_{2i-1},\,D_0)\,, \qquad 1 \leq i \leq l\,\,, \\ &\partial(C_0,\,D_j) = (1 + (-1)^j)(C_0,\,D_{j-1})\,, \qquad 1 \leq j \leq m\,\,. \end{split}$$

From this formulas we obtain

$$\widetilde{H}_{2q}(BD_n;Z)=0$$
 and $\widetilde{H}_{4k-1}(BD_n;Z)=Z_2 \oplus Z_n$

where Z_2 is generated by (C_0, D_{4k-1}) and Z_n by (C_{4k-1}, D_0) and

$$\widetilde{H}_{4k-3}(BD_n;Z)=Z_2$$

where Z_2 is generated by (C_0, D_{4k-3}) . Furthermore (C_0, D_{2k-1}) and (C_{4k-1}, D_0) are $(ji_1)_*([P^{2k-1}(R)])$ and $(ii_2)_*([L^{2k-1}(n)])$ respectively. This completes the proof.

Denote by

$$\mu^L: \tilde{\Omega}^L_*(G) \longrightarrow H_*(BG; Z)$$

the Thom homomorphism for L = SO or U defined by

$$\mu^L([M, f]) = g_*([M/G])$$

where $\lceil M/G \rceil$ denotes the fundamental class of the quotient manifold M/G and g a classifying map of the principal G-bundle $M \to M/G$. Define an action of $Z_n \subset D_n$ on $S^{2m-1} \subset C^m$ and an action of $Z_2 \subset D_n$ on $S^{l-1} \subset R^l$ by

$$T_n(g, (z_0, z_1, \dots, z_{m-1})) = (\rho z_0, \rho z_1, \dots, \rho z_{m-1}), \quad \rho = \exp(2\pi \sqrt{-1}/n)$$

and $T_2(t, (x_0, x_1, \dots, x_{l-1})) = (-x_0, -x_1, \dots, -x_{l-1})$ respectively where g and t are the generators of D_n . Then $S^{2m-1}/Z_n = L^{m-1}(n)$ and $S^{l-1}/Z_2 = P^{l-1}(R)$. We recall the following

THEOREM 2.3 (Conner-Floyd [1], Conner-Smith [2]).

(i) $\mu^L: \widetilde{\Omega}_*^L(Z_n) \to \widetilde{H}_*(BZ_n; Z)$ is onto for every $n \ge 2$ and

$$\mu^{L}([S^{2i-1}, T_2]) = i_{1*}([P^{2i-1}(R)])$$
 for $n=2$

and

$$\mu^L([S^{2i-1}, T_n]) = i_{2*}([L^{i-1}(n)]) \qquad \textit{for } n > 2 \,.$$

(ii) $\{ [S^{2i-1}, T_n]; i \ge 1 \}$ forms a generating set for $\tilde{\Omega}_*^{\underline{v}}(Z_n)$ as an $\tilde{\Omega}_*^{\underline{v}}$ -module for $n \ge 2$.

Then we see that

PROPOSITION 2.4. The Thom homomorphism

$$\mu^L: \ \widetilde{\Omega}^L_*(D_n) \longrightarrow \widetilde{H}_*(BD_n; Z)$$

is onto when n is odd for L = SO or U.

PROOF. Using the notation of Theorem 2.3 $[S^{4i-1}, T_n] + [S^{4i-1}, T_n]^t$ is contained in $\widetilde{\Omega}_{4i-1}^L(Z_n)^{\mathbb{Z}_2}$ for each $i \geq 1$ since $t^2 = 1$ where t is the generator of Z_2 and moreover it is divisible by 2 as n is odd. Consider the images of $j_*([S^{2i-1}, T_2])$ and $i_*((1/2)([S^{4i-1}, T_n] + [S^{4i-1}, T_n]^t))$ by μ^L . Then, by Theorem 2.3 and the naturality of μ^L

$$\mu^{L}j_{*}([S^{2i-1}, T_{2}]) = (ji_{1})_{*}([P^{2i-1}(R)])$$

and

$$\mu^L i_*((1/2)([S^{4i-1}, T_n] + [S^{4i-1}, T_n]^t)) = (ii_2)_*([L^{2i-1}(n)])$$

for $i \ge 1$. Therefore, from Theorem 2.2 we get Proposition 2.4.

