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§ 1. Introduction.

The purpose of this paper is to prove the following theorem.

THEOREM. Let G be a complex abelian Lie group of complex dimension mw
and K the maximal compact subgroup of the connected component of G with
Lie algebra %. Let q be the complex dimension of ¥~\~/—1%. Then there exists
a real-valued C* function ¢ on G satisfying the following conditions:

(1) The Levi form of ¢:

n 2
Lip, x)= X2 ‘az%a% dz,dz;

1,j=1

is positive semi-definite and has n—q positive eigenvalues at every point x of
G, where (zy, 25, -+, 2,) denotes a system of coordinates in some neighborhood
of x.
(2) The set
G.={g€G: ¢(g)<c}

1s a relatively compact subset of G for any c& R.

By the above theorem any complex abelian Lie group is always pseudo-
convex. In the last part we shall find a complex Lie group of arbitrary
dimension, on which every holomorphic function is a constant and which is
pseudoconvex and l-complete.

The author is very grateful to Professor J. Kajiwara for his continuous
encouragement.

§2. Proof of Theorem.

Since all connected components of G are biholomorphically isomorphic,
we may assume that G is connected. Let © be the sheaf of all germs of
holomorphic functions on G. We put

G'={geG: f(g9=f(e) for all fe H'(G, D)}

where e is the unit element of G. Then Morimoto [5] proved that G° is a
complex abelian Lie subgroup of G and that every holomorphic function on



330 H. Kazama

G° is a constant. By Morimoto we may assume that
G=G"XC™XC*?

for non-negative integers m and p where C* is the multiplicative group of
all non-zero complex numbers. Let K be the maximal compact subgroup of
G with Lie algebra t and K° be the maximal compact subgroup of G° with
Lie algebra . Since there holds t\vV—1f=1\+/—1¥ and since C™XC*?
is a Stein group, it suffices to prove the theorem in the case that G=G"
Then every holomorphic function on G is a constant and G is isomorphic to
c/I'(d, d?, -+, d°), where I'(d*, d? -, d%) is a discrete subgroup generated
by linearly independent vectors d*, d% ---,d* of C™ over R. The complex
linear subspace of C" spanned by {d*: 1 <1<s} is expressed by {d*, d* ---, d*)¢.
Then we have C"={d%, d? ---, d*)¢. Actually, if dime{dt, d? -+, d*>c=n—1,
there exists a complex linear subspace V of C® of positive dimension such
that C*=<d*, -+, d*>¢ B V. Consequently we have G=<Kd', @, ---, d*)¢/I(d",
d? -, d)@P V. Since every holomorphic function on G is a constant, it is a
contradiction. Therefore s=n and we may assume that d?, 42 ---, d*"! and
d" are linearly independent over C. There exists an (n, n)-matrix MeGL(n, C)
such that e¢'= M(d*) where ¢’ is the i-th unit vectors of C*. We put f/=
M(d"*™), 1<j<s—n. Then G is isomorphic to the complex Lie group
ct/r'e, -, e, [ -, ™. From now, we put I'=1, ---, ¢e", f, -, ™
and regard G as C"/I'. Since d', d? ---, d*"! and d° are linearly independent
over R, &', % .-, ¢, f f% -, 5™ and f* ™ are linearly independent over
R. We put
K={e" -, e f1 o, f=m5p/ T

where (¢!, :-+, e, f1, -+, f*">r denotes the real linear subspace of spanned
by {e,, f/: 1<i1<n, 1<j<s—n}. Then K is the maximal compact subgroup
of G with Lie algebra f={é, -+, ¢", f*, -+, f*"">p. We put f/=Ref’/++/—11Im f7,
where Re /7 and Im f7 are vectors of R" for 1<j<s—n. Then we have
t=de!, -, e" V—1Im [} -, V—1Im [/ ™g
and
tAV—1t=ddm s, -, Im .