According to Proposition 2.4, we obtain the following

COROLLARY 2.5. When n is odd, $\{j_*(\lceil S^{2i-1}, T_2 \rceil), i_*((1/2)(\lceil S^{4i-1}, T_n \rceil + \lceil S^{4i-1}, T_n \rceil)\}$; $i \ge 1$ forms a generating set for $\tilde{\Omega}_*^{v}(D_n)$ as an $\tilde{\Omega}_*^{v}$ -module.

From Theorem 1.3 and Corollary 2.5 we obtain immediately the following Theorem 2.6. If n is odd, then

$$\Phi_m^U: \tilde{\Omega}_m^U(Z_n)^{Z_2} \oplus \tilde{\Omega}_m^U(Z_2) \longrightarrow \tilde{\Omega}_m^U(D_n)$$

is an isomorphism for every $m \ge 0$.

§ 3. The structure of $\tilde{\Omega}_{*}^{v}(Z_{p})^{z_{2}}$, p an odd prime.

In this section we suppose that p is an odd prime. Consider an element

$$L^{k} = [S^{2k+1}, T_{p}] + [S^{2k+1}, T_{p}]^{t}$$

where t is the generator of Z_2 . The element L^k belongs to $\tilde{Q}_{2k+1}^U(Z_p)^{Z_2}$.

Denote by $\Gamma_*(p)$ the polynomial subring in $\Omega_*^v = Z[x_1, x_2, \cdots]$ which is generated by x_i $(i \neq p-1)$.

PROPOSITION 3.1. Suppose that

$$\sum_{k=0}^{n} \alpha_{2t+4n-4k} L^{2k+1} = 0, \qquad \alpha_{2t+4n-4k} \in \Gamma_{2t+4n-4k}(p).$$

Then,

$$\alpha_{2t+4n-4k} \in p^{\left[\frac{2k+1}{p-1}\right]+1} \Gamma_{2t+4n-4k}(p)$$

where $\lceil \rceil$ is the Gaussian symbol.

PROOF. Consider the Thom homomorphism

$$\mu^{U}: \widetilde{\Omega}_{*}^{U}(Z_{p}) \longrightarrow \widetilde{H}_{*}(BZ_{p}; Z)$$

where BZ_p is the classifying space of Z_p . It is easy to see that $\mu^U(L^m) = \{1+(-1)^{m+1}\}g$, where g is the generator of $\widetilde{H}_{2m+1}(BZ_p; Z)$. According to Kamata [4], we have the following representation

$$L^{2k+1} = \sum_{j=0}^{2k+1} a_j [S^{2j+1}, T_p], \quad a_j \in \Gamma_{4k-2j+2}(p) \cdots (1).$$

Applying the homomorphism μ^U to the above equation, we have

$$a_{2k+1} \equiv 2 \pmod{p} \cdots (2)$$
.

Using (1), we describe the equation $\sum_{k=0}^{n} \alpha_{2t+4n-4k} L^{2k+1} = 0$ as follows:

$$a_{2n+1}\alpha_{2t}[S^{4n+3}, T] + \sum_{j=0}^{2n} b_j[S^{2j+1}, T_p] = 0$$

where the coefficient b_j belongs to $\Gamma_*(p)$.

Therefore it follows from Kamata [4] and (2) that $\alpha_{2t} \in p^{\left[\frac{2n+1}{p-1}\right]+1} \Gamma_*(p)$. Since L^k has order of $p^{\left[\frac{k}{p-1}\right]+1}$, by induction, Proposition 3.1 follows.

We put

$$W^{\mathrm{U}}_{\varepsilon}(n) = \sum_{k=0}^n \Gamma_{2\varepsilon+4n-4k}(p)/p^{\left\lceil \frac{2k+1}{p-1}\right\rceil+1} \Gamma_{2\varepsilon+4n-4k}(p)$$

where $\Gamma_i(p) = 0$, i < 0.