Since Im !, Im f?% ---, Im f* "' and Im f* ™ are linearly independent over C,
dim¢f+/—1% coincides with s—n and we have g=s—n. Take a system
{h*e R*: g+1<k=n} of n—q vectors such that Im f*, Im f2, -, Im f9, Ao,
h?*? ... "h™*' and A™ are linearly independent over R. Then &', &2 .-, "
V—=1Imf% -, vV=1Im f9 ~V/—1h?, ..., /=1 k"' and ~—1 A" are linearly
independent over R and we have
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Cm =, -, & N=L1Im /%, -, V=1 Im £ V=T ht, oo | /Ty .
"There exists an (n, n)-matrix A=(a}) e GL(n, R) such that

’el ( Imf* )
—A Im f¢
patl
e” | L " .
For every (zy, 2o, -+, 2,) € C"™ where z;=x,++—1y,, 1<i<n, we have

(21, 25 5 Z0) = D 18+ V—1 2 ¥,
i=1 i=1

3

v

=1

It

Xt é}l (é M)V =T1m fi+ 3 ( zlz y,ai)vV/ =1 h* .

s=g+1 1=
‘We consider the function ¢ on C" defined by ¢(zy, 25 -+, 2,) = é (i}yia};)z
k=q+1 i=1

via the above equation. We define the real-valued C* function ¢ on G=C"/I"
by putting @(z+1")=¢(z). By the definition of @, the set {ge G: (g <c}
is relatively compact for any ce R. We consider the (n, n)-matrix

of rank n—q. Then we have

0"z +1) Y11 00(z) 1_ 1 pp
322-321- ]—I: 4 ‘ aylay_;]—_z BB,

The matrix BB’ is positive semi-definite and of rank n—q. This proves the

theorem.

§ 3. Application.

A. Morimoto has constructed a complex Lie group, on which every
holomorphic function is a constant and which contains no complex torus of
positive dimension. Such a group is called an (H, C)-group. Since all (H, C)-
groups are abelian, every (H, C)-group is always pseudoconvex. It is known
that there exist some examples of non-compact pseudoconvex manifolds
without non-constant holomorphic functions (cf. H. Grauert [3]). By the
theorem and Morimoto’s result [5], it is shown that there exist a number of
such manifolds even in the case of group manifolds.
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A complex manifold X of dimension n is called a strongly g-pseudoconvex
manifold if there exist a real-valued C* function ¢ on X and a compact
subset K of X such that the Levi form L(p, x) of ¢ has at least n—g posi-
tive eigenvalues at every point x of X—K and X, ={re X: p(x)<c} is a
relatively compact subset of X for any c= R. Moreover if we can take the
empty set as K, X is called a ¢-complete manifold.

We recall the well-known result of A. Andreotti and H. Grauert [1].

Let ¥ be a coherent analytic sheaf on a complex manifold X. If X is
strongly ¢-pseudoconvex, then we have dim HY(X, ¥ < +oo for i=q¢+1. In
particular if X is ¢-complete, then we have H(X, ¥) =0 for 1= ¢-+1.

Since the complex abelian Lie group G in the theorem is g-complete, we
have

HY(G,$)=0, i=g+l

for every cohevent analvtic sheaf §F on G.

H. Grauert gave the following conjecture at page 347 of [2]: Let X be
a complex space with countable topology. If dim¢c X <n, then X is strongly
(n—1)-pseudoconvex.

In case that X is a complex Lie group the above conjecture is valid.

COROLLARY. Let G be a connected complex Lie group of dimension n. If
G is non-compact, then G is (n—1)-complete and we have

H™(G, %) =0

for every coherent analytic sheaf § on G.

PROOF. We put G’'={geG: flg)=/f(e) for all f H'G, O)}. Morimoto
proved that G° is a complex abelian Lie subgroup of G. If G=G" then
G is (n—1)-complete by the theorem. When G+ G° we put ¢=dim:G’<n.
Then by the consequence of a previous paper [4], G is ¢g-complete. In any
way we have the above corollary.

REMARK. Take (zy, z,, -+, 2,) € C"—R" such that 1, z,, z,, -+, 2z, are linearly
independent over the ring of all rational numbers. And we put v=(z,, 2,,
-+, 2Z;). Then Morimoto [6] proved that G=C"/I(¢', ---, ¢", v) is an (H, C)-
group. Therefore every holomorphic function on G is a constant. But the
theorem asserts that G is pseudoconvex and l-complete.
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