THEOREM 3.2. The homomorphism

$$\Theta:\ W^{\,{\rm U}}_{\,\varepsilon}(n) \longrightarrow \tilde{\varOmega}^{\,{\rm U}}_{4n+2\varepsilon+3}(Z_p)^{{\rm Z}_2}$$

given by

$$\Theta(\textstyle\sum_{k=0}^{n}\alpha_{2\varepsilon+4n-4k})=\textstyle\sum_{k=0}^{n}\alpha_{2\varepsilon+4n-4k}L^{2k+1}$$

is isomorphic for $\varepsilon = 0, -1$.

PROOF. It follows from Proposition 3.1 that Θ is injective. We compute the order of $\widetilde{\Omega}^{U}_{4n+3}(Z_p)^{Z_2}$ and $\widetilde{\Omega}^{U}_{4n+1}(Z_p)^{Z_2}$. Consider the spectral sequence of $\widetilde{\Omega}^{U}_{*}(BD_p)$ $E^r_{s,t}$ with $E^2_{s,t} = \widetilde{H}_s(BD_p; \Omega^{U}_t)$. From Proposition 2.4, the spectral sequence collapses. Consider the filtration of $\widetilde{\Omega}^{U}_{*}(BD_p)$ $J_{s,t}$ with $J_{s,t}/J_{s-1,t+1} \cong E^{\infty}_{s,t} \cong \widetilde{H}_s(BD_p; \Omega^{U}_t)$. Denote by σ_t the number of partitions of t. Then we have

$$J_{4s+3,2t}/J_{4s+1,2t+2} = \overbrace{Z_{p} + \cdots + Z_{p}}^{\sigma_{t}} + \overbrace{Z_{2} + \cdots + Z_{2}}^{\sigma_{t}}$$

and

$$J_{4s+1,2t}/J_{4s-1,2t+2} = \overbrace{Z_2 + \cdots + Z_2}^{\sigma_t}.$$

Therefore, the order of $\tilde{\Omega}_{4n+3}^{U}(BD_p)$ is $2^a p^b$, $a = \sum_{j=0}^{2n+1} \sigma_j$ and $b = \sum_{j=0}^{n} \sigma_{2j}$, and the order of $\tilde{\Omega}_{4n+1}^{U}(BD_p)$ is $2^c p^d$, $c = \sum_{j=0}^{2n} \sigma_j$ and $d = \sum_{j=0}^{n-1} \sigma_{2j+1}$.

On the other hand the order of $\tilde{\varOmega}^{y}_{2m+1}(BZ_2)$ is 2^f , $f=\sum_{j=0}^m\sigma_j$. From Theorem 2.6, it follows that $\tilde{\varOmega}^{y}_{4n+3}(Z_p)^{Z_2}$ and $\tilde{\varOmega}_{4n+1}(Z_p)^{Z_2}$ have order of p^b and p^d respectively. Denote by τ_t the number of partitions of t, containing no p-1. $W_0(n)$ and $W_{-1}(n)$ have order of p^u and p^v respectively, where

$$u = \sum_{k=0}^{n} \left\{ \left[\frac{2k+1}{p-1} \right] + 1 \right\} \tau_{2(n-k)},$$

$$v = \sum_{k=0}^{n-1} \left\{ \left[\frac{2k+1}{p-1} \right] + 1 \right\} \tau_{2(n-k)-1}.$$

Using the same method as Conner and Floyd [1], p. 97, we have b=u and d=v. q.e.d.

From Theorem 2.6 and Theorem 3.2, we can determine the additive structure of $\tilde{\Omega}_*^{v}(D_p)$, p an odd prime.

Department of Mathematics
Faculty of General Education
Kyushu University
Ropponmatsu, Fukuoka
Japan

Department of Mathematics Faculty of Science Osaka City University Sugimoto-cho, Sumiyoshi-ku Osaka, Japan

References

- [1] P.E. Conner and E.E. Floyd, Differential Periodic Maps, Springer-Verlag, 1964.
- [2] P.E. Conner and L. Smith, On the complex bordism of finite complexes, Inst. Hautes Etudes Sci. Puble. Math., (Paris) 37 (1969), 117-221.
- [3] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics vol. XI, J. Wiley and Sons, Inc., 1962.
- [4] M. Kamata, The structure of the bordism group $U_*(BZ_p)$, Osaka J. Math., 7 (1970), 409-416